Skip to main content

Belastungs-EKG

  • Chapter
  • First Online:
Sportkardiologie

Zusammenfassung

Belastungsuntersuchungen spielen sowohl in der Kardiologie als auch in der Sportmedizin seit Jahrzehnten eine wichtige Rolle. Indikationen umfassen unter anderem: die Ausgangsfitness oder den Fortschritt eines Trainingsprogrammes zu beurteilen; kardiopulmonale Erkrankungen zu diagnostizieren; Arrhythmien zu provozieren; oder die hämodynamische Reaktion auf gewisse Belastungen zu messen. Zur korrekten Durchführung der Belastungsuntersuchung sind Kenntnisse der physiologischen und pathophysiologischen Grundlagen genauso erforderlich wie Kenntnisse in der Durchführung der Ergometrie. Der Interpretation kommt eine besondere Bedeutung zu, aber auch der Bewertung der klinischen Symptomatik, der Leistungsfähigkeit und möglicher Einflussfaktoren spielen eine wichtige Rolle. An sich gehören Belastungstests nicht zu den obligatorischen Routineuntersuchungen vor der Teilnahme am Sport; sie sind jedoch sehr gute Hilfsmittel zur klinischen Untersuchung bei Sportlern mit pathologischen Befunden und/oder Symptomen, sowie zur Kontrolle des Trainingserfolges und Steuerung des Trainingsprogrammes im Leistungssport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 09 November 2023

    An erratum has been published.

Literatur

  1. Laukkanen JA, Makikallio TH, Rauramaa R, Kiviniemi V, Ronkainen K, Kurl S (2010) Cardiorespiratory fitness is related to the risk of sudden cardiac death: a population-based follow-up study. J Am Coll Cardiol 56(18):1476–1483

    Article  PubMed  Google Scholar 

  2. Mora S, Redberg RF, Cui Y, Whiteman MK, Flaws JA, Sharrett AR et al (2003) Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study. JAMA 290(12):1600–1607

    Google Scholar 

  3. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346(11):793–801

    Article  PubMed  Google Scholar 

  4. Sofi F, Capalbo A, Pucci N, Giuliattini J, Condino F, Alessandri F et al (2008) Cardiovascular evaluation, including resting and exercise electrocardiography, before participation in competitive sports: cross sectional study. BMJ 337:a346

    Google Scholar 

  5. Sarma S, Levine BD (2016) Beyond the Bruce protocol: advanced exercise testing for the sports cardiologist. Cardiol Clin 34(4):603–608

    Article  PubMed  Google Scholar 

  6. La Gerche A, Baggish AL, Knuuti J, Prior DL, Sharma S, Heidbuchel H et al (2013) Cardiac imaging and stress testing asymptomatic athletes to identify those at risk of sudden cardiac death. JACC Cardiovasc Imaging 6(9):993–1007

    Article  PubMed  Google Scholar 

  7. Lollgen H, Leyk D (2018) Exercise testing in sports medicine. Dtsch Arztebl Int 115(24):409–416

    PubMed  PubMed Central  Google Scholar 

  8. Lollgen H, Borjesson M, Cummiskey J, Bachl N, Debruyne A (2015) The pre-participation examination in sports: EFSMA statement on ECG for pre-participation examination. Dtsch Z Sportmed 66(6):151–155

    Article  Google Scholar 

  9. Pelliccia A, Sharma S, Gati S, Bäck M, Börjesson M, Caselli S et al (2021) 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease: The Task Force on sports cardiology and exercise in patients with cardiovascular disease of the European Society of Cardiology (ESC). Eur Heart J 42:17–96

    Article  CAS  PubMed  Google Scholar 

  10. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA et al (2013) Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation 128(8):873–934

    Article  PubMed  Google Scholar 

  11. Guazzi M, Arena R, Halle M, Piepoli MF, Myers J, Lavie CJ (2016) 2016 focused update: clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 133(24):e694–e711

    Google Scholar 

  12. Meyer FJ, Borst MM, Buschmann HC, Claussen M, Dumitrescu D, Ewert R et al (2018) Exercise testing in respiratory medicine—DGP recommendations. Pneumologie 72(10):687–731

    CAS  PubMed  Google Scholar 

  13. Niebauer J (2019) Call for truly maximal ergometries during clinical routine. Eur J Prev Cardiol 26(7):728–730

    Article  PubMed  Google Scholar 

  14. Sirico F, Fernando F, Di Paolo F, Adami PE, Signorello MG, Sannino G et al (2019) Exercise stress test in apparently healthy individuals—where to place the finish line? The Ferrari corporate wellness programme experience. Eur J Prev Cardiol 26(7):731–738

    Article  PubMed  Google Scholar 

  15. Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ (1983) Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 55:1558–1564

    Article  CAS  PubMed  Google Scholar 

  16. Myers J, Bellin D (2000) Ramp exercise protocols for clinical and cardiopulmonary exercise testing. Sports Med 30(1):23–29

    Article  CAS  PubMed  Google Scholar 

  17. Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Hamilton-Wessler M et al (1991) Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol 17(6):1334–1342

    Article  CAS  PubMed  Google Scholar 

  18. Bruce RA, Kusumi F, Hosmer D (1973) Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J 85(4):546–562

    Article  CAS  PubMed  Google Scholar 

  19. Balke B, Ware RW (1959) An experimental study of physical fitness of air force personnel. U S Armed Forces Med J 10(6):675–688

    CAS  PubMed  Google Scholar 

  20. Vandewalle H, Peres G, Monod H (1987) Standard anaerobic exercise tests. Sports Med 4(4):268–289

    Article  CAS  PubMed  Google Scholar 

  21. Lockwood PA, Yoder JE, Deuster PA (1997) Comparison and cross-validation of cycle ergometry estimates of VO2max. Med Sci Sports Exerc 29(11):1513–1520

    Article  CAS  PubMed  Google Scholar 

  22. Forman DE, Myers J, Lavie CJ, Guazzi M, Celli B, Arena R (2010) Cardiopulmonary exercise testing: relevant but underused. Postgrad Med 122(6):68–86

    Google Scholar 

  23. Coyle EF, Coggan AR, Hopper MK (1985) Walters TJ (1988) Determinants of endurance in well-trained cyclists. J Appl Physiol 64(6):2622–2630

    Google Scholar 

  24. Levine BD (2008) VO2max: what do we know, and what do we still need to know? J Physiol 586(1):25–34

    Google Scholar 

  25. American College of Sports Medicine (2000) ACSM guidelines for exercise testing and prescription. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  26. Stuart RJ Jr, Ellestad MH (1980) National survey of exercise stress testing facilities. Chest 77(1):94–97

    Article  PubMed  Google Scholar 

  27. Skalski J, Allison TG, Miller TD (2012) The safety of cardiopulmonary exercise testing in a population with high-risk cardiovascular diseases. Circulation 126(21):2465–2472

    Article  PubMed  Google Scholar 

  28. Kaltenbach M, Scherer D, Dowinsky S (1982) Complications of exercise testing. A survey in three German-speaking countries. Eur Heart J 3(3):199–202

    Article  CAS  PubMed  Google Scholar 

  29. Paridon SM, Alpert BS, Boas SR et al (2006) Clinical stress testing in the pediatric age group: a statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation 113:1905–1920

    Article  PubMed  Google Scholar 

  30. Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, Gidding SS, Isabel-Jones J, Kavey RW, Marx GR (1994) Guidelines for exercise testing in the pediatric age group: from the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation 90:2166–2178

    Google Scholar 

  31. Rowland TW, Varzeas MR, Walsh CA (1991) Aerobic responses to walking training in sedentary adolescents. J Adolesc Health 12:30–34

    Article  CAS  PubMed  Google Scholar 

  32. Sharma S, Elliott P, Whyte G, Jones S, Mahon N, Whipp B et al (2000) Utility of cardiopulmonary exercise in the assessment of clinical determinants of functional capacity in hypertrophic cardiomyopathy. Am J Cardiol 86(2):162–168

    Article  CAS  PubMed  Google Scholar 

  33. Perrin MJ, Angaran P, Laksman Z, Zhang H, Porepa LF, Rutberg J et al (2013) Exercise testing in asymptomatic gene carriers exposes a latent electrical substrate of arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol 62(19):1772–1779

    Article  PubMed  Google Scholar 

  34. Gasperetti A, James CA, Cerrone M et al (2021) Arrhythmogenic right ventricular cardiomyopathy and sports activity: from molecular pathways in diseased hearts to new insights into the athletic heart mimicry. Eur Heart J 42:1231–1243

    Article  PubMed  Google Scholar 

  35. Rossi VA, Niederseer D, Sokolska JM et al (2021) A novel diagnostic score integrating atrial dimensions to differentiate between the athlete’s heart and arrhythmogenic right ventricular cardiomyopathy. J Clin Med 10:4094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwartz PJ, Crotti L (2011) QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation 124(20):2181–2184

    Article  PubMed  Google Scholar 

  37. Makimoto H, Nakagawa E, Takaki H, Yamada Y, Okamura H, Noda T et al (2010) Augmented ST-segment elevation during recovery from exercise predicts cardiac events in patients with Brugada syndrome. J Am Coll Cardiol 56(19):1576–1584

    Article  PubMed  Google Scholar 

  38. Jouven X, Zureik M, Desnos M, Courbon D, Ducimetiere P (2000) Long-term outcome in asymptomatic men with exercise-induced premature ventricular depolarizations. N Engl J Med 343(12):826–833

    Article  CAS  PubMed  Google Scholar 

  39. Diamond GA, Forrester JS (1979) Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 300(24):1350–1358

    Article  CAS  PubMed  Google Scholar 

  40. Pryor DB, Harrell FE Jr, Lee KL, Califf RM, Rosati RA (1983) Estimating the likelihood of significant coronary artery disease. Am J Med 75(5):771–780

    Article  CAS  PubMed  Google Scholar 

  41. Pigozzi F, Spataro A, Alabiso A, Parisi A, Rizzo M, Fagnani F et al (2005) Role of exercise stress test in master athletes. Br J Sports Med 39(8):527–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Niederseer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schweiger, V., Wonisch, M., Niederseer, D. (2023). Belastungs-EKG. In: Niebauer, J. (eds) Sportkardiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65165-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65165-0_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65164-3

  • Online ISBN: 978-3-662-65165-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics