Skip to main content

Liquordiagnostik in der Intensivmedizin

  • Chapter
  • First Online:
Neuromonitoring in der Intensivmedizin
  • 484 Accesses

Zusammenfassung

Wie Fruchtwasser den Fetus umgibt Liquor cerebrospinalis das Zentralnervensystem, schützt es mechanisch, unterstützt es metabolisch sowie immunologisch und kann mit meist verhältnismäßig geringer Invasivität gewonnen werden. Aufgrund dieser Aspekte besitzt die Liquoranalyse eine große diagnostische Bedeutung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Xie Z, McAuliffe S, Swain CA, et al. Cerebrospinal fluid aβ to tau ratio and postoperative cognitive change. Ann Surg. 2013;258:364–9.

    Article  PubMed  Google Scholar 

  2. Davson H, Hollingsworth G, Segal MB. The mechanism of drainage of the cerebrospinal fluid. Brain. 1970;93:665–78.

    Article  CAS  PubMed  Google Scholar 

  3. Eide PK, Valnes LM, Lindstrøm EK, Mardal KA, Ringstad G. Direction and magnitude of cerebrospinal fluid flow vary substantially across central nervous system diseases. Fluids Barriers CNS. 2021;18:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nau R, Sörgel F, Eiffert H. Central nervous system infections and antimicrobial resistance: an evolving challenge. Curr Opin Neurol. 2021;34:456–67.

    Article  CAS  PubMed  Google Scholar 

  5. Tumani H, Huss A, Bachhuber F. The cerebrospinal fluid and barriers – anatomic and physiologic considerations. Handb Clin Neurol. 2017;146:21–32.

    Article  PubMed  Google Scholar 

  6. Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Felgenhauer K, Beuche W. Labordiagnostik neurologischer Erkrankungen. Stuttgart: Georg Thieme Verlag; 1999.

    Google Scholar 

  8. Goldmann E. Vitalfärbung des Zentralnervensystems. Berlin: Verlag der Königlichen Akademie der Wissenschaften; 1913.

    Google Scholar 

  9. Pardridge WM. Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol. 1988;28:25–39.

    Article  CAS  PubMed  Google Scholar 

  10. Oldendorf WH, Hyman S, Braun L, Oldendorf SZ. Blood-brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science. 1972;178:984–6.

    Article  CAS  PubMed  Google Scholar 

  11. Jacobi C, Reiber H, Felgenhauer K. The clinical relevance of locally produced carcinoembryonic antigen in cerebrospinal fluid. J Neurol. 1986;233:358–61.

    Article  CAS  PubMed  Google Scholar 

  12. Wilson M, Bryan RT, Fried JA, et al. Clinical evaluation of the cysticercosis enzyme-linked immunoelectrotransfer blot in patients with neurocysticercosis. J Infect Dis. 1991;164:1007–9.

    Article  CAS  PubMed  Google Scholar 

  13. Whiteley W, Al-Shahi R, Warlow CP, Zeidler M, Lueck CJ. CSF opening pressure: reference interval and the effect of body mass index. Neurology. 2006;67:1690–1.

    Article  CAS  PubMed  Google Scholar 

  14. Oschmann P, Kunesch E, Zettl U. Liquorpunktion – Indikation, Techniken und Komplikationen. In: Zettl U, Lehmitz R, Mix E, Herausgeber. Klinische Liquordiagnostik. Berlin/New York: W. de Gruyter; 2005. S. 21–38.

    Google Scholar 

  15. Petereit H-F, Sindern E, Wick M. Liquordiagnostik – Leitlinien der Liquordiagnostik und Methodenkatalog der Deutschen Gesellschaft für Liquordiagnostik und Klinische Neurochemie. Heidelberg: Springer; 2007.

    Book  Google Scholar 

  16. Nagy K, Skagervik I, Tumani H, et al. Cerebrospinal fluid analyses for the diagnosis of subarachnoid haemorrhage and experience from a Swedish study. What method is preferable when diagnosing a subarachnoid haemorrhage? Clin Chem Lab Med. 2013;51:2073–86.

    Article  CAS  PubMed  Google Scholar 

  17. Reiber H, Uhr M. Liquordiagnostik. In: Berlit P, Herausgeber. Klinische Neurologie. Berlin/Heidelberg: Springer; 2011.

    Google Scholar 

  18. Schmutzhard E. Shuntassoziierte Ventrikulitis. Entzündliche Erkrankungen des Nervensystems. Stuttgart: Thieme; 2000.

    Google Scholar 

  19. Weisner B, Bernhardt W. Protein fractions of lumbar, cisternal, and ventricular cerebrospinal fluid. Separate areas of reference. J Neurol Sci. 1978;37:205–14.

    Article  CAS  PubMed  Google Scholar 

  20. Breiner A, Bourque PR, Allen JA. Updated cerebrospinal fluid total protein reference values improve chronic inflammatory demyelinating polyneuropathy diagnosis. Muscle Nerve. 2019;60:180–3.

    Article  CAS  PubMed  Google Scholar 

  21. Tumani H. Physiology and constituents of CSF. In: Deisenhammer F, Herausgeber. Cerebrospinal fluid in clinical neurology. Cham: Springer; 2015.

    Google Scholar 

  22. Hayaishi O. Molecular mechanisms of sleep-wake regulation: a role of prostaglandin D2. Philos Trans R Soc Lond Ser B Biol Sci. 2000;355:275–80.

    Article  CAS  Google Scholar 

  23. Ohe Y, Ishikawa K, Itoh Z, Tatemoto K. Cultured leptomeningeal cells secrete cerebrospinal fluid proteins. J Neurochem. 1996;67:964–71.

    Article  CAS  PubMed  Google Scholar 

  24. Yamashima T, Sakuda K, Tohma Y, et al. Prostaglandin D synthase (beta-trace) in human arachnoid and meningioma cells: roles as a cell marker or in cerebrospinal fluid absorption, tumorigenesis, and calcification process. J Neurosci Off J Soc Neurosci. 1997;17:2376–82.

    Article  CAS  Google Scholar 

  25. Felgenhauer K. The filtration concept of the blood-CSF barrier as basis for the differentiation of CSF proteins. In: Greenwood J, Begley D, Segal M, Herausgeber. New concepts of a bloodbrain barrier. New York: Plenum Press; 1995. S. 209–17.

    Google Scholar 

  26. Wellmer A, Prange J, Gerber J, et al. d- and l-lactate in rabbit and human bacterial meningitis. Scand J Infect Dis. 2001;33:909–13.

    Article  CAS  PubMed  Google Scholar 

  27. Sakushima K, Hayashino Y, Kawaguchi T, Jackson JL, Fukuhara S. Diagnostic accuracy of cerebrospinal fluid lactate for differentiating bacterial meningitis from aseptic meningitis: a meta-analysis. J Infect. 2011;62:255–62.

    Article  PubMed  Google Scholar 

  28. Asmolov R, Rousseau G, Grammatico-Guillon L, Guillon A. Capillary glucose meters cannot substitute serum glucose measurement to determine the cerebrospinal fluid to blood glucose ratio: a prospective observational study. Eur J Anaesthesiol. 2017;34:854–6.

    Article  CAS  PubMed  Google Scholar 

  29. Shokrollahi MR, Shabanzadeh K, Noorbakhsh S, Tabatabaei A, Movahedi Z, Shamshiri AR. Diagnostic value of CRP, procalcitonin, and ferritin levels in cerebrospinal fluid of children with meningitis. Cent Nerv Syst Agents Med Chem. 2018;18:58–62.

    Article  CAS  PubMed  Google Scholar 

  30. Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kaerst L, Kuhlmann A, Wedekind D, Stoeck K, Lange P, Zerr I. Cerebrospinal fluid biomarkers in Alzheimer’s disease, vascular dementia and ischemic stroke patients: a critical analysis. J Neurol. 2013;260:2722–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brettschneider J, Maier M, Arda S, et al. Tau protein level in cerebrospinal fluid is increased in patients with early multiple sclerosis. Mult Scler. 2005;11:261–5.

    Article  CAS  PubMed  Google Scholar 

  33. Steinacker P, Feneberg E, Weishaupt J, et al. Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry. 2016;87:12–20.

    PubMed  Google Scholar 

  34. Pikwer A, Castegren M, Namdar S, Blennow K, Zetterberg H, Mattsson N. Effects of surgery and propofol-remifentanil total intravenous anesthesia on cerebrospinal fluid biomarkers of inflammation, Alzheimer’s disease, and neuronal injury in humans: a cohort study. J Neuroinflammation. 2017;14:193.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Berger RP, Hayes RL, Richichi R, Beers SR, Wang KK. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and αII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. J Neurotrauma. 2012;29:162–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang B, Tian M, Zheng H, et al. Effects of anesthetic isoflurane and desflurane on human cerebrospinal fluid Aβ and τ level. Anesthesiology. 2013;119:52–60.

    Article  CAS  PubMed  Google Scholar 

  37. Reinsfelt B, Westerlind A, Blennow K, Zetterberg H, Ricksten SE. Open-heart surgery increases cerebrospinal fluid levels of Alzheimer-associated amyloid β. Acta Anaesthesiol Scand. 2013;57:82–8.

    Article  CAS  PubMed  Google Scholar 

  38. Danielson M, Wiklund A, Granath F, et al. Association between cerebrospinal fluid biomarkers of neuronal injury or amyloidosis and cognitive decline after major surgery. Br J Anaesth. 2021;126:467–76.

    Article  CAS  PubMed  Google Scholar 

  39. Dutkiewicz R, Zetterberg H, Andreasson U, Blennow K, Nellgård B. Dementia and CSF-biomarkers for Alzheimer’s disease predict mortality after acute hip fracture. Acta Anaesthesiol Scand. 2020;64:93–103.

    Article  CAS  PubMed  Google Scholar 

  40. Evered L, Silbert B, Scott DA, Ames D, Maruff P, Blennow K. Cerebrospinal fluid biomarker for Alzheimer disease predicts postoperative cognitive dysfunction. Anesthesiology. 2016;124:353–61.

    Article  CAS  PubMed  Google Scholar 

  41. Fong TG, Vasunilashorn SM, Gou Y, et al. Association of CSF Alzheimer’s disease biomarkers with postoperative delirium in older adults. Alzheimers Dement (N Y). 2021;7:e12125.

    Article  PubMed  Google Scholar 

  42. Chan CK, Sieber FE, Blennow K, et al. Association of depressive symptoms with postoperative delirium and csf biomarkers for Alzheimer’s disease among hip fracture patients. Am J Geriatr Psychiatry. 2021;29:1212–21.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Berger M, Browndyke JN, Cooter Wright M, et al. Postoperative changes in cognition and cerebrospinal fluid neurodegenerative disease biomarkers. Ann Clin Transl Neurol. 2022;9:155–70.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Monti G, Tondelli M, Giovannini G, et al. Cerebrospinal fluid tau proteins in status epilepticus. Epilepsy Behav E&B. 2015;49:150–4.

    Article  Google Scholar 

  45. Hesse C, Rosengren L, Andreasen N, et al. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett. 2001;297:187–90.

    Article  CAS  PubMed  Google Scholar 

  46. Pujol-Calderón F, Portelius E, Zetterberg H, Blennow K, Rosengren LE, Höglund K. Neurofilament changes in serum and cerebrospinal fluid after acute ischemic stroke. Neurosci Lett. 2019;698:58–63.

    Article  PubMed  Google Scholar 

  47. Brouns R, De Vil B, Cras P, De Surgeloose D, Mariën P, De Deyn PP. Neurobiochemical markers of brain damage in cerebrospinal fluid of acute ischemic stroke patients. Clin Chem. 2010;56:451–8.

    Article  CAS  PubMed  Google Scholar 

  48. Mondello S, Buki A, Barzo P, et al. CSF and plasma amyloid-β temporal profiles and relationships with neurological status and mortality after severe traumatic brain injury. Sci Rep. 2014;4:6446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brody DL, Magnoni S, Schwetye KE, et al. Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science. 2008;321:1221–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shahim P, Politis A, van der Merwe A, et al. Neurofilament light as a biomarker in traumatic brain injury. Neurology. 2020;95:e610–e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Neselius S, Zetterberg H, Blennow K, Marcusson J, Brisby H. Increased CSF levels of phosphorylated neurofilament heavy protein following bout in amateur boxers. PLoS One. 2013;8:e81249.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Adam N, Kandelman S, Mantz J, Chrétien F, Sharshar T. Sepsis-induced brain dysfunction. Expert Rev Anti-Infect Ther. 2013;11:211–21.

    Article  CAS  PubMed  Google Scholar 

  53. Hamed SA, Hamed EA, Abdella MM. Septic encephalopathy: relationship to serum and cerebrospinal fluid levels of adhesion molecules, lipid peroxides and S-100B protein. Neuropediatrics. 2009;40:66–72.

    Article  CAS  PubMed  Google Scholar 

  54. Piazza O, Cotena S, De Robertis E, Caranci F, Tufano R. Sepsis associated encephalopathy studied by MRI and cerebral spinal fluid S100B measurement. Neurochem Res. 2009;34:1289–92.

    Article  CAS  PubMed  Google Scholar 

  55. Ehler J, Petzold A, Wittstock M, et al. The prognostic value of neurofilament levels in patients with sepsis-associated encephalopathy – a prospective, pilot observational study. PLoS One. 2019;14:e0211184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Orhun G, Esen F, Yilmaz V, et al. Elevated sTREM2 and NFL levels in patients with sepsis associated encephalopathy. Int J Neurosci. 2021;1–7.

    Google Scholar 

  57. Rieckmann P, Altenhofen B, Riegel A, Baudewig J, Felgenhauer K. Soluble adhesion molecules (sVCAM-1 and sICAM-1) in cerebrospinal fluid and serum correlate with MRI activity in multiple sclerosis. Ann Neurol. 1997;41:326–33. https://doi.org/10.1002/ana.410410307.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caspar Stephani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stephani, C., Zerr, I. (2023). Liquordiagnostik in der Intensivmedizin. In: Harnisch, LO., Mörer, O., Stephani, C. (eds) Neuromonitoring in der Intensivmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65998-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65998-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65997-7

  • Online ISBN: 978-3-662-65998-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics