Skip to main content

Vermittlernetzwerke

  • Chapter
  • First Online:
EEG-Neurofeedback bei ADS und ADHS
  • 774 Accesses

Zusammenfassung

Das Salienz- und das Exekutivkontrollnetzwerk (SN, ECN) sind zwei separate Netzwerke, die anatomisch und funktionell andersartige Aufgaben ausführen, die jedoch auch gemeinsame Schnittpunkte aufweisen. Bei Menschen mit einer ADHS kommt es zu Aktivitätsänderungen der Kernregionen des SN. Die Überaktivierung der Insula und der limbischen Strukturen geht mit negativen affektiven Bewertungen, impulsivem Verhalten und Suchtanfälligkeit einher. Grund für die Überaktivierung der Insula könnte eine Dysfunktion im rechtshemisphärischen dACC (dorsaler Teil des anterioren cingulären Kortex) oder eine Hyperkonnektivität zwischen den Kernregionen des SN sein. Auch Inter-Netzwerkstörungen (SN/ECN, SN/DAN bzw. SN/VAN) und eine Reorganisation der Netzwerke wurden beschrieben, mit verschiedenen Folgen auf der Verhaltensebene. Eine Regulationsstörung des dopaminergen ECN wurde in mehreren Studien bei Menschen mit einer ADHS nachgewiesen. Diese Störung steht vor allem in Zusammenhang mit der Reduktion der grauen Substanz des Nucleus caudatus, eine bedeutende Zwischenstation bei der Verarbeitung motorischer und somatosensorischer Prozesse. Studien zeigten, dass eine strukturell-anatomische und/oder funktionelle Beeinträchtigung dieser Region für die Dysregulation der Hemmung motorischer Reaktionen bei Kindern mit einer ADHS verantwortlich ist und Schwierigkeiten bei der Planung und Ausführung von motorischen Prozessen verursacht. Auch die zeitliche Verarbeitung von Intervallen im Millisekundenbereich ist davon betroffen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23.

    Article  PubMed  Google Scholar 

  2. Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., & Petersen, S. E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences USA, 104, 11073–11078.

    Article  CAS  Google Scholar 

  3. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 2349–2356.

    Article  CAS  PubMed  Google Scholar 

  4. Sturm, W., & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. NeuroImage, 14, 76–84.

    Article  Google Scholar 

  5. Zhang, Y., Suo, X., Ding, H., Liang, M., Yu, C., & Qin, W. (2019). Structural connectivity profile supports laterality of the salience network. Human Brain Mapping, 40(18), 5242–5255.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sadaghiani, S., Scheeringa, R., Lehongre, K., Morillon, B., Giraud, A.-L., & Kleinschmidt, A. (2010). Intrinsic connectivity networks, alpha oscillations, and tonic alertness: A simultaneous electroencephalography/functional magnetic resonance imaging study. Journal of Neuroscience, 30(30), 10243–10250.

    Article  CAS  PubMed  Google Scholar 

  7. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.

    Article  CAS  PubMed  Google Scholar 

  8. Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5–6), 655–667.

    Article  Google Scholar 

  9. Goulden, N., Khusnulinaa, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullinsa, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. NeuroImage, 99, 180–190.

    Article  PubMed  Google Scholar 

  10. Menon, V. (2015). Salience network. In A. W. Toga (Hrsg.), Brain Mapping: An Encyclopedic Reference (Bd. 2, S. 597–611). Academic Press.

    Chapter  Google Scholar 

  11. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 12569–12574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiong, W., Wilson, S. M., D’Esposito, M., Kayser, A. S., Grossman, S. N., Poorzand, P., Seeley, W. W., Miller, B. L., & Rankin, K. P. (2013). The salience network causally influences default mode network activity during moral reasoning. Brain, 136(6), 1929–1941.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Allman, J., Hakeem, A., & Watson, K. (2002). Two phylogenetic specializations in the human brain. The Neuroscientist, 8, 335–346.

    Article  PubMed  Google Scholar 

  14. Butti, C., Santos, M., Uppal, N., & Hof, P. R. (2013). Von Economo neurons: clinical and evolutionary perspectives. Cortex, 49(1), 312–326.

    Article  PubMed  Google Scholar 

  15. Fajardo, C., Escobar, M. I., Buriticá, E., Arteaga, G., Umbarila, J., Casanova, M. F., & Pimienta, H. (2008). Von Economo neurons are present in the dorsolateral (dysgranular) prefrontal cortex of humans. Neuroscience Letters, 435(3), 215–218.

    Article  CAS  PubMed  Google Scholar 

  16. Sadaghiani, S., Hesselmann, G., & Kleinschmidt, A. (2009). Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. The Journal of Neuroscience, 29(42), 13410–13417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53, 63–88.

    Article  PubMed  Google Scholar 

  18. Ruiz-Rizzo, A. L., Neitzel, J., Müller, H. J., Sorg, C., & Finke, K. (2018). Distinctive correspondence between separable visual attention functions and intrinsic brain networks. Frontiers in Human Neuroscience, 12(89), 1–15.

    Google Scholar 

  19. Seeley, W. W. (2019). The salience network: a neural system for perceiving and responding to homeostatic demands. The Journal of neuroscience : the official journal of the Society for Neuroscience, 39(50), 9878–9882.

    Article  CAS  PubMed  Google Scholar 

  20. Jilka, S. R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R. M., Leech, R., & Sharp, D. J. (2014). Damage to the salience network and interactions with the default mode network. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 34(33), 10798–10807.

    Article  CAS  PubMed  Google Scholar 

  21. Kaiser, L. F., Gruendler, T. O. J., Speck, O., Luettgau, L., & Jocham, O. (2021). Dissociable roles of cortical excitation-inhibition balance during patch-leaving versus value-guided decisions. Nature Communications, 12(904), 1–11.

    Google Scholar 

  22. Wilbertz, G., Delgado, M. R., Tebartz, V. E. L., Maier, S., Philipsen, A., & Blechert, J. (2017). Neural response during anticipation of monetary loss is elevated in adult attention deficit hyperactivity disorder. The World Journal of Biological Psychiatry, 18, 268–278.

    Article  PubMed  Google Scholar 

  23. Bush, G. (2011). Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder. Biological Psychiatry, 69, 1160–1167.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pliszka, S. R., Lancaster, J., Liotti, M., & Semrud-Clikeman, M. (2006a). Volumetric MRI differences in treatment-naïve vs chronically treated children with ADHD. Neurology, 67, 1023–1027.

    Article  PubMed  Google Scholar 

  25. Frodl, T., & Skokauskas, N. (2012). Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatrica Scandinavica, 125, 114–126.

    Article  CAS  PubMed  Google Scholar 

  26. Zametkin, A. J., Nordahl, T. E., Gross, M., King, A. C., Semple, W. E., Rumsey, J., Hamburger, S., & Cohen, R. M. (1990). Cerebral glucose metabolism in adults with hyperactivity of childhood onset. The New England Journal of Medicine, 323, 1361–1366.

    Article  CAS  PubMed  Google Scholar 

  27. Bush, G., Frazier, J. A., Rauch, S. L., Seidman, L. J., Whalen, P. J., Jenike, M. A., Rosen, B. R., & Biederman, J. (1999). Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biological Psychiatry, 45(12), 1542–1552.

    Article  CAS  PubMed  Google Scholar 

  28. Janes, A. C., Gilman, J. M., Frederick, B., Radoman, M., Pachas, G., Fava, M., & Evins, A. E. (2018). Salience network coupling is linked to both tobacco smoking and symptoms of attention deficit hyperactivity disorder (ADHD). Drug and Alcohol Dependence, 182, 93–97.

    Article  CAS  PubMed  Google Scholar 

  29. von Rhein, D., Beckmann, C. F., Franke, B., Oosterlaan, J., Heslenfeld, D. J., Hoekstra, P. J., Hartman, C. A., Luman, M., Faraone, S. V., Cools, R., Buitelaar, J. K., & Mennes, M. (2017). Network-level assessment of reward-related activation in patients with ADHD and healthy individuals. Human Brain Mapping, 38(5), 2359–2369.

    Article  Google Scholar 

  30. Gao, S., Proekt, A., Renier, N., Calderon, D. P., & Pfaff, D. W. (2019). Activating an anterior nucleus gigantocellularis subpopulation triggers emergence from pharmacologically induced coma in rodents. Nature Communications, 10(2897), 1–14.

    Google Scholar 

  31. Sidlauskaite, J., Sonuga, E., Roeyers, H., & Wiersema, J. R. (2016). Altered intrinsic organisation of brain networks implicated in attentional processes in adult attention-deficit/hyperactivity disorder : a resting-state study of attention, default mode and salience network connectivity. European Archives of Psychiatry and Clinical Neuroscience, 266(4), 349–357.

    Article  PubMed  Google Scholar 

  32. Qian, X., Castellanos, F. X., Uddin, L. Q., Loo, B. R. Y., Liu, S., Koh, H. L., Poh, X. W. W., Fung, D., Guan, C., Lee, T. S., Lim, C. G., & Zhou, J. (2019). Large-scale brain functional network topology disruptions underlie symptom heterogeneity in children with attention-deficit/hyperactivity disorder. NeuroImage: Clinical, 21, 101600.

    Article  PubMed  Google Scholar 

  33. Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends in Cognitive Sciences, 16(1), 17–26.

    Article  PubMed  Google Scholar 

  34. Dongchaun, Y. (2013). Additional brain functional network in adults with attention-deficit/hyperactivity disorder: a phase synchrony analysis. PLoS One, 8, e54516.

    Article  Google Scholar 

  35. Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165.

    Article  PubMed  Google Scholar 

  36. Kam, J. W. Y., Lin, J. J., Solbakk, A.-K., Endestad, T., Larsson, P. G., & Knight, R. T. (2019). Default network and frontoparietal control network theta connectivity supports internal attention. Nature Human Behaviour, 3, 1263–1270.

    Article  PubMed  Google Scholar 

  37. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258. 71.

    Article  CAS  PubMed  Google Scholar 

  38. Dixon, M. L., De La Vega, A., Mills, C., et al. (2018). Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proceedings of the National Academy of Sciences of the United States of America, 115(7), E1598–E1607.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 3270–3283.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pace-Schott, E. F., & Picchioni, D. (2017). The neurobiology of dreaming. In M. H. Kryger, T. Roth, & W. C. Dement (Hrsg.), Principles and practice of sleep medicine (6. Aufl., S. 529–538).

    Chapter  Google Scholar 

  41. Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews. Neuroscience, 4, 829–839.

    Article  CAS  PubMed  Google Scholar 

  42. van Gaal, S., Ridderinkhof, K. R., Fahrenfort, J. J., Scholte, H. S., & Lamme, V. A. F. (2008). Frontal cortex mediates unconsciously triggered inhibitory control. Journal of Neuroscience, 28, 8053–8062.

    Article  PubMed  Google Scholar 

  43. Yuan, P., & Raz, N. (2014). Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neuroscience and Biobehavioral Reviews, 42, 180–192.

    Article  PubMed  Google Scholar 

  44. Barbey, A. K., Königs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195–1205.

    Article  PubMed  Google Scholar 

  45. Pliszka, S. R., Glahn, D. C., Semrud-Clikeman, M., Franklin, C., Perez, R., 3rd, Xiong, J., & Liotti, M. (2006b). Neuroimaging of inhibitory control areas in children with attention deficit hyperactivity disorder who were treatment-naive or in long-term treatment. The American Journal of Psychiatry, 163(6), 1052–1060.

    Article  PubMed  Google Scholar 

  46. Hung, Y., Gaillard, S. L., Yarmak, P., & Arsalidou, M. (2018). Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE meta-analyses of fMRI studies. Human Brain Mapping, 39(10), 4065–4082.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Smith, D. V., Hayden, B. Y., Truong, T. K., Song, A. W., Platt, M. L., & Huettel, S. A. (2010). Distinct value signals in anterior and posterior ventromedial prefrontal cortex. The Journal of Neuroscience, 30(7), 2490–2495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Christakou, A., Brammer, M., & Rubia, K. (2011). Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting. NeuroImage, 54(2), 1344–1354.

    Article  PubMed  Google Scholar 

  49. Clayton, M. S., Yeung, N., & Cohen, & Kadosh, R. (2015). The roles of cortical oscillations in sustained attention. Trends in Cognitive Sciences, 19(4), 188–195.

    Article  PubMed  Google Scholar 

  50. Gillies, M. J., Hyam, J. A., Weiss, A. R., Antoniades, C. A., Bogacz, R., Fitzgerald, J. J., & Green, A. L. (2017). The cognitive role of the globus pallidus interna; insights from disease states. Experimental Brain Research, 235(5), 1455–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Swanson, J. M., Kinsbourne, M., Nigg, J., Lanphear, B., Stefanatos, G. A., Volkow, N., Taylor, E., Casey, B. J., Castellanos, F. X., & Wadhwa, P. D. (2007). Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychology Review, 17, 39–59.

    Article  PubMed  Google Scholar 

  52. Hynd, G. W., Hern, K. L., Novey, E. S., Eliopulos, D., Marshall, R., Gonzalez, J. J., & Voeller, K. K. (1993). Attention deficit-hyperactivity disorder and asymmetry of the caudate nucleus. Journal of Child Neurology, 8(4), 339–347.

    Article  CAS  PubMed  Google Scholar 

  53. Nakao, T., Radua, J., Rubia, K., & Mataix-Cols, D. (2011). Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. American Journal of Psychiatry, 168, 1154–1163.

    Article  PubMed  Google Scholar 

  54. Mattay, V. S., & Weinberger, D. R. (1999). Organization of the human motor system as studied by functional magnetic resonance imaging. European Journal of Radiology, 30(2), 105–114.

    Article  CAS  PubMed  Google Scholar 

  55. Ungerleider, L. G., Doyon, J., & Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory, 78(3), 553–564.

    Article  PubMed  Google Scholar 

  56. Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews. Neuroscience, 9, 856–869.

    Article  CAS  PubMed  Google Scholar 

  57. Hart, H., Radua, J., Nakao, T., Mataix-Cols, D., & Rubia, K. (2013). Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry, 70(2), 185–198.

    Article  PubMed  Google Scholar 

  58. Rammsayer, T. (1999). Neuropharmacological evidence for different timing mechanisms in humans. The Quarterly Journal of Experimental Psychology. B, 52(3), 273–286.

    CAS  Google Scholar 

  59. Pliszka, S. R. (2005). The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1385–1390.

    Article  CAS  PubMed  Google Scholar 

  60. Arnsten, A. F., & Rubia, K. (2012). Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 51(4), 356–367.

    Article  PubMed  Google Scholar 

  61. Cortese, S., Kelly, C., Chabernaud, C., Proal, E., Di Martino, A., Milham, M. P., & Castellanos, F. X. (2012). Toward systems neuroscience of ADHD: A meta-analysis of 55 fMRI studies. The American Journal of Psychiatry, 169(10), 1038–1055.

    Article  PubMed  Google Scholar 

  62. Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I. M., Yang, Y., Ulug, A. M., & Casey, B. J. (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry, 53(10), 871–878.

    Article  PubMed  Google Scholar 

  63. Tamm, L., Menon, V., Ringel, J., & Reiss, A. L. (2004). Event-related FMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 43, 1430–1440.

    Article  PubMed  Google Scholar 

  64. Semrud-Clikeman, M., Pliszka, S. R., Lancaster, J., & Liotti, M. (2006). Volumetric MRI differences in treatment-naive vs chronically treated children with ADHD. Neurology, 67, 1023–1027.

    Article  PubMed  Google Scholar 

  65. Makris, N., Biederman, J., Valera, E. M., Bush, G., Kaiser, J., Kennedy, D. N., Caviness, V. S., Faraone, S. V., & Seidman, L. J. (2007). Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb Kortex, 17(6), 1364–1375.

    Article  Google Scholar 

  66. Makris, N., Seidman, L. J., Valera, E. M., Biederman, J., Monuteaux, M. C., Kennedy, D. N., et al. (2010). Anterior cingulate volumetric alterations in treatment-naive adults with ADHD: A pilot study. Journal of Attention Disorders, 13, 407–413.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dark, C., Homman-Ludiye, J., & Bryson-Richardson, R. J. (2018). The role of ADHD associated genes in neurodevelopment. Developmental Biology, 438(2), 69–83.

    Article  CAS  PubMed  Google Scholar 

  68. Lei, D., Du, M., Wu, M., Chen, T., Huang, X., Du, X., Bi, F., Kemp, G. J., & Gong, Q. (2015). Functional MRI reveals different response inhibition between adults and children with ADHD. Neuropsychology, 29, 874–881.

    Article  PubMed  Google Scholar 

  69. Bush, G. (2010). Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 35(1), 278–300.

    Article  PubMed  Google Scholar 

  70. Durston, S., & Konrad, K. (2007). Integrating genetic, psychopharmacological and neuroimaging studies: A converging methods approach to understanding the neurobiology of ADHD. Developmental Review, 27(3), 374–395.

    Article  Google Scholar 

  71. Rubia, K. (2018). Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation. Frontiers in Human Neuroscience, 12, 1–23.

    Article  Google Scholar 

  72. Norman, L. J., Carlisi, C., Lukito, S., Hart, H., Mataix-Cols, D., Radua, J., & Rubia, K. (2016). Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: a comparative meta-analysis (2016). JAMA Psychiatry, 73(8), 815–825.

    Article  PubMed  Google Scholar 

  73. Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S. C. R., Simmons, A., & Bullmore, E. T. (1999). Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: A study with functional MRI. The American Journal of Psychiatry, 156(6), 891–896.

    Article  CAS  PubMed  Google Scholar 

  74. Samea, F., Soluki, S., Nejati, V., Zarei, M., Cortese, S., Eickhoff, S. B., Tahmasian, M., & Eickhoff, C. R. (2019). Brain alterations in children/adolescents with ADHD revisited: A neuroimaging meta-analysis of 96 structural and functional studies. Neuroscience and Biobehavioral Reviews, 100, 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos Sidiropoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sidiropoulos, K. (2023). Vermittlernetzwerke. In: Sidiropoulos, K. (eds) EEG-Neurofeedback bei ADS und ADHS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65726-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65726-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65725-6

  • Online ISBN: 978-3-662-65726-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics