
The Implementation of Proactive Asset
Administration Shells: Evaluation of
Possibilities and Realization in an Order
Driven Production

Sergej Grunau, Magnus Redeker, Denis Göllner and Lukasz Wisniewski

Abstract

A major benefit of Digital Twins is autonomous decision making. The concept of
the Asset Administration Shell (AAS) enables an assets interaction in Industry 4.0
application scenarios and beyond. This article defines and validates implementation
possibilities for proactive AASs by integrating their different types in an AAS
infrastructure for an order driven production. The proactive AAS execute the VDI/VDE
2193-interaction protocol in a demonstrator. For this purpose suitable AAS submodels
for production and storage are modeled.

Keywords

Industry 4.0 · Digital Twin · Asset Administration Shell (AAS) · Interaction ·
Semantic Interoperability · Bidding Procedure · Smart Manufacturing

S. Grunau (�) · L. Wisniewski
Institute Industrial IT – inIT, OWL University of Applied Sciences and Arts, Lemgo, Germany
e-mail: sergej.grunau@th-owl.de; lukasz.wisniewski@th-owl.de

M. Redeker
Fraunhofer IOSB-INA, Lemgo, Germany
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Lemgo, Germany
e-mail: magnus.redeker@iosb-ina.fraunhofer.de

D. Göllner
Lenze SE, Aerzen, Germany
e-mail: denis.goellner@lenze.com

© Der/die Autor(en) 2022
J. Jasperneite, V. Lohweg (Hrsg.), Kommunikation und Bildverarbeitung in der
Automation, Technologien für die intelligente Automation 14,
https://doi.org/10.1007/978-3-662-64283-2_10

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-64283-2_10&domain=pdf
mailto:sergej.grunau@th-owl.de
mailto:lukasz.wisniewski@th-owl.de
mailto:magnus.redeker@iosb-ina.fraunhofer.de
mailto:denis.goellner@lenze.com
https://doi.org/10.1007/978-3-662-64283-2_10


132 S. Grunau et al.

1 Introduction

The high flexibility of intelligent manufacturing requires an increasing interaction between
the system components as well as a higher ability to react to changing requirements
[1]. The application scenario “order driven production” is one of the main Industry 4.0
(I4.0) scenarios defined by the German initiative “Platform Industrie 4.0” [2]. In future
production lines the product itself, respectively its Asset Administration Shell (AAS),
guides its way through the production.

An AAS is a digital representation of a physical or logical object – the asset – in an I4.0
system. It enables the properties and capabilities of assets to be described in a semantically
unambiguous and machine-readable form. An I4.0 system consists of I4.0 components,
comprising an asset and an AAS, that interact purposefully with each other [3].

Using these concepts can lead to a very flexible way of producing goods replacing rigid
production processes. The AASs need the ability to interact with each other so that, for
example, a product can negotiate and schedule each of its production steps directly with a
production machine.

One of the main aspects of the it’s OWL-research project “Technical Infrastructure for
Digital Twins” (TeDZ), is to define and implement I4.0-use cases, [5]. This paper discusses
different possibilities of implementing (proactive) AASs that can talk to each other in the
specified language of VDI/VDE 2193, [7, 8]. For the practical implementation two assets
– a product and a high-bay warehouse for storing the product – are used.

This paper is organized as follows: Sect. 2 briefly recaps the concept of proactive
AASs as well as the VDI/VDE 2193-interaction protocol, Sect. 3 discusses possibilities to
implement proactive AAS, Sect. 4 introduces a production infrastructure using proactive
AASs as autonomous economic actors, Sect. 5 specifies in detail the invented Bidding-App
implementing the bidding procedure, and, finally, Sect. 6 concludes this paper and gives
an outlook on future work.

2 Types of AASs and the Bidding Procedure

This section briefly recaps the different types of AASs and the language they use to interact
purposefully with each other.

2.1 The Types of AASs

In the document “Verwaltungsschale in der Praxis” [6], three different types of AAS are
introduced:

Passive AAS in file format File as AASX-package, XML or JSON, which provides all
information related to an asset. The structure of the AAS is specified in [3].



The Implementation of Proactive Asset Administration Shells: . . . 133

Reactive AAS Provides the same information content as the passive AAS in file format
via an interface depending on the selected technology (HTTP-Rest, OPC UA, etc.) with
a CRUD-oriented specification.

Proactive AAS Proactive AASs can take decisions and participate in protocol-based
interactions like [7, 8] specifying an I4.0 language and an interaction pattern.

Although the AAS meta model is precisely specified in [3], it does not clarify
at which point a proactive AAS makes decisions. On the other hand, [11] presents
a concept and structure of a proactive AAS as a combination of passive and active
behavior. Parts of the active component are an interaction manager and a messenger.
The interaction manager uses state machines to implement various semantic interaction
protocols for calling up the necessary decision algorithms. The messenger is an
interface that handles the transport of messages.

2.2 The VDI/VDE 2193-Interaction Protocol

The bidding procedure specified in [7, 8] is used for the interaction of AASs. It consists
of two parts. The first part defines the structure of exchanged messages. They contain a
frame and an interaction element. The frame includes mainly the IDs of the communication
participants, the purpose of a message and the role (service requester or provider) of the
sender. An interaction element is a property-based description of a service. The interaction
protocol is described in the second part of [7, 8] and defines the process of how messages
are exchanged and how to react.

3 Implementation of Proactive AASs

Today’s state of the art does not provide a clear solution on how to implement a proactive
AAS. Therefore, this section proposes two basic types of proactive AAS implementation
that is preceded with a summary of requirements.

3.1 Requirements for Proactive AASs

The following requirements for proactive AASs were derived from the smart production
showcase described in detail in Sect. 4:

1. Possibility to deliver proactive and reactive AAS-parts as one single AAS together with
an Asset.

2. Effortless integration and execution after receiving a proactive AAS.
3. Asset data is stored exclusively in the reactive part, so that proactive parts may act upon

the same asset status.



134 S. Grunau et al.

4. Possibility to integrate proactive parts into the “Operation” SubmodelElement of
standardized AAS meta model [4].

5. Possibility to apply high security standards.

3.2 Type 1: Proactive Part as AAS-Server Functionality

Implementing the proactive part of an AAS as an AAS Operation in the server, on which
the reactive part is deployed, is the first possible solution (Fig. 1a). Comparable to methods
in an OPC UA-server, an AAS Operation must be implemented as part of the AAS-
Server code before the actual AAS-Server can be started. For example, the BaSyx SDK,
that implements AAS Operations as lambda functions, follows this approach [13]. AAS
Operations contain the proactive parts. They are directly connected to the reactive part
containing the asset data.

While this approach simplifies the implementation of proactive AASs, it significantly
complicates the subsequent distribution and integration of new proactive parts adding to
an existing reactive or proactive AAS. Consequently, it is well suitable for proprietary
proactive parts like the price determination for a proposed service and also parts that do
not change over time.

3.3 Type 2: AAS-Application Outside the AAS-Server

Implementing a proactive part of an AAS as a separate application outside the server,
on which the reactive part is deployed, is the second possible solution for implementing

a b

Fig. 1 Two basic types of implementations of proactive AASs. (a) Type 1: Proactive part of the
AAS as part of server functionality. (b) Type 2: Proactive part of the AAS as separate application



The Implementation of Proactive Asset Administration Shells: . . . 135

proactive AASs. Such an application communicates with the corresponding reactive AAS
via the API of the AAS-server, like REST or OPC UA. This kind of implementation is
presented in detail in Fig. 1b. Via an AAS Registry the application can connect to a specific
AAS and its Submodels and provide the proactive functionality for a particular asset.

The major advantage of this type is its independence of AAS-servers simplifying
significantly the distribution of proactive AASs. Another benefit is that an application can
be deployed once and multiple instances of it can activate multiple reactive AASs. On the
other hand, a disadvantage might be the effort related to managing of a large number of
separate applications that is needed in a factory production line.

3.4 Future Possibility: JSON-Function Description

As pointed out in Sect. 2.1, the AAS concept provides the possibility to distribute an AAS
as a .aasx zip file containing a JSON-information model. An advantageous feature would
be the possibility of exchanging proactive parts as .json code within the JSON-information
model. Although it is not recommended for security reasons, arbitrary code might get
executed, the possibility to embed JavaScript code into JSON exists.

This possibility is not realizable in currently available AAS-Server implementations,
which must first be further developed so that they are able to securely parse JSON-function
descriptions and provide actual functionality.

3.5 Selection of the Appropriate Type and Their Coexistence

On the one hand, there are functionalities like the so called “bidding procedure”, that
are standardized together with their “I4.0 language”. In the future, every asset in I4.0
production lines as well as the produced products will need to support this concept. Type 2,
the separate AAS-application, is suitable for this kind of functionality. It can be deployed
once and an instance of it can be executed for each asset in the production.

On the other hand, there are proprietary functions such as asset-specific algorithms, that
single machine providers create just for their asset. These functions have to be provided
in a manufacturer specific manner. The authors guess that they will be implemented as
type 1, that is as part of the AAS server, which is hosting the reactive AAS. This server
would be supplied by the producer of the machine with reactive and proactive parts already
contained.

Please note, that both implementation types of a proactive AAS can coexist. Further-
more, a separate app of type 2 can start an AAS-operation of type 1 and vice versa. The
following Sect. 4 presents an infrastructure for order driven production integrating both
types of proactive AAS.



136 S. Grunau et al.

4 Infrastructure in an Order Driven Production System

This section presents an infrastructure of an order driven production system using
proactive AASs of production facilities and products as autonomous economic actors.
They control, schedule and document the production of the products. Figure 2 depicts, for
the sake of simplicity, only an extract of this infrastructure, focusing on the production’s
final step: the storage of the manufactured product. The processing of the preceding
production steps follows the same scheme as the final step.

The infrastructure extract consists of a Manufacturing Execution System (MES), AAS-
Servers, an AAS-Registry-Server, a MQTT-Broker, two proactive AASs of two assets:
product and storage. MES, AAS-Servers, AAS-Registry-Server, storage (asset) and the
proactive Storage-AAS are always operating.

Fig. 2 Infrastructure-extract of the production system using proactive AASs of production facilities
and products as autonomous economic actors. The proactive AASs are indicated by dark gray
AAS symbols: each consisting of a reactive AAS in an AAS-Server in combination with AAS-
Apps (Controlling-, Bidding-, Pricing, Deciding-App). Dashed lines indicate inter-component
connections. For the sake of clarity, the connections from the AAS-Apps to the AAS-Registry are not
depicted. The asset “Storage” fetches instructions from its AAS in the server. The asset “Product” on
the other hand, is offline and not connected with its AAS. In the focused final step of production, the
product instance, the manufacturing of which is already completed, must be stored in the storage. For
this purpose, the product instance’s proactive AAS executes the bidding procedure via the MQTT-
broker



The Implementation of Proactive Asset Administration Shells: . . . 137

4.1 The Initialization of a Production Process

The MES receives orders from the sales department to manufacture products. In addition,
sales sends a passive AAS in file format of each product instance to be manufactured.

Whenever the MES receives an order from sales to produce a product instance, it
uploads the corresponding AASX-file to an AAS-server and registers this reactive AAS in
the AAS-Registry. Furthermore, it adds Submodels containing all necessary information
for the execution of the production process to the reactive AAS. This includes the
Submodels of template ProductionSteps (Table 1), BiddingProcedureConfig (Table 2),
and, for each step, ProductionStep (Table 3). Finally, the MES starts an instance of the
Controlling-App, which ultimately controls the production of this one product instance.

Please note, that the mentioned Submodels are only added by the MES at the
beginning of the production, since it is the production department’s function to manage
the production. This becomes even more relevant in case that sales and production are
departments of separate companies.

Table 1 Submodel of
template ProductionSteps.
RefEl =ReferenceElement

idShort Type Value (example)

overallStatus Property started

numberOfSteps Property 3

statusStep1 Property completed

refStep1 RefEl SMProductionStep1

statusStep2 Property started

refStep2 RefEl SMProductionStep2

statusStep3 Property waiting

refStep3 RefEl SMProductionStep3

Table 2 Submodel of template BiddingProcedureConfig. RefEl =ReferenceElement

idShort Type Value (example)

mqttUrl Property https://smartfactory-owl.de/.../mqttbroker

mqttPort Property 3000

mqttUser Property pi-32657

mqttPw Property pi-052617022400

biddingAppUrl Property https://smartfactory-owl.de/.../bidding.exe

biddingMode Property serviceRequester

biddingPricingApp Operation null

biddingDecidingApp Operation decision.app



138 S. Grunau et al.

Table 3 Submodel of
template ProductionStep.
SubmElColl =
SumbodelElementCollection,
RefEl =ReferenceElement

idShort Type Value (example)

reqCapability Property store

biddingStatus Property started

biddingCall SubmElColl InteractionElement

biddingProposals SubmElColl InteractionElementSet

biddingDecisionStatus Property waiting

biddingDecisionRef RefEl biddingProposal

executionStatus Property waiting

executionStart Property null

executionEnd Property null

4.2 The Execution of a Production Process: The Proactive AASs

The proactive AAS of a product instance consists of the instance’s reactive AAS in an
AAS-Server in combination with instances of the Controlling-, Bidding- and Deciding-
App. On the other hand, the proactive AAS of a production facility consists of the facility’s
reactive AAS and instances of Bidding- and Pricing-App.

The Controlling-App On start up, the ID of the AAS of the product instance whose
production it controls is passed to the Controlling-App. From the AAS-Registry it retrieves
the reactive AAS’s endpoint in the AAS-Server. From the Submodel ProductionSteps
(Table 1) it periodically queries the status of the production. When the production of
a product instance is completed and it is stored in the storage, the Controlling-App
terminates itself. On the contrary, if the production is not yet completed and

• if the status of none of the steps is started, it starts the first step in waiting and activates
an instance of the Bidding-App passing as a parameter the IDs of the Submodel
BiddingProcedureConfig and of the one Submodel ProductionStep that is referenced
for that step,

• if the status of one step is started and
– if both status of the bidding procedure and of the actual execution in the referenced

Submodel of template ProductionStep, which are respectively edited by the Bidding-
App and the selected production facility, are completed, it finishes the step,

– otherwise, it checks again in the next period.

The Bidding-App The Bidding-App implements interactions of AASs following the
Bidding Procedure from [7, 8] (see Sect. 2.2), where it can perform both sides: service
requester (SR) and service provider (SP). As SP it proposes a service to a SR if its
associated asset is capable and available to meet the request. Contrarily, as SR it tries
to find a convenient SP for the service its associated asset needs. Please find a detailed
description in Sect. 5.



The Implementation of Proactive Asset Administration Shells: . . . 139

Table 4 SubmodelElement-
Collection of template
InteractionElement

idShort Type Value (example)

callHeight Property 15

callWidth Property 10

callLenght Property 20

proposalPrice Property 5

proposalStart Property 2020-10-29T09:00:00

proposalEnd Property 2020-10-29T17:00:00

The Pricing- and the Deciding-App Pricing- and Deciding-App are both implemented
as server functionality. An instance of the Pricing-App is invoked by the Bidding-App
acting as a service provider in order to price the service that is proposed to the requester.
In case of the storage, for example, the calculation is based on the expected energy
consumption for storing and retrieving the product instance. On the service requester side,
after expiry of the proposal period, the Bidding-App activates an instance of the Deciding-
App for selecting the most suitable service-proposal weighting the proposed prices, start
and end times. Both, Pricing- and Deciding-App, insert the result of their calculation into
the predetermined SubmodelElement (PricingApp: proposalPrice in Table 4; DecidingApp
biddingDecisionRef in Table 3), whose reference was passed to them as a starting
parameter, and then terminate themselves.

4.3 The Completion of a Production Process

The MES periodically retrieves status information from the reactive AASs in the AAS-
Servers of the product instances to be produced. When it determines that the production
of an instance is completed, the MES downloads the corresponding AAS from the server
into the original AASX-file. It erases the AAS as well as the Registry-entry from the
respective servers. Finally, the MES sends the AASX-file in combination with a production
confirmation back to the sales department.

5 The Bidding-App: Detailed Specification

This section specifies in detail the Bidding-App (in the following simply referred to as
App) presented in Sect. 4. It was implemented in Java using the Eclipse BaSyx SDK [13],
which implements the AAS-meta model and provides functions like the (de-)serialization
of passive AASs (file format).

The requirements for the App to function are first determined with respect to the
interaction protocol from the bidding procedure (Sect. 2.2) and the infrastructure from
Sect. 4. Furthermore, the required Submodels which the App needs for configuration are



140 S. Grunau et al.

explained. Finally, the functionality of the App is described and its interoperability with a
proactive AAS from an external project is shown.

5.1 Requirements

As described in Sect. 3, the App is not an information carrier, but it must be able to
create, read, update and delete information in a reactive AAS if required. The reactive
AASs are provided by AAS-Servers implemented with technologies such as HTTP or
OPC UA. When reactive AAS and App interact, they are in a server-client relationship
(vertical communication). When two proactive AASs interact, they are in a peer-to-peer
relationship (horizontal communication). This horizontal message exchange is done via
MQTT as specified in [7, 8]. Therefore, the App must implement an MQTT-client.

The App must implement both roles in the bidding process. One is that of the service
requester (SR), who requests a service, for example a product requesting its storage. The
second is the service provider (SP), who offers services, for example a warehouse that can
store products.

Finally, the App should be executable on all Operating Systems used in the I4.0-context.

5.2 Required Submodels

The Submodel BiddingProcedureConfig (see Table 2) is required to configure the App.
It contains properties for creating and configuring the MQTT client. The Submodel
also contains two AAS-Operations (type 1) for price calculation (SP side) and decision
(SR side).

In the example from Sect. 4 the SubmodelElementCollection InteractionElement from
Table 4 contains the interaction element that describes the service. The storage (SP) needs
the dimensions of the object to check whether it fits into its storage bins. The properties
price, start time and end time are information for the SP. The product (SR) uses this
information to decide which offer to accept.

The data elements in the Submodel ProductionStep that are necessary for the bidding
procedure are the following:

– biddingStatus: Status of the bidding process.
– biddingCall: Interaction element of the bidding procedure.
– biddingProposals: Received proposals.
– biddingDecisionStatus: Status of the selection operation.
– biddingDecisionRef: Reference to the selected proposal.



The Implementation of Proactive Asset Administration Shells: . . . 141

5.3 Procedure

The execution of the App is shown with the activity diagram in Fig. 3: Initialization, SR
and SP.

Initialization When the App is executed, the ID of the current Submodel BiddingProce-
dureConfig and the Registry-URL are given as starting arguments. From the Registry the
App queries the endpoint of this Submodel. Depending on the type of the endpoint the
App creates a client (HTTP, OPC UA) and connects to it. Afterwards the App creates and
configures an MQTT client with the Submodel’s parameters. Finally, it checks the bidding
mode to execute: SR or SP.

Fig. 3 Activity diagram of the App with the initialization (left), the SR activity (middle) and SP
activity (right)



142 S. Grunau et al.

SR-mode In SR mode, the App generates and publishes a call for proposal containing
frame and interaction element. It stores all incoming proposals. When the fixed waiting
time is expired, the App invokes the decision operation for a selection. The App accepts
the selected proposal and rejects the remainder.

SP-mode In SP mode, the App checks incoming calls for proposals and generates, if
capability and availability permits it, a proposal invoking the pricing operation for the
pricing of the service. If an acceptance of the proposal is received, the App generates and
sends a confirmation.

5.4 Evaluation of the App

The project “Administrative Shell Networked” [14] provides a test bed in which AASs can
interact with each other using the bidding procedure. The test bed contains a SR that sends
a Call for Proposal every minute requesting for the service boring [9]. For the evaluation of
the App an AAS for a virtual drilling machine was created which is capable of executing
exactly this requested service. The interaction between the drilling machine AAS and the
SR worked until the confirmation/informing step proving that the App works properly in
this case. A complete test of the App follows.

6 Conclusion

In order to realise an order driven production exemplary implemented in the SmartFac-
toryOWL in Lemgo, Germany, this paper presents an infrastructure including reactive
and proactive Asset Administration Shells (AASs). The proactive AASs act as economic
autonomous actors, that are capable of taking decisions and interacting purposefully with
each other with the specified VDI/VDE 2193-interaction protocol.

Two types of implementations are developed and validated in this paper. In both cases,
a reactive AAS in an AAS-Server is completed with a proactive part. Type 1 implements
the proactive part as AAS-Server functionality. On the contrary, type 2 implements it as an
AAS-application outside the AAS-Server.

While type 1’s implementation is straightforward, its distribution to partner’s in a value
chain is complicated. Consequently, it is well suited for proprietary functionality like the
pricing of services or other functionalities that do not change over time. On the contrary,
major advantage of type 2 is its independence of AAS-Servers simplifying significantly
its distribution and instantiation. An application can be deployed once in a system and
each instance of it can activate one AAS. Thus, type 2 is the proper solution for global
functions.

For a fully functional order driven production system, a variety of proactive applications
is necessary: a Controlling-, Bidding-, Deciding- and Pricing-App were presented and



The Implementation of Proactive Asset Administration Shells: . . . 143

implemented. Each of these applications needs specific AAS Submodels for parameteri-
zation. Asset data is stored exclusively in the reactive part, so that all proactive parts act
upon the same asset status.

These proactive applications together with reactive AASs in AAS-Servers as well as
the communication components build the infrastructure of the order driven production in
the mentioned demonstrator.

Acknowledgements The research and development project “Technical Infrastructure for Digital
Twins” (TeDZ) is funded by the Ministry of Economic Affairs, Innovation, Digitalisation and Energy
(MWIDE) of the State of North Rhine-Westphalia within the Leading-Edge Cluster “Intelligent
Technical Systems OstWestfalenLippe (it’s OWL)” and managed by the Project Management
Agency Jülich (PTJ). The authors are responsible for the content of this publication.

References

1. Qin, Jian, Ying Liu, and Roger Grosvenor. “A categorical framework of manufacturing for
industry 4.0 and beyond.” Procedia cirp 52 (2016): 173-178.

2. Anderl, R., et al. “Fortschreibung der Anwendungsszenarien der Plattform Industrie 4.0.” (2016).
3. Plattform Industrie 4.0: Struktur der Verwaltungsschale – Fortentwicklung des Referenzmodells

für die Industrie 4.0-Komponente. Berlin: BMWi, 2016.
4. Plattform Industrie 4.0: Details of the Asset Administration Shell. Part 1 – The exchange of

information between partners in the value chain of Industrie 4.0. BMWi. Berlin, 2018.
5. it’s OWL. URL: www.its-owl.de, Execessdate 28.02.2018
6. Plattform Industrie 4.0: Verwaltungsschale in der Praxis – Wie definiere ich Teilmodelle,

beispielhafte Teilmodelle und Interaktion zwischen Verwaltungsschalen (Version 1.0). Berlin:
BMWi, 2020.

7. VDI/VDE 2193 Blatt 1: Sprache für I4.0-Komponenten,“ Düsseldorf: VDI, 2019
8. VDI/VDE 2193 Blatt 2: Sprache für I4.0-Komponenten. Interaktionsprotokoll für Ausschrei-

bungsverfahren. Düsseldorf: VDI, 2019
9. Belyaev A., Diedrich C.: Specification “Demonstrator I4.0-Language”
10. Plattform Industrie 4.0. URL: https://www.plattform-i40.de, accessed: 28.02.2018
11. Belyaev A., Diedrich C.: Aktive Verwaltungsschale von I4.0-Komponenten. 2019
12. Bidding-App. URL: https://gitlab.com/itsowl-tedz/bidding-app
13. Eclipse BaSyx. URL: https://wiki.eclipse.org/BaSyx, accessed: 28.02.2018
14. VWS vernetzt. URL: http://vwsvernetzt.de/, accessed: 26.07.2020

www.its-owl.de
https://www.plattform-i40.de
https://gitlab.com/itsowl-tedz/bidding-app
https://wiki.eclipse.org/BaSyx
http://vwsvernetzt.de/


144 S. Grunau et al.

Open Access Dieses Buch wird unter der Creative Commons Namensnennung 4.0 International
Lizenz (http://creativecommons.org/licenses/by/4.0/deed.de) veröffentlicht, welche die Nutzung,
Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format
erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen
Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden.

Die in diesem Buch enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der
genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt.
Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die
betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten
Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen.

http://creativecommons.org/licenses/by/4.0/deed.de

	The Implementation of Proactive Asset Administration Shells: Evaluation of Possibilities and Realization in an Order Driven Production
	1 Introduction
	2 Types of AASs and the Bidding Procedure
	2.1 The Types of AASs
	2.2 The VDI/VDE 2193-Interaction Protocol

	3 Implementation of Proactive AASs
	3.1 Requirements for Proactive AASs
	3.2 Type 1: Proactive Part as AAS-Server Functionality
	3.3 Type 2: AAS-Application Outside the AAS-Server
	3.4 Future Possibility: JSON-Function Description
	3.5 Selection of the Appropriate Type and Their Coexistence

	4 Infrastructure in an Order Driven Production System
	4.1 The Initialization of a Production Process
	4.2 The Execution of a Production Process: The Proactive AASs
	4.3 The Completion of a Production Process

	5 The Bidding-App: Detailed Specification
	5.1 Requirements
	5.2 Required Submodels
	5.3 Procedure
	5.4 Evaluation of the App

	6 Conclusion
	References


