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    Abstract     Sperm chemotaxis toward eggs before fertilization has been observed in 
many living organisms. Sperm chemotaxis is the fi rst communication or signaling 
event between male and female gametes in the process of fertilization, and species- 
specifi c events occur in many cases. Thus, sperm chemotaxis may act as a safety 
process for authenticating that fertilization occurs between conspecifi c egg and 
sperm and helps to prevent crossbreeding. Here, we introduce mechanisms of sperm 
chemotaxis, focusing on cross-talk between gametes and species specifi city. 
Furthermore, we discuss the interactions between sperm-activating and sperm- 
attracting factors (SAAFs) in the ascidian species and that SAAF receptors on 
sperm cells are not all-or-none responses. The SAAF receptors may accept SAAFs 
of related species (closely related molecules), with different affi nities.  

  Keywords     Fertilization   •   Species specifi city   •   Sperm chemotaxis  

1.1         Introduction 

 In all living organisms, male gametes are activated, with increase in their motility, 
and are subsequently attracted toward a female gamete in response to certain factors 
released from the female gametes or reproductive organs. Chemotactic behavior of 
male gametes toward the ovule was fi rst described in Kingdom Plantae, bracken fern 
(Pfeffer  1884 ). Brown algae have also developed chemoattractants for male gam-
etes, known as sexual pheromones (Maier and Müller  1986 ). In fl owering plants, 
peptidic factors called LURE s attract the pollen tube toward the ovules, resulting in 
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guiding the sperm cell to the ovule (Okuda et al.  2009 ). Gamete chemotaxis was 
also observed in Kingdom Fungi, and the aquatic fungus  Allomyces macrogynus   
shows gamete chemotaxis (Machlis  1973 ). 

 In Kingdom Animalia, sperm chemotaxis toward the egg was fi rst observed in 
the hydrozoan  Spirocodon saltatrix  (Dan  1950 ), and such an ability is now widely 
recognized in marine invertebrates, from cnidarians to ascidians (Miller  1966 , 
 1985b ; Cosson  1990 ), and in vertebrates, from fi sh to humans (Oda et al.  1995 ; 
Pillai et al.  1993 ; Suzuki  1958 ,  1959 ; Eisenbach  1999 ; Yanagimachi et al.  2013 ). 
In nematodes, spermatozoa are unfl agellated but use an amoeboid movement to 
move from the bursa through the uterus to the spermatheca (Ward and Carrel  1979 ). 
A sperm-guiding factor present in the micropyle area of the egg of the teleost rosy 
barb has also been described (Amanze and Iyengar  1990 ). 

 In many cases, species specifi city of sperm chemotaxis is present. Thus, these 
phenomena constitute the fi rst communication event between the gametes during 
fertilization and prevent crossbreeding among different species. In this chapter, we 
review sperm chemotaxis and focus on the species specifi city of this phenomenon.  

1.2     Chemical Nature of Sperm Chemoattractants 

 Chemoattractant molecules for sperm in plants are low molecular weight organic 
compounds such as the bimalate ions in the bracken fern (Brokaw  1957 ,  1958 ) and 
unsaturated cyclic or linear hydrocarbons, such as ectocarpene, in the brown algae 
(Maier and Müller  1986 ). In the aquatic fungus  A. macrogynus , the female gametes 
release a sesquiterpene “sirenin” as a attractant for male gametes (Machlis  1973 ), 
and interestingly, a different compound called “parisin” released by the male gam-
etes is able to attract fl agellated female gametes of the same species (Pommerville 
and Olson  1987 ). 

 In animals, sperm chemoattractants have been identifi ed in several species, and 
most of these chemoattractant molecules are proteins or peptides. Chemoattractants 
such as “resact ” in sea urchins (Ward et al.  1985 ; Guerrero et al.  2010 ), “sepsap ” in 
cuttlefi sh (Zatylny et al.  2002 ), and “asterosap ” in starfi sh (Böhmer et al.  2005 ) are 
peptides. A 21-kDa protein named “allurin ” in the amphibian  Xenopus laevis  (Olson 
et al.  2001 ) and tryptophan in abalone (Riffell et al.  2002 ) act as sperm chemoat-
tractants. In the hydrozoan  Hippopodius hippopus , the attractant has not yet been 
identifi ed but has been characterized as a small and thermoresistant protein with a 
molecular mass of 25 kDa and an isoelectric point of 3.5 (Cosson et al.  1986 ). 
Recently, a Coomassie Blue-affi nity glycoprotein, “Micropyler Sperm Attractant”  
(MSA), around the opening and inside of the micropyle of herring and fl ounder eggs 
has been identifi ed that guides (“attract”) the spermatozoa into the micropyle 
(Yanagimachi et al.  2013 ). 

 On the other hand, nonproteinaceous chemoattractants have been identifi ed in 
coral and ascidians: the chemoattractant of the coral  Montipora digitata  is an unsat-
urated fatty alcohol (Coll et al.  1994 ), and those of the ascidians  Ciona intestinalis  
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and  Ascidia sydneiensis  (Yoshida et al.  2002 ; Matsumori et al.  2013 ) are sulfated 
hydroxysterols. Mammalian spermatozoa also show chemotactic behavior, and 
many candidate chemoattractants for spermatozoa have been proposed (Eisenbach 
and Giojalas  2006 ). Recently, progesterone released from the cumulus oophorus 
was considered as a candidate of sperm attractant for human sperm (Guidobaldi 
et al.  2008 ). On the other hand, odorants such as bourgeonal  (Spehr et al.  2003 ) and 
lyral  (Fukuda et al.  2004 ), which are aromatic aldehydes used in perfumes, could 
also act as chemoattractants in human and mouse sperm, respectively. 

 Where are the sperm chemoattractants released? Fern sperms show a chemotac-
tic response to secretions from the female reproductive structures (Pfeffer  1884 ). 
Sperm attractants of sea urchins and sea stars (starfi sh) are derived from the egg 
jelly (Ward et al.  1985 ; Nishigaki et al.  1996 ), and the source of sperm attractant of 
the hydrozoan, the siphonophore, is a cupule, the extracellular structure of the egg 
(Carré and Sardet  1981 ). Therefore, sperm attractants are released from the egg 
accessory organs or female gametes in these species. In contrast, in ascidians, 
sperm-attracting activity does not originate from the overall egg coat as a layer of 
jelly surrounding the eggs, but originates from the egg (Yoshida et al.  1993 ), indi-
cating that the eggs themselves release the chemoattractant for the sperm.  

1.3     Ca 2+  Changes Mediate Sperm Chemotaxis 

 In all examples of well-characterized chemotaxis, the intracellular Ca 2+  concentra-
tion ([Ca 2+ ]  i  ) appears to be a common element of absolute necessity in the attraction 
mechanism (Kaupp et al.  2008 ; Yoshida and Yoshida  2011 ). Ca 2+  plays a key role in 
the regulation of fl agellar beating, and in the case of sea urchin spermatozoa, the 
sperm attractant triggers [Ca 2+ ]  i   fl uctuations (Böhmer et al.  2005 ; Wood et al.  2005 ) 
that appear to correlate with the asymmetrical beating of sperm fl agella (Brokaw 
et al.  1974 ; Brokaw  1979 ). In the hydrozoan siphonophore s, the diameters of the 
sperm trajectories decrease on approach of the sperm to the cupule (a sperm- 
attracting accessory organ of the egg), but the sperm trajectories are unchanged in 
the absence of Ca 2+  (Cosson et al.  1984 ). A similar role for extracellular Ca 2+  in 
mediating fl agellar asymmetry of the spermatozoon during chemotactic behavior 
has been reported in hydrozoa (Miller and Brokaw  1970 ; Cosson et al.  1984 ). In 
ascidians, the spermatozoa normally exhibit circular movements, as just described, 
and maintain [Ca 2+ ]  i   at very low levels (Shiba et al.  2008 ). During chemotactic 
behavior the spermatozoa produce frequent and transient increases of [Ca 2+ ]  i   in the 
fl agella (Ca 2+  bursts) (Shiba et al.  2008 ). Interestingly, the Ca 2+  bursts are consis-
tently evoked at points at which the spermatozoon is around a temporally minimal 
value for a given sperm-activating and sperm-attracting factor (SAAF) concentra-
tion (Shiba et al.  2008 ) and to trigger a sequence of “turn-and-straight” movements. 
These data suggest that sperm attractants induce Ca 2+  entry from extracellular 
spaces into the sperm cell, and the resultant increase in [Ca 2+ ]  i   mediates the beating 
of sperm fl agella, resulting in chemotactic “turn-and-straight” movements.  
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1.4     Specifi city of Sperm Chemotaxis in Species Other 
Than Ascidians 

 As described here, the molecular structures of sperm chemoattractants are different 
in different species, and factors from one species cannot attract the sperm of another 
species. This specifi city ensures species-specifi c fertilization by preventing cross-
breeding. Species or genus specifi city in sperm chemotaxis has been observed in 
hydrozoa (Miller  1979 ) and in echinoderms, other than sea urchins (Miller  1985a , 
 1997 ). However, no chemotactic cross-reactivity exists in siphonophore species 
examined, and contact with seawater without attractants is enough to activate sperm 
motility, although the presence of Ca 2+  ions in seawater is involved in the chemo- 
attraction process (Cosson  1990 ). Mammalian species also seem to share a common 
sperm attractant molecule (Sun et al.  2003 ; Guidobaldi et al.  2008 ; Teves et al. 
 2006 ), suggesting the lack of species specifi city. In Mollusca, even though the aba-
lone species seem to show species specifi city in sperm chemotaxis (Riffell et al. 
 2004 ), there is a lack of species specifi city of sperm chemotaxis among chitons 
(Miller  1977 ).  

1.5     Species Specifi city of Sperm Chemotaxis in Ascidians 

 In ascidians, species-specifi c sperm agglutination was reported in the early 1950s in 
fi ve Mediterranean ascidians (Minganti  1951 ), and precise species-specifi city tests 
of sperm attractants in egg ethanol extracts were also described in many ascidian 
species (Miller  1975 ,  1982 ) (Table  1.1 ). In these studies, ascidian sperm chemotaxis 
or agglutination tend to be species specifi c, but cross-reactivity among many species 
was also observed (Table  1.1 ). In particular, a lack of specifi city was evident within 
the genus  Styela  (Miller  1975 ,  1982 ) (Table  1.1 ). However, the study on species 
specifi city of ascidians contained both the order Phlebobranchiata , including the 
genus  Ciona , and the order Stolidobranchiata, including the genus  Styela , which are 
genetically distant, as per recent taxonomic data (Zeng et al.  2006 ; Tsagkogeorga 
et al.  2009 ).

   We have previously identifi ed the sperm chemoattractant released from the eggs 
of  Ciona intestinalis  as (25 S )-3α,4β,7α,26-tetrahydroxy-5α-cholestane-3,26- 
disulfate, which was designated as the  Ciona  sperm-activating and -attracting factor 
(Ci-SAAF) (Yoshida et al.  2002 ; Oishi et al.  2004 ). The synthesized Ci-SAAF mol-
ecule possesses abilities to both activate motility and attract sperm (Yoshida et al. 
 2008 ; Oishi et al.  2004 ). The SAAF of another  Ciona  species,  C. savignyi  
(Cs-SAAF), seems to be identical with Ci-SAAF and presents no specifi city for the 
sperm activation of  C. savignyi  and vice versa (Yoshida et al.  1993 ,  2002 ). We have 
also recently identifi ed As-SAAF from another phlebobranchian species,  A. sydnei-
ensis  , as 3α,7α,8β,26-tetrahydroxy-5α-cholest-22-ene-3,26-disulfate (Matsumori 
et al.  2013 ); this was the fi rst study leading to the identifi cation of the chemoattrac-
tants of related species in Kingdom Animalia. Unexpectedly, Ci-SAAF and 
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As-SAAF vary only by one double bond and the position of the OH group (Fig.  1.1 ). 
Even such a small difference in the sperm attractant molecules is enough to result in 
species-specifi c responses.

   The cross-reactivity data of sperm chemotaxis for several ascidian species 
belonging to order Phlebobranchia show some specifi city in the cross-reactivity 
between egg-conditioned seawater (ESW) and sperm response when comparing 
 Ciona  versus  Phallusia  and  Phallusia  versus  Ascidia . However, this does not seem 
to be true in all cases in terms of “species” or “genus” specifi city. For example, there 
is a “one-way” (no reciprocity) cross-reaction between  C. savignyi  and  A. sydneiensis  
(Table  1.2 ) (Yoshida et al.  2013 ). Furthermore, even when a cross-reaction is 
observed, the level of activity is different. The interactions between the SAAFs in 
the ascidian species and the SAAF receptors on the sperm cells are not all-or-none 
responses. The SAAF receptor may accept SAAFs of related species, which are 
closely related molecules, with different affi nity. Hence, sperm chemotaxis is 
 neither a “species”- nor a “genus”-specifi c phenomenon among ascidians.

     Table 1.1    Species-specifi city tests of sperm    chemotaxis or agglutination in ascidians   

 Sperm 

 1 a   2  3  4  5  6  7  8  9  10  11  12 

 Egg extracts   Ciona intestinalis   1  ++  ++  –  /  –  –  –  –  –  –  –  – 
  Ascidia callosa   2  +  ++  /  /  ++  –  /  /  /  /  /  / 
  Corella infl ata   3  –  –  –  –  –  –  /  /  –  –  –  – 
  Corella willmeriana   4  ±  +  ±  ++  ++  /  /  /  /  /  /  / 
  Chelyosoma 

productum  
 5  /  –  /  /  ++  /  /  /  /  /  /  / 

  Pyura haustor   6  –  –  /  /  –  ±  /  /  /  /  /  / 
  Styela plicata   7  –  /  /  /  /  –  ++  –  –  /  /  / 
  Styela clava   8  –  /  /  –  /  –  –  ±  –  /  /  / 
  Styela montereyensis   9  –  –  –  –  –  +  +  +  ++  +  +  – 
  Styela gibbsii   10  –  –  –  –  +  +  /  /  –  ++  /  / 
  Boltenia villosa   11  –  –  –  –  /  ±  /  /  /  /  ++  / 
  Halocynthia igaboja   12  –  –  –  +  +  –  /  /  /  /  +  ++ 

  Species 1–5 are Phlebobranchia; species 6–12 are Stolidobranchia 
 ++ strong activity, + weak activity, ± uncertain response, − negative response, / test not done 
  a Numbers show the same species shown in egg extracts 
  Source:  Miller ( 1982 )  
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  Fig. 1.1    Molecular structure of ascidian sperm attractants:  Ciona intestinalis  (Ci-SAAF) ( a ); 
 Ascidia sydneiensis  (As-SAAF) ( b )       
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1.6        Conclusion 

 Sperm chemotaxis appears to be a much more specifi c phenomenon at the species 
or genus level in many animal species: cnidarians (Miller  1979 ), echinoderms other 
than sea urchins (Miller  1985a ,  1997 ), and ascidians (Miller  1982 ; Yoshida et al. 
 2013 ). These results indicate that the specifi city of sperm chemotaxis participates in 
the prevention of crossbreeding at fertilization. It is hypothesized that the interac-
tion between sperm attractants from egg and attractant receptors on the sperm does 
not result in all-or-none responses, and that attractant receptors may accept some 
heterospecifi c sperm attractants having related chemical structures but with differ-
ent binding or dissociation constants. Research into the precise chemical nature of 
sperm attractants and their corresponding receptors in different species may provide 
new horizons for studies of the fertilization system, especially on the mechanisms 
by which authentic interactions between conspecifi c eggs and spermatozoa occur.     
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