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Preface to the Second Edition

After the appearance of the first edition of our book “Mittag-Leffler Functions:
Related Topics and Applications”, we have observed a growing interest in the
subject. Many new research articles and books have appeared. This is mainly due to
the central role of the Mittag-Leffler functions in Fractional Calculus and Fractional
Modeling. With this interest in mind, we decided to prepare the second edition of
our book on Mittag-Leffler functions, presenting new ideas and results related to the
theory and applications of this family of functions.

New results have been added to practically all sections of the book. In Chap. 3
“The Classical Mittag-Leffler Function”, results onMittag-Leffler summation as well
as the notion of the Mittag-Leffler reproducing kernel Hilbert space are discussed.
We present results applying the distribution of the zeros of the Mittag-Leffler
function to the study of inverse problems for differential equations in Banach spaces
(Chap. 4 “The Two-Parametric Mittag-Leffler Function”). Chapter 5 “Mittag-Leffler
Functions With Three Parameters” discusses recent results on Le Roy type functions
related to the Mittag-Leffler function but having a different nature. New applications
related to all functions in this chapter have been added. Essentially enlarged is the
next chapter (Chap. 6) concerning Mittag-Leffler functions depending on several
parameters. Such functions have become important from both a theoretical and an
applied point of view. We also discuss the properties of the Mittag-Leffler functions
of several variables and with matrix argument. Numerical methods for these classes
of functions are discussed too. We have completely rewritten the chapters dealing
with applications (Chap. 8 “Applications to Fractional Order Equations”, Chap. 9
“Applications to Deterministic Models”, and Chap. 10 “Applications to Stochastic
Models”, which are essentially enlarged versions of Chaps. 7–9 from the first edi-
tion). Thus, we briefly discuss in Chap. 8 the main ideas of fractional control theory
and present some numerical methods applied to the study of fractional models,
including those related to the calculation of the values of the Mittag-Leffler func-
tions. We also added a new chapter (Chap. 7), which describes the main properties
of the classical Wright function, closely related to the Mittag-Leffler function.
Consequently, the structure of Appendix F “Higher Transcendental Functions” has
been changed, since now in App. F. 2 we deal mainly with the generalized Wright
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function, focussing not only on the general function of this type (the so-called Fox–
Wright function pWq) but also on the most applicable special cases 1W1 and 0W2.
Essential changes were also made to Appendix E “Elements of Fractional Calculus”
in order to outline the role of less popular fractional constructions and to show which
specific properties of these constructions give potential further applications of
Grünwald–Letnikov, Marchaud, Hadamard, Erdélyi–Kober, and Riesz fractional
derivatives.

Our book project could not have been realized without the constant support of
our colleagues and friends. We are grateful to Roberto Garrappa for preparing short
reviews of his results and allowing us to include them in the book. Additional
thanks are due to Alexander Apelblat, Roberto Garra, Andrea Giusti, George
Karneadakis, Virginia Kiryakova, Yuri Luchko, Arak Mathai, Edmundo Capelas de
Oliveira, Gianni Pagnini, Enrico Scalas, José Tenreiro Machado, and Vladimir
Uchaikin. Our wives, Giovanna and Maryna, were so polite to allow us to spend so
much time on the book. The 2nd edition was discussed in Bologna and Berlin by
three of us, but as of October 20, 2017, Professor Rudolf Gorenflo is no longer with
us. We took the liberty to dedicate this second edition to our missed colleagues and
friends, Anatoly Kilbas and Rudolf Gorenflo, keeping them as co-authors because
of their essential role in realizing this project.

Bologna, Italy Francesco Mainardi
Minsk, Belarus
March 2020

Sergei Rogosin
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Preface to the First Edition

The study of the Mittag-Leffler function and its various generalizations has become
a very popular topic in Mathematics and its Applications. However, during the
twentieth century, this function was practically unknown to the majority of scien-
tists, since it was ignored in most common books on special functions. As a
noteworthy exception the handbook “Higher Transcendental Functions”, vol. 3, by
A. Erdelyi et al. deserves to be mentioned.

Now the Mittag-Leffler function is leaving its isolated role as Cinderella (using
the term coined by F.G. Tricomi for the incomplete gamma function).

The recent growing interest in this function is mainly due to its close relation to
the Fractional Calculus and especially to fractional problems which come from
applications.

Our decision to write this book was motivated by the need to fill the gap in the
literature concerning this function, to explain its role in modern pure and applied
mathematics, and to give the reader an idea of how one can use such a function in
the investigation of modern problems from different scientific disciplines.

This book is a fruit of collaboration between researchers in Berlin, Bologna and
Minsk. It has highly profited from visits of SR to the Department of Physics at the
University of Bologna and from several visits of RG to Bologna and FM to the
Department of Mathematics and Computer Science at Berlin Free University under
the European ERASMUS exchange. RG and SR appreciate the deep scientific
atmosphere at the University of Bologna and the perfect conditions they met there
for intensive research.

We are saddened that our esteemed and always enthusiastic co-author
Anatoly A. Kilbas is no longer with us, having lost his life in a tragic accident
on 28 June 2010 in the South of Russia. We will keep him, and our inspiring joint
work with him, in living memory.

Berlin, Germany Rudolf Gorenflo
Bologna, Italy Francesco Mainardi
Minsk, Belarus
March 2014

Sergei Rogosin
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Chapter 1
Introduction

This book is devoted to an extended description of the properties of theMittag-Leffler
function, its numerous generalizations and their applications in different areas of
modern science.

The function Eα(z) is named after the great Swedish mathematician Gösta Mag-
nus Mittag-Leffler (1846–1927) who defined it by a power series

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
, α ∈ C, Reα > 0, (1.0.1)

and studied its properties in 1902–1905 in five subsequent notes [ML1, ML2, ML3,
ML4, ML5-5] in connection with his summation method for divergent series.

This function provides a simple generalization of the exponential function because
of the replacement of k! = Γ (k + 1) by (αk)! = Γ (αk + 1) in the denominator of
the power terms of the exponential series.

During the first half of the twentieth century theMittag-Leffler function remained
almost unknown to the majority of scientists. They unjustly ignored it in many trea-
tises on special functions, including the most popular (Abramowitz and
Stegun [AbrSte72] and its new version “NIST Handbook of Mathematical Func-
tions” [NIST]). Furthermore, there appeared some relevant works where the authors
arrived at series or integral representations of this function without recognizing it,
e.g., (Gnedenko and Kovalenko [GneKov68]), (Balakrishnan [BalV85]) and (Sanz-
Serna [San88]). A description of the most important properties of this function is
present in the third volume [ErdBat-3] of the Handbook on Higher Transcendental
Functions of the Bateman Project, (Erdelyi et al.). In it, the authors have included the
Mittag-Leffler functions in their Chapter XVIII devoted to the so-called miscella-
neous functions. The attribution of ‘miscellaneous’ to the Mittag-Leffler function is
due to the fact that it was only later, in the sixties, that it was recognized to belong to
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2 1 Introduction

a more general class of higher transcendental functions, known as Fox H -functions
(see, e.g., [MatSax78, KilSai04, MaSaHa10]). In fact, this classwaswell-established
only after the seminal paper by Fox [Fox61]. A more detailed account of the Mittag-
Leffler function is given in the treatise on complex functions by Sansone and Ger-
retsen [SanGer60]. However, the most specialized treatise, where more details on
the functions of Mittag-Leffler type are given, is surely the book by Dzherbashyan
[Dzh66], in Russian. Unfortunately, no official English translation of this book is
presently available. Nevertheless, Dzherbashyan has done a lot to popularize the
Mittag-Leffler function from the point of view of its special role among entire func-
tions of a complex variable, where this function can be considered as the simplest
non-trivial generalization of the exponential function.

Successful applications of theMittag-Leffler function and its generalizations, and
their direct involvement in problems of physics, biology, chemistry, engineering
and other applied sciences in recent decades has made them better known among
scientists. A considerable literature is devoted to the investigation of the analyticity
properties of these functions; in the references we quote several authors who, after
Mittag-Leffler, have investigated such functions from a mathematical point of view.
At last, the 2000 Mathematics Subject Classification has included these functions in
item 33E12: “Mittag-Leffler functions and generalizations”.

Starting from the classical paper of Hille and Tamarkin [HilTam30] in which the
solution of Abel integral equation of the second kind

φ(x) − λ

Γ (α)

x∫

0

φ(t)

(x − t)1−α
dt = f (x), 0 < α < 1, 0 < x < 1, (1.0.2)

is presented in terms of the Mittag-Leffler function, this function has become very
important in the study of different types of integral equations.We should alsomention
the 1954 paper by Barret [Barr54], which was concerned with the general solution
of the linear fractional differential equation with constant coefficients.

But the real importance of this function was recognized when its special role
in fractional calculus was discovered (see, e.g., [SaKiMa93]). In recent times the
attention of mathematicians and applied scientists towards the functions of Mittag-
Leffler type has increased, overall because of their relation to the Fractional Calculus
and its applications. Because the Fractional Calculus has attracted wide interest in
different areas of applied sciences, we think that the Mittag-Leffler function is now
beginning to leave behind its isolated life as Cinderella. We like to refer to the
classical Mittag-Leffler function as the Queen Function of Fractional Calculus, and
to consider all the related functions as her court.

A considerable literature is devoted to the investigation of the analytical properties
of this function. In the references, in addition to purely mathematical investigations,
we also mention several monographs, surveys and research articles dealing with
different kinds of applications of the higher transcendental functions related to the
Mittag-Leffler function. However, we have to point out once more that there exists
no treatise specially devoted to the Mittag-Leffler function itself. In our opinion,
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it is now time for a book aimed at a wide audience. This book has to serve both
as a textbook for beginners, describing the basic ideas and results in the area, and
as a table-book for applied scientists in which they can find the most important
facts for applications, and it should also be a good source for experts in Analysis
and Applications, collecting deep results widely spread in the special literature.
These ideas have been implemented into our plan for the present book. Because
of the relevance of the Mittag-Leffler function to the theory and applications of
Fractional Calculus we were invited to write a survey chapter for the first volume
of the Handbook of Fractional Calculus with Applications [HAND1]. This chapter
[GoMaRo19] presents in condensed form the main ideas of our book.

The book has the following structure. It can be formally considered as consisting
of fourmain parts. The first part (INTRODUCTIONANDHISTORY) consists of two
chapters. The second part (THEORY) presents different aspects of the theory of the
Mittag-Leffler function and its generalizations, in particular those arising in applied
models. This part is divided into five chapters. The third part (APPLICATIONS)
deals with different kinds of applications involving the Mittag-Leffler function and
its generalizations. This part is divided into three chapters. Since the variety ofmodels
related to the Mittag-Leffler function is very large and rapidly growing, we mainly
focus on how to use this function in different situations. We also separate theoretical
applications dealing mainly with the solution of certain equations in terms of the
Mittag-Leffler function from the more “practical” applications related to its use in
modelling. Most of the auxiliary facts are collected in the fourth part consisting of
six APPENDICES. The role of the appendices is multi-fold. First, we present those
results which are helpful in reading the main text. Secondly, we discuss in part the
machinery which can be omitted at the first reading of the corresponding chapter.
Lastly, the appendices partly play the role of a handbook on some auxiliary subjects
related to the Mittag-Leffler function. In this sense these appendices can be used to
further develop the ideas contained in our book and in the references mentioned in
it.

Each structural part of the book (either chapter or appendix) ends with a special
section “Historical and Bibliographical Notes”.We hope that these sections will help
the readers to understand the features of theMittag-Leffler function more deeply. We
also hope that acquaintance with the book will give the readers new practical instru-
ments for their research. In addition, since one of the aims of the book is to attract
students, we present at the end of each chapter and each appendix a collection of
exercises connected with different aspects of the theory and applications. Special
attention is paid to the list of references which we have tried to make as complete
as possible. Only seldom does the main text give references to the literature, the
references are mainly deferred to the notes sections at the end of chapters and appen-
dices. The bibliography contains a remarkably large number of references to articles
and books not mentioned in the text, since they have attracted the author’s attention
over the last few decades and cover topics more or less related to this monograph.
In the second edition we have significantly updated the bibliography. The interested
reader will hopefully take advantage of this bibliography, enlarging and improving
the scope of the monograph itself and developing new results.
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Chapter2 has in a sense a historical nature. We present here a few bibliographical
notes about the creator of this book’s subject, G.M. Mittag-Leffler. The contents of
his pioneering works on the considered function is given here together with a brief
description of the further development of the theory of the Mittag-Leffler function
and its generalizations.

Chapter3 is devoted to the classical Mittag-Leffler function (1.0.1). We collect
here the main results on the function which were discovered during the century
following Mittag-Leffler’s definition. These are of an analytic nature, comprising
rules of composition and asymptotic properties, and its character as an entire function
of a complex variable. Special attention is paid to integral transforms related to the
Mittag-Leffler function because of their importance in the solution of integral and
differential equations. We point out its role in the Fractional Calculus and its place
among the whole collection of higher transcendental functions.

In Chap.4 we discuss questions similar to those of Chap.3. This chapter deals
with the simplest (and for applicationsmost important) generalizations of theMittag-
Leffler function, namely the two-parametric Mittag-Leffler function

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, α,β ∈ C, Reα > 0, (1.0.3)

which was deeply investigated independently by Humbert and Agarwal in 1953
[Hum53, Aga53, HumAga53] and by Dzherbashyan in 1954 [Dzh54a, Dzh54b,
Dzh54c] (but formally appeared first in the paper by Wiman [Wim05a]).

Chapter 4 presents the theory of two types of three-parametric Mittag-Leffler
function. First of all it is the three-parametric Mittag-Leffler function (or Prabhakar
function) introduced by Prabhakar [Pra71]

Eγ
α,β(z) =

∞∑

k=0

(γ)k

k!Γ (αk + β)
zk,α,β, γ ∈ C, Reα, γ > 0, (1.0.4)

where (γ)k = γ(γ + 1) . . . (γ + k − 1) = Γ (γ+k)
Γ (γ)

is the Pochhammer symbol (see
(A.17) in Appendix A). This function is now widely used for different applied prob-
lems. Another type of three-parametric Mittag-Leffler function is not as well-known
as the Prabhakar function (1.0.4). It was introduced and studied by Kilbas and Saigo
[KilSai95b] in connection with the solution of a new type of fractional differential
equation. This function (the Kilbas–Saigo function) is defined as follows

Eα,m,l(z) =
∞∑

k=0

ckz
k (z ∈ C), (1.0.5)

where
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c0 = 1, ck =
k−1∏

i=1

Γ (α[im + l] + 1)

Γ (α[im + l + 1] + 1)
(k = 1, 2, · · · ), α ∈ C, Reα > 0.

(1.0.6)
Some basic results on this function are also included in Chap.5. In the second edition
we also include in this chapter another three-parametric generalization of theMittag-
Leffler function, namely, the Le Roy type function

F (γ)

α,β :=
∞∑

k=1

zk

(Γ (αk + β))γ
, (1.0.7)

which is a function of a different nature than the other functions in this chapter. TheLe
Roy type function is a simple generalization of the Le Roy function [LeR00], which
appeared as a competitor of the Mittag-Leffler function in the study of divergent
series.

By introducing additional parameters one can discover new interesting properties
of these functions (discussed in Chaps. 3–5) and extend their range of applicability.
This is exactly the case with the generalizations described in this chapter. Together
with some appendices, the above mentioned chapters constitute a short course on
the Mittag-Leffler function and its generalizations. This course is self-contained and
requires only a basic knowledge of Real and Complex Analysis.

Chapter 6 is rooted deeper mathematically. The reader can find here a number of
modern generalizations. The ideas leading to them are described in detail. The main
focus is on four-parametric Mittag-Leffler functions (Dzherbashyan [Dzh60]) and
2n-parametric Mittag-Leffler functions (Al-Bassam and Luchko [Al-BLuc95] and
Kiryakova [Kir99]). Experts in higher transcendental functions and their applications
will find here many interesting results, obtained recently by various authors. These
generalizations will all be labelled by the name Mittag-Leffler, in spite of the fact
that some of them can be considered for many values of parameters as particular
cases of the general class of Fox H -functions. These H -functions offer a powerful
tool for formally solving many problems, however by inserting relevant parameters
one often arrives at functions whose behavior is easier to handle. This is the case
for the Mittag-Leffler functions, and so these functions are often more appropriate
for applied scientists who prefer direct work to a detour through a wide field of
generalities.

In the second edition we have decided to give a much wider presentation (new
Chap.7) of the classical Wright function

φ(α,β; z) =
∞∑

k=0

zk

k!Γ (αk + β)
, α > −1,β ∈ C. (1.0.8)

This function is closely related to the Mittag-Leffler function (especially to the four-
parametric Mittag-Leffler function, see, e.g., [GoLuMa99, RogKor10]) and is of
great importance for Fractional Calculus too. In spite of this similarity, some proper-
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ties of theWright function are not completely analogous to those of theMittag-Leffler
function. Thus, we found it important to discuss here the properties of the Wright
function in detail.

The last three chapters deal with applications of the functions treated in the pre-
ceding chapters. We start (Chap. 8) with the “formal” (or mathematical) applications
of Mittag-Leffler functions. The title of the chapter is “Applications to Fractional
Order Equations”. By fractional order equations we mean either integral equations
with weak singularities or differential equations with ordinary or partial fractional
derivatives. The collection of such equations involving Mittag-Leffler functions in
their analysis or in their explicit solution is fairly big. Of course, we should note that
a large number of fractional order equations arise in certain applied problems. We
would like to separate the questions of mathematical analysis (solvability, asymp-
totics of solutions, their explicit presentation etc.) from themotivation and description
of those models in which such equations arise. In Chap.8 we focus on the devel-
opment of a special “fractional” technique and give the reader an idea of how this
technique can be applied in practice.

Further applications are presented in the two subsequent chapters devoted to
mathematical modelling of special processes of interest in the applied sciences.
Chapter 9 deals mainly with the role of Mittag-Leffler functions in discovering and
analyzing deterministicmodels based on certain equations of fractional order. Special
attention is paid to fractional relaxation and oscillation phenomena, to fractional
diffusion and diffusive wave phenomena, to fractional models in dielectrics, models
of particle motion in a viscous fluid, and to hereditary phenomena in visco-elasticity
and hydrodynamics. These are models in physics, chemistry, biology etc., which by
adopting a macroscopic viewpoint can be described without using probabilistic ideas
and machinery.

In contrast, in Chap.10 we describe the role of Mittag-Leffler functions in models
involving randomness. We explain here the key role of probability distributions of
Mittag-Leffler type which enter into a variety of stochastic processes, including
fractional Poisson processes and the transition from continuous time random walk
to fractional diffusion.

Our six appendices can be divided into two groups. First of all we present here
some basic facts from certain areas of analysis. Such appendices are useful additions
to the course of lectures which can be extracted from Chaps. 3–5. The second type of
appendices constitute those which can help the reader to understand modern results
in the areas in which the Mittag-Leffler function is essential and important. They
serve to make the book self-contained.

The book is addressed to a wide audience. Special attention is paid to those topics
which are accessible for students in Mathematics, Physics, Chemistry, Biology and
Mathematical Economics. Also in our audience are experts in the theory of the
Mittag-Leffler function and its applications. We hope that they will find the technical
parts of the book and the historical and bibliographical remarks to be a source of
new ideas. Lastly, we have to note that our main goal, which we always had in mind
during the writing of the book, was to make it useful for people working in different
areas of applications (even those far from pure mathematics).



Chapter 2
Historical Overview of the Mittag-Leffler
Functions

2.1 A Few Biographical Notes On Gösta Magnus
Mittag-Leffler

Gösta Magnus Mittag-Leffler was born on March 16, 1846, in Stockholm, Sweden.
His father, John Olof Leffler, was a school teacher, and was also elected as a member
of the Swedish Parliament. His mother, Gustava Vilhelmina Mittag, was a daughter
of a pastor, who was a person of great scientific abilities. At his birth Gösta was
given the name Leffler and later (when he was a student) he added his mother’s
name “Mittag” as a tribute to this family, which was very important in Sweden in
the nineteenth century. Both sides of his family were of German origin.1

At the Gymnasium in Stockholm Gösta was training as an actuary but later
changed to mathematics. He studied at the University of Uppsala, entering it in
1865. In 1872 he defended his thesis on applications of the argument principle and
in the same year was appointed as a Docent (Associate Professor) at the University
of Uppsala.

In the following year he was awarded a scholarship to study and work abroad as
a researcher for three years. In October 1873 he left for Paris.

InParisMittag-Lefflermetmanymathematicians, such asBouquet,Briot,Chasles,
Darboux, and Liouville, but his main goal was to learn from Hermite. However, he
found the lectures by Hermite on elliptic functions difficult to understand.

In Spring 1875 he moved to Berlin to attend lectures by Weierstrass, whose
research and teaching style was very close to his own. From Weierstrass’ lectures
Mittag-Leffler learned many ideas and concepts which would later become the core
of his scientific interests.

In Berlin Mittag-Leffler received news that professor Lorenz Lindelöf (Ernst Lin-
delöf’s father) had decided to leave a chair at the University of Helsingfors (now
Helsinki). At the same time Weierstrass requested from the ministry of education

1Many interesting aspects of Mittag-Leffler’s life can be found in [Noe27, Har28a, Har28b].
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8 2 Historical Overview of the Mittag-Leffler Functions

the installation of a new position at his institute and suggested Mittag-Leffler for
the position. In spite of this, Mittag-Leffler applied for the chair at Helsingfors. He
got the chair in 1876 and remained at the University of Helsingfors for the next five
years.

In 1881 the new University of Stockholm was founded, and Gösta Mittag-Leffler
was the first to hold a chair in Mathematics there. Soon afterwards he began to
organize the setting up of the new international journal Acta Mathematica. In 1882
Mittag-Leffler founded Acta Mathematica and served as the Editor-in-Chief of the
journal for 45years. The original idea for such a journal came from Sophus Lie in
1881, but it was Mittag-Leffler’s understanding of the European scene, together with
his political skills, that ensured the success of the journal. Later he invited many
well-known mathematicians (Cantor, Poincaré and many others) to submit papers
to this journal. Mittag-Leffler was always a good judge of the quality of the work
submitted to him for publication.

The role of G. Mittag-Leffler as a founder of Acta Mathematica was more than
simply an organizer of the mathematical Journal. We can cite from [Dau80, p. 261–
263]: “GöstaMittag-Lefflerwas the founding editor of the journal ActaMathematica.
In the early 1870s it was meant, in part, to bring the mathematicians of Germany
and France together in the aftermath of the France-Prussian War, and the political
neutrality of Sweden made it possible for Mittag-Leffler to realize this goal by pub-
lishing articles in German and French, side by side. Even before the end of the First
World War, Mittag-Leffler again saw his role as mediator, and began to work for a
reconciliation between German and Allied mathematicians through the auspices of
his journal. Similarly, G.H. Hardy was particularly concerned about the reluctance
of many scientists in England to attempt any sort of rapprochement with the Central
European countries and he sought to do all he could to bring English and German
mathematicians together after theWar.... Nearly half a century earlier, Mittag-Leffler
saw himself in much the same position as mediator between belligerent mathemati-
cians on both sides. In fact, he believed that he was in an especially suitable position
to bring European scientific interests together after World War I, and he saw his Acta
Mathematics as the perfect instrument for promoting a lasting rapprochement. ”

In 1882 Gösta Mittag-Leffler married Signe af Linfors and they lived together
until the end of his life.

Mittag-Leffler made numerous contributions to mathematical analysis, particu-
larly in the areas concerned with limits, including calculus, analytic geometry and
probability theory. He worked on the general theory of functions, studying relation-
ships between independent and dependent variables.

His best known work deals with the analytic representation of a single-valued
complex function, culminating in the Mittag-Leffler theorem. This study began as
an attempt to generalize results from Weierstrass’s lectures, where Weierstrass had
described his theorem on the existence of an entire function with prescribed zeros
each with a specified multiplicity. Mittag-Leffler tried to generalize this result to
meromorphic functions while he was studying in Berlin. He eventually assembled
his findings on generalizing Weierstrass’ theorem to meromorphic functions in a
paper which he published (in French) in 1884 in Acta Mathematica. In this paper
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Mittag-Leffler proposed a series of general topological notions on infinite point sets
based on Cantor’s new set theory.

With this paper Mittag-Leffler became the sole proprietor of a theorem that later
became widely known and so he took his place in the circle of internationally known
mathematicians. Mittag-Leffler was one of the first mathematicians to support Can-
tor’s theory of sets but, one has to remark, a consequence of this was that Kronecker
refused to publish in Acta Mathematica. Between 1899 and 1905 Mittag-Leffler
published a series of papers which he called “Notes” on the summation of divergent
series. The aim of these notes was to construct the analytical continuation of a power
series outside its circle of convergence. The region in which he was able to do this
is now called Mittag-Leffler’s star. Andre Weyl in his memorial [Weil82] says: “A
well-known anecdote has Oscar Wilde saying that he had put his genius into his life;
into his writings he had put merely his talent. With at least equal justice it may be said
of Mittag-Leffler that the Acta Mathematica were the product of his genius, while
nothing more than talent went into his mathematical contributions. Genius tran-
scends and defies analysis; but this may be a fitting occasion for examining some
of the qualities involved in the creating and in the editing of a great mathematical
journal.”

In the same period Mittag-Leffler introduced and investigated in five subsequent
papers a new special function, which is now very popular and useful for many appli-
cations. This function, as well as many of its generalizations, is now called the
“Mittag-Leffler” function.2

His contribution is nicely summed up by Hardy [Har28a]: “Mittag-Leffler was a
remarkable man in many ways. He was a mathematician of the front rank, whose
contributions to analysis had become classical, and had played a great part in the
inspiration of later research; he was a man of strong personality, fired by an intense
devotion to his chosen study; and he had the persistence, the position, and the means
to make his enthusiasm count.”

Gösta Mittag-Leffler passed away on July 7, 1927. During his life he received
many honours. He was an honorary member or corresponding member of almost
every mathematical society in the world including the Accademia Reale dei Lin-
cei, the Cambridge Philosophical Society, the Finnish Academy of Sciences, the
London Mathematical Society, the Moscow Mathematical Society, the Netherlands
Academy of Sciences, the St. Petersburg Imperial Academy, the Royal Institution,
the Royal Belgium Academy of Sciences and Arts, the Royal Irish Academy, the
Swedish Academy of Sciences, and the Institute of France. He was elected a Fellow
of the Royal Society of London in 1896. He was awarded honorary degrees from the
Universities of Oxford, Cambridge, Aberdeen, St. Andrews, Bologna and Christiania
(now Oslo).

2Since it is the subject of this book, we will give below a wider discussion of these five papers and
of the role of the Mittag-Leffler functions.
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2.2 The Contents of the Five Papers by Mittag-Leffler on
New Functions

Let us begin with a description of the ideas which led to the introduction by Mittag-
Leffler of a new transcendental function.

In 1899Mittag-Leffler began the publication of a series of articles under the com-
mon title “Sur la représentation analytique d’une branche uniforme d’une fonction
monogène” (“On the analytic representation of a single-valued branch of a mono-
genic function”) published mainly in Acta Mathematica [ML5-1, ML5-2, ML5-3,
ML5-4, ML5-5, ML5-6]. The first articles of this series were based on three reports
presented by him in 1898 at the Swedish Academy of Sciences in Stockholm.

His research was connected with the following question:
Let k0, k1, . . . be a sequence of complex numbers for which

lim
ν→∞ |kν |1/ν = 1

r
∈ R+

is finite. Then the series

FC(z) := k0 + k1z + k2z
2 + . . .

is convergent in the disk Dr = {z ∈ C : |z| < r} and divergent at any point with
|z| > r. It determines a single-valued analytic function in the disk Dr .3

The questions discussed were:

(1) to determine the maximal domain on which the function FC(z) possesses a
single-valued analytic continuation;

(2) to find an analytic representation of the corresponding single-valued branch.

Abel [Abe26a] had proposed (see also [Lev56]) to associate with the function FC(z)
the entire function

F1(z) := k0 + k1z

1! + k2z2

2! + . . . + kνzν

ν! + . . . =
∞∑

ν=0

kνzν

ν! .

This function was used by Borel (see, e.g., [Bor01]) to discover that the answer to
the above question is closely related to the properties of the following integral (now
called the Laplace–Abel integral):

∫ ∞

0
e−ωF1(ωz)dω. (2.2.1)

3The notation FC(z) is not defined in Mittag-Leffler’s paper. The letter “C” probably indicates the
word ‘convergent’ in order to distinguish this function from its analytic continuation FA(z) (see
discussion below).
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An intensive study of these propertieswas carried out at the beginning of the twentieth
century bymanymathematicians (see, e.g., [ML5-3, ML5-5] and references therein).

Mittag-Leffler introduced instead of F1(z) a one-parametric family of (entire)
functions

Fα(z) := k0 + k1z

Γ (1 · α + 1)
+ k2z2

Γ (2 · α + 1)
+ . . . =

∞∑

ν=0

kνzν

Γ (ν · α + 1)
, (α > 0),

and studied its properties as well as the properties of the generalized Laplace–Abel
integral ∫ ∞

0
e−ω1/α

Fα(ωz)dω1/α =
∫ ∞

0
e−ωFα(ωαz)dω. (2.2.2)

The main result of his study was: in a maximal domain A (star-like with respect to
origin) the analytic representation of the single-valued analytic continuation FA(z)
of the function FC(z) can be represented in the following form

FA(z) = lim
α→1

∫ ∞

0
e−ωFα(ωαz)dω. (2.2.3)

For this reason analytic properties of the functions Fα(z) become highly important.
Due to this construction Mittag-Leffler decided to study the most simple function

of the type Fα(z), namely, the function corresponding to the unit sequence kν . This
function

Eα(z) := 1 + z

Γ (1 · α + 1)
+ z2

Γ (2 · α + 1)
+ . . . =

∞∑

ν=0

zν

Γ (ν · α + 1)
, (2.2.4)

was introduced and investigated byG.Mittag-Leffler in five subsequent papers [ML1,
ML2, ML3, ML4, ML5-5] (in particular, in connection with the above formulated
questions). This function is known now as theMittag-Leffler function.

In the first paper [ML1], devoted to his new function, Mittag-Leffler discussed
the relation of the function Fα(z) with the above problem on analytic continuation.
In particular, he posed the question of whether the domains of analyticity of the
function

lim
α↓1

∫ ∞

0
e−ωFα(ωαz)dω

and the function (introduced and studied by Le Roy [LeR00]), see also [GaRoMa17,
GoHoGa19] in relation to complete monotonicity of this function)

lim
α↓1

∞∑

ν=0

Γ (να + 1)

Γ (ν + 1)
kνz

ν

coincide.
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In the second paper [ML2] the new function (i.e., the Mittag-Leffler function)
appeared. Its asymptotic properties were formulated. In particular, Mittag-Leffler
showed that Eα(z) behaves as ez

1/α
in the angle − πα

2 < arg z < πα
2 and is bounded

for values of z with πα
2 < |arg z| ≤ π.4

In the third paper [ML3] the asymptotic properties of Eα(z) were discussed more
carefully. Mittag-Leffler compared his results with those of Malmquist [Mal03],
Phragmén [Phr04] and Lindelöf [Lin03], which they obtained for similar func-
tions (the results form the background of the classical Phragmén–Lindelöf theorem
[PhrLin08]).

The fourth paper [ML4] was completely devoted to the extension of the function
Eα(z) (as well as the function Fα(z)) to complex values of the parameter α.

Mittag-Leffler’s most creative paper on the new function Eα(z) is his fifth paper
[ML5-5]. In this article, he:

(a) found an integral representation for the function Eα(z);
(b) described the asymptotic behavior of Eα(z) in different angle domains;
(c) gave the formulas connecting Eα(z) with known elementary functions;
(d) provided the asymptotic formulas for

Eα(z) = 1

2πi

∫

L

1

α
eω1/α dω

ω − z

by using the so-called Hankel integration path;
(e) obtained detailed asymptotics of Eα(z) for negative values of the variable, i.e.

for z = −r;
(f) compared in detail his asymptotic results for Eα(z) with the results obtained by

Malmquist;
(g) found domains which are free of zeros of Eα(z) in the case of “small” positive

values of parameter, i.e. for 0 < α < 2, α �= 1;
(h) applied his results on Eα(z) to answer the question of the domain of analyticity

of the function FA(z) and its analytic representation (see formula (2.2.3)).

2.3 Further History of Mittag-Leffler Functions

The importance of the new function was understood as soon as the first analytic
results for it appeared. First of all, it is a very simple function playing a key role in
the solution of a general problem of the theory of analytic functions. Secondly, the
Mittag-Leffler function can be considered as a direct generalization of the exponential
function, preserving some of its properties. Furthermore, Eα(z) has some interesting
properties which later became essential for the description of many problems arising
in applications.

4The behavior of Eα(z) on critical rays |arg z| = ± πα
2 was not described.



2.3 Further History of Mittag-Leffler Functions 13

After Mittag-Leffler’s introduction of the new function, one of the first results
on it was obtained by Wiman [Wim05a]. He used Borel’s method of summation
of divergent series (which Borel applied to the special case of the Mittag-Leffler
function, namely, for α = 1, see [Bor01]). Using this method, Wiman gave a new
proof of the asymptotic representation of Eα(z) in different angle domains. This
representation was obtained for positive rational values of the parameter α. He also
noted5 that analogous asymptotic results hold for the two-parametric generalization
Eα,β(z) of the Mittag-Leffler function (see (1.0.3)). Applying the obtained represen-
tation Wiman described in [Wim05b] the distribution of zeros of the Mittag-Leffler
function Eα(z). The main focus was on two cases – to the case of real values of the
parameter α ∈ (0, 2], α �= 1, and to the case of complex values of α, Reα > 0.

In [Phr04] Phragmén proved the generalization of the Maximum Modulus Prin-
ciple for the case of functions analytic in an angle. For this general theorem the
Mittag-Leffler function plays the role of the key example. It satisfies the inequality
|Eα(z)| < C1e|z|ρ , ρ = 1/{Reα}, in an angular domain z, |arg z| ≤ π

2ρ , but although
it is bounded on the boundary rays it is not constant in the whole angular domain.
This means that the Mittag-Leffler function possesses a maximal angular domain (in
the sense of the Phragmén or Phragmén–Lindelöf theorem, see [PhrLin08]) in which
the above stated property holds.

One more paper devoted to the development of the asymptotic method of Mittag-
Leffler appeared in 1905. Malmquist (a student of G. Mittag-Leffler) applied this
method to obtain the asymptotics of a function similar to Eα(z), namely

∑

ν

zν

Γ (1 + νaν)
,

where the sequence aν tends to zero as ν → ∞. The particular goal was to construct
a simple example of an entire function which tends to zero along almost all rays
when |z| → ∞. Such an example

G(z) =
∑

ν

zν

Γ (1 + ν
(log ν)α

)
, 0 < α < 1, (2.3.1)

was constructed [Mal05] and carefully examined by using the calculus of residues
for the integral representation of G(z) (which is also analogous to that for Eα).

At the beginning of the twentieth century many mathematicians paid great atten-
tion to obtaining asymptotic expansions of special functions, in particular, those of
hypergeometric type. Themain reason for thiswas that these functions play an impor-
tant role in the study of differential equations, which describe different phenomena.
In the fundamental paper [Barn06] Barnes proposed a unified approach to the inves-
tigation of asymptotic expansions of entire functions defined by Taylor series. This

5But did not discuss in detail.



14 2 Historical Overview of the Mittag-Leffler Functions

approach was based on the previous results of Barnes [Barn02] and Mellin [Mel02].
The essence of this approach is to use the representation of the quotient of the prod-
ucts of Gamma functions in the form of a contour integral which is handled by using
the method of residues. This representation is now known as theMellin–Barnes inte-
gral formula (see Appendix D). Among the functions which were treated in [Barn06]
was the Mittag-Leffler function. The results of Barnes were further developed in his
articles, including applications to the theory of differential equations, as well as in
the articles by Mellin (see, e.g., [Mel10]). In fact, the idea of employing contour
integrals involving Gamma functions of the variable in the subject of integration is
due to Pincherle, whose suggestive paper [Pin88] was the starting point of Mellin’s
investigations (1895), although the type of contour and its use can be traced back to
Riemann, as Barnes wrote in [Barn07b, p. 63].

Generalizations of the Mittag-Leffler function are proposed among other gener-
alizations of the hypergeometric functions. For them similar approaches were used.
Among these generalizations we should point out the collection ofWright functions,
first introduced in 1935, see [Wri35a],

φ(z; ρ,β) :=
∞∑

n=0

zn

Γ (n + 1)Γ (ρn + β)
=

∞∑

n=0

zn

n!Γ (ρn + β)
; (2.3.2)

the collection of generalized hypergeometric functions, first introduced in 1928, see
[Fox28],

pFq(z) = pFq
(
α1,α2, . . . ,αp;β1,β2, . . . ,βq; z

) =
∞∑

k=0

(α1)k · (α2)k · · · (αp)k

(β1)k · (β2)k · · · (βq)k

zk

k! ;
(2.3.3)

6the collection of Meijer G-functions introduced in 1936, see [Mei36], and inten-
sively treated in 1946, see [Mei46],

Gm,n
p,q

(
z

∣∣∣∣
a1, . . . , ap
b1, . . . , bq

)

= 1

2πi

∫

T

m∏
i=1

Γ (bi + s)
n∏

i=1
Γ (1 − ai − s)

q∏
i=m+1

Γ (1 − bi − s)
p∏

i=n+1
Γ (ai + s)

z−sds, (2.3.4)

6Here (·)k is the Pochhammer symbol, see (A.17) in Appendix A.
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and the collection of more general Fox H-functions

Hm,n
p,q

(
z

∣∣∣∣
(a1,α1), . . . , (ap,αp)

(b1,β1), . . . , (bq,βq)

)

= 1

2πi

∫

T

m∏
i=1

Γ (bi + βis)
n∏

i=1
Γ (1 − ai − αis)

q∏
i=m+1

Γ (1 − bi − βis)
p∏

i=n+1
Γ (ai + αis)

z−sds. (2.3.5)

Some generalizations of the Mittag-Leffler function appeared as a result of devel-
opments in integral transform theory. In this connection in 1953 Agarwal and
Humbert (see [Hum53, Aga53, HumAga53]) and independently in 1954 Djrbashian
(see [Dzh54a, Dzh54b, Dzh54c]) introduced and studied the two-parametricMittag-
Leffler function (or Mittag-Leffler type function)

Eα,β(z) :=
∞∑

ν=0

zν

Γ (ν · α + β)
. (2.3.6)

We note once more that, formally, the function (2.3.6) first appeared in the paper of
Wiman [Wim05a], who did not pay much attention to its extended study.

In 1971 Prabhakar [Pra71] introduced the three-parametric Mittag-Leffler func-
tion (or generalized Mittag-Leffler function, or Prabhakar function)

Eρ
α,β(z) :=

∞∑

ν=0

(ρ)νzν

Γ (ν · α + β)
. (2.3.7)

This function appeared in the kernel of a first-order integral equationwhichPrabhakar
treated by using Fractional Calculus.

Other three-parametric Mittag-Leffler functions (also called generalized Mittag-
Leffler functions or Mittag-Leffler type functions, or Kilbas–Saigo functions) were
introduced by Kilbas and Saigo (see, e.g., [KilSai95a])

Eα,m,l(z) :=
∞∑

n=0

cnz
n, (2.3.8)

where

c0 = 1, cn =
n−1∏

i=0

Γ [α(im + l) + 1]
Γ [α(im + l + 1) + 1] .

These functions appeared in connection with the solution of new types of integral and
differential equations andwith the development of theFractionalCalculus.Nowadays
they are referred to as Kilbas–Saigo functions.
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Onemore generalization of theMittag-Leffler function depending on three param-
eters was studied recently in [Ger12, GarPol13, GaRoMa17, GoHoGa19]

F (γ)

α,β(z) =
∞∑

k=0

zk

[Γ (αk + β)]γ , z ∈ C, α,β, γ ∈ C. (2.3.9)

It is related to the so-called Le Roy function

Rγ(z) =
∞∑

k=0

zk

[(k + 1)!]γ , z ∈ C. (2.3.10)

The function (2.3.9) plays an important role in Probability Theory.
For real α1,α2 ∈ R (α2

1 + α2
2 �= 0) and complex β1,β2 ∈ C the following func-

tionwas introduced byDzherbashian (=Djrbashian) [Dzh60] in the form of the series
(in fact only for α1, α2 > 0)

Eα1,β1;α2,β2(z) ≡
∞∑

k=0

zk

Γ (α1k + β1)Γ (α2k + β2)
(z ∈ C). (2.3.11)

Generalizing the four-parametric Mittag-Leffler function (2.3.11) Al-Bassam and
Luchko [Al-BLuc95] introduced the following Mittag-Leffler type function

E((α, β)m; z) =
∞∑

k=0

zk

m∏
j=1

Γ (αjk + βj)

(m ∈ N) (2.3.12)

with 2m real parameters αj > 0;βj ∈ R (j = 1, ...,m) and with complex z ∈ C. In
[Al-BLuc95] an explicit solution to aCauchy type problem for a fractional differential
equation is given in terms of (2.3.12). The theory of this class of functions was
developed in the series of articles by Kiryakova et al. [Kir99, Kir00, Kir08, Kir10a,
Kir10b].

In the last several decades the study of the Mittag-Leffler function has become
a very important branch of Special Function Theory. Many important results have
been obtained by applying integral transforms to different types of functions from the
Mittag-Leffler collection. Conversely,Mittag-Leffler functions generate newkinds of
integral transforms with properties making them applicable to various mathematical
models.

A number of more general functions related to the Mittag-Leffler function will be
discussed in Chap. 6 below.

Nowadays the Mittag-Leffler function and its numerous generalizations have
acquired a new life. The recent notable increased interest in the study of their relevant
properties is due to the close connection of the Mittag-Leffler function to the Frac-
tional Calculus and its application to the study of Differential and Integral Equations
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(in particular, of fractional order). Many modern models of fractional type have
recently been proposed in Probability Theory, Mechanics, Mathematical Physics,
Chemistry, Biology, Mathematical Economics etc. Historical remarks concerning
these subjects will be presented at the end of the corresponding chapters of this
book.



Chapter 3
The Classical Mittag-Leffler Function

In this chapter we present the basic properties of the classical Mittag-Leffler function
Eα(z) (see (1.0.1)). The material can be formally divided into two parts. Starting
from the basic definition of the Mittag-Leffler function in terms of a power series,
we discover that for parameter α with positive real part the function Eα(z) is an entire
function of the complex variable z. Therefore we discuss in the first part the (analytic)
properties of the Mittag-Leffler function as an entire function. Namely, we calculate
its order and type, present a number of formulas relating it to elementary and special
functions as well as recurrence relations and differential formulas, introduce some
useful integral representations and discuss the asymptotics and distribution of zeros
of the classical Mittag-Leffler function.

It is well-known that current applications mostly use the properties of the Mittag-
Leffler function with real argument. Thus, in the second part (Sect. 3.7), we collect
results of this type. They concern integral representations and integral transforms of
theMittag-Leffler function of a real variable, the completemonotonicity property and
relations to Fractional Calculus. On first reading, people working in applications can
partly omit some of the deeper mathematical material (say, that from Sects. 3.4–3.6).

3.1 Definition and Basic Properties

Following Mittag-Leffler’s classical definition we consider the one-parametric
Mittag-Leffler function as defined by the power series

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
(α ∈ C). (3.1.1)

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
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Although information on this function is widely spread in the literature (see, e.g.,
[Dzh66, GupDeb07, MatHau08, HaMaSa11]), we think that a fairly complete pre-
sentation here will help the reader to understand the ideas and results presented later
this book.

Applying to the coefficients ck := 1

Γ (αk + 1)
of the series (3.1.1) the Cauchy–

Hadamard formula for the radius of convergence

R = lim supk→∞
|ck |

|ck+1| , (3.1.2)

and the asymptotic formula [ErdBat-1, 1.18(4)]

Γ (z + a)

Γ (z + b)
= za−b

[
1 + (a − b)(a − b − 1)

2z
+ O

(
1

z2

)]
(z → ∞, | arg z| < π),

(3.1.3)
one can see that the series (3.1.1) converges in the whole complex plane for all
Re α > 0. For all Re α < 0 it diverges everywhere on C \ {0}. For Re α = 0 the
radius of convergence is equal to

R = e
π
2 |Im α|.

In particular, for α ∈ R+ tending to 0 one obtains the following relation:

E0(±z) =
∞∑

k=0

(±1)k zk = 1

1 ∓ z
, |z| < 1. (3.1.4)

In the most interesting case, Re α > 0, the Mittag-Leffler function is an entire
function. Moreover, it follows from the Cauchy inequality for the Taylor coefficients
and simple properties of the Gamma function that there exists a number k ≥ 0 and
a positive number r(k) such that

MEα
(r) := max|z|=r |Eα(z)| < er

k
, ∀r > r(k). (3.1.5)

This means that Eα(z) is an entire function of finite order (see, e.g., [Lev56]).
For α > 0 by Stirling’s asymptotic formula [ErdBat-1, 1.18(3)]

Γ (αk + 1) = √
2π (αk)αk+

1
2 e−αk (1 + o(1)) , k → ∞, (3.1.6)

one can see that the Mittag-Leffler function satisfies for α > 0 the relations

lim supk→∞
klog k

log 1
|ck |

= limk→∞
klog k

log|Γ (αk + 1)| = 1

α
,
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and

lim supk→∞
(
k

1
ρ k
√|ck |

)
= limk→∞

(
k

1
ρ k

√
1

|Γ (αk + 1)|

)
=
( e
α

)α

.

If Re α > 0, and Im α 	= 0, the corresponding result is valid too. This follows
from formula (3.1.3), which in particular means

0 < C1 <

∣∣∣∣
Γ (αk + 1)

Γ (α0k + 1)

∣∣∣∣ < C2 < ∞

for certain positive constants C1,C2 and sufficiently large k. Thus one can define the
order and type of theMittag-Leffler function as an entire function (see the definitions
of order and type in formulas (B.5), (B.6) of Appendix B).

Proposition 3.1 (Order and type.) For eachα,Re α > 0, theMittag-Leffler function

(3.1.1) is an entire function of order ρ = 1

Re α
and type σ = 1.

In a certain sense each Eα(z) is the simplest entire function among those having
the same order (see, e.g., [Phr04, GoLuRo97]). The Mittag-Leffler function also
furnishes examples and counter-examples for the growth and other properties of
entire functions of finite order (see, e.g., [Buh25a]).

One can also observe that from the above Proposition 3.1 it follows that the
function

Eα(σ α z) =
∞∑

k=0

(σ α z)k

Γ (αk + 1)
, σ > 0,

has order ρ = 1

Re α
and type σ .

3.2 Relations to Elementary and Special Functions

The Mittag-Leffler function plays an important role among special functions. First
of all it is not difficult to obtain a number of its relations to elementary and special
functions. The simplest relation is formula (3.1.4) representing E0(z) as the sum of
a geometric series.

We collect in the following proposition other relations of this type.

Proposition 3.2 (Special cases.) For all z ∈ C the Mittag-Leffler function satisfies
the following relations
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E1(±z) =
∞∑

k=0

(±1)k zk

Γ (k + 1)
= e±z, (3.2.1)

E2(−z2) =
∞∑

k=0

(−1)k z2k

Γ (2k + 1)
= cos z, (3.2.2)

E2(z
2) =

∞∑

k=0

z2k

Γ (2k + 1)
= cosh z, (3.2.3)

E 1
2
(±z

1
2 ) =

∞∑

k=0

(±1)k z
k
2

Γ ( 12k + 1)
= ez

[
1 + erf(±z

1
2 )
]

= ez erfc(∓z
1
2 ), (3.2.4)

where erf (erfc) denotes the error function (complementary error function)

erf(z) := 2√
π

∫ z

0
e−u2du, erfc(z) := 1 − erf(z), z ∈ C,

and z
1
2 means the principal branch of the corresponding multi-valued function

defined in the whole complex plane cut along the negative real semi-axis.
A more general formula for the function with half-integer parameter is valid

E p
2
(z) = 0Fp−1

(
; 1

p
,
2

p
, . . . ,

p − 1

p
; z2

pp

)
(3.2.5)

+ 2
p+1
2 z

p!√π
1F2p−1

(
1; p + 2

2p
,
p + 3

2p
, . . . ,

3p

2p
; z2

pp

)
,

where pFq is the (p, q)-hypergeometric function

pFq(z) =p Fq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =
∞∑

k=0

(a1)k(a2)k . . . (ap)k

(b1)k(b2)k . . . (bq)k

zk

k! .
(3.2.6)


 The formulas (3.2.1)–(3.2.3) follow immediately from the definition (3.1.1).
Let us prove formula (3.2.4). We first rewrite the series representation (3.1.1)

assuming that z
1
2 is the principal branch of the corresponding multi-valued function

and substituting z in place of z
1
2 :

E 1
2
(z) =

∞∑

m=0

z2m

Γ (m + 1)
+

∞∑

m=0

z2m+1

Γ (m + 3
2 )

= u(z) + v(z). (3.2.7)

The sum u(z) is equal to ez
2
. To obtain the formula for the remaining function v one

can use the series representation of the error function as in [ErdBat-1]
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erf(z) = 2√
π
e−z2

∞∑

m=0

2m

(2m + 1)!! z
2m+1, z ∈ C. (3.2.8)

An alternative proof can be obtained by a term-wise differentiation of the second
series in (3.2.7). It follows that v(z) satisfies the Cauchy problem for the first-order
differential equation in C.

v′(z) = 2

[
1√
π

+ zv(z)

]
, v(0) = 0.

Representation (3.2.4) follows from the solution of this problem

v(z) = ez
2 2√

π

∫ z

0
e−u2du = ez

2
erf(z).

To prove (3.2.5) one can simply use the definitions of the Mittag-Leffler func-
tion (3.1.1) with α = p/2 and the generalized hypergeometric function (3.2.6) and
compare the coefficients at the same powers in both sides of (3.2.5). �

For an interesting application of the function E1/2, see [Gor98, Gor02].

3.3 Recurrence and Differential Relations

Proposition 3.3 (Recurrence relations.) The following recurrence formulas relating
the Mittag-Leffler function for different values of parameters hold:

Ep/q(z) = 1

q

q−1∑

l=0

E1/p(z
1/qe

2πli
q ), q ∈ N. (3.3.1)

E 1
q
(z

1
q ) = ez

[
1 +

q−1∑

m=0

γ (1 − m
q , z)

Γ (1 − m
q )

]
, q = 2, 3, . . . , (3.3.2)

where γ (a, z) := ∫ z
0 e−uua−1du denotes the incomplete gamma function, and z1/q

means the principal branch of the corresponding multi-valued function.


 To prove relation (3.3.1) we use the well-known identity (discrete orthogonality
relation)

p−1∑

l=0

e
2πlki
p =

{
p, i f k ≡ 0 (mod p),
0, i f k 	≡ 0 (mod p).

(3.3.3)

This together with definition (3.1.1) of the Mittag-Leffler function gives
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p−1∑

l=0

Eα(ze
2πli
p ) = pEα·p(z p), p ≥ 1. (3.3.4)

Substituting
α

p
for α and z

1
p for z we arrive at the desired relation (3.3.1) after setting

α = p/q.
We mention the following “symmetric” variant of (3.3.4):

Eα(z) = 1

2m + 1

m∑

l=−m

Eα/(2m+1)

(
z

1
2m+1 e

2πli
2m+1

)
, m ≥ 0. (3.3.5)

Relation (3.3.2) follows by differentiation, valid for all p, q ∈ N (see below). �
Proposition 3.4 (Differential relations.)

(
d

dz

)p

Ep(z
p) = Ep(z

p), (3.3.6)

dp

dz p
Ep/q

(
z p/q

) = Ep/q
(
z p/q

)+
q−1∑

k=1

z−kp/q

Γ (1 − kp/q)
, q = 2, 3, . . . . (3.3.7)


 These formulas are simple consequences of definition (3.1.1). �
Let p = 1 in (3.3.7). Multiplying both sides of the corresponding relation by e−z

we get

d

dz

[
e−z E1/q

(
z1/q
)] = e−z

q−1∑

k=1

z−k/q

Γ (1 − k/q)
.

By integrating and using the definition of the incomplete gamma function we arrive
at the relation (3.3.2). The relation (3.3.2) shows that the Mittag-Leffler functions of
rational order can be expressed in terms of exponentials and the incomplete gamma
function. In particular, for q = 2 we obtain the relation

E1/2(z
1/2) = ez

[
1 + 1√

π
γ (1/2, z)

]
. (3.3.8)

This is equivalent to relation (3.2.4) by the formula erf(z) = γ (1/2,z2)√
π

.

3.4 Integral Representations and Asymptotics

Many important properties of the Mittag-Leffler function follow from its integral
representations. Let us denote by γ (ε; a) (ε > 0, 0 < a ≤ π) a contour oriented by
non-decreasing arg ζ consisting of the following parts: the ray arg ζ = −a, |ζ | ≥ ε,
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the arc −a ≤ arg ζ ≤ a, |ζ | = ε, and the ray arg ζ = a, |ζ | ≥ ε. If 0 < a < π , then
the contour γ (ε; a) divides the complex ζ -plane into two unbounded parts, namely
G(−)(ε; a) to the left of γ (ε; a) by orientation, and G(+)(ε; a) to the right of it. If
a = π , then the contour consists of the circle |ζ | = ε and the twice passable ray
−∞ < ζ ≤ −ε. In both cases the contour γ (ε; a) is called the Hankel path (as it
is used in the representation of the reciprocal of the Gamma function (see, e.g.,
[ErdBat-1, ErdBat-2, ErdBat-3])).

Lemma 3.1 • Let 0 < α < 2 and

πα

2
< β ≤ min {π, πα}. (3.4.1)

Then the Mittag-Leffler function can be represented in the form

Eα(z) = 1

2παi

∫

γ (ε;β)

eζ 1/α

ζ − z
dζ, z ∈ G(−)(ε;β); (3.4.2)

Eα(z) = 1

α
ez

1/α + 1

2παi

∫

γ (ε;β)

eζ 1/α

ζ − z
dζ, z ∈ G(+)(ε;β). (3.4.3)

• Let α = 2. Then the Mittag-Leffler function E2 can be represented in the form

E2(z) = 1

4π i

∫

γ (ε;π)

eζ
1
2

ζ − z
dζ, z ∈ G(−)(ε;π); (3.4.4)

E2(z) = 1

2
ez

1
2 + 1

4π i

∫

γ (ε;π)

eζ
1
2

ζ − z
dζ, z ∈ G(+)(ε;π). (3.4.5)

In (3.4.2)–(3.4.5) the function z
1
α (or ζ

1
α ) means the principal branch of the

corresponding multi-valued function determined in the complex plane C cut along
the negative semi-axis which is positive for positive z (respectively, ζ ).


 We use in the proof the Hankel integral representation (or Hankel’s formula) for
the reciprocal of the Euler Gamma function (see formula (A.19a) in Appendix A)

1

Γ (s)
= 1

2π i

∫

γ (ε;a)

euu−sdu, ε > 0,
π

2
< a < π, s ∈ C. (3.4.6)

Formula (3.4.6) is also valid for a = π
2 , Re s > 0, i.e.

1

Γ (s)
= 1

2π i

∫

γ (ε; π
2 )

euu−sdu, ε > 0, Re s > 0. (3.4.7)
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We now rewrite formulas (3.4.6) and (3.4.7) in a slightly modified form. Let us begin
with the integral representation (3.4.6). After the change of variables u = ζ 1/α (in
the case 1 ≤ α < 2 we only consider the contours γ (ε; θ) with θ ∈ (π/2, π/α)) we
arrive at

1

Γ (s)
= 1

2π i α

∫

γ (ε;β)

eζ 1/α
ζ

−s+1
α

−1 dζ , πα/2 < β ≤ min {π, απ} . (3.4.8)

Similarly, using the change of variables u = ζ 1/2 in (3.4.7)1 we have

1

Γ (s)
= 1

4π i

∫

γ (ε;π)

eζ 1/2
ζ− s+1

2 dζ, Re s > 0 . (3.4.9)

Let us begin with the case α < 2. First let |z| < ε. In this case

sup
ζ∈γ (ε;β)

|zζ−1| < 1.

It now follows from the integral representation (3.4.9) and the definition (3.1.1) of
the function Eα(z) that for 0 < α < 2 , |z| < ε ,

Eα(z) =
∞∑

k=0

1

2π i α

{∫

γ (ε;β)

eζ 1/α
ζ

−αk−1+1
α

−1 dζ

}
zk

= 1

2π i α

∫

γ (ε;β)

eζ 1/α 1

ζ

{ ∞∑

k=0

(z ζ−1)k

}
dζ

= 1

2π i α

∫

γ (ε;β)

eζ 1/α

ζ − z
dζ .

The last integral converges absolutely under condition (3.4.1) and represents an
analytic function of z in each of the two domains: G(−)(ε;β) and G(+)(ε;β). On
the other hand, the disk |z| < ε is contained in the domain G(−)(ε;β) for any β.
It follows from the Analytic Continuation Principle that the integral representation
(3.4.2) holds for the whole domain G(−)(ε;β).

Let now z ∈ G(+)(ε;β). Then for any ε1 > |z|we have z ∈ G(−)(ε1;β), and using
formula (3.4.2) we arrive at

Eα(z) = 1

2π i α

∫

γ (ε1;β)

eζ 1/α

ζ − z
dζ . (3.4.10)

1Since ε is assumed to tend to zero, in the following we will retain the same notation γ (ε; π) for
the path which appears after the change of variable.
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On the other hand, for ε < |z| < ε1, | arg z| < β, it follows from the Cauchy integral
theorem that

1

2π i α

∫

γ (ε1;β)−γ (ε;β)

eζ 1/α

ζ − z
dζ = 1

α
ez

1/α
. (3.4.11)

The representation (3.4.3) of the function Eα(z) in the domain G(+)(ε;β) now fol-
lows from (3.4.10) and (3.4.11).

To prove the integral representations (3.4.4) and (3.4.5) for α = 2 we argue anal-
ogously to the case 0 < α < 2 using the representation (3.4.9). Recall that there is no
need to revise formula (3.4.5) for α = 2 since we have exact representations (3.2.2)
and (3.2.3) in this case. �

It should be noted that integral representations (3.4.2)–(3.4.3) can be used for
the representation of the function Eα(z), 0 < α < 2, at any point z of the complex
plane. To obtain such a representation it is sufficient to consider contours γ (ε;β)

and γ (ε;π) with parameter ε < |z|.
The above given representations (3.4.2)–(3.4.5) can be rewritten in a unique form,

namely in the form of the classical Mittag-Leffler integral representation

Eα(z) = 1

2π i

∫

Ha−

ζ α−1eζ

ζ α − z
dζ, (3.4.12)

where the path of integrationHa− is a loopwhich starts and ends at−∞ approaching
along the negative semi-axis and encircles the disk |ζ | ≤ |z|1/α in the positive sense:
−π ≤ arg ζ ≤ π on Ha− (this curve is also called the Hankel path, see Fig.A.3 in
Appendix A).

The most interesting properties of the Mittag-Leffler function are associated with
its asymptotic expansions as z → ∞ in various sectors of the complex plane. These
properties can be summarized as follows.

Proposition 3.5 Let 0 < α < 2 and

πα

2
< θ < min {π, απ}. (3.4.13)

Then we have the following asymptotics for formulas in which p is an arbitrary
positive integer2:

2We adopt here and in what follows the empty sum convention: if the upper limit is smaller than
the lower limit in a sum, then this sum is empty, i.e. has to be omitted. In particular, it can said that
(3.4.14) and (3.4.15) also hold for p = 0.
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Eα(z) = 1

α
exp(z1/α) −

p∑

k=1

z−k

Γ (1 − αk)
+ O

(|z|−1−p
)

, |z| → ∞ , | arg z| ≤ θ ,

(3.4.14)

Eα(z) = −
p∑

k=1

z−k

Γ (1 − αk)
+ O

(|z|−1−p
)

, |z| → ∞ , θ ≤ | arg z| ≤ π .

(3.4.15)

For the case α ≥ 2, we have

Eα(z) = 1

α

∑

ν

exp
(
z

1
α e

2πνi
α

)
−

p∑

k=1

z−k

Γ (1 − αk)
+ O

(|z|−1−p
)
, (3.4.16)

|z| → ∞ , | arg z| < π,

where the first sum is taken over all integers ν such that |2π ν + arg z| ≤ πα
2 , i.e.,

ν ∈ A(z) = {n : n ∈ Z, | arg z + 2πn| ≤ πα

2
} (3.4.17)

and where arg z can take any value between −π and +π inclusively.


 1. Let us first prove asymptotic formula (3.4.14). Let β be chosen so that

πα

2
< θ < β ≤ min {π, πα} . (3.4.18)

Substituting the expansion

1

ζ − z
= −

p∑

k=1

ζ k−1

zk
+ ζ p

z p(ζ − z)
, p ≥ 1, (3.4.19)

into formula (3.4.3) with ε = 1, we get the representation of the function Eα(z) in
the domain G(+)(1;β):

Eα(z) = 1

α
ez

1/α −
p∑

k=1

(
1

2π i α

∫

γ (1;β)

eζ 1/α
ζ k−1 dζ

)
z−k

+ 1

2π i α z p

∫

γ (1;β)

eζ 1/α
ζ p

ζ − z
dζ . (3.4.20)

Now Hankel’s formula (3.4.6) yields

1

2π i α

∫

γ (1;β)

eζ 1/α
ζ k−1 dζ = 1

Γ (1 − kα)
, k ≥ 1 .
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Using this formula and (3.4.20) we arrive under conditions (3.4.18) at

Eα(z) = 1

α
ez

1/α −
p∑

k=1

z−k

Γ (1 − kα)
(3.4.21)

+ 1

2π i αz p

∫

γ (1;β)

eζ 1/α
ζ p

ζ − z
dζ , | arg z| ≤ θ , |z| > 1 .

We denote the last term in formula (3.4.21) by Ip(z) and estimate it for sufficiently
large |z| and | arg z| ≤ θ . In this case we have

min
ζ∈γ (1;β)

|ζ − z| = |z| sin(β − θ)

and, consequently,

|Ip(z)| ≤ |z|−1−p

2π α sin(β − θ)

∫

γ (1;β)

|eζ 1/α | |ζ p| |dζ | . (3.4.22)

Note that the integral in the right-hand side of (3.4.22) converges since the contour
γ (1;β) consists of two rays arg ζ = ±β, |ζ | ≥ 1 , on which we have

| exp {ζ 1/α} | = exp

{
cos

β

α
|ζ |1/α

}
, arg ζ = ±β , |ζ | ≥ 1 ,

and cosβ/α < 0 due to condition (3.4.18). The asymptotic formula (3.4.14) now
follows from the representation (3.4.21) and the estimate (3.4.22).
2. To prove (3.4.15) let us choose a number β satisfying

πα

2
< β < θ < min {π , α π} , (3.4.23)

and substitute representation (3.4.19) of the Cauchy kernel into formula (3.4.2) with
ε = 1. It follows that

Eα(z) = −
p∑

k=1

z−k

Γ (1 − kα)
+ 1

2π i α z p

∫

γ (1;β)

eζ 1/α
ζ p

ζ − z
dζ z ∈ G(−)(1;β).

(3.4.24)
If θ ≤ | arg z| ≤ π condition (3.4.23) gives, for sufficiently large |z|,

min
ζ∈γ (1;β)

|ζ − z| = |z| sin (θ − β).

For β chosen as in (3.4.23) the domain θ ≤ | arg z| ≤ π is contained in the domain
G(−)(1;β), and thus the result follows from representation (3.4.24) and the estimate
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∣∣∣∣∣Eα(z) +
p∑

k=1

z−k

Γ (1 − kα)

∣∣∣∣∣ ≤
|z|−1−p

2π α sin(θ − β)

∫

γ (1;β)

|eζ 1/α | |ζ p| |dζ | , (3.4.25)

is valid for sufficiently large |z| and θ ≤ | arg z| ≤ π .

3. To prove (3.4.16) we note first that formula (3.3.5) is true for any α > 0 and p ≥ 0.

Fixingα, α ≥ 2,we can always choose an integerm ≥ 1 such thatα1 = α

2m + 1
< 2

and, consequently, we can use (3.4.14)–(3.4.15) for any term of the sum in the right-
hand side of formula (3.3.5).

Let
πα1

2
< θ < min{π, πα1}, α1 = α

(2m + 1)
. Then it follows from the proven

part of the Proposition and from (3.3.5) that

Eα(z) = 1

2m + 1

∑

ν∈B(z)

2m + 1

α
ez

1
α e

2πνi
α

− 1

2m + 1

m∑

ν=−m

{
q∑

k=1

z− k
2m+1 e− 2πkνi

2m+1

Γ
(
1 − kα

2m+1

)
}

+ O

⎛

⎜⎝|z|−
q + 1

2m + 1

⎞

⎟⎠ , (3.4.26)

where

B(z) =
{
n : n ∈ Z,

∣∣∣∣arg
(
z

1
2m+1 e

2πni
2m+1

)∣∣∣∣ ≤ θ

}
. (3.4.27)

The last inequality can be rewritten in the form | arg z + 2πn| ≤ (2m + 1)θ . Let us fix

some z. If θ ′ >
πα

2
and the difference θ ′ − πα

2
is small enough, then the inequalities

| arg z + 2πn| ≤ πα

2
and | arg z + 2πn| ≤ θ ′ have the same set of solutions with

respect to n ∈ Z.

Since the number (2m + 1)θ >
πα

2
can be chosen in an arbitrary small neigh-

borhood of
πα

2
, formula (3.4.27) can be rewritten in the form

Eα(z) = 1

α

∑

ν∈A(z)

ez
1
α e

2πνi
α

− 1

2m + 1

q∑

k=1

z− k
2m+1

Γ

(
1 − kα

2m + 1

)
{

m∑

ν=−m

e− 2πkνi
2m+1

}
+ O

(
|z|− q+1

2m+1

)
, (3.4.28)

where the summation in the first sum is taken over the set A(z) described in (3.4.17).
Formula (3.4.28) has been proved for any integer q ≥ 1. To get from here the

representation of the form (3.4.16) let us fix any p ≥ 1 and choose q = (2m +
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1)(p + 1) − 1. Using formula (3.4.28) and the discrete orthogonality relation

m∑

ν=−m

e
− 2πkνi

2m + 1 =
{
2m + 1, if k ≡ 0 (mod (2m + 1)),
0, if k 	≡ 0 (mod (2m + 1)),

we finally arrive at formula (3.4.16). �
As a simple consequence of Proposition 3.5 we have

Corollary 3.1 Let 0 < α < 2 and
πα

2
< θ < min{π, πα}. Then we have the fol-

lowing estimates:

1. If | arg z| ≤ θ and |z| > 0:

|Eα(z)| ≤ M1e
Re z

1
α + M2

1 + |z| . (3.4.29)

2. If θ ≤ | arg z| ≤ π and |z| ≥ 0:

|Eα(z)| ≤ M2

1 + |z| . (3.4.30)

Here M1 and M2 are constants not depending on z.

Corollary 3.2 Let 0 < α < 2 and |z| = r > 0. Then the following relations hold:

1.

lim
r→+∞ e−r

1
α
∣∣Eα(reiθ )

∣∣ = 0, 0 < |θ | < min{π, πα}, (3.4.31)

and the limit in (3.4.31) is uniform with respect to θ .
2.

lim
r→+∞ e−r

1
α |Eα(r)| = 1

α
. (3.4.32)

The last results were obtained by G. Mittag-Leffler [ML3].

3.5 Distribution of Zeros

In this section we consider the problem of the distribution of zeros of the Mittag-
Leffler function Eα(z). The following lemma presents two situations in which this
distribution is easily described.

Lemma 3.2 (i) The Mittag-Leffler function E1(z) has no zero in C.
(ii) All zeros of the function E2(z) are simple and are situated on the real negative

semi-axis. They are given by the formula
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zk = −
(π

2
+ πk

)2
, k ∈ N0 = {0, 1, 2, . . .}. (3.5.1)


 The first statement follows immediately from formula (3.2.1)

E1(z) = ez, z ∈ C,

and properties of the exponential function.
As for zeros of the function E2(z) one can use one of the representations (3.2.2)

or (3.2.3). Hence the zeros are described by formula (3.5.1). They are simple (i.e.
are of first order) by the differentiation formulas for the function cos

√−z. �
The following fact is commonly used:

Corollary 3.3 The exponential function E1(z) is the only Mittag-Leffler function
which has no zeros in the whole complex plane. All other functions Eα(z), Re α >

0, α 	= 1, have infinitely many zeros in C.

This fact is partly a simple consequence of Proposition 3.1, which states that

for Re α > 0 the function Eα(z) is an entire function of order ρ = 1

Re α
. Then for

each α, Re α 	= 1

n
, n ∈ N, the order of Eα(z) is a positive non-integer. Then, for

these values of the parameter α, the statement follows from the general theory of
entire functions (see, e.g., Levin [Lev56]). The statement is still valid for all α 	= 1
including when α is the reciprocal of a natural number, but in this case the argument
is much more delicate. We return to the proof later. Next we consider another simple
case, Re α ≥ 2.

Lemma 3.3 For each value α, Re α ≥ 2, the Mittag-Leffler function Eα(z) has
infinitely many zeros lying on the real negative semi-axis.

There exists only finitely many zeros of the function Eα(z), Re α ≥ 2, which are
not negative real (i.e., zeros belonging to C \ (−∞, 0]).

 If Re α > 2 then by Proposition 3.1 the function Eα(z) is an entire function of order

ρ = 1

Re α
<

1

2
. The general theory of entire functions says (see, e.g.., [Lev56]) that

in this case the set of zeros of such a function is denumerable. Therefore it suffices
to determine only the location of these zeros.

Let us study for simplicity only the case of positiveα > 2.Consider the asymptotic
formula (3.4.16). For each fixed z 	= −x, x ≥ 0, the index set A(z) in the sum on
the right-hand side of (3.4.16) consists of a finite number of elements (see definition
(3.4.17)).Moreover, straightforward calculations show that themodulus of each term
in this sum is equal to

ϕν(z) =
∣∣∣exp

(
z

1
α e

2πνi
α

)∣∣∣ = e
|z| 1α cos

(
arg z+2πν

α

)

.

Comparing the values of the functions ϕν for a fixed z but for different ν ∈ A(z) one
can conclude that the function ϕ0 is the maximal one. More precisely, if we consider
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any angle | arg z| < π − ε with sufficiently small ε > 0, then there exists δ > 0 and
r0 > 0 such that

|Eα(z)| > er
1
α (cos π−ε

α
−δ), |z| = r > r0, | arg z| < π − ε.

Both statements of the lemma follow since ε > 0 is an arbitrary small
number. �

We also mention a result which was stated in [Wim05b], but was only proved in
[OstPer97] (see the comments in [PopSed11, p. 56]).

Proposition 3.6 All zeros of the classical Mittag-Leffler function Eα(z) with α > 2
are simple and negative. These zeros zn, n = 1, 2, . . ., satisfy the following inequal-
ities:

−
(

πn

sin π
α

)α

< zn < −
(

π(n − 1)

sin π
α

)α

. (3.5.2)

The most interesting case of the distribution of zeros of Eα(z) is that for 0 < α <

2, α 	= 1. Let us first introduce some notation and a few simple facts. It follows from
Proposition 3.5 (see formulas (3.4.14)–(3.4.15)) that the zeros of the function Eα(z)
(if any) with sufficiently large modulus are situated in two angular domains

Ω
(±)
δ =

{
z ∈ C :

∣∣∣arg z ∓ πα

2

∣∣∣ < δ
}

,

where δ is an arbitrary positive number, δ ∈ (0,min
{

πα
2 , π − πα

2

})
. Let us denote

those zeros of Eα(z) which belong to the upper half-plane (lower half-plane) by
z(+)
k (respectively by z(−)

k ) ordering each of these collections in increasing order by
modulus, i.e. |z(+)

k | ≤ |z(+)
k+1| (|z(−)

k | ≤ |z(−)
k+1|).

We also have to note that since for a real value of the parameter α the function
Eα(z) has the symmetry property Eα(z) = Eα(z), we have the following connection
between “upper” and “lower” zeros:

z(−)
k = z(+)

k , k = 1, 2, . . . . (3.5.3)

The distribution of zeros of the function Eα(z) in the considered case 0 < α <

2, α 	= 1, can be described in the following form:

Proposition 3.7 All zeros of the function Eα, 0 < α < 2, α 	= 1, with sufficiently
large modulus are simple, and the following asymptotic formula for its zeros holds:

z(±)
k = e±i πα

2 (2πk)α
{
1 + O

(
log k

k

)}
, k → ∞. (3.5.4)


 Due to the symmetry property (3.5.3) it suffices to consider only zeros lying in the
upper half-plane. To do this we use the asymptotic formula (3.4.14). The reason for
using an asymptotic description of the zeros of the function Eα(z) is two-fold. First,
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we select a part of the right-hand side of the asymptotic formula (3.4.14) and find
its zeros with sufficiently large modulus. We also derive the asymptotic behavior of
these auxiliary zeros. This helps us in the second step to approximate the zeros of the
right-hand side of (3.4.14) i.e., of the function Eα(z)), and to find the asymptotics
for them.

Denote by

cα := α

Γ (1 − α)
= sin πα

π
Γ (1 + α) (3.5.5)

the real constant which is positive for 0 < α < 1 and negative for 1 < α < 2. We
also introduce the following function:

eα := z ez
1
α − cα. (3.5.6)

Then formula (3.4.14) can be rewritten in the form

α z Eα(z) = eα(z) + O

(
1

z

)
, |z| → ∞. (3.5.7)

Let us first solve the equation

z ez
1
α = cα. (3.5.8)

Let us denote by L0 the set of all z for which the modulus of the left- and right-hand
sides of (3.5.8) coincide

L0 :=
{
z ∈ C : |z ez

1
α | = |cα|

}
.

It is equivalent to say either z = r eiφ ∈ L0 or

r
1
α cos

(ϕ

α

)
= − log r + log |cα|. (3.5.9)

Hence L0 is a (continuous) curve consisting of two branches L
(+)
0 , L(−)

0 (symmetric
with respect to the real axis) whose equations can be written for large enough r in
the form

L(±)
0 : arg z := φ = ±

{
πα

2
+ α

log r

r
1
α

+ α
log |cα|
r

1
α

+ O

(
log3 r

r
1
α

)}
. (3.5.10)

In order to compare the arguments of the left- and right-hand sides of (3.5.8) we

calculate the argument of z ez
1
α

arg
(
z ez

1
α

)
= φ + r

1
α sin

(
φ

α

)
.
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Then for all z ∈ L(+)
0 with sufficiently large r = |z| we have from (3.5.10)

r
1
α sin

(
φ

α

)
= r

1
α + O

(
log2 r

r
1
α

)
, r → ∞. (3.5.11)

The zeros of the function eα in the upper half-plane are those points r eiφ on the
curve L(+)

0 which satisfy for certain k ∈ N the corresponding equality for arguments

arg z ez
1
α = arg cα + 2πk,

or

φ + r
1
α sin

(
φ

α

)
= arg cα + 2πk. (3.5.12)

Since the left-hand side of the last equation satisfies the asymptotic formula (3.5.11),
then for sufficiently large r there exists a denumerable collection of natural numbers
k for which equality (3.5.12) holds. These values of k determine zeros of the function
eα with sufficiently large modulus. Denote these zeroes by ζk := λk eiθk and recall
the equations for them

⎧
⎪⎨

⎪⎩

λ
1
α

k cos
(

θk
α

) = − log λk + log |cα|,

θk + λ
1
α

k sin
(

θk
α

) = arg cα + 2πk.

(3.5.13)

It follows from the second relation that λk → ∞ for k → ∞. More precisely

λ
1
α

k = 2πk + O

⎛

⎝ 1

λ
1
α

k

⎞

⎠ .

Therefore the asymptotic formulas (3.5.10)–(3.5.11) lead us to the following asymp-
totics for λk and θk with respect to k:

⎧
⎪⎪⎨

⎪⎪⎩

θk = πα
2 + O

(
log k
k

)
, k → ∞,

λk = (2πk)α
[
1 + O

(
log2 k
k2

)]
, k → ∞.

(3.5.14)

These relations determine the behavior of the zeros ζk of the function eα(z) lying
outside a certain disk. The formulas (3.5.14) show in particular that such zeros are
simple.

The continuity of the function eα(z) on L(+)
0 implies that for each pair of successive

zeros ζk , ζk+1 there exists a point wk = ωk eiψk on L(+)
0 such that
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argwk e
w

1
α
k = arg cα + 2πk + π,

and accordingly
eα(wk) = −cα.

Let us introduce the domain Δk(γ ) encircled by two curves L(+)
0 (±γ ) determined

by the equations:

L(+)
0 (±γ ) : r 1

α cos

(
φ

α

)
= − log r + log |cα| ± γ, (3.5.15)

with a fixed sufficiently small γ > 0 and two circular arcs l j := {z ∈ C : |z| = ω j },
j = k − 1, k. From the definition of these curves we obtain

|eα(z)| > |cα|, z ∈ lk, k > N0, (3.5.16)

|eα(z)| ≥ |cα||e±γ − 1|, z ∈ L(+)
0 (±γ ). (3.5.17)

The right-hand sides of inequalities (3.5.16)–(3.5.17) are constants not depending
on k. Therefore one can apply to (3.5.7) Rouché’s theorem. This implies that the
function Eα(z) has the same number of zeros in the domains Δk with k ≥ N1 ≥ N0

as the function eα(z) has. On the other hand, according to the construction of the
domain Δk , the function eα(z) has in this domain exactly one zero ζk . Consequently,
the function Eα(z) has exactly one simple zero z(+)

k inside of Δk, k ≥ N1, and

z(+)
k = ζk + αk, αk = O(dk), (3.5.18)

where dk is the diameter of the domain Δk .
It can easily be shown that the perimeter of the contour ∂Δk has order O

(
kα−1

)

and, consequently, dk = O
(
kα−1

)
. This, together with the asymptotics of ζk in

(3.5.14) and the representation (3.5.18), gives the following asymptotical formula
for z(+)

k :

z(+)
k = ei

πα
2 (2πk)α

[
1 + O

(
log k

k

)]
, k → ∞. (3.5.19)

If z0 is a zero of the function Eα(z) in the upper half-plane with large enough
modulus then by using formula (3.5.7) we arrive at the inequalities

− log |z0| + log |cα| − γ

2
< |z0| 1

α cos
(arg z0

α

)
< − log |z0| + log |cα| + γ

2
.

Thismeans that all zeros of the function Eα(z) in the upper half-planewith sufficiently
large modulus are contained in the curvilinear strip between the curves L(+)

0 (±γ ).
The latter inequalities also give the asymptotic representation (3.5.4) for the zeros
z(+)
k of the function Eα(z). �
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We note that the construction proposed in the proof of Proposition 3.7 also com-
pletes the proof of Corollary 3.3.

3.6 Further Analytic Properties

In this section we present some additional analytic results for the Mittag-Leffler
function. We deal with integral properties of the Mittag-Leffler function and also
describe its relation to some special functions. Mittag-Leffler’s primary idea, namely
summation of power series, is discussed too. Finally, we present a few results on the
Mittag-Leffler function related to geometric function theory.

3.6.1 Additional Integral Properties

The first property describes the relation between the Mittag-Leffler function and the
generalizedWright function (this relation is also known as the Euler transform of the
Mittag-Leffler function, see, e.g., [MatHau08, p. 84]). Let α, ρ, σ ∈ C, γ > 0 and
Re α > 0, Re σ > 0, then the following representation holds:

1∫

0

tρ−1(1 − t)σ−1Eα(xtγ )dt = Γ (σ)2Ψ2

[
(ρ, γ ), (1, 1)
(1, α), (σ + ρ, γ )

∣∣∣∣ x
]

, (3.6.1)

where 2Ψ2 is a special case of the generalized Wright function pΨq (see formula
(F.2.12) in Appendix F):

2Ψ2(z) := 2Ψ2

[
(ρ, γ ), (1, 1)
(1, α), (σ + ρ, γ )

∣∣∣∣ z
]

=
∞∑

k=0

Γ (ρ + γ k)Γ (1 + k)

Γ (1 + αk)Γ (σ + ρ + γ k)

xk

k! .

Formula (3.6.1) follows from the series representation of the Mittag-Leffler function
(3.1.1) and simple calculations involving properties of the Beta function (see formula
(A.34) in Appendix A).

Next, we obtain the Mellin–Barnes integral representation for the Mittag-Leffler
function (see, e.g., [MatHau08, p. 88] and also Appendix D).

Lemma 3.4 Let α > 0. Then the Mittag-Leffler function Eα(z) has the Mellin–
Barnes integral representation

Eα(z) = 1

2π i

∫

Lic

Γ (s)Γ (1 − s)

Γ (1 − αs)
(−z)−sds, | arg z| < π, (3.6.2)
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where the contour of integration Lic is a straight line which starts at c − i∞ and
ends at c + i∞, (0 < c < 1) and thus leaves all poles s = 0,−1,−2, . . . of Γ (s)
to the left and all poles s = 1, 2, 3, . . . of Γ (1 − s) to the right.


 As is standard for Mellin–Barnes representations, we can calculate the integral on
the right-hand side of (3.6.2) by using Residue Theory:

1

2π i

∫

Lic

Γ (s)Γ (1 − s)

Γ (1 − αs)
(−z)−sds =

∞∑

k=0

Ress=−k
Γ (s)Γ (1 − s)

Γ (1 − αs)
(−z)−s

=
∞∑

k=0

lim
s→−k

(s + k)Γ (s)Γ (1 − s)

Γ (1 − αs)
(−z)−s =

∞∑

k=0

(−1)kΓ (1 + k)

k!Γ (1 + αk)
(−z)k = Eα(z).

�
Two simple consequences of the representation (3.6.2) are the relations of the

Mittag-Leffler function Eα(z) to the generalized Wright function (see formula
(F.2.12) in Appendix F)

Eα(z) = 1Ψ1

[
(1, 1)
(1, α)

∣∣∣∣ z
]

, (3.6.3)

and to the Fox H -function (see formulae (F.4.1)–(F.4.4) in Appendix F)

Eα(z) = H 1,1
1,2

[
−z

∣∣∣∣
(0, 1)
(0, 1), (0, α)

]
. (3.6.4)

These formulas follow immediately from the Mellin–Barnes representations of the
generalized Wright function and Fox H -function (see representations (F.2.14) and
(F.4.1), respectively, in Appendix F).

Further, we also obtain an integral representation for the Cauchy kernel
1

ζ − z
.

Let us first introduce some definitions and notation. Let−π < θ ≤ π and α > 0. By
(e−iθ ζ )

1
α we denote the branch of the corresponding multi-valued function having

positive values exp{ 1
α
log |ζ |} when arg ζ = θ and by Lα(θ; ν), α > 0, ν ≥ 0, we

denote the curve

Re(e−iθ ζ )
1
α = ν, | arg ζ − θ | ≤

⎧
⎪⎨

⎪⎩

π, if α ≥ 2,

πα

2
, if 0 < α ≤ 2.

(3.6.5)

The equation of the curve Lα(θ; ν) can be written in polar coordinates as

r cosα
1

α
(φ − θ) = να, |φ − θ | ≤

{
π, if α ≥ 2,
πα
2 , if 0 < α ≤ 2.

(3.6.6)
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It follows from this equation that the curve Lρ(θ; ν) is bounded and closed when
α > 2 and has two unbounded branches when 0 < α ≤ 2.

Consequently, the ζ -plane is divided by the curve Lα(θ; ν) into two comple-
mentary simply-connected domains D∗

α(θ; ν) and Dα(θ; ν) containing, respectively,
intervals 0 < |ζ | < να and να < |ζ | < ∞ of the ray arg ζ = θ (with the exception of
the case α > 2, ν = 0 when the domain Dα(θ; ν) becomes the whole ζ -plane with-
out the point ζ = 0). The following properties of these domains are easily verified:

1. If ζ ∈ Dα(θ; ν), then
Re (e−iθ ζ )

1
α > ν. (3.6.7)

2. The domain Dα(θ; ν), ν > 0, α ≤ 2, is contained in the angular domain

Δ(θ;α) =
{
ζ : | arg ζ − θ | <

πα

2

}
, (3.6.8)

and Dα(θ; 0) = Δ(θ;α). Thedomain D∗
α(θ; 0) coincideswith the angular domain

complementary to Δ(θ;α):

D∗
α(θ; 0) = Δ∗(θ;α) =

{
ζ : πα

2
< | arg ζ − θ | ≤ π

}
. (3.6.9)

The following lemma gives an integral representation of the Cauchy kernel using the
Mittag-Leffler function.

Lemma 3.5 Let α > 0, ν > 0 and −π < θ ≤ π be some fixed parameters.

1. If z ∈ D∗
α(θ; ν) and ζ ∈ Dα(θ; ν) then

∫ +∞

0
e−(e−iθ ζ )

1
α t Eα(e−iθ ztα)dt = ei

θ
α

ζ 1− 1
α

ζ − z
. (3.6.10)

2. The integral (3.6.10) converges absolutely and uniformly with respect to the two
variables z and ζ if

z ∈ G∗
α(θ; ν), ζ ∈ Dα(θ; ν), (3.6.11)

where G∗
α(θ; ν) is any bounded and closed subdomain of the domain D∗

α(θ; ν).


 It suffices to prove the statements of the lemma under the assumption

|z| ≤ να
1 , ζ ∈ Dα(θ; ν), (3.6.12)

where ν1 is any number from the interval (0, ν).
Let us choose for a given value of ν1, 0 < ν1 < ν, a number ε, 0 < ε < ν,

q =
(

ν1

ν − ε

)α

< 1. (3.6.13)
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Then we arrive at the formula

max
0≤t<+∞ {t k αe−(ν−ε)t } =

(
kα

ν − ε

)k α

e−k α,

and the estimate
Γ (1 + k α) > (k α)k α+1− 1

2 e−k α

follows easily from Stirling’s formula. Hence, when q is chosen as in (3.6.13) and
|z| ≤ να

1 , we have

max
0≤t<+∞

∣∣∣∣
(e−iθ z)k tk α

Γ (1 + k α)
e−(ν−ε)t

∣∣∣∣ ≤ (k α)−
1
2 qk, k ≥ k0.

It follows that the expansion

e−(ν−ε)t Eα(e−iθ ztα) =
∞∑

k=0

(e−iθ z)k tk α

Γ (1 + k α)
e−(ν−ε)t (3.6.14)

converges uniformly with respect to z and t when |z| ≤ να
1 and 0 ≤ t < +∞.

Due to the relation Re (e−iθ ζ )
1
α > ν and assumption (3.6.12) the series in (3.6.14)

can be integrated term-by-term with respect to t along the semi-axis [0,+∞). Using
the known formula

∫ +∞

0
e−(e−iθ ζ )

1
α t t k α dt = Γ (1 + k α)

(e−iθ ζ )k+
1
α

, Re (e−iθ ζ )
1
α > 0, k ≥ 0,

we arrive at

∫ +∞

0
e−(e−iθ ζ )

1
α t Eα(e−iθ ztα) dt

=
∞∑

k=0

(e−iθ z)k

Γ (1 + k α)

∫ +∞

0
e−(e−iθ ζ )

1
α t t k α dt

= (e−iθ ζ )−
1
α

∞∑

k=0

(
z

ζ

)k

= ei
θ
α

ζ 1− 1
α

ζ − z
,

since
|ζ | ≥ |Re(e−iθ ζ )

1
α |α ≥ να > να

1 ≥ |z|.

Thus we have proved formula (3.6.10) under the condition (3.6.12). �
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3.6.2 Mittag-Leffler Summation of Power Series

An approach to generalizing the Borel summation method of power series (see
[SanGer60, Chap. 8]) is due to the following simplification of the integral repre-
sentation of the Cauchy kernel (3.6.10),

1

1 − z
=

∞∫

0

e−u Eα(zuα)du, (3.6.15)

which is valid throughout any region Rez1/α < 1. Based on this, Mittag-Leffler con-
sidered a similar generalization for summation of power series

∞∑

ν=0

aνz
ν . (3.6.16)

Let us briefly describe Mittag-Leffler’s method following [SanGer60] in the case
0 < α ≤ 2. The region of convergence for the integral (3.6.15) is bounded by the
curve

r cosα
θ

α
= 1, −πα

2
< arg z = θ <

πα

2
.

For 0 < α < 1 it looks similar to hyperbola, for α = 1 it is a vertical straight line,
and for 1 < α < 2 it looks similar to parabola, being a parabola for α = 2. Let us
consider the following series depending on z as a parameter

∞∑

ν=0

aν

(zuα)ν

Γ (αν + 1)
. (3.6.17)

This series is convergent for each finite u and suitably chosen parameter z. Denote
its sum by A(zuα) and introduce the following integral

FαA(z) :=
∞∫

ν=0

e−u A(zuα)du. (3.6.18)

If the series (3.6.17) and the integral (3.6.18) are convergent for the same value of
parameter z, then FαA(z) is called the Mittag-Leffler sum or Bα-sum. For α = 1 it
coincides with the Borel sum (see, e.g.., [Bor01, Har92, ReeSim78], and also the
paper by N. Obrechkoff reprinted in the Journal Fract. Calc. Appl. Anal. [Obr16]).

The following theorem is due to G. Mittag-Leffler [ML08].

Theorem 3.1 Let (3.6.16) be a power series which may or may not have a circle of
convergence.
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Suppose that

(a) there is a value z0 	= 0 for which an associated series (3.6.17) converges for all
positive u;

(b) the integral (3.6.18) converges at z = z0.

Then (3.6.18) converges at any point z of the segment (0, z0].

 The integral (3.6.18) can be represented in the form of the Laplace integral

FαA(z) := s

∞∫

ν=0

e−su A(z0t
α)dt (3.6.19)

with tα = ϑuα , s = ϑ−1/α , 0 < ϑ ≤ 1. Since the above Laplace integral converges
for s = 1, it also converges for all s ≥ 1. This gives the desired result. �

If variable s in the Laplace integral (3.6.19) is considered as a complex variable,
then this integral is convergent (and thus is analytic) in the half-plane Re s > 1 or,
equivalently, FαA(z) is analytic in the domain

Re

(
z0
z

)1/α

> 1.

This domain consists of several parts. We restrict ourselves to the part corresponding
to

−πα

2
< arg

z0
z

<
πα

2
.

This part of the domain is encircled by the curve

r = r0 cos
α ψ

α
, −πα

2
< ψ <

πα

2
,

where ψ is an angle between Oz0 and Oz, r = |z|, and r0 = |z0|.
Corollary 3.4 If the series (3.6.16) is Bα-summable at z = z0, then it is Bα-
summable at any point z = ϑz0, 0 ≤ ϑ ≤ 1.

Moreover, its sum is analytic in the domain

Re

(
z0
z

)1/α

> 1, −πα

2
< arg

z0
z

<
πα

2
. (3.6.20)

If the series (3.6.17) has a finite radius of convergence, then the sum of the fol-
lowing series

∞∑

ν=0

aν

zν

Γ (αν + 1)
(3.6.21)
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is an analytic function of the complex variable z. Then the series (3.6.17) is uniformly
convergent in u, 0 ≤ u ≤ ω.

Hence

ω∫

0

e−u
∞∑

ν=0

aν

(zuα)ν

Γ (αν + 1)
du =

∞∑

ν=0

aνz
ν

ω∫

0

e−u uαν

Γ (αν + 1)
du. (3.6.22)

The integral in the right-hand side is uniformly convergent in ω, 0 < ω < ∞, since

ω∫

0

e−u uαν

Γ (αν + 1)
du <

∞∫

0

e−u uαν

Γ (αν + 1)
du.

Therefore, we can pass to the limit in (3.6.22) as ω → ∞ and by definition of
the Gamma-function we obtain the following equality for all z in the domain of
convergence

∞∫

0

e−u
∞∑

ν=0

aν

(zuα)ν

Γ (αν + 1)
du =

∞∑

ν=0

aνz
ν . (3.6.23)

This can be summarized in the form of the following

Theorem 3.2 Let the integral

∞∫

0

e−u
∞∑

ν=0

aν

(zuα)ν

Γ (αν + 1)
du (3.6.24)

be convergent at a certain point z = z0.
Then it represents an analytic function in the domain (3.6.20) and provides an

analytic continuation of the series (3.6.16) along the segment (0, z0]. At every point
of this segment the series is Bα-summable.

Let us recall that the principle star of the power series (see e.g., [KolYus96]) is the
set of all rays originating at the center of the circle of convergence and extending to
the first singular point of the analytic continuation of its sum. This set is a star-shaped
domain (or Mittag-Leffler star) denoted Bα . It is known (see, e.g., [SanGer60]) that
the integral

FαA(z) =
∞∫

ν=0

e−u A(zuα)du

is convergent at any inner point of the Mittag-Leffler star Bα .
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3.6.3 Mittag-Leffler Reproducing Kernel Hilbert Spaces

In this subsection wemainly follow the paper [RoRuDi18] (see also [RosDix17]).
The correspondingdefinitions of theMittag-Leffler reproducingkernelHilbert spaces
are important due to their connection to classical problems of quantum mechanics
(see [RoRuDi18] and references therein for details).

We start with the definition of the real-valued Mittag-Leffler reproducing ker-
nel Hilbert space (RKHS), which was introduced in [RosDix17] in order to get a
numerical method to estimate the Caputo fractional derivative (for the definition and
properties of this kind of fractional derivative we refer to Appendix E, Sect.E.2).
Definition 3.1 The real-valued Mittag-Leffler reproducing kernel Hilbert space of
order q > 0 is that associated with theMittag-Leffler functionsKq(t, λ) = Eq(λ

q tq)
as the kernel, namely

ML2 (R+; q) :=
{
f (t) =

∞∑

n=0

ant
qn
∣∣∣

∞∑

n=0

|an|2Γ (qn + 1) < ∞
}

. (3.6.25)

In [RoRuDi18] the complexification of the real-variable Mittag-Leffler RKHS is
proposed as a way of generalizing the so-called Bargmann–Fock space (see, e.g.,
[ZhK12]) which is defined as the space of those entire functions which are L2 under
the Gaussian measure, i.e.

F2 (C) :=
{
f (z) =

∞∑

n=0

anz
n
∣∣∣

∞∑

n=0

|an|2n! < ∞
}

. (3.6.26)

Definition 3.2 The qth order (q > 0) Mittag-Leffler reproducing kernel Hilbert
space of entire functions is that associated with the Mittag-Leffler functions
Kq(w, z) = Eq(wz) as the kernel, namely

ML2 (C; q) :=
{
f (t) =

∞∑

n=0

anz
n
∣∣∣

∞∑

n=0

|an|2Γ (qn + 1) < ∞
}

. (3.6.27)

A direct verification gives the following property: the set of functions

{gn(z)}∞n=0 =
{

zn√
Γ (qn + 1)

}∞

n=0

(3.6.28)

forms an orthonormal basis in ML2 (C; q).
Further, for q = 1 the Mittag-Leffler space ML2 coincides with Bargmann-Fock

space F2. The norm in F2 is given by the following
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‖ f ‖2F2 = 1

π

∫

C

| f (ζ )|2e−|ζ |2dA(ζ ), (3.6.29)

where the integration is performed with respect to the Lebesgue area measure dA(ζ ).
Hence, one can expect in which form the norm inML2 can be represented. The result
is the following ([RoRuDi18, Theorem 3.2]):

‖ f ‖2ML2(C;q) = 1

qπ

∫

C

| f (ζ )|2|ζ | 2
q −2e−|ζ | 2q dζ. (3.6.30)

This immediately gives the monotonicity property of the spaces ML2 (C; q) with
respect to the index q, namely, if 0 < q ≤ p and f ∈ ML2 (C; p), then f ∈
ML2 (C; q). Moreover

lim
q→p−0

ML2 (C; q) = ML2 (C; p) .

In particular, F2 (C) ⊂ ML2 (C; q) for all 0 < q ≤ 1.
From the standard point-wise estimate for the function f ∈ ML2 (C; q):

| f (z)|2 ≤ Eq(|z|2)‖ f ‖2ML2(C;q)

and the growth of the Mittag-Leffler function (see Appendix B) follows the charac-
terization of the growth of the functions f ∈ ML2 (C; q).

Proposition 3.8 ([RoRuDi18, Proposition 4.3]) Let q > 0 be fixed. If f ∈
ML2 (C; q), then f is of order at most 2

q , and if f has order 2
q , then its type is

not greater than 1/2.

This statement is in a sense invertible (see [RoRuDi18, Proof 4.4]).
Another result characterizes the asymptotical distribution of zeros of the entire

functions belonging toML2 (C; q). Letq > 0 and 2
q > ε > 0. Then for any sequence

{zn} of complex numbers satisfying

∞∑

n=1

1

|zn| 2
q −ε

< ∞,

there exists a function f ∈ ML2 (C; q) having these points as zeros.
The following result is an analog of the corresponding statement valid for the

Bargmann–Fock space.

Theorem 3.3 (a) for 0 < q < 1 every square lattice is a zero set for ML2 (C; q);
(b) for q > 1 no square lattice is a zero set for ML2 (C; q);
(c) for q = 1 some square lattice can be a zero set for ML2 (C; 1) = F2(C).

The following definition generalizing the above definition of the RKHP of entire
functions is useful when characterizing the Caputo fractional derivative.
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Definition 3.3 Let q > 0. The Mittag-Leffler reproducing kernel Hilbert space of
functions analytic in the slit complex plane is defined as

ML2 (C \ R−; q) :=
{
f : C \ R− → C

∣∣∣ f (z1/q) ∈ ML2 (C; q)
}

. (3.6.31)

This space is equipped with the following inner product (similar to the corresponding
inner result in the Bargmann–Fock space)

〈 f (z), g(z)〉ML2(C\R−;q) = 〈 f (z1/q), g(z1/q)〉ML2(C;q).

Finally, we obtain the following characterization of the Caputo fractional deriva-

tive Dq
∗ defined for any function f ∈ ML2 (C \ R−; q), f (z) =

∞∑
n=0

anzqn , by the

following relation

(
Dq

∗ f
)
(z) :=

∞∑

n=0

an
Γ (qn + 1)

Γ (q(n − 1) + 1)
zq(n−1). (3.6.32)

If v is an entire function with the power series v(z) =
∞∑
n=0

anzn , and f (z) = v(zq),

then for z = x ≥ 0 the left-hand side of (3.6.32) coincides with the standard Caputo
fractional derivative

(
CDq

0+ f
)
(x) defined on the restriction of the functions from

ML2 (C \ R−; q) to the nonnegative real axis.

3.7 The Mittag-Leffler Function of a Real Variable

3.7.1 Integral Transforms

Let us recall a few basic facts about the Laplace transform (amore detailed discussion
can be found inAppendix C, see also [BatErd54a, Wid46, DebBha15]). The classical
Laplace transform is defined by the following integral formula

(L f ) (s) =
∞∫

0

e−st f (t)dt, (3.7.1)

provided that the function f (the Laplace original) is absolutely integrable on the
semi-axis (0,+∞). In this case the image of the Laplace transform (also called the
Laplace image), i.e., the function

F(s) = (L f ) (s) (3.7.2)
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(sometimes denoted as F(s) = f̃ (s)) is defined and analytic in the half-plane
Re s > 0.

It may happen that the Laplace image can be analytically continued to the left
of the imaginary axis Re s = 0 into a larger domain, i.e., there exists a non-positive
real number σs (called the Laplace abscissa of convergence) such that F(s) = f̃ (s)
is analytic in the half-plane Re s ≥ σs . Then the inverse Laplace transform can be
introduced by the so-called Bromwich formula

(L−1F
)
(t) = 1

2π i

∫

Lic

est F(s)ds, (3.7.3)

whereLic = (c − i∞, c + i∞), c > σs , and the integral is usually understood in the
sense of the Cauchy principal value, i.e.,

∫

Lic

est F(s)ds = lim
T→+∞

c+iT∫

c−iT

est F(s)ds.

If the Laplace transform (3.7.2) possesses an analytic continuation into the half-plane
Re s ≥ σs and the integral (3.7.3) converges absolutely on the line Re s = c > σs ,
then at any continuity point t0 of the original f the integral (3.7.3) gives the value of
f at this point, i.e.,

1

2π i

∫

Lic

est0 f̃ (s)ds = f (t0). (3.7.4)

Thus, under these conditions, the operators L and L−1 constitute an inverse pair of
operators. Correspondingly, the functions f and F = f̃ constitute a Laplace trans-
form pair.3 The following notation is used to denote this fact

f (t) ÷ f̃ (s) =
∫ ∞

0
e−st f (t) dt , Re s > σs , (3.7.5)

where σs is the abscissa of convergence. Here the sign÷ denotes the juxtaposition of
a function (depending on t ∈ R

+) with its Laplace transform (depending on s ∈ C).
In the following the conjugate variables {t, s} may be given in another notation, e.g..
{r, s}, and the abscissa of the convergence may sometimes be omitted. Furthermore,
throughout our analysis, we assume that the Laplace transforms obtained by our
formal manipulations are invertible by using the Bromwich formula (3.7.3).

For the Mittag-Leffler function we have the Laplace integral relation

∫ ∞

0
e−x Eα (xα z) dx = 1

1 − z
, α ≥ 0 . (3.7.6)

3It is easily seen that these properties do not depend on the choice of the real number c.
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This integral was evaluated byMittag-Leffler, who showed that the region of conver-
gence of the integral contains the unit disk and is bounded by the curve Re z1/α = 1.

TheLaplace transform of Eα (±tα) can be obtained from (3.7.6) by putting x = st
and xα z = ±tα; we get

L [Eα (±tα)
] :=

∫ ∞

0
e−st Eα (±tα) dt = sα−1

sα ∓ 1
. (3.7.7)

This result was used by Humbert [Hum53] to obtain a number of functional relations
satisfied by Eα(z). Formula (3.7.7) can also be obtained by Laplace transforming the
series (3.1.1) term-by-term, and summing the resulting series.

Recalling the scale property of the Laplace transform

q f (qt) ÷ F̄(s/q) , ∀q > 0 ,

we have

Eα

[±(qt)α
]÷ sα−1

sα ∓ qα
, ∀q > 0 . (3.7.8)

As an exercise we can invert the r.h.s. of (3.7.8) either by means of the expansion
method (find the series expansion of the Laplace transform and then invert term-by-
term to get the series representation of the l.h.s.) or by theBromwich inversion formula
(deform the Bromwich path into the Hankel path and, by means of an appropriate
change of variable, obtain the integral representation of the left-hand side, see, e.g..
[CapMai71a]).

Using the asymptotic behavior of the function Eα(z) we will investigate further
the Mellin integral transform of the function Eα(z) and its properties. The Mellin
integral transform is defined by the formula

(M f ) (p) = f ∗(p) :=
∞∫

0

f (t)t p−1dt (p ∈ C) (3.7.9)

provided that the integral on the right-hand side exists.
In many cases, the function Eα(z) does not satisfy the convergence condition for

the standard Mellin transform (see Theorem C.5 in Appendix C). Therefore we find
the Mellin transform of a slightly different function. A good candidate for applying
the general theory is the function

eα(x; λ) = 1

λ x
{Eα(λxα) − 1} , (3.7.10)

where x > 0 and λ 	= 0 is any complex number. It happens that the function εα(x; λ)

satisfies, up to rotation, the above given convergence condition for certain values of
parameters.
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Lemma 3.6 Fix anα in the interval (
1

2
, 2]. Then for each ϕ,

πα

2
≤ ϕ ≤ 2π − πα

2
,

the function eα(x; eiϕ) is square-integrable on the positive semi-axis:

eα(x; eiϕ) ∈ L2(0, +∞). (3.7.11)


 If 0 < x ≤ 1 one can choose a constant C1 > 0 such that

|eα(x; eiϕ)| ≤ C1x
α−1, 0 < x ≤ 1, 0 ≤ ϕ ≤ 2π.

Thus with the condition α > 1
2 we have

eα(x; eiϕ) ∈ L2(0, 1), 0 ≤ ϕ ≤ 2π. (3.7.12)

Consider now the behavior of the function eα(x; eiϕ) with
πα

2
≤ ϕ ≤ 2π − πα

2
for

x ∈ (1,+∞).
In the case α = 2 we have ϕ = π . It follows then from (3.2.2) that

e2(x;−1) = −1

x

(
E2(−x2) − 1

) = 1 − cos x

x
= O

(
1

x

)
, x → ∞.

Therefore
e2(x;−1) ∈ L2(1,∞). (3.7.13)

If
1

2
< α < 2 and

πα

2
≤ ϕ ≤ 2π − πα

2
then one can use a variant of the asymp-

totic estimate (3.4.30) for the Mittag-Leffler function Eα(z), namely the estimate

|Eα(eiϕxα)| ≤ C2x
−α, γ ≤ ϕ ≤ 2π − γ, 1 ≤ x < +∞,

where C2 > 0 is a constant not depending on ϕ, and
πα

2
< γ < min{π, πα}. Thus

|eα(x; eiα)| ≤ C2x
−1−α + 1

x
, γ ≤ ϕ ≤ 2π − γ, 1 ≤ x < +∞.

Therefore
eα(x; eiα) ∈ L2(1,+∞), γ ≤ α ≤ 2π − γ. (3.7.14)

The same result follows for
πα

2
≤ ϕ ≤ γ or 2π − γ ≤ ϕ ≤ 2π − πα

2
from the

asymptotic formula (3.4.14). The lemma is proven. �
For further considerationswe need theMellin integral transforms of some elemen-

tary functions, related to the Mittag-Leffler function (cf., e.g., [AbrSte72, Mari83,
NIST]).
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Lemma 3.7 If 0 < Re s < 1, then

∫ +∞

0

e±i x − 1

±i x
xs−1dx = Γ (s)

1 − s
e
±i

π

2
s
, (3.7.15)

∫ +∞

0

1 − cos x

x
xs−1dx = Γ (s)

1 − s
sin

πs

2
, (3.7.16)

∫ +∞

0

sin x

x
xs−1dx = Γ (s)

1 − s
cos

πs

2
. (3.7.17)

The following lemma describes asymptotic properties of the function

Up(s) =
∫ π

2

− π
2

epe
iψ+i(s−1)ψdψ, 0 < Re s < 1, (3.7.18)

for p → +∞.

Lemma 3.8 If 0 < Re s < 1, then

lim
p→+∞ ps−1Up(s) = 2π

Γ (2 − s)
. (3.7.19)


 We can represent the function Up(s) as a Taylor series in p in a neighborhood of
p = 0:

Up(s) =
∞∑

k=0

pk

k!
∫ π

2

− π
2

ei(k−1+s)ψ dψ = 2
∞∑

k=0

pk

k!
sin(k − 1 + s) π

2

k − 1 + s
.

Here the series on the right-hand side can be rewritten as the sum of two series with
even and odd indices of summation, respectively. Thus we arrive at

Up(s) = 2
cos πs

2

1 − s
+ 2

∞∑

k=1

p2k

(2k)!
sin
(
πk − π

2 + πs
2

)

2k − 1 + s

+ 2
∞∑

k=0

p2k+1

(2k + 1)!
sin
(
πk + πs

2

)

2k + s

= 2
cos πs

2

1 − s
− 2 cos

πs

2

∞∑

k=1

(−1)k p2k

(2k)!(2k − 1 + s)

+ 2 sin
πs

2

∞∑

k=0

(−1)k p2k+1

(2k + 1)!(2k + s)

= 2
cos πs

2

1 − s
− 2p1−s cos

πs

2

∫ p

0

cos x − 1

x
xs−1 dx
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+ 2p1−s sin
πs

2

∫ p

0

sin x

x
xs−1 dx . (3.7.20)

Since 0 < Re s < 1, we can use the formulae (3.7.15) and (3.7.16) to obtain

lim
p→+∞ ps−1Up(s) = 2 cos

πs

2

∫ +∞

0

1 − cos x

x
xs−1 dx

+ 2 sin
πs

2

∫ +∞

0

sin x

x
xs−1 dx = 2

Γ (s)

1 − s
sin(πs).

The formula (3.7.19) and the statement of the lemma now follow from the last
formula and the well-known formula for the Euler Gamma function (formula (A.13),
Appendix A):

Γ (s)Γ (1 − s) = π

sin(πs)
. �

In order to obtain the Mellin transform of the function connected with the Mittag-
Leffler function Eα(z) we need one more auxiliary result. It is in a certain sense a
special refinement of the Jordan lemma (see, e.g., [AblFok97]).

Let us draw a cut in the z-plane along the ray arg z = ϕ,
πα

2
≤ ϕ ≤ 2π −

πα

2
,
1

2
< α ≤ 2. Consider in the cut z-plane that branch of the function z

(s+α−1)
α

−1,

Re s = 1
2 , which takes on the semi-axis 0 < x < +∞ the values exp{( (s+α−1)

α
−

1) log x}. By lR we denote a part of the circle |z| = R on the z-plane with the cut
along arg z = ϕ.

Lemma 3.9 Let 1
2 < α ≤ 2 be a fixed value of the parameter. Then we have for any

s with Re s = 1
2

lim
R→+∞

∫

lR

Eα(z) − 1

z
z

(s+α−1)
α

−1 dz = 2π i

Γ (2 − s)
. (3.7.21)

The proof follows from the asymptotic representations of theMittag-Leffler function
and the above proved Lemmas 3.7 and 3.8.

Finally we have the following:

Proposition 3.9 Let
1

2
< α ≤ 2 be a fixed value of the parameter. Then the formula

∫ +∞

0

Eα(reiϕ) − 1

reiϕ
r

(s+α−1)
α

−1 dr = π

Γ (2 − s)

ei
(π−ϕ)

α
(s+α−1)

sin( π(s+α−1)
α

)
, Res = 1

2
, (3.7.22)

holds for any ϕ ∈
[πα

2
, 2π − πα

2

]
.
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 We consider the function Eα(z)−1
z z

(s+α−1)
α

−1, Re, s = 1
2 , in the z-plane which is cut

along the ray arg z = ϕ, ϕ ∈
[πα

2
, 2π − πα

2

]
. We denote by L(R; ε) a closed pos-

itive oriented contour consisting of two circles lε = {z : |z| = ε}, lR = {z : |z| =
R}, 0 < ε < R, and of the two sides of the cut arg z = ϕ, ε ≤ |z| ≤ R.

By the Cauchy theorem,

∫

L(R;ε)
Eα(z) − 1

z
z

(s+α−1)
α

−1 dz = 0.

This formula can be rewritten as

e−i (2π−ϕ)

α
(s+α−1)

∫ R

ε

Eα(reiϕ) − 1

reiϕ
r

(s+α−1)
α

−1 dr

+
∫

lR

Eα(z) − 1

z
z

(s+α−1)
α

−1 dz

−ei
ϕ

α
(s+α−1)

∫ R

ε

Eα(reiϕ) − 1

reiϕ
r

(s+α−1)
α

−1 dr

+
∫

lε

Eα(z) − 1

z
z

(s+α−1)
α

−1 dz = 0. (3.7.23)

If ε > 0 is small enough, we have

max|z|=ε

∣∣∣∣
Eα(z) − 1

z

∣∣∣∣ ≤
2

Γ (α + 1)
.

For such ε and Re s = 1
2 we get the estimate

∣∣∣∣
∫

lε

Eα(z) − 1

z
z

(s+α−1)
α

−1 dz

∣∣∣∣ ≤
2

Γ (α + 1)
2πε

α−1/2
α .

Since α > 1
2 , we conclude that

lim
ε→0

∫

lε

Eα(z) − 1

z
z

(s+α−1)
α

−1 dz = 0. (3.7.24)

Passing to the limit in the identity (3.7.23) with ε → 0 and using the formula (3.7.24)
we arrive at the identity

ei
ϕ

α
(s+α−1){e−i 2π

α
(s+α−1) − 1}

∫ R

0

Eα(reiϕ) − 1

reiϕ
r

(s+α−1)
α

−1 dr

= −
∫

lR

Eα(z) − 1

z
z

(s+α−1)
α

−1 dz, (3.7.25)
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where the integral in the left-hand side converges absolutely for any finite R, since
Re s = 1

2 and α > 1
2 .

If Re s = 1
2 then Re { (s+α−1)

α
} = 1 − 1

2α ∈ (0, 3/4]. Consequently, e−i2π (s+α−1)
α −

1 	= 0 in this case. Thus the identity (3.7.25) can be rewritten in the form

∫ R

0

Eα(reiϕ) − 1

reiϕ
r

(s+α−1)
α

−1 dr

= − ei
(π−ϕ)

α
(s+α−1)

2i sin( π(s+α−1)
α

)

∫

lR

Eα(z) − 1

z
z

(s+α−1)
α

−1dz, Re s = 1

2
. (3.7.26)

Passing to the limit as R → ∞ in the last identity and using the formula (3.7.21) we
finally obtain the formula (3.7.22). �
Corollary 3.5 Let 1

2 < α ≤ 2. Then the Mellin transform of the function eα(x; eiϕ)

(see (3.7.10)) exists and the following representation holds

M
(
Eα(tαeiϕ) − 1

teiϕ

)
(p) =

∞∫

0

eα(t; eiϕ)t p−1dt (3.7.27)

= π

αΓ (1 − α(p − 1))

ei(π−ϕ)p

sin(πp)
, Res = 1

2
,

where ϕ ∈
[πα

2
, 2π − πα

2

]
.

3.7.2 The Complete Monotonicity Property

Definition 3.4 A function f : (0,∞) → R is called completely monotonic if it pos-
sesses derivatives f (n)(x) of any order n = 0, 1, . . ., and the derivatives are alternat-
ing in sign, i.e.

(−1)n f (n)(x) ≥ 0, ∀x ∈ (0,∞). (3.7.28)

The above property (see, e.g., [Wid46, p. 161]) is equivalent to the existence of
a representation of the function f in the form of a Laplace–Stieltjes integral with
non-decreasing density and non-negative measure dμ

f (x) =
∞∫

0

e−xtdμ(t). (3.7.29)

Proposition 3.10 ([Poll48]) The Mittag-Leffler function of negative argument
Eα(−x) is completely monotonic for all 0 ≤ α ≤ 1.
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 Since E0(−x) = 1/(1 + x) and E1(−x) = e−x there is nothing to be proved in
these cases. Let 0 < a < 1. By a standard representation [Bie31]

Eα(−x) = 1

2π ia

∫

L

et
1/α

t + x
dt , (3.7.30)

where L consists of three parts as follows:

C1: the line y = (tanψ) x from x = +∞ to x = �, � > 0;
C2: an arc of the circle |z| = � secψ , −ψ ≤ arg z ≤ ψ ;
C3: the reflection of C1 in the x-axis.

We assume π > ψ/α > π/2 while � is arbitrary but fixed.

Let us replace (x + t)−1 by
∫ ∞

0
e−(x+t) du in (3.7.30). The resulting double inte-

gral converges absolutely, so that one can interchange the order of integration to
obtain

Eα(−x) = 1

2π iα

∫ ∞

0
e−xu du

∫

L
et

1/α
e−tu dt . (3.7.31)

It remains to compute the function

Fα(u) = 1

2π ia

∫

L
et

1/α
e−tu dt (3.7.32)

and to prove it is non-negative when u ≥ 0 (see the remark concerning representation
(3.7.29)). An integration by parts in (3.7.32) yields

Fα(u) = 1

2π iαu

∫

L
e−tu

(
1

α
t1/α−1

)
et

1/α
dt . (3.7.33)

Now let tu = zα . Then

Fα(u) = u−1−1/α

α

1

2π i

∫

L ′
e−zα

ezu
−1/α

dz , (3.7.34)

where L ′ is the image of L under the mapping.
Now consider the function

Φα(t) = 1

2π i

∫

L ′
e−zα

ezt dz . (3.7.35)

This is known to be the inverse Laplace transform of

e−zα =
∫ ∞

0
e−zt Φα(t) dt ,
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which is completely monotonic [Poll48]. Hence

Fα(u) = u−1−1/α

α
Φα(u−1/α) ≥ 0 .

The proof will be completed if we can show the existence of any derivative of Fα(u)

for all u ≥ 0. From the explicit series representation [Poll48] for the function Φα(t)
we deduce that

Fα(u) = 1

πα

∞∑

1

(−1)k−1

k! sin(παk) Γ (αk + 1) uk−1 , (3.7.36)

so that Fα(u) is an entire function. �
Note that it is also possible to obtain (3.7.34) directly from (3.7.36).
From Proposition 3.10 it follows, in particular, that Eα(−x) has no real zeros

when 0 ≤ α ≤ 1.

3.7.3 Relation to Fractional Calculus

Let us recall a few definitions concerning fractional integrals and derivatives. The
left- and right-sided Riemann–Liouville fractional integrals on any finite interval
(a, b) are given by the formulas (see, e.g., [SaKiMa93, p. 33])

(
I α
a+ϕ
)
(x) = 1

Γ (α)

x∫

a

ϕ(t)

(x − t)1−α
dt, x > a, (3.7.37)

(
I α
b−ϕ
)
(x) = 1

Γ (α)

b∫

x

ϕ(t)

(t − x)1−α
dt, x < b. (3.7.38)

The right-sided fractional integral on a semi-axis (also called the right-sidedLiouville
fractional integral) is defined via the formula (see, e.g., [SaKiMa93, p. 94])

(
I α
−ϕ
)
(x) = 1

Γ (α)

∞∫

x

ϕ(t)

(t − x)1−α
dt, −∞ < x < +∞. (3.7.39)

By simple calculation one can obtain the following values for the above integrals of
power-type functions (see [SaKiMa93, p. 40])
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(
I α
a+(t − a)β−1) (x) = Γ (β)

Γ (α + β)
(x − a)α+β−1, x > a, (3.7.40)

(
I α
b−(b − t)β−1

)
(x) = Γ (β)

Γ (α + β)
(b − x)α+β−1, x < b, (3.7.41)

(
I α
−t

−β−1) (x) = Γ (1 − α + β)

Γ (1 + β)
xα−β−1, −∞ < x < +∞. (3.7.42)

The last integral can be calculated using the following property of the fractional
integrals

(
I α
−ϕ

(
1

t

))
(x) = xα−1

(
t−α−1 I α

0+ϕ(t)
) (1

x

)
. (3.7.43)

The values of fractional integrals of theMittag-Leffler function (or, in otherwords,
the composition of the fractional integrals with the Mittag-Leffler function) can be
calculated by using the following auxiliary result.

Lemma 3.10 Let α > 0 and suppose λ ∈ C is not an eigenvalue of the Abel integral
operator, i.e. �ϕ such that

(
I α
0+
)
(x) = λϕ(x), 0 < x < ∞. Then

λ

Γ (α)

x∫

0

Eα(λtα)

(x − t)1−α
dt = Eα(λxα) − 1. (3.7.44)


The proof follows from the Taylor expansion of Eα and by term-by-term integration
using formula (3.7.40). �

We present here the above-mentioned composition formulas only for the left- and
right-sided Riemann–Liouville fractional integrals and right-sided Liouville frac-
tional integral. The formulas for other types of fractional integrals and derivatives
(see Appendix E) can be obtained in a similar way.

Proposition 3.11 Let Re α > 0, then the following formulas are satisfied

I α
a+ (Eα(λ(t − a)α)) (x) = 1

λ
{Eα(λ(x − a)α) − 1} , λ 	= 0. (3.7.45)

I α
b− (Eα(λ(b − t)α)) (x) = 1

λ
{Eα(λ(b − x)α) − 1} , λ 	= 0. (3.7.46)

I α
−
(
t−α−1Eα(λt−α)

)
(x) = xα−1

λ

{
Eα(λx−α) − 1

}
, λ 	= 0. (3.7.47)

The result follows immediately from Lemma 3.10.
The left- and right-sided fractional derivative of a non-integer order α (m − 1 <

α < m) are defined by the formulas (see Appendix E)

Dα
a+ φ(x) = 1

Γ (m − α)

dm

dxm

∫ x

a
(x − ξ)m−α−1 φ(ξ) dξ , a < x < b , (3.7.48)
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Dα
b− φ(x) = (−1)m

Γ (m − α)

dm

dxm

∫ b

x
(ξ − x)m−α−1 φ(ξ) dξ , a < x < b . (3.7.49)

Proposition 3.12 Let 0 < Re α < 1, then the following formulas hold

Dα
a+ (Eα(λ(t − a)α)) (x) = (x − a)−α

Γ (1 − α)
+ λEα(λ(x − a)α), a 	= 0. (3.7.50)

Dα
b− (Eα(λ(b − t)α)) (x) = (b − x)−α

Γ (1 − α)
+ λEα(λ(b − x)α), a 	= 0. (3.7.51)

Since the Mittag-Leffler function is infinitely differentiable, one can use in the con-
sidered case (0 < Re α < 1, f (t) = Eα(λ(t − a)α)) known relation formulas for
fractional integrals and derivatives (see, e.g., [SaKiMa93, p. 35–36]):

(
Dα

a+ f (t)
)
(x) = 1

Γ (1 − α)

⎡

⎣ f (a)

(x − a)α
+

x∫

a

f ′(t)
(x − t)α

dt

⎤

⎦ ,

(
Dα

b− f (t)
)
(x) = 1

Γ (1 − α)

⎡

⎣ f (b)

(b − x)α
−

b∫

x

f ′(t)
(x − t)α

dt

⎤

⎦ .

3.8 Historical and Bibliographical Notes

Historical remarks regarding early results on the classical Mittag-Leffler function as
well as certain direct generalizations have already been presented in the Introduction
and in Sect. 2.3. We also mention here the treatise on complex functions by Sansone
and Gerretsen [SanGer60], where a detailed account of these functions is given.
However, themost specialized treatise,wheremore details on the functions ofMittag-
Leffler type are given, is surely that by Dzherbashyan [Dzh66], in Russian. We also
mention another book by this author from 1993 [Djr93], in English, where a brief
description of the theory ofMittag-Leffler functions is given. For the basic facts on the
Mittag-Leffler function presented in Sect. 3.4–3.6 we have followed the monograph
[Dzh66] and the survey paper [PopSed11], see also [Per00].

In this section we have also mentioned more recent results related to the develop-
ment of the theory of the Mittag-Leffler function Eα(z). We note that many mathe-
maticians, not only in Mittag-Leffler’s time, see, e.g.. Phragmén [Phr04], Malmquist
[Mal03],Wiman [Wim05a, Wim05b], [LeR00], have recognized its importance, pro-
viding interesting results and applications, which unfortunately are not aswell known
as they deserve to be, see, e.g., Hille and Tamarkin [HilTam30], Pollard [Poll48],
Humbert and Agarwal [Aga53], [Hum53]–[HumAga53], or the short reviews in
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books such as Buhl [Buh25b], Davis [Dav36], Evgrafov [Evg78], see also [Wong89].
We briefly outline some important results. In particular, in [Dav36] the Volterra func-
tion was mentioned

ν(z) =
+∞∫

0

zu

Γ (αu + 1)
dt,

which can be considered as the continuous counterpart of the classical Mittag-Leffler
function. It is treated in the Bateman handbook [ErdBat-3, Chap. 18]. The Volterra
function and its generalizations are treated in the book [Ape08] and in the paper
[GarMai16] (in relation to Ramanujan integrals).

The first asymptotic result which was obtained usingMittag-Leffler’s method was
that of Malmquist [Mal05]. Phragmén [Phr04] studied the Mittag-Leffler function as
an example of an entire function of finite order satisfying his theorem generalizing
the maximum modulus principle for analytic functions. In the same direction Buhl
[Buh25a] showed that theMittag-Leffler function furnishes examples and counterex-
amples for the growth and other properties of entire functions of finite order (see also
[Evg78, GoLuRo97, WongZh02]).

The asymptotic expansions of Eα(z) were generalized by Wiman [Wim05a] (see
also the papers by Barnes [Barn06] and Mellin [Mel10], in which the complete
theory of the Mellin–Barnes integral representation is developed). Wright [Wri35a]
introduced and discussed the integral representation of the functionφ(α, β; z) (called
theWright function).He also found [Wri40a] the connection ofφ(α, β; z)with the so-
called generalized Bessel functions of order greater than one, which was a prototype
of the two-parametric Mittag-Leffler function Eα,β(z).

The representation of the Cauchy kernel in the form (3.6.15) was found byMittag-
Leffler [ML08]. Using that as a basis, he developed a generalization of the Borel
summation method for power series as presented in [SanGer60].

Humbert and Agarwal [Aga53], [Hum53]–[HumAga53] introduced the two-
parametric Mittag-Leffler function Eα,β(z) (mentioned for the first time in the article
by Wiman [Wim05a]) and investigated its properties (see also [HumDel53] for the
generalized Mittag-Leffler function of two variables).

The Laplace transform of Eα(tα) was used by Humbert [Hum53] to obtain a
number of functional relations satisfied by the Mittag-Leffler function.

Feller (see, e.g.., [Fel71], see also [GrLoSt90, Chap. 5]) conjectured the complete
monotonicity of the Mittag-Leffler function Eα(−x) and proved it for 0 ≤ α ≤ 1 by
using methods of Probability Theory. An analytic proof of this result was obtained
by Pollard [Poll48]. The result presented in Sect. 3.7.2 is due to him. More recently,
further aspects of the complete monotonicity were investigated byMainardi [Mai14]
(see also [Sim14]). In particular, some bounds for the function Eα(−xα) were found
and illustrated by respective plots.

For pioneeringworks on themathematical applications of theMittag-Leffler func-
tionwe refer to Hille and Tamarkin [HilTam30] and Barrett [Barr54]. The 1930 paper
by Hille and Tamarkin deals with the solution of the Abel integral equation of the
second kind (a particular fractional integral equation). The 1954 paper byBarrett con-
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cerns the general solution of the linear fractional differential equation with constant
coefficients.

Concerning earlier applications of theMittag-Leffler function in physics, we refer
to the contributions by K.S. Cole, see [Col33] (mentioned in the book by Davis
[Dav36, p. 287]), in connection with nerve conduction, and by de Oliveira Castro
[Oli39], and Gross [Gro47], in connection with dielectrical and mechanical relax-
ation, respectively. Subsequently, Caputo andMainardi [CapMai71a], [CapMai71b],
have proved that the Mittag-Leffler type functions appear whenever derivatives of
fractional order are introduced in the constitutive equations of a linear viscoelas-
tic body. Since then, several other authors have pointed out the relevance of such
functions for fractional viscoelastic models.

In recent times the attention of mathematicians towards the Mittag-Leffler func-
tion has increased from both the analytical and numerical point of view, over-
all because of its relation with the Fractional Calculus and its applications, see
Diethelm et al. [Die10], Hilfer and Seybold [HilSey06], Luchko et al. [LucGor99],
[LucSri95], Gorenflo et al. [GoLoLu02], Samko et al. [SaKiMa93], Gorenflo and
Vessella [GorVes91], Miller and Ross [MilRos93], Kiryakova [Kir94], Gorenflo and
Rutman [GorRut94], Mainardi [Mai96b], [Mai97], Podlubny [Pod99], Kilbas and
Saigo [KilSai04], Blank [Bla97], Gorenflo and Mainardi [GorMai97], Schneider
[Sch90], Tarasov [Tar10, Tar13], Uchaikin [Uch13a, Uch13b], and Baleanu et al.
[Bal-et-al17].

In fact there has been a revived interest in the Fractional Calculus because of
its applications in different areas of physics and engineering. In addition to the
books and papers already quoted, here we would like to draw the reader’s attention
to some relevant papers, in alphabetical order of the first author, Al Saqabi and
Tuan [Al-STua96], Brankov and Tonchev [BraTon92], Berberan-Santos [Ber-S05a,
Ber-S05b, Ber-S05c], and others (see Mainardi’s book [Mai10] and the references
therein).

This list, however, is not exhaustive. Details on Mittag-Leffler functions can also
be found in some treatises devoted to the theory and/or applications of special func-
tions, integral transforms and fractional calculus, e.g.. Davis [Dav36], Marichev
[Mari83], Gorenflo and Vessella [GorVes91], Samko et al. [SaKiMa93], Kiryakova
[Kir94], Carpinteri and Mainardi [CarMai97], Podlubny [Pod99], Hilfer [Hil00],
West et al. [WeBoGr03], Kilbas et al. [KiSrTr06], Magin [Mag06], Debnath-Bhatta
[DebBha15], Mathai and Haubold [MatHau08].

To the best of the authors’ knowledge, earlier plots of theMittag-Leffler functions
can be found (presumably for the first time in the literature of fractional calculus and
special functions) in the 1971 paper by Caputo and Mainardi [CapMai71b]. More
precisely, these authors provided plots of the function Eν(−tν) for some values of ν ∈
(0, 1], adopting linear-logarithmic scales, in the framework of fractional relaxation
for viscoelastic media. At the time, not only were such functions still almost ignored,
but also the fractional calculus was not yet well accepted by the community of
physicists.

Recently, numerical routines for functions of the Mittag-Leffler type have been
provided, see e.g.. Gorenflo et al. [GoLoLu02] (with MATHEMATICA), Podlubny
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[Pod06] (with MATLAB) and Seybold and Hilfer [SeyHil05]. Furthermore, in the
NASA report by Freed et al. [FrDiLu02], an appendix is devoted to the table of Padè
approximants for the Mittag-Leffler function Eα(−x).

Since the fractional calculus has actually attracted wide interest in different areas
of the applied sciences, we think that the Mittag-Leffler function is now leaving its
isolated life asCinderella (using the term coined by F.G. Tricomi in the 1950s for the
incomplete gamma function). We like to refer to the classical Mittag-Leffler function
as theQueen function of fractional calculus, and to consider all the related functions
as her court, see [MaiGor07].

For the first reading we recommend Chaps. 2, 3, 4, 5 in which the basic theory
of the Mittag-Leffler function in one variable with one, two and three parameters is
discussed. A short account of the further mathematical development of this theory
is presented in Chap.6.

3.9 Exercises

Example 3.1 Prove that the following relations hold:

E3(z) = 1

2

[
ez

1
3 + 2e− 1

2 z
1
3 · cos

(√
3

2
z

1
3

)]
, z ∈ C,

E4(z) = 1

2

[
cos
(
z

1
4

)
+ cosh

(
z

1
4

)]
, z ∈ C.

Example 3.2 Deduce the following duplication formula

E2α(z2) = 1

2
[Eα(z) + Eα(−z)] , z ∈ C (Re α > 0).

Example 3.3 Evaluate the Laplace transform of the Mittag-Leffler function

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
.

Example 3.4 ([MatHau08, p. 90]) Prove that

λ

Γ (α)

x∫

0

Eα(λtα)

(x − t)1−α
dt = Eα(λxα) − 1, Re α > 0.
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Example 3.5 ([HaMaSa11]) Prove the following integral representations of the
Mittag-Leffler function for x ∈ R

Eα(−xα) = 2

π
sin

απ

2

∞∫

0

tα−1 cos xt

1 + 2tα cos απ
2 + t2α

dt, Re α > 0;

Eα(−x) = 1

π
sin απ

∞∫

0

tα−1

1 + 2tα cos απ + t2α
e−t x

1
α tdt, Re α > 0;

Eα(−x) = 1 − 1

2α
+ x

1
α

π

∞∫

0

arctan

[
tα + cos απ

sin απ

]
e−t x

1
α tdt, Re α > 0.

Example 3.6 ([GorMai97, Ber-S05b]) Prove the following integro-functional rela-
tion for the Mittag-Leffler function

Eα(−x) = 2x

π

∞∫

0

E2α(−t2)

x2 + t2
dt, 0 ≤ Re α ≤ 1.

Example 3.7 ([PengLi10]) Prove the following integral form of the semi-group
property of the Mittag-Leffler function

t+s∫

0

Eα(aτα)

(t + s − τ)α
dτ −

t∫

0

Eα(aτα)

(t + s − τ)α
dτ −

s∫

0

Eα(aτα)

(t + s − τ)α
dτ

= α

t∫

0

s∫

0

Eα(arα
1 )Eα(arα

2 )

(t + s − r1 − r2)α
dr1dr2.

Example 3.8 ([SanGer60]) Determine the Mittag-Leffler star (see Sect. 3.6.2) for
the geometric series

∞∑

n=0

zn.

Example 3.9 ([Tua17]) Let γ (ε, θ), πα
2 < θ < πα, be a contour defined in Sect. 4.7

(see formulas (4.7.1)–(4.7.2));

λ ∈
{
C \ {0} : arg λ <

πα

2
, |θ − arg λ| ≥ θ0, θ0 ∈ (0, θ − πα

2
)
}

.

Prove the following inequality
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∣∣∣∣Eα(λt
1
α ) − 1

α
exp(λ

1
α t)

∣∣∣∣ <
M1(α, λ)

tα
, ∀t ≥ t0,

where

M1(α, λ) =

∫

γ (1,θ)

∣∣∣exp(ζ
1
α )

∣∣∣ dζ

2πα|λ| sin θ0
, t0 = 1

|λ| 1
α (1 − sin θ0)

1
α

.



Chapter 4
The Two-Parametric Mittag-Leffler
Function

In this chapter we present the basic properties of the two-parametric Mittag-Leffler
function Eα,β(z) (see (1.0.3)), which is the most straightforward generalization of
the classical Mittag-Leffler function Eα(z) (see (3.1.1)). As in the previous chapter,
the material can be formally divided into two parts. Starting from the basic defini-
tion of the Mittag-Leffler function as a power series, we discover that, for the first
parameter α with positive real part and any complex value of the second parameter
β, the function Eα,β(z) is an entire function of the complex variable z. Therefore we
discuss in the first part the (analytic) properties of the two-parametric Mittag-Leffler
function as an entire function. Namely, we calculate its order and type, present a
number of formulas relating the two-parametric Mittag-Leffler function to elemen-
tary and special functions aswell as recurrence relations and differentiation formulas,
introduce some useful integral representations and discuss its asymptotics and the
distribution of zeros of the considered function. An extension of the two-parametric
Mittag-Leffler function to values of the first parameter α with non-positive real part
is given here too.

It is well-known that in current applications the properties of the two-parametric
Mittag-Leffler function of a real variable are often used. Thus, we collect in the
second part (Sect. 4.9) results of this type. They concern integral representations and
integral transforms of the two-parametric Mittag-Leffler function of a real variable,
the complete monotonicity property, and relations to the fractional calculus. People
working in applications can, at first reading, omit some of the deeper mathematical
material (that from Sects. 4.4–4.8, say).

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
R. Gorenflo et al.,Mittag-Leffler Functions, Related Topics and Applications,
Springer Monographs in Mathematics,
https://doi.org/10.1007/978-3-662-61550-8_4
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4.1 Series Representation and Properties of Coefficients

The Mittag-Leffler type function (or the two-parametric Mittag-Leffler function)

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
(Reα > 0, β ∈ C) (4.1.1)

generalizes the classical Mittag-Leffler function

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
(Reα > 0).

We have Eα,1(z) = Eα(z). For any α,β ∈ C, Reα > 0, the function (4.1.1) is an
entire function of order ρ = 1/(Reα) and type σ = 1.

Indeed, let us consider the slightly more general function

Eα,β(σα z) =
∞∑

k=0

(σα z)k

Γ (αk + β)
, (4.1.2)

i.e. take the coefficients in the form

ck = σαk

Γ (αk + β)
(k = 0, 1, 2, . . .), (4.1.3)

where 0 < Reα < +∞, 0 < σ < +∞ is an arbitrary real constant and β is a com-
plex parameter. By using Stirling’s formula (see, e.g., [ErdBat-1, 1.18 (3)]) we have

Γ (αk + β) = √
2π (αk)αk+β− 1

2 e−αk [1 + o(1)], k → ∞ (4.1.4)

and, consequently, for the sequence {ck}∞0 we immediately obtain

lim
k→∞

k log k

log 1
|ck |

= 1

(Reα)
= ρ, lim

k→∞ k|ck |ρ/k = eρσ. (4.1.5)

According to a well-known theorem in the theory of entire functions (see, e.g.,
formulas (B.5) and (B.6) in Appendix B), the function (4.1.2) has order ρ = 1/α
and type σ for any β. Therefore, the two-parametric Mittag-Leffler function (4.1.1)
has order ρ = 1/(Reα) and type 1 for any Reα > 0 and any value of the parameter
β ∈ C.
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4.2 Explicit Formulas. Relations to Elementary and Special
Functions

Using definition (4.1.1) we obtain a number of formulas relating the two-parametric
Mittag-Leffler function Eα,β to elementary functions (see, e.g. [HaMaSa11])

E1,1(z) = ez, E1,2(z) = ez − 1

z
, (4.2.1)

E2,1(z) = cosh
√
z, E2,2(z) = sinh

√
z√

z
. (4.2.2)

Someextra formulas, for other special values of parameters, are presented as exercises
at the end of the chapter.

Here we also mention two recurrence relations for the function (4.1.1).

Eα,β(z) = 1

Γ (β)
+ zEα,β+α (z) , (4.2.3)

Eα,β(z) = βEα,β+1(z) + αz
d

dz
Eα,β+1(z). (4.2.4)

Now we present other relations of the two-parametric Mittag-Leffler function to
certain special functions introduced by different authors.

The hyperbolic functions of order n, denoted by hr (z, n), are defined, e.g., in
[ErdBat-3, 18.2 (2)]. Their series representations relate these functions to the two-
parametric Mittag-Leffler function (see [ErdBat-3, 18.2 (16)]):

hr (z, n) =
∞∑

k=0

znk+r−1

(nk + r − 1)! = zr−1En,r (z
n), r = 1, 2, . . . (4.2.5)

The trigonometric functions of order n, denoted by kr (z, n), are defined, e.g.,
in [ErdBat-3, 18.2 (18)]. With λ = exp

{
πi
n

}
the functions kr (z, n) and hr (z, n) are

related by:
kr (z, n) = λ1−r hr (λz, n),

from which it follows

kr (z, n) =
∞∑

j=0

(−1) j znj+r−1

(nj + r − 1)! = zr−1En,r (−zn), r = 1, 2, . . . (4.2.6)

The relation to the complementary error function is also well known (see
[MatHau08, pp. 80–81], [Dzh66, p. 297]):
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E 1
2 ,1(z) =

∞∑

k=0

zk

Γ
(
k
2 + 1

) = ez
2
erfc(−z), (4.2.7)

where erfc is complementary to the error function erf:

erfc(z) := 2√
π

∫ ∞

z
e−u2du = 1 − erf(z), z ∈ C.

The Miller–Ross function is defined as follows (see [MilRos93]):

Et (ν, a) = tν
∞∑

k=0

(at)k

Γ (ν + k + 1)
= tνE1,ν+1(at). (4.2.8)

The Rabotnov function is represented as follows (see [RaPaZv69]):

Rα(β, a) = tα
∞∑

k=0

βk tk(α+1)

Γ ((1 + α)(k + 1))
= tαEα+1,α+1(βt

α+1). (4.2.9)

4.3 Differential and Recurrence Relations

A term-by-term differentiation allows us to verify in an easy way that

dm

dzm
Eα,β(z) =

∞∑

k=0

Γ (k + m + 1)zk

k!Γ (αk + αm + β)
= m!Em+1

α,αm+β(z) (m ≥ 1), (4.3.1)

where Eγ
α,β(z) denotes the 3-parameter Mittag-Leffler function (also known as the

Prabhakar function), which will be introduced later on in Chap.5.
The following formula [Djr93] expresses the first derivative of the ML function

in terms of the difference of two instances of the same function

d

dz
Eα,β(z) = Eα,β−1(z) + (1 − β)Eα,β(z)

αz
, z �= 0. (4.3.2)

It can be generalized to derivatives of any integer order [GarPop18], and thus provides
a summation formula of Djrbashian type: Let α > 0,β ∈ R and z �= 0. For any
m ∈ N

dm

dzm
Eα,β(z) = 1

αmzm

m∑

j=0

c(m)
j Eα,β− j (z), (4.3.3)

where c(0)
0 = 1 and the remaining coefficients c(m)

j , j = 0, 1, . . . ,m, are recursively
evaluated as
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c(m)
j =

⎧
⎨

⎩

(1 − β − α(m − 1))c(m−1)
0 j = 0,

c(m−1)
j−1 + (1 − β − α(m − 1) + j)c(m−1)

j 1 ≤ j ≤ m − 1,
1 j = m.

(4.3.4)

An explicit closed form for the coefficients c(m)
j is not available. However, they

can be computed [GarPop18] as the solution of a linear system ofm equations in the
m unknowns c(m)

j , j = 0, 1, . . . ,m − 1, where each equation is

m−1∑

j=0

1

Γ (αl + β − j)
c(m)
j = − 1

Γ (αl + β − m)
, l = 0, . . .m − 1.

By exploiting the recurrence relation in [Pra71, Eq. (2.4)] together with (4.3.1),
the alternative Prabhakar type summation formula for derivatives of theML function
is obtained [GarPop18]: Let α > 0 and β ∈ R. For any m ∈ N

dm

dzm
Eα,β(z) = 1

αm

m∑

j=0

c(m)
j Eα,αm+β− j (z), (4.3.5)

where c(m)
j , j = 0, 1, . . . ,m, are the same coefficients given in (4.3.4).

Formula (4.3.5) is mathematically equivalent to (4.3.3) but must be preferred for
its better stability properties when computing derivatives of the ML function with z
close to the origin.

Several applications involve the more general function zβ−1Eα,β(zα), for which
differentiation formulas can easily be derived. The following differentiation formula
is an immediate consequence of the definition of the two-parametric Mittag-Leffler
function (4.1.1)

(
d

dz

)m

[zβ−1Eα,β(zα)] = zβ−m−1Eα,β−m(zα) (m ≥ 1). (4.3.6)

We consider now some corollaries of formula (4.3.6). Let α = m/n, (m, n =
1, 2, . . . ) in (4.3.6). Then

(
d

dz

)m

[zβ−1Em/n,β(zm/n)] (4.3.7)

= zβ−1Em/n,β(zm/n) + zβ−1
n∑

k=1

z− m
n k

Γ
(
β − m

n k
) (m, n ≥ 1).

Since
1

Γ (−s)
= 0 (s = 0, 1, 2, . . . ),
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it follows from (4.3.7) with n = 1 and any β = 0, 1, . . . , m that

(
d

dz

)m

[zβ−1Em,β(zm)] = zβ−1Em,β(zm) (m ≥ 1). (4.3.8)

Substituting zn/m in place of z in (4.3.7) we get

(
m

n
z1−

n
m
d

dz

)m [
z(β−1) n

m Em,β(z)
]

(4.3.9)

= z(β−1) n
m Em,β(z) + z(β−1) n

m

n∑

k=1

z−k

Γ
(
β − m

n k
) (m, n = 1, 2, . . . ).

Let m = 1 in this formula. We then obtain the first-order differential equation for
the function z(β−1)n E1/n,β(z):

1

n

d

dz

[
z(β−1)n E1/n,β(z)

]− zn−1[z(β−1)n E1/n,β(z)] (4.3.10)

= zβn−1
n∑

k=1

z−k

Γ
(
β − k

n

) , (n = 1, 2, . . . ).

Solving this equation we obtain for any z0 �= 0 ,

E1/n,β(z) = z(1−β)n ez
n
{
z(β−1)n
0 e−zn0 E1/n,β(z0)

+n
∫ z

z0

e−τ n

(
n∑

k=1

τ−k

Γ
(
β − k

n

)τβn−1

)
dτ

}
(n = 1, 2, . . . ). (4.3.11)

Formula (4.3.11) is true with z0 = 0 if β = 1. In this case we have

E1/n,1(z) = ez
n

{
1 + n

∫ z

0
e−τ n

(
n−1∑

k=1

τ k−1

Γ
(
k
n

)
)
dτ

}
(n ≥ 2). (4.3.12)

In particular,

E1/2,1(z) = ez
2

{
1 + 2√

π

∫ z

0
e−τ 2

dτ

}
= ez

2 {1 + erf z} = ez
2
erfc (−z) ,

(4.3.13)
and, consequently,

E1/2,1(z) ∼ 2 ez
2
, |argz| <

π

4
, |z| → ∞.
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In the following lemma we collect together a number of known recurrence rela-
tions for the two-parametric Mittag-Leffler function.

Lemma 4.1 ([GupDeb07]) For all α > 0, β > 0 the following relations hold

z2Eα,β+2α(z) = Eα,β(z) − 1

Γ (β)
− z

Γ (β + α)
, (4.3.14)

z3Eα,β+3α(z) = Eα,β(z) − 1

Γ (β)
− z

Γ (β + α)
− z2

Γ (β + 2α)
, (4.3.15)

z4Eα,β+3α(z) = Eα,β(z) − 1

Γ (β)
− z

Γ (β + α)
− z2

Γ (β + 2α)
− z3

Γ (β + 3α)
.

(4.3.16)

4.4 Integral Relations and Asymptotics

Using the well-known discrete orthogonality relation

m−1∑

h=0

ei2πhk/m =
{
m, if k ≡ 0 (mod m)

0, if k �≡ 0 (mod m)

and definition (4.1.1) of the function Eα,β(z) we have

m−1∑

h=0

Eα,β(z ei2πh/m) = m Eα/m,β(zm) (m ≥ 1). (4.4.1)

Substituting here mα for α and z1/m for z we obtain

Eα,β(z) = 1

m

m−1∑

h=0

Emα,β(z1/mei2πh/m) (m ≥ 1). (4.4.2)

Similarly, the formula

Eα,β(z) = 1

2m + 1

m∑

h=−m

E(2m+1)α,β(z1/(2m+1)ei2πh/(2m+1)) (m ≥ 0) (4.4.3)

can be obtained via the relation

m∑

h=−m

eei2πhk/(2m+1) =
{
2m + 1, if k ≡ 0 (mod 2m + 1) ,

0, if k �≡ 0 (mod 2m + 1) .
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Using (4.1.1) and term-by-term integration we arrive at

∫ z

0
Eα,β(λtα)tβ−1dt = zβEα,β+1(λz

α) (β > 0), (4.4.4)

and furthermore, at the more general relation

1

Γ (α)

∫ z

0
(z − t)μ−1 Eα,β(λtα) tβ−1 dt (4.4.5)

= zμ+β−1Eα,μ+β(λzα) (μ > 0, β > 0),

where the integration is performed along the straight line connecting the points 0 and
z.

It follows from formulas (4.4.5), (4.4.2) and (4.4.3) that

1

Γ (β)

∫ z

0
(z − t)β−1eλtdt = zβE1,β+1(λz) (β > 0), (4.4.6)

1

Γ (β)

∫ z

0
(z − t)β−1 cosh

√
λt dt = zβE2,β+1(λz

2) (β > 0), (4.4.7)

1

Γ (β)

∫ z

0
(z − t)β−1 sinh

√
λt√

λ
dt = zβ+1E2,β+2(λz

2) (β > 0). (4.4.8)

Let us prove the relation

zβ−1Eα,β(zα) = zβ−1E2α,β(z2α) (4.4.9)

+ 1

Γ (α)

∫ z

0
(z − t)α−1E2α,β(t2α)tβ−1 dt (β > 0).

First of all, we have by direct evaluations

∫ z

0
E2α,β(t2α)tβ−1

{
1 + (z − t)α

Γ (α + 1)

}
dt

=
∞∑

k=0

1

Γ (2kα + β)

∫ z

0
t2kα+β−1

{
1 + (z − t)α

Γ (α + 1)

}
dt

= zβ
∞∑

k=0

z2kα

Γ (2kα + β + 1)
+ zβ

∞∑

k=0

z(2k+1)α

Γ ((2k + 1)α + β + 1)

= zβ
∞∑

k=0

zkα

Γ (kα + β + 1)
= zβEα,β+1(z

α).
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This relation and formula (4.4.4) imply

∫ z

0
E2α,β(t2α)tβ−1

{
1 + (z − t)α

Γ (α + 1)

}
dt

=
∫ z

0
Eα,β(tα)tβ−1 dt (β > 0).

Differentiation of this formula with respect to z gives us formula (4.4.9).
Let us prove the formula

∫ l

0
xβ−1Eα,β(λxα) (l − x)ν−1Eα,ν(λ

∗(l − x)α) dx (4.4.10)

= λ Eα,β+ν(lαλ) − λ∗ Eα,β+ν(lαλ∗)
λ − λ∗ lβ+ν−1 (β > 0 , ν > 0) ,

where λ and λ∗ (λ �= λ∗) are any complex parameters.
Indeed, using (4.1.1) for any λ and λ∗ (λ �= λ∗) and β > 0 , ν > 0 we find

∫ l

0
xβ−1Eα,β(λxα)(l − x)ν−1Eα,ν(λ

∗(l − x)α) dx

=
∞∑

n=0

∞∑

m=0

λn(λ∗)m

Γ (nα + β) Γ (mα + ν)

∫ l

0
xnα+β−1(l − x)mα+ν−1 dx

=
∞∑

n=0

∞∑

m=0

λn(λ∗)ml(n+m)α+β+ν−1

Γ ((m + n)α) + β + ν)
= lβ+ν−1

∞∑

n=0

∞∑

k=n

λn(λ∗)k−n lkα

Γ (kα + β + ν)

= lβ+ν−1
∞∑

k=0

(λ∗)k lkα

Γ (kα + β + ν)

k∑

n=0

(
λ

λ∗

)n

= lβ+ν−1

λ − λ∗

∞∑

k=0

lkα(λk+1 − (λ∗)k+1)

Γ (kα + β + ν)
.

Using formula (4.1.1) once more, we arrive at (4.4.10).
Finally, we obtain two integral relations:

∫ +∞

0
e−t Eα,β(ztα)tβ−1dt = 1

1 − z
(β > 0, |z| < 1) , (4.4.11)

∫ +∞

0
e−t2/(4x) Eα,β(tα) tβ−1 dt = √

πxβ/2 E2α,
1+β
2

(
x2α
)

(β > 0, x > 0).

(4.4.12)

First of all, since theMittag-Leffler type function (4.1.1) is an entire function of order
ρ = 1/(Reα) and type 1 (see Sect. 4.1), we have for any σ > 1 the estimate:

|Eα,β(z)| ≤ Cexp{σ|z|ρ}, |z| ≥ |zσ|.
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Consequently, the integrals in the formulae (4.4.11) and (4.4.12) are convergent.
It is easy to check that term-by-term integration of the expansion

e−t Eα,β)(zt
α)tβ−1 =

∞∑

k=0

e−t t kα+β−1

Γ (kα + β)
zk

can be performed with respect to t along the interval (0, +∞) if |z| < 1. As a result,
we arrive at formula (4.4.11).

Similarly, we have using term-by-term integration of the following expansion
with respect to t :

e−t2/(4x) Eα,β(tα) tβ−1 =
∞∑

k=0

t kα+β−1

Γ (kα + β)
e−t2/(4x) (β > 0)

along the same interval (0, +∞) (integration is performable with any fixed x > 0!),

∫ +∞

0
e−t2/(4x) Eα,β(tα) tβ−1 dt =

∞∑

k=0

Γ
(
kα+β

2

)

2Γ (kα + β)
(2

√
x)kα+β .

Rewriting the right-hand side of the last relation by using the Lagrange formula

Γ (s)Γ (s + 1/2) = √
π 21−2s Γ (2s)

we obtain formula (4.4.12).
TheMittag-Leffler type function Eα,α (z) plays an essential role in the linear Abel

integral equation of the second kind (see, e.g., [GorVes91, GorMai97]).

Theorem 4.2 Let a function f (t) be in the function space L1(0, l). Let α > 0 and
λ be an arbitrary complex parameter. Then the integral equation

u(t) = f (t) + λ

Γ (α)

∫ t

0
(t − τ )α−1 u(τ ) dτ , t ∈ (0, l), (4.4.13)

has a unique solution

u(t) = f (t) + λ

∫ t

0
(t − τ )α−1 Eα,α

[
λ (t − τ )α) f (τ ) dτ , t ∈ (0, l), (4.4.14)

in the space L1(0, l) .

This result was discovered in the pioneering work of Hille and Tamarkin
[HilTam30]. We give the proof of this theorem in Chap. 8.

We consider now a simple application of Theorem 4.2.
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Let z = t > 0 and t = τ be the integration variable in (4.4.9). Then this represen-
tation can be considered as an integral equation of type (4.4.13) with

f (t) = tβ−1 Eα,β(tα) , λ = 1 ;

and solution
u(t) = tβ−1E2α,β(x2α) .

Using formula (4.4.14) we obtain for the solution u(t) the representation

u(t) = tβ−1 Eα,β(tα) (4.4.15)

−
∫ t

0
(t − τ )α−1 Eα,β(τα) τβ−1 Eα,α

[−(t − τ )α
]
dτ .

We also mention asymptotic results for theMittag-Leffler function Eα,β(z)which
are essentially a refinement of results of Dzhrbashian (see [Dzh66]).

Theorem 4.3 For all 0 < α < 2, β ∈ C, m ∈ N, the following asymptotic formulas
hold:

If |arg z| < min{π,πα}, then

Eα,β(z) = 1

α
z(1−β)/αez

1/α −
m∑

k=1

z−k

Γ (β − kα)
+ O

(|z|−m−1
)
, |z| → ∞. (4.4.16)

If 0 < α < 1, πα < |arg z| < π, then

Eα,β(z) = −
m∑

k=1

z−k

Γ (β − kα)
+ O

(|z|−m−1
)
, |z| → ∞. (4.4.17)

Theorem 4.4 For allα ≥ 2,β ∈ C, m ∈ N, the following asymptotic formula holds:

Eα,β(z) = 1

α

∑

|arg z+2πn|< 3πα
4

(
z1/αe2πin/α

)1−β
ez

1/αe2πin/α

−
m∑

k=1

z−k

Γ (β − kα)
+ O

(|z|−m−1
)
, |z| → ∞. (4.4.18)

Amore exact descriptionof the remainders in formulas (4.4.16)–(4.4.18) is presented,
e.g., in [PopSed11].
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4.5 The Two-Parametric Mittag-Leffler Function as an
Entire Function

One more immediate consequence of the results in [Sed94, Sed00, Sed04, Sed07]
(see also [Pop02, Pop06, PopSed03]) is the fact that Eα,β with α > 0, β ∈ R, is a
function of completely regular growth in the sense of Levin–Pfluger.

For an entire function F(z) of finite order ρ this means that the following limit
exists

hF (θ) = lim
r→∞

log
∣∣F(reiθ)

∣∣
rρ

, (4.5.1)

when r → ∞ takes all positive values avoiding an exceptional set C0 of relatively
small measure common for all rays arg z = θ (see the formal definition in Sect.B.4
of Appendix B). Sometimes the limit in (4.5.1) is called the weak limit and is denoted
by

lim
r→∞

∗ .

The above property is known to be equivalent to the regularity of the distribution
of zeros of an entire function (see [Lev56, Ron92]). The corresponding result is
presented in Sect.B.4 of Appendix B.

To prove that Eα,β possesses this property let us consider the Weierstrass product
representation (see Theorem B.1 in Appendix B). For the two-parametric Mittag-
Leffler function this representation has the form

Eα,β =
∞∏

n=1

(
1 − z

zn

)
e

z
zn

+ z2

2z2n
+...+ z[1/α]

[1/α]z[1/α]
n (4.5.2)

×
∞∏

n=1

(
1 − z

z−n

)
e

z
z−n

+ z2

2z2−n
+...+ z[1/α]

[1/α]z[1/α]
−n × eq0+q1z+...+q[1/α]z[1/α]

,

where zn, z−n are the zeros of Eα,β in the neighborhoods of the rays arg z =
πα
2 , arg z = −πα

2 , respectively.
This formula can be written in terms of simple Weierstrass factors:

G(ζ, p) = (1 − ζ)eζ+ ζ2

2 +...+ ζ p

p , p ∈ N. (4.5.3)

Then (4.5.2) becomes

Eα,β(z) =
∞∏

n=1

G

(
z

zn
, [1/α]

)
×

∞∏

n=1

G

(
z

z−n
, [1/α]

)
× eq0+q1z+...+q[1/α]z[1/α]

.

(4.5.4)
Formula (4.5.4) (or (4.5.2)) is not too useful for obtaining asymptotic results. By
using the technique developed for the entire functions of completely regular growth
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(see, e.g., [GoLeOs91, Lev56, Ron92]), we can compare the asymptotic behavior of
Eα,β with that of more simple functions. In order to formulate it in a more rigorous
form let us introduce two pairs of sequences:

wn = |zn|ei πα
2 , n = 1, 2, , . . . , w−n = |z−n|e−i πα

2 , n = 1, 2, , . . . ; (4.5.5)

ωn = (2πn)αei
πα
2 , n = 1, 2, , . . . , ω−n = (2πn)αe−i πα

2 , n = 1, 2, , . . . ; (4.5.6)

and construct the corresponding Weierstrass products for these sequences

W (z) =
∞∏

n=1

G

(
z

wn
, [1/α]

)
×

∞∏

n=1

G

(
z

w−n
, [1/α]

)
× eq0+q1z+...+q[1/α]z[1/α]

,

(4.5.7)

Ω(z) =
∞∏

n=1

G

(
z

ωn
, [1/α]

)
×

∞∏

n=1

G

(
z

ω−n
, [1/α]

)
× eq0+q1z+...+q[1/α]z[1/α]

.

(4.5.8)

Lemma 4.5 The functions Eα,β(z), W (z),Ω(z) are functions of completely regular
growth with the same characteristics, i.e. with the same angular density (see formula
(B.14a) in Appendix B) and in the case of integer ρ = [1/α] also with the same
coefficients of angular symmetry (see formula (B.14b) in Appendix B).

To prove this result it suffices to examine the corresponding properties of the
sequences (z±n), (w±n), (ω±n).

Lemma 4.6 The functions Eα,β(z), W (z),Ω(z) have the same asymptotic behavior,
i.e. the following weak limits exist:1

lim
r→∞

∗
∣∣Eα,β(reiθ)

∣∣
∣∣W (reiθ)

∣∣ = lim
r→∞

∗
∣∣W (reiθ)

∣∣
∣∣Ω(reiθ)

∣∣ = 1. (4.5.9)

� Comparing representations (4.5.4) and (4.5.7) we arrive at the conclusion that the
quotient under this limit is in fact aBlaschke type product for two rays. Such products
were studied in [Gov94]. Repeating calculations of [Gov94] we get the existence of
the first limit (4.5.9).

The second result of the lemma also follows from quite general considerations.
Comparing sequences (w±n) and (ω±n) we can see that there exists a proximate
order (cf. [Lev56, GoLeOs91]) (i.e. a non-negative, non-decreasing function such
that limr→∞ ρ(r) = ρ, limr→∞ ρ′(r)r log r = 0) for which

|w±n|ρ(r) = |ω±n|ρ . (4.5.10)

1The meaning of the weak limit limr→∞∗ is the same as in the definition of entire functions of
completely regular growth, see (4.5.1).
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A possible way to see this is to use an interpolating C1-function ρ(r) obeying the
interpolation conditions

ρ(n) = ρ
log |ω±n|
log |w±n| , n = 1, 2, . . . (4.5.11)

Since we need to obtain only an asymptotic result, the interpolation problem can be
simplified and even solved in closed form. After constructing the proximate order it
remains to apply the Valiron–Levin theory of entire functions of a proximate order
(see, e.g., [Lev56]). This completes the proof. �

We are now in a position to discuss the global behavior of the Mittag-Leffler type
function Eα,β(z). This behavior is described in terms of the indicator function for
Eα,β(z) in the case 0 < α < 2 (we assume additionally that β �= 1, 0,−1, . . ., when
α = 1, see (B.7)):

hEα,β
(θ) =

{
cos θ

α
, 0 ≤ |θ| < πα

2 ,

0, πα
2 ≤ |θ| ≤ π.

(4.5.12)

4.6 Distribution of Zeros

In this section we mainly follow the article [Sed94] (see also [PopSed11]).
First of all we recall some relations of the Mittag-Leffler function to elementary

functions for special values of the parameters α,β. In these cases the zeros of the
Mittag-Leffler function can be found explicitly.

E1,1(z) = exp{z}, E1,−m(z) = zm+1exp{z}, m ∈ Z+; (4.6.1)

E2,1(z) = cosh
√
z, E2,2(z) = sinh

√
z√

z
, E2,3(z) = cosh

√
z − 1√
z

, (4.6.2)

E2,−2m(z) = zm+1/2 sinh
√
z, m ∈ Z+, E2,−(2m−1)(z) = zm cosh

√
z, m ∈ N.

(4.6.3)

Thus the function E1,1(z) has no zero, while the function E1,−m(z) has its only zero at
z = 0 of order m + 1. Below we can see that for all other values of parameters α,β
(including those described in (4.6.2), (4.6.3)) the Mittag-Leffler function Eα,β(z)
has an infinite number of zeros. We should also mention that the function E2,3(z)
has double zeros at the points zn = −(2πn)2, n ∈ N. This is the only case when the
Mittag-Leffler function Eα,β(z) has an infinite number of multiple zeros.

In order to describe the distribution of zeros of theMittag-Leffler function Eα,β(z)
we introduce the following constants:
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cβ = α

Γ (β − α)
, dβ = α

Γ (β − 2α)
, τβ = 1 + 1 − β

α
, β �= α − l, l ∈ Z+, (4.6.4)

cβ = α

Γ (β − 2α)
, dβ = α

Γ (β − 3α)
, τβ = 2 + 1 − β

α
, β = α − l, l ∈ Z+, α /∈ N.

(4.6.5)
By construction cβ �= 0 for all considered α and β. The values of parameters α and
β, which are not mentioned in (4.6.4) and (4.6.5), are called exceptional values.

Theorem 4.7 Let the values of parametersα,β satisfy oneof the following relations:

(1) 0 < α < 2,β ∈ C, and β �= 0,−1,−2, . . . when α = 1;
(2) α = 2, Re β > 3.

Then all zeros zn of theMittag-Leffler function Eα,β(z)with sufficiently largemodulus
are simple and the asymptotic relation holds for n → ±∞

(zn)
1/α = 2πin − τβα log 2πin + dβ/cβ

(2πin)α
+ (τβα)2

log 2πin

2πin
− (τβα)2

log cβ
2πin

+ αn,

(4.6.6)
where for α < 2

αn = O

(
log |n|
|n|1+α

)
+ O

(
1

|n|2α
)

+ O

(
log2 |n|

|n|2
)

, (4.6.7)

but for α = 2

αn = e±iπβ

c2β(2πn)−4τβ
+ O

(
1

|n|−8τβ

)
+ O

(
log |n|
|n|1−4τβ

)
+ O

(
log2 |n|

|n|2
)

. (4.6.8)

The proof of the theorem is based on the integral representation of the Mittag-
Leffler function Eα,β(z) and on the following lemma.

Lemma 4.8 Let A ∈ C and δ ∈ (0,π/2) be fixed numbers and let the sets Z, W be
defined for all R > 0 by the relations

Z = Zδ,R = {z : |arg z| < π − δ, |z| > R} ,

W = Wδ,R = {z : |arg z| < π − 2δ, |z| > 2R} .

Then for sufficiently large R > 0 the equation

z − A log z = w, w ∈ W,

has a unique zero z ∈ Z. This zero is simple and we have the asymptotics

z = w + A log w + A2 log w

w
+ O

(
log2 w

w2

)
, w → ∞. (4.6.9)
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� Proof of Theorem 4.7 ([PopSed11, pp. 35–37]). Let us put in the formulas (4.4.16),
(4.4.17) m = 1 if β is defined as in (4.6.4), and m = 2 if β is defined as in (4.6.5).
Then cβ �= 0. Hence one can conclude from (4.4.16), (4.4.17) that for any ε > 0 all
zeros zn of the Mittag-Leffler function Eα,β(z) with sufficiently large modulus are
situated in the angle |arg z| < πα

2 + ε. In this angle Eα,β(z) satisfies the asymptotic
relation

αzm Eα,β(z) = zτβexp{z1/α} − cβ − dβ

z
+ O

(
1

z2

)
, |arg z| <

πα

2
+ ε. (4.6.10)

Therefore, there exists a sufficiently large r0 such that all zeros zn, |zn| > r0, can be
found from the equation

exp{z1/α + τβ log z} = cβ + dβ

z
+ O

(
1

z2

)
. (4.6.11)

Let us put
w = z1/α + ατβ log z1/α. (4.6.12)

Then, by Lemma 4.8 we obtain the solution to (4.6.12) with respect to z1/α in the
form

z1/α = w + O (log w) .

Hence
1

z
= 1

wα

(
1 + O

(
log w

w

))
= 1

wα
+ O

(
log w

w1+α

)
.

Substituting this relation into (4.6.11) we obtain the equation

exp{w} = cβ + dβ

wα
+ O

(
log w

w1+α

)
+ O

(
1

w2α

)
. (4.6.13)

In particular,
exp{w} = cβ + o (1) , w → ∞. (4.6.14)

Since all zeros of the function exp{w} − cβ are simple and are given by the for-
mula 2πin + log cβ, n ∈ Z, by Rouché’s theorem all zeros wn of Eq. (4.6.14) with
sufficiently large modulus are simple too and can be described by the formula

wn = 2πin + log cβ + εn, εn → 0, n → ±∞. (4.6.15)

Thus

1

wn
= 1

2πin
+
(
1 + O

(
1

n

))
, log wn = log |n| + O (1) , n → ±∞. (4.6.16)
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Therefore, if w = wn in (4.6.14), then

cβexp{εn} = cβ + dβ

(2πin)α
+ O

(
log |n|
|n|1+α

)
+ O

(
1

|n|2α
)

.

Since the left-hand side of this relation is equal to cβ + cβεn + O
(
ε2n
)
, we have

εn = O

(
1

|n|α
)
and hence

εn = dβ/cβ

(2πin)α
+ O

(
log |n|
|n|1+α

)
+ O

(
1

|n|2α
)

. (4.6.17)

Substituting this relation into (4.6.15) we get

wn = 2πin + log cβ + dβ/cβ

(2πin)α
+ O

(
log |n|
|n|1+α

)
+ O

(
1

|n|2α
)

, n → ±∞,

(4.6.18)

log wn = log 2πin + log cβ

2πin
+ O

(
1

|n|1+α

)
, n → ±∞. (4.6.19)

Nowwenote that the pre-images zn ofwn satisfy |arg zn| < πα
2 + ε and 1

α

(
πα
2 + ε

)

< π. Thus the conditions of Lemma 4.8 are satisfied and we obtain from this lemma
and from (4.6.12) and (4.6.18)

z1/αn = wn − ατβ log wn + (ατβ

)2 log wn

wn
+ O

(
log2 wn

w2
n

)
. (4.6.20)

Then the proof of the theorem in case (1) follows from (4.6.18) and (4.6.19).
In case (2) one can use a similar argument (see [PopSed11, pp. 36–37]) based on

the following asymptotic formula

E2,β(z) = 1

2
z(1−β)/2

(
e
√
z + e∓iπ(1−β)e−√

z
)

−
m∑

k=1

1

zkΓ (β − 2k)
+ O

(
1

zm+1

)
,

(4.6.21)
which is valid for |z| → ∞ in the angles 0 ≤ arg z ≤ π and−π ≤ arg z ≤ 0, respec-
tively. �

Themost attractive result (see, e.g., [PopSed11, p. 37]) concerning the distribution
of zeros of the Mittag-Leffler function is the following:

Theorem 4.9 Let Re β < 3,β �= 2 − l, l ∈ Z+. Then all zeros zn of the Mittag-
Leffler function E2,β with sufficiently large modulus are simple and the following
asymptotic formula holds (n → ±∞)
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√
zn = πi (n − 1 + β/2) + (−1)n

cβe−iπβ/2

2(iπn)2τβ
+ O

(
1

n6Re τβ

)
+ O

(
1

n1+2Re τβ

)
,

(4.6.22)
where the single-valued branch of the function

√
z is chosen by the relation 0 ≤

arg z < 2π.
If β is real then all zeros zn of E2,β with sufficiently large modulus are real.

Nowwe present a result on the distribution of zeros of the function E2,3+iγ(z), γ �= 0,
γ ∈ R. For the proof of the following theorem we refer to [PopSed11, pp. 39–44].

Theorem 4.10 (1) The set of multiple zeros of the function E2,3+iγ(z) is at most
finite.

(2) The sequence of all zeros zn consists of two subsequences z+
n , n > n+, and

z−
n , n < −n−, for which the following asymptotic relation holds

√
z±
n = 2πin − πγ

2
+ δn + O

(
1

n

)
, n → ±∞, (4.6.23)

where the sequence δn is defined by

δn = δn(γ) = log

(
ηeiγ log 2πn +

√(
ηeiγ log 2πn

)2 − 1

)
, η = 1

Γ (1 + iγ)
,

(4.6.24)
where the principal branch is used for the values of the logarithmic function.

(3) The sequence ζn = √
zn asymptotically belongs to the semi-strips

log ρ1 <

∣∣∣Re ζ + πγ

2

∣∣∣ < log ρ2, Im ζ > 0, (4.6.25)

where
ρ1 = |η| +

√
|η|2 − 1, ρ2 = |η| +

√
|η|2 + 1.

(4) Every point of the interval [0,π] is a limit point of the sequence Im δn, and every
point of the intervals [log ρ1, log ρ2], [log 1/ρ2, log 1/ρ1] is a limit point of the
sequence Re δn.

(5) There exist R = R(γ) > 0 and N = N (γ) ∈ N such that there is no point of the
sequence ζk = √

zk in the disks

|ζ − πin| < R, n > N . (4.6.26)

It remains to consider the distribution of zeros of the function Eα,β in the caseα > 2.

Theorem 4.11 ([PopSed11, p. 45]) Letα > 2. Then all zeros zn of theMittag-Leffler
function Eα,β with sufficiently largemodulus are simple and the following asymptotic
formula holds:
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zn =
(

π

sin π/α

(
n − 1

2
− β − 1

α

)
+ αn

)α

, (4.6.27)

where the sequence αn is defined as described below:

(1) If the pair (α,β) is not mentioned in (4.6.4), (4.6.5), then

αn = O
(
e−πn(cos π

α −cos 3π
α )/ sin π

α

)
.

(2) If 2 < α < 4, then
αn = O

(
n−αRe τβe−πn cot π

α

)
.

(3) If α ≥ 4, then

αn = e−πn cot π
α

(
O
(
eπn cos 3π

α / sin π
α

)
+ O

(
n−αRe τβ

))
.

If β is real then all zeros zn with sufficiently large modulus are real too.

In a series of articles by different authors the following question, which is very
important for applications, was discussed: “Are all zeros of the Mittag-Leffler func-
tion Eα,β with α > 2 simple and negative?” This question goes back to an article
by Wiman [Wim05b]. Several attempts to answer this question have shown its non-
triviality. In [OstPer97] this question was reformulated as the following problem:
“For any α ≥ 2, find a set Wα consisting of those values of the positive parameter β
such that all zeros of the Mittag-Leffler function Eα,β are simple and negative.”

Let us give some answers to the above question, following [PopSed11].

Theorem 4.12 For any α > 2, β ∈ (0, 2α − 1], all complex zeros (zn(α,β))n∈N of
the Mittag-Leffler function Eα,β are simple and negative and satisfy the following
inequalities

−ξα
1 (α,β) < z1(α,β) < −Γ (α + β)

Γ (β)
, (4.6.28)

−ξα
n (α,β) < zn(α,β) < −ξα

n−1(α,β), n ≥ 2, (4.6.29)

where

ξα
n (α,β) =

π
(
n + β−1

α

)

sin π
α

.

If α ≥ 4, then all zeros are simple and negative for any β ∈ (0, 2α].

Theorem 4.13 Let α ≥ 6, 0 < β ≤ 2α. Then for all n, 1 ≤ n ≤ [α
3

]− 1, the zeros
zn(α,β) of the Mittag-Leffler function satisfy the following inequalities
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− √
2

Γ (αn + β)

Γ (α(n − 1) + β)
< zn(α,β) < − Γ (αn + β)

Γ (α(n − 1) + β)
. (4.6.30)

Theorem 4.14 For any N ∈ N, N ≥ 3, the zeros zn(N , N + 1) of theMittag-Leffler
function EN ,N+1(z) satisfy the relation

zn(N , N + 1) = −
[
πn + π/2 + αn(N )

sin π/α

]α

, n ∈ N, n ≥ [N/3] , (4.6.31)

where αn(N ) ∈ R, |αn(N )| ≤ xn(N ),

xn(N ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp{−πn cot π/α}, 3 ≤ N ≤ 6,

exp{−2πn sin 2π/α}, 7 ≤ N ≤ 1400,

1.01exp{−2πn sin 2π/α}, N > 1400.

If N ≥ 6, 1 ≤ n ≤ [N/3] − 1, then

− ((n + 1)N )!
(nN )!

(
1 + 3/2[((n + 1)N )!]2

(nN )!((n + 2)N )! min{1, Nn−2}
)

(4.6.32)

< zn(N , N + 1) < − ((n + 1)N )!
(nN )! .

Next we present a few non-asymptotic results on the distribution of zeros of the
Mittag-Leffler function.

Theorem 4.15 Let 0 < α < 1. Then

(1) for β ∈
( ∞⋃
n=0

[−n + α,−n + 1]
)⋃[1,+∞) the function Eα,β(z) has no nega-

tive zero;

(2) for β ∈
∞⋃
n=0

(−n,−n + α) the function Eα,β(z) has one negative zero and it is

simple.

Theorem 4.16 (I) Let 0 < α < 1, β < 0. Then

(1) for β ∈ [−2n − 1,−2n), n ∈ Z+, the function Eα,β(z) has one positive zero
and it is simple;

(2) for β ∈ [−2n,−2n + 1), n ∈ N, the set of zeros of the function Eα,β(z) is
either empty, or consists of two simple points, or consists of one double
point.

(II) The function E1,β(z) has a unique simple positive zero, whenever β ∈ (−2n −
1,−2n), n ∈ Z+, and has no positive zero, whenever β ∈ (−2n,−2n + 1),
n ∈ N.
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Theorem 4.17 (I) Let one of the following conditions be satisfied:

(1) 0 < α < 1, β ∈ [1, 1 + α],
(2) 1 < α < 2, β ∈ [α − 1, 1] ∪ [α, 2].
Then all zeros of the function Eα,β(z) are located outside of the angle |arg z| ≤
πα
2 .

(II) Let 1 < α < 2,β = 0. Then all zeros ( �= 0) are located outside of the angle
|arg z| ≤ πα

2 .

Distribution of zeros of the Mittag-Leffler function for certain special values of
parameters is important in applications. Belowwe present a result of such type which
is related to the study of inverse problems for abstract differential equations inBanach
spaces (see Sect. 4.6.1).

Theorem 4.18 ([KarTik17, Theorem 1.]) Let the function L(z) be defined for all
z ∈ C by the formula

L(z) =
1∫

0

dt

t∫

0

ez(t−s)ds = E1,3(z). (4.6.33)

All zeros of this function are simple and form an infinite denumerable set of the type

zk = xk + iyk, k ∈ Z \ {0}; z−k = zk, k ∈ N.

Zeros with positive indices (zk = xk + iyk, k ∈ N) are situated in the upper half
plane, their real and imaginary parts are strictly monotone, tend to+∞ as k → +∞
and satisfy the following inequalities

xk = Re zk > 2,
π

3
+ 2πk < yk = Im zk <

π

2
+ 2πk. (4.6.34)

Defining

bk := π

2
+ 2πk, (4.6.35)

one can get the following representation of zeros of the function L(z):

zk = ln bk + ibk + αk − iβk, k ∈ N, (4.6.36)

where αk > 0,βk > 0 for all k ∈ N and the following estimates hold

0 < αk <
1

2

(
ln bk + 2

bk

)2

,
ln bk
bk

< βk <
ln bk + 2

bk
, k ∈ N. (4.6.37)



84 4 The Two-Parametric Mittag-Leffler Function

Note that the zeros of the functions L(z) are related to the values of the so-called
Lambert function w(ζ), which solves the equation

w(ζ)ew(ζ) = ζ.

The relation takes the form

zk = −1 − w−k−1(−e−1), k ∈ N,

where w j (ζ) is the j-th single-valued branch of the multi-valued function w(ζ) (see
for details [KarTik17]).

4.6.1 Distributions of Zeros and Inverse Problems for
Differential Equations in Banach Spaces

The inverse problem is formulated here as in [PrOrVa00] (see also [TikEid02]). Here,
following [TikEid02] (see also [TikEid94]), we describe some results concerning the
subject of the title of this subsection. Let E be a complex Banach space, u : [0, T ] →
E [0, T ] and A be a closed operator with domain D(A) ⊂ E . For a positive integer
N ≥ 1we consider the following abstract differential equation in the Banach space E

dNu(t)

dt N
= Au(t) + p, t ∈ [0, T ], (4.6.38)

with unknown parameter p ∈ E , subject to the initial conditions

u(0) = u0, u′(0) = u1, . . . , u
(N−1)(0) = uN−1, u j ∈ E, j = 0, 1, . . . , N − 1,

(4.6.39)
and the so-called terminal overdetermined condition

u(T ) = uN , uN ∈ E . (4.6.40)

The inverse problem for the abstract differential equation (4.6.38) is to deter-
mine for given u0, u1, . . . , uN ∈ E a pair of elements (u(t), p) satisfying (4.6.38)–
(4.6.40).

The relation of such an inverse problem to the distribution of zeros ΛN of special
cases of the Mittag-Leffler function

XN (z) = 1

N ! + z

(2N )! + z2

(3N )! + . . . =
∞∑

m=0

zm

Γ (mN + N + 1)
= EN ,N+1(z)

(4.6.41)
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was discovered in a series of articles by Tikhonov and Eidelman (see e.g. [TikEid02],
cf. [KarTik17]).

We present here the uniqueness theorem for the above inverse problem (following
the proof from [TikEid02]) and formulate an existence theorem in a special case as
it was stated in [KarTik17].

The main result in [TikEid02] reads: Let the inverse problem (4.6.38)–(4.6.40)
with given elements u0, u1, . . . , uN ∈ E have a solution (u(t), p). This solution is
unique if and only if no number λk

T N , λk ∈ ΛN , is an eigenvalue of the operator A.
For unique solvability of the inverse problem it suffices to prove that the corre-

sponding problem subject to the homogeneous condition has only the trivial solution.
Furthermore, without loss of generality we can replace the interval [0, T ] by [0, 1].
Theorem 4.19 ([TikEid02, Theorem 2]) The inverse problem

dNu(t)

dt N
= Au(t) + p, t ∈ [0, 1], (4.6.42)

u(0) = 0, u′(0) = 0, . . . , u(N−1)(0) = 0, (4.6.43)

u(1) = 0 (4.6.44)

has only the trivial solution u(t) ≡ 0, p = 0 if and only if no zero λk of the Mittag-
Leffler function XN (z) = EN ,N+1(z) is an eigenvalue of the operator A.

�Tofind the relation between the zeros of the function (4.6.41) and the eigenvalues of
the operator Awe consider an auxiliary Cauchy problem for the differential equation

dN x(t)

dt N
= λu(t) + 1, t ∈ [0, 1], (4.6.45)

x(0) = x ′(0) = . . . = x (N−1)(0) = 0, (4.6.46)

x(1) = 0, (4.6.47)

with a spectral parameter λ ∈ C.
It is straightforward to check that the uniquely determined solution to this problem

for each λ ∈ C (which will be denoted x(t;λ)) is

x(t;λ) = t N

N ! + λ
t2N

(2N )! + . . . + λm−1 tmN

(mN )! + . . . = t N XN (λt N ). (4.6.48)

Since
x(1;λ) = XN (λ),

condition (4.6.47) is satisfied if and only if λ ∈ ΛN , i.e. λ is a zero of the function
XN (z).
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First, we prove the necessity of the conditions in this theorem. Let λk ∈ ΛN be an
eigenvalue of the operator A and fk �= 0 be the corresponding eigenvector. Then the
pair u(t) = x(t;λk) fk, pk = fk satisfies all the conditions (4.6.42)–(4.6.44), i.e. it
is a nontrivial solution to the homogeneous inverse problem.

Let us now prove the sufficiency of the conditions in Theorem 4.19. Assume that
no zero λk of the function XN (zλ) is an eigenvalue of the operator A. Let (u(t); p)
be an arbitrary solution to the problem (4.6.42)–(4.6.44). Our aim is to show that it
is the trivial one, i.e. u(t) ≡ 0, p = 0.

We introduce for arbitrary λ ∈ C and sufficiently small ε > 0 the integral con-
taining x(t;λ) and the above-mentioned solution u(t):

Iε :=
1−ε∫

ε

x (N+1)(t;λ)u(1 − t)dt.

Integrating Iε by parts gives

(
x (N )(t;λ)u(1 − t) + x (N−1)(t;λ)u′(1 − t) + . . . + x ′(t;λ)u(N−1)(1 − t)

) ∣∣∣
1−ε

ε

+A

1−ε∫

ε

x ′(t;λ)u(1 − t)dt + (x(1 − ε;λ) − x(ε;λ)) p.

By taking the limit as ε → 0, using the boundary conditions, the fact that the operator
A is closed and the following notation

f (λ) :=
1∫

0

x ′(t;λ)u(1 − t)dt, (4.6.49)

we get I0 = A f (λ) + XN (λ)p. Since by (4.6.45) the following identity holds true
x (N+1)(t;λ) = λx ′(t;λ), we get the final form of the previous relation

(λ − A) f (λ) = XN (λ)p, ∀λ ∈ C. (4.6.50)

From the properties of the function x(t;λ) it follows that f (λ) is an entire vector
function of the variable λ ∈ C and ranges in the Banach space E . Since A is a closed
operator, one can differentiate relation (4.6.50) in λ:

(λ − A) f (n)(λ) + n f (n−1)(λ) = X (n)
N (λ)p, n = 1, 2, . . . . (4.6.51)

Since by assumption no zero λk of XN (λ) is an eigenvalue of the operator A, it
follows from (4.6.51) that f (λk) = 0 for all λk ∈ ΛN . Moreover, by (4.6.51) we
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obtain that if λk is a zero of XN (λ) of a certain multiplicity, then it will also be a
zero of f (λ) of a not smaller multiplicity.

To complete the proof it is instructive to consider the case N ≥ 3 (the cases
N = 1 and N = 2 are straightforward (see [TikEid02]) since in both cases the zeros
of XN (λ) are determined explicitly). From representations (4.6.49) and (4.6.48) we
get

f (λ) =
1∫

0

XN (λt N )
(
N−1tu′(1 − t)

)
dt N =

1∫

0

XN (λs)v(s)ds,

where v(s) = N−1s1/Nu′(1 − s1/N ) is a continuous vector function of s ∈ [0; 1]
uniquely determined by the function u(t). Let us nowapply the functional f ∗ from E∗
to f (λ). Defining F(λ) := f ∗ ( f (λ)) and h(s) := f ∗(v(s)), we obtain that the entire
function F(λ) of the variable λ ∈ C and the continuous scalar function h(s), s ∈
[0, 1], are related by the formula

F(λ) =
1∫

0

XN (λs)h(s)ds.

Above we proved that all zeros of the function XN (λ) are zeros of the function f (λ)

(retaining their multiplicity). Hence, the same is true for the function F(λ) and thus

Q(λ) = 1

XN (λ)

1∫

0

XN (λs)h(s)ds

is an entire function of the complex variable λ ∈ C. Hence, using Carleman’s rea-
soning, we obtain h(s) ≡ 0 for 0 ≤ s ≤ 1 (see [PolSze76, Sect. 4, the solution of
problem 199]) since the order of the function XN (λ) is equal to ρ = 1

N ≤ 1
3 < 1

2 and
this function has nonzero Taylor coefficients.

Thus, h(s) = f ∗(v(s)) ≡ 0 for all 0 ≤ s ≤ 1. Therefore v(s) ≡ 0 for 0 ≤ s ≤ 1
by the Hahn–Banach theorem. It readily follows from the definition of v(s) that
u′(t) ≡ 0 for 0 ≤ t ≤ 1, and sinceu(0) = u(1) = 0,wehaveu(t) ≡ 0; consequently,
p = 0. The proof is complete. �

4.7 Computations With the Two-Parametric Mittag-Leffler
Function

Mittag-Leffler type functions play a basic role in the solution of fractional differential
equations and integral equations of Abel type. Therefore, it seems important as a first
step to develop their theory and stable methods for their numerical computation.
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Integral representations play a prominent role in the analysis of entire functions.
For the two-parametric Mittag-Leffler function (4.1.1) such representations in the
form of an improper integral along the Hankel loop have been treated in the case
β = 1 and in the general case with arbitrary β by Erdélyi et al. [ErdBat-3] and
Dzherbashyan [Dzh54a, Dzh66]. They considered the representations

Eα,β(z) = 1

2πiα

∫

γ(ε;δ)
eζ1/αζ(1−β)/α

ζ − z
dζ, z ∈ G(−)(ε; δ), (4.7.1)

Eα,β(z) = 1

α
z(1−β)/αez

1/α + 1

2πiα

∫

γ(ε;δ)
eζ1/αζ(1−β)/α

ζ − z
dζ, z ∈ G(+)(ε; δ),

(4.7.2)

under the conditions

0 < α < 2,πα/2 < δ < min{π,πα}. (4.7.3)

The contour γ(ε; δ) consists of two rays S−δ (arg ζ = −δ, |ζ| ≥ ε) and Sδ (arg ζ =
δ, |ζ| ≥ ε) and a circular arc Cδ(0; ε) (|ζ| = ε,−δ ≤ arg ≤ δ). On its left side there
is a region G(−)(ε, δ), on its right side a region G(+)(ε, δ).

Using the integral representations in (4.7.1) and (4.7.2) it is not difficult to obtain
asymptotic expansions for the Mittag-Leffler function in the complex plane (see
Theorems 4.3, 4.4). Let 0 < α < 2, β be an arbitrary number, and δ be chosen to
satisfy the condition (4.7.3). Then we have, for any p ∈ N (and for p = 0 if the
“empty sum convention” is adopted) and |z| → ∞

Eα,β(z) = 1

α
z(1−β)/αez

1/α −
p∑

k=1

z−k

Γ (β − αk)
+ O

(|z|−1−p
)
, ∀z, |arg z| ≤ δ.

(4.7.4)
Analogously, for all z, δ ≤ |arg z| ≤ π, we have

Eα,β(z) = −
p∑

k=1

z−k

Γ (β − αk)
+ O

(|z|−1−p
)
. (4.7.5)

These formulas are used in the numerical algorithm presented in this section (pro-
posed in [GoLoLu02]). In what follows attention is restricted to the case β ∈ R, the
most important one in the applications. For the purpose of numerical computation
we look for integral representations better suited than (4.7.1) and (4.7.2). Defining

φ(ζ, z) = eζ1/αζ(1−β)/α

ζ − z
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we represent the integral in formulas (4.7.1) and (4.7.2) in the form

I = 1

2πiα

∫

γ(ε;δ)
φ(ζ, z)dζ = 1

2πiα

∫

S−δ

φ(ζ, z)dζ (4.7.6)

+ 1

2πiα

∫

Cδ(0;ε)
φ(ζ, z)dζ + 1

2πiα

∫

Sδ

φ(ζ, z)dζ = I1 + I2 + I3.

The integrals I1, I2 and I3 have to be transformed. For I1 we take ζ = re−iδ , ε ≤ r <

∞, and get

I1 = 1

2πiα

∫

S−δ

φ(ζ, z)dζ = 1

2πiα

∫ ε

+∞
e(re−iδ)

1/α

(re−iδ)(1−β)/α

(re−iδ) − z
e−iδdr. (4.7.7)

Analogously, by using ζ = reiδ , ε ≤ r < ∞,

I3 = 1

2πiα

∫

Sδ

φ(ζ, z)dζ = 1

2πiα

∫ +∞

ε

e(reiδ)
1/α

(reiδ)(1−β)/α

(reiδ) − z
eiδdr. (4.7.8)

For I2 with ζ = εeiϕ, −δ ≤ ϕ ≤ δ

I2 = 1

2πiα

∫

Cδ(0;ε)
φ(ζ, z)dζ = 1

2πiα

∫ δ

−δ

e(εeiϕ)
1/α

(εeiϕ)(1−β)/α

(εeiϕ) − z
εieiϕdϕ (4.7.9)

= ε1+(1−β)/α

2πα

∫ δ

−δ

eε1/α(eiϕ/α)e(iϕ(1−β)/α+1)

εeiϕ − z
dϕ =

∫ δ

−δ

P[α,β, ε,ϕ, z]dϕ,

where

P[α,β, ε,ϕ, z] = ε1+(1−β)/α

2πα

eε1/α cos (ϕ/α)(cos (ω) + i sin (ω))

εeiϕ − z
, (4.7.10)

ω = ε1/α sin (ϕ/α) + ϕ(1 + (1 − β)/α).

The sum I1 and I3 can be rewritten as

I1 + I3 =
∫ +∞

ε

K [α,β, δ, r, z]dr, (4.7.11)

where

K [α,β, δ, r, z] = 1

2πα
r (1−β)/αer

1/α cos (δ/α) r sin (ψ − δ) − z sin (ψ)

r2 − 2r z cos (δ) + z2
, (4.7.12)

ψ = r1/α sin (δ/α) + ϕ(1 + (1 − β)/α).
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Using the above notation formulas (4.7.1) and (4.7.2) can be rewritten in the form

Eα,β(z) =
∫ +∞

ε

K [α,β, ε,ϕ, z]dr +
∫ δ

−δ

P[α,β, ε,ϕ, z]dϕ, z ∈ G(−)(ε; δ),

(4.7.13)

Eα,β(z) =
∫ +∞

ε

K [α,β, ε,ϕ, z]dr +
∫ δ

−δ

P[α,β, ε,ϕ, z]dϕ (4.7.14)

+ 1

α
z(1−β)/αez

1/α
, z ∈ G(+)(ε; δ).

Let us now consider the case 0 < α ≤ 1, z �= 0. By condition (4.7.3) we can choose
δ = min {π,πα} = πα. Then the kernel function (4.7.12) looks simpler:

K [α,β,πα, r, z] = K̃ [α,β, r, z] (4.7.15)

= 1

2πα
r (1−β)/αe−r1/α r sin (π(1 − β)) − z sin (π(1 − β + α)

r2 − 2r z cos (πα) + z2
.

We distinguish three possibilities for arg z in the formulas (4.7.13)–(4.7.15) for
the computation of the function Eα,β(z) at an arbitrary point z ∈ C, z �= 0, namely

(A) |arg z| > πα;
(B) |arg z| = πα;
(C) |arg z| < πα.

The following theorems give representation formulas suitable for further numerical
calculations.

Theorem 4.20 Under the conditions

0 < α ≤ 1, β ∈ R, |arg z| > πα, z �= 0,

the function Eα,β(z) has the representations

Eα,β(z) =
∫ +∞

ε

K̃ [α,β, r, z]dr +
∫ πα

−πα

P[α,β, ε,ϕ, z]dϕ, ε > 0, β ∈ R,

(4.7.16)

Eα,β(z) =
∫ +∞

0
K̃ [α,β, r, z]dr, if β < 1 + α, (4.7.17)

Eα,β(z) = − sin (πα)

πα

∫ +∞

0

e−r1/α

r2 − 2r z cos (πα) + z2
dr − 1

z
, if β = 1 + α.

(4.7.18)
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Theorem 4.21 Under the conditions

0 < α ≤ 1, β ∈ R, |arg z| = πα, z �= 0,

the function Eα,β(z) has the representations

Eα,β(z) =
∫ +∞

ε

K̃ [α,β, r, z]dr +
∫ πα

−πα

P[α,β, ε,ϕ, z]dϕ, ε > |z|, (4.7.19)

where the kernel functions K̃ [α,β, r, z] and P[α,β, ε,ϕ, z] are given by the formu-
las (4.7.15) and (4.7.10), respectively.

Theorem 4.22 Under the conditions

0 < α ≤ 1, β ∈ R, |arg z| < πα, z �= 0,

the function Eα,β(z) has the representations

Eα,β(z) =
∫ +∞

ε

K̃ [α,β, r, z]dr +
∫ πα

−πα

P[α,β, ε,ϕ, z]dϕ (4.7.20)

+ 1

α
z(1−β)/αez

1/α
, 0 < ε < |z|, β ∈ R;

Eα,β(z) =
∫ +∞

0
K̃ [α,β, r, z]dr + 1

α
z(1−β)/αez

1/α
, if β < 1 + α; (4.7.21)

Eα,β(z) = − sin (πα)

πα

∫ +∞

0

e−r1/α

r2 − 2r z cos (πα) + z2
dr (4.7.22)

− 1

z
+ 1

αz
ez

1/α
, if β = 1 + α,

where the kernel functions K̃ [α,β, r, z] and P[α,β, ε,ϕ, z] are given by formulas
(4.7.15) and (4.7.10), respectively.

Therefore, for arbitrary z �= 0 and 0 < α ≤ 1 the Mittag-Leffler function Eα,β(z)
can be represented by one of the formulas (4.7.16)–(4.7.22). These formulas are used
for numerical computation if q < |z|, 0 < q < 1 and 0 < α ≤ 1. In the case |z| ≤ q,
0 < q < 1, the values of theMittag-Leffler function are computed for arbitraryα > 0
by using series representation (4.1.1). The caseα > 1 is reduced to the case 0 < α ≤
1 by using recursion formulas. To compute the function Eα,β(z) for arbitrary z ∈ C

with arbitrary indices α > 0,β ∈ R, three possibilities are distinguished:

(A) |z| ≤ q, 0 < q < 1 (q is a fixed number), α > 0;
(B) |z| > q, 0 < α ≤ 1;
(C) |z| > q, α > 1.

In each case the Mittag-Leffler function can be computed with the prescribed accu-
racy ρ > 0. In case (A) the computations are based on the following result:
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Theorem 4.23 In case (A) the Mittag-Leffler function can be computed with the
prescribed accuracy ρ > 0 by use of the formula

Eα,β(z) =
k0∑

k=0

zk

Γ (αk + β)
+ μ(z), |μ(z)| < ρ, (4.7.23)

where
k0 = max {[(1 − β)/α] + 1; [ln (ρ(1 − |z|))/ ln (|z|)]}.

In case (B) one can use the integral representations (4.7.16)–(4.7.22). For this it
is necessary to compute numerically either the improper integral

I =
∞∫

a

K̃ [α,β, r, z]dr, a ∈ {0; ε},

and/or the integral

J =
πα∫

−πα

P[α,β, ε,ϕ, z]dϕ, ε > 0.

To calculate the first (improper) integral I of the bounded function K̃ [α,β, r, z] the
following theorem is used:

Theorem 4.24 The representation

I =
∫ ∞

a
K̃ [α,β, r, z]dr =

∫ r0

a
K̃ [α,β, r, z]dr + μ(r), |μ(r)| ≤ ρ, a ∈ {0; ε},

(4.7.24)
is valid under the conditions

0 < α ≤ 1, |z| > q > 0,

r0 =
⎧
⎨

⎩

max {1, 2|z|, (− ln (πρ/6))α}, if β ≥ 0;

max {(1 + |β|)α, 2|z|, (−2 ln (πρ/(6(|β| + 2)(2|β|)|β|)))α}, if β < 0.

The second integral J (the integrand P[α,β, ε,ϕ, z] being bounded and the limits
of integration being finite) can be calculated with prescribed accuracy ρ > 0 by one
of many product quadrature methods.

In case (C) the following recursion formula is used (see [Dzh66])

Eα,β(z) = 1

m

m−1∑

l=0

Eα/m,β(z1/me2πil/m), m ≥ 1. (4.7.25)
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In order to reduce case (C) to cases (B) and (A) one can takem = [α] + 1 in formula
(4.7.25). Then 0 < α/m < 1, and we calculate the functions Eα/m,β(z1/me2πil/m) as
in case (A) if |z|1/m ≤ q < 1, and as in case (B) if |z|1/m > q.

Remark 4.25 The ideas and techniques employed for the Mittag-Leffler function
can be used for the numerical calculation of other functions of hypergeometric type.
In particular, the same method with some small modifications can be applied to the
Wright function, which plays a very important role in the theory of partial differential
equations of fractional order (see, e.g., [BucLuc98, GoLuMa00, Luc00, LucGor98,
MaLuPa01]). To this end, the following representations of the Wright function (see
[GoLuMa99]) canbeused inplace of the corresponding representations of theMittag-
Leffler function:

φ(ρ,β; z) =
∞∑

k=0

zk

Γ (ρk + β)
, ρ > −1, β ∈ C,

φ(ρ,β; z) = 1

2πi

∫

Ha
eζ+zζ−ρ

ζ−βdζ, ρ > −1, β ∈ C,

where Ha denotes the Hankel path in the ζ-plane with a cut along the negative real
semi-axis arg ζ = π.

4.8 Further Analytic Properties

4.8.1 Additional Integral and Differential Formulas

Here we present a number of integral and differential formulas for the Mittag-Leffler
function. The integral relations below can be easily established by the application
of classical formulas for Gamma and Beta functions (see Appendix A) and other
techniques.

∞∫

0

e−x xβ−1Eα,β (xαz) dx = 1

1 − z
(|z| < 1), (4.8.1)

x∫

0

(x − ζ)β−1 Eα (ζα) dζ = Γ (β)xβEα,β+1(x
α), (4.8.2)

∞∫

0

e−sx xmα+β−1E (m)

α,β (±λxα) dx = m!sα−β

sα ∓ λ
, (4.8.3)

where α,β ∈ C, Reα > 0, Re β > 0 and in (4.8.3) |λs−α| < 1.
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x∫

0

ζβ1−1Eα,β1 (λζα) (x − ζ)β2−1Eα,β2 (μ(x − ζ)α) dζ

= xβ1+β2−1

λ − μ

{
Eα,β1+β2 (λxα) − Eα,β1+β2 (μxα)

}
. (4.8.4)

The following differential relations can be found by direct calculation.

(
∂

∂z

)n [
zβ−1Eα,β(λzα)

] = zβ−n−1Eα,β−n(λz
α), (4.8.5)

(
∂

∂λ

)n [
zβ−1Eα,β(λzα)

] = n!zαn+β−1En+1
α,αn+β(λzα), (4.8.6)

where En+1
α,αn+β(z) is the Prabhakar three-parametric function (see Sect. 5.1 below).

A special case of the two-parametric Mittag-Leffler function (the so-called α-
exponential function) is of interest formany applications. It is defined in the following
way:

eλz
α := zα−1Eα,α(λzα) (z ∈ C \ {0},λ ∈ C). (4.8.7)

For all α ∈ C, Reα > 0, it can be represented in the form of a series

eλz
α = zα−1

∞∑

k=0

λk zαk

Γ ((k + 1)α)
, (4.8.8)

which converges in C \ {0} and determines in this domain an analytic function. The
simple properties of this function:

1) lim
z→0

z1−αeλz
α = 1

Γ (α)
(Reα > 0), (4.8.9)

2) eλz
1 = eλz, (4.8.10)

justify its name. However, the α-exponential function does not satisfy the main
property of the exponential function, i.e.,

eλz
α eμz

α �= e(λ+μ)z
α . (4.8.11)

For 0 < α < 2 the α-exponential function satisfies a simple asymptotic relation

eλz
α = λ(1−α)/α

α
exp{λ1/αz} −

N−1∑

k=1

λ−k−1

Γ (−αk)

1

zαk+1
+ O

(
1

zαN+1

)
, (4.8.12)

where z → ∞, N ∈ N \ {1}, |arg(λzα)| ≤ μ, πα
2 < μ < min{π,πα}, and
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eλz
α = −

N−1∑

k=1

λ−k−1

Γ (−αk)

1

zαk+1
+ O

(
1

zαN+1

)
, (4.8.13)

where z → ∞, N ∈ N \ {1}, μ ≤ |arg(λzα)| ≤ π.
When α ≥ 2 the asymptotic behavior at infinity of the α-exponential function is

more complicated (see, e.g., [KiSrTr06, pp. 51–52]).

4.8.2 Geometric Properties of the Mittag-Leffler Function

In this subsection we discuss (following [BanPra16]) certain geometric properties of
the Mittag-Leffler function Eα,β(z) of the complex variable z.

Let us recall some necessary definitions (see, e.g. [BanPra16, Goo83, Dur83].
Let H(U) be the class of analytic functions in the open unit disk U = z : |z| < 1.
A subclass A ⊂ H(U) consists of all functions f ∈ H(U) which are normalized by
f (0) = 0; f ′(0) = 1:

f (z) = z + a2z
2 + . . . + anz

n + . . . , z ∈ U.

A function f is called a univalent function in a domain D if it is one-to-one in
D. A function f ∈ A is called starlike (with respect to the origin 0), if tw ∈ f (U)

whenever w ∈ f (U) and t ∈ [0, 1], i.e. f (U) is starlike with respect to the origin.
A function f ∈ A is known to be a convex function if f (U) is a convex domain.
The subsets of A consisting of starlike and convex functions are denoted by S∗ and
K, respectively. Given 0 ≤ η < 1, a function f ∈ A is called a starlike function of
order η, denoted by f ∈ S∗(η), if

Re

(
z f ′(z)
f (z)

)
> η, z ∈ U.

Furthermore, for a given 0 ≤ η < 1, a function f ∈ A is called a convex function of
order η, denoted by f ∈ K(η), if

Re

(
1 + z f ′′(z)

f ′(z)

)
> η, z ∈ U.

In particular, S∗(0) = S∗,K(0) = K, and it is awell-known fact that f ∈ A is convex
if and only if z f ′ is starlike.

A function f ∈ A is called close-to-convex in U if the range f (U) is close-to-
convex, i.e. the complement of f (U) can be written as the union of non-intersecting
half-lines. A function f ∈ A is close-to-convex inU if there exists a starlike function
g (which need not be normalized) in U such that
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Re

(
z f ′(z)
g(z)

)
> 0, z ∈ U.

The class of all close-to-convex functions inU is denoted byC. It iswell known that
close-to-convex functions are univalent inU, but it is easy to verify thatK ⊂ S∗ ⊂ C.

Observe that the Mittag-Leffler function Eα,β(z) does not belong to the family
A. Thus, it is natural to consider (following [BanPra16]) the normalization of the
Mittag-Leffler function:

Eα,β(z) : = Γ (β)zEα,β(z) (4.8.14)

= z +
∞∑

k=2

Γ (β)

Γ (α(n − 1) + β)
zn, z ∈ C; Reα > 0,β ∈ C.

Below we present certain geometric results in the case of real values of parame-
ters α > 0,β ∈ R, whilst the definition (4.8.14) holds for more general values of
parameters.

Let us present two sufficient conditions for starlikeness of Eα,β(z) in U.

Theorem 4.26 ([BanPra16, Theorem 2.1]) Let α ≥ 1,β ≥ 1 and Γ (α + β) > 4
Γ (β). Then Eα,β(z) is starlike in U, Eα,β ∈ A.

� To get the result, it suffices (see [Fej36]) to show that the following expressions
are nonnegative:

�
n

= nan − (n + 1)an+1, �2
n

= nan − 2(n + 1)an+1 + (n + 2)an+2.

This follows from the conditions on the parameters α,β and the properties of the
Gamma function. �
Theorem 4.27 ([BanPra16, Theorem 2.2]) Let α ≥ 1,β ≥ (3 + √

17)/2. Then
Eα,β(z) is starlike in U, Eα,β ∈ A.

�Let us define the function p(z) = zE′
α,β(z)

Eα,β(z) , z ∈ U. Since Eα,β(z)
z �= 0 inU, the function

p is analytic inU and p(0) = 1.Toprove the result,weneed to show thatRe p(z) > 0,
z ∈ U. Since for α ≥ 1,β ≥ 1 and any n ∈ N we have

Γ (β + n) ≤ Γ (αn + β),

then for any n ∈ N \ {1}
nΓ (β)

Γ (αn + β)
≤ n

β(β + 1) . . . (β + n − 1)
<

1

β(β + 1)n−2
.

For any z ∈ U we then have two inequalities
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∣∣∣∣E
′
α,β(z) − Eα,β(z)

z

∣∣∣∣ =
∣∣∣∣∣

∞∑

n=1

nΓ (β)

Γ (αn + β)
zn
∣∣∣∣∣ <

1

β
+ 1

β

∞∑

n=0

(
1

β + 1

)n

= 2β + 1

β2
,

∣∣∣∣
Eα,β(z)

z

∣∣∣∣ > 1 −
∣∣∣∣∣

∞∑

n=1

Γ (β)

Γ (αn + β)
zn
∣∣∣∣∣ ≥ 1 − 1

β

∞∑

n=0

(
1

β + 1

)n

= β2 − β − 1

β2
.

This gives the result of the theorem due to the assumption on β and the following
inequality

|p(z) − 1| =
∣∣∣∣∣
E

′
α,β(z) − Eα,β(z)

z
Eα,β(z)

z

∣∣∣∣∣ <
2β + 1

β2 − β − 1
. �

We also mention a weaker geometric result related to Eα,β(z) restricted toD1/2 =
{z ∈ C : |z| < 1/2}.
Theorem 4.28 ([BanPra16, Theorem 2.2]) If

(a) α ≥ 1 and β ≥ (1 + √
5)/2, then Eα,β(z) is univalent and starlike in D1/2;

(b) α ≥ 1 and β ≥ (3 + √
17)/2, then Eα,β(z) is convex in D1/2.

4.8.3 An Extension for Negative Values of the First
Parameter

The two-parametric Mittag-Leffler function (4.1.1), defined in the form of a series,
exists only for the values of parameters Reα > 0 and β ∈ C. However, by using
an existing integral representation formula for the two-parametric Mittag-Leffler
function (see, e.g., [Dzh66, KiSrTr06]) it is possible to determine an extension of
the two-parametric Mittag-Leffler function to other values of the first parameter.

In this section we present an analytic continuation of the Mittag-Leffler function
depending on real parameters α,β ∈ R by extending its domain to negative α < 0.
Here we follow the results of [Han-et-al09].

The following integral representation of theMittag-Leffler function is known (see,
e.g., [Dzh66, KiSrTr06])

Eα,β(z) = 1

2π

∫

Ha

tα−βet

tα − z
dt, z ∈ C, (4.8.15)

where the contour of integration Ha is the so-called Hankel path, a loop starting and
ending at −∞, and encircling the disk |t | ≤ |z|1/α counterclockwise.

To find an equation which can determine E−α,β(z), we rewrite the integral repre-
sentation of the Mittag-Leffler function (4.8.15) as
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Eα,β(z) = 1

2π

∫

Ha

et

tβ − zt−α+β
dt (4.8.16)

and expand part of the integrand in (4.8.16) in partial fractions as follows:

1

tβ − zt−α+β
= 1

tβ
− 1

tβ − z−1tα+β
. (4.8.17)

Substituting Eq. (4.8.17) into (4.8.16) yields

Eα,β(z) = 1

2π

∫

Ha

et

tβ
dt − 1

2π

∫

Ha

et

tβ − z−1tα+β
dt, z ∈ C \ {0}. (4.8.18)

This gives the following definition of the Mittag-Leffler function with negative value
of the first parameter:

E−α,β(z) = 1

Γ (β)
− Eα,β

(
1

z

)
, α > 0, β ∈ R; z ∈ C \ {0}. (4.8.19)

In particular,

E−α(z) := E−α,1(z) = 1 − Eα

(
1

z

)
, α > 0; z ∈ C \ {0}.

By using the known recurrence formula

Eα,β(z) = 1

Γ (β)
+ zEα,α+β (z)

we obtain another variant of the definition (4.8.19)

E−α,β(z) = −1

z
Eα,α+β

(
1

z

)
, α > 0, β ∈ R; z ∈ C \ {0}. (4.8.20)

Direct calculations show that definitions (4.8.19) and (4.8.20) determine the same
function, analytic in C \ {0}.

By taking the limit in (4.8.19) as α → +0 we get the definition of E0,β(z)

E0,β(z) = 1

Γ (β)(1 − z)
, β ∈ R; |z| < 1. (4.8.21)

Obviously, this function can be analytically continued in the domain C \ {1}.
From the definition of the two-parametric Mittag-Leffler function (4.1.1) we

obtain the following series representation of the extended Mittag-Leffler function
(i.e. the function corresponding to negative values of the first parameter):
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E−α,β(z) = −
∞∑

k=1

1

Γ (αz + β)

(
1

z

)k

, z ∈ C \ {0}. (4.8.22)

By using this representation and the above definitions of the extended Mittag-
Leffler function (4.8.19) (or (4.8.20)) one can obtain functional, differential and
recurrence relations which are analogous to corresponding relations for the two-
parametric function with positive first parameter.

Proposition 4.29 Let α > 0, β ∈ R. Then the following formulas are valid for all
values of parameters for which all items are defined.

A. Recurrence relations.

E−α,β(z) + E−α,β(−z) = 2E−2α,β(z2); (4.8.23)

E−nα,β(z) = 1

n

n−1∑

k=0

E−α,β(ze−2πik/n); (4.8.24)

E−α,β(z) = zn E−α,β−αn(z) +
n−1∑

k=0

zk

Γ (β − αk)
; (4.8.25)

E−α(−z) = E−2α(z2) + E−2α(z2) − zE−2α,α+1(z
2). (4.8.26)

B. Differential relations.

d

dz

[
z1−βE−α,β(zα)

] = −z−βE−α,β−1(z
α); (4.8.27)

d

dz

[
E−α(z)

] = − 1

Γ (α + 1)
+ 1

α
E−α,α(z); (4.8.28)

dn

dzn
[
E−n(z

−n)
] = E−n(z

−n). (4.8.29)

C. Functional relations.

z∫

0

E−α,β(tα)t−β−1dt = −z−βE−α,β+1(z
α); (4.8.30)

L
[
zβ−1E−α,β

(
1

±azα

)]
= ∓a

sβ(sα ∓ a)
. (4.8.31)
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4.9 The Two-Parametric Mittag-Leffler Function of a Real
Variable

4.9.1 Integral Transforms of the Two-Parametric
Mittag-Leffler Function

The following form of the Laplace transform of the two-parametric Mittag-Leffler
function is most often used in applications:

(L tβ−1Eα,β(λtα)
)
(s) = sα−β

sα − λ
(Re s > 0, λ ∈ C, |λs−α| < 1). (4.9.1)

It can be shown directly that the Laplace transform of the two-parametric Mittag-
Leffler function Eα,β(t) is given in terms of theWright function (see, e.g., [KiSrTr06,
p. 44])

(L Eα,β(t)
)
(s) = 1

s
2�1

[
(1, 1), (1, 1)
(α,β)

∣∣∣∣
1

s

]
(Re s > 0). (4.9.2)

From the Mellin–Barnes integral representation of the two-parametric Mittag-
Leffler function we arrive at the following formula for the Mellin transform of this
function

(M Eα,β(−t)
)
(s) =

∞∫

0

Eα,β(−t)t s−1dt = Γ (s)Γ (1 − s)

Γ (β − αs)
(0 < Re < 1).

(4.9.3)
To conclude this subsection, we consider the Fourier transform of the two-

parametric Mittag-Leffler function Eα,β(|t |)with α > 1. Performing a term-by-term
integration of the series we get the formula (α > 1):

(F Eα,β(|t |)) (x) :=
+∞∫

−∞
ei xt Eα,β(|t |)dt = δ(x)

Γ (β)
− 2

x2
2�1

[
(2, 2), (1, 1)
(α + β, 2α)

∣∣∣∣−
1

x2

]
,

(4.9.4)
where δ(·) is the Dirac delta function.

Since for all t

Eα,β(|t |) − 1

Γ (β)
= |t |Eα,α+β(|t |), (4.9.5)

formula (4.9.4) can be simplified
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(F |t |Eα,α+β(|t |)) (x) = − 2

x2
2�1

[
(2, 2), (1, 1)
(α + β, 2α)

∣∣∣∣−
1

x2

]
(α > 1,β ∈ C).

(4.9.6)

4.9.2 The Complete Monotonicity Property

Let us show that the generalized Mittag-Leffler function Eα,β(−x) possesses the
complete monotonicity property for 0 ≤ α ≤ 1, β ≥ α. In fact, this result follows
from the complete monotonicity of the classical Mittag-Leffler function Eα(−x) due
to the following technical lemmas.

Lemma 4.30 For all α ≥ 0

Eα,α(−x) = −α
d

dx
Eα(−x).

� This follows from the standard properties of the integral depending on a parameter.
�
Lemma 4.31 Let β > α > 0. Then the following identity holds:

Eα,β(−x) = 1

αΓ (β − α)

1∫

0

(
1 − t1/α

)β−α−1
Eα,α(−t x)dt. (4.9.7)

� Let us take Eα,α(−t x) in the form of a series and substitute it into the right-hand
side of (4.9.7). By interchanging the order of integration and summation (which can
be easily justified) we obtain that the right-hand side is equal to

1

αΓ (β − α)

∞∑

k=0

(−x)k

Γ (αk + α)

1∫

0

t k
(
1 − t1/α

)β−α−1
dt.

Calculating these integrals we arrive at the series representation for Eα,β(−x).
�

Observe that

E0,β(−x) = 1

αΓ (β)

1

1 + x
, β > 0,

E0,β(−x) = 0, β = 0.

In both cases E0,β(−x) is completely monotonic.
The completemonotonicity of Eα,β(−x) then follows immediately fromPollard’s

result [Poll48], see Sect. 3.7.2 of this book.
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4.9.3 Relations to the Fractional Calculus

Here we present a few formulas related to the values of the fractional integrals and
derivatives of the two-parametric Mittag-Leffler function (see, e.g., [HaMaSa11, pp.
15–16]). Let us start with the left-sided Riemann–Liouville integral. Suppose that
Reα > 0, Re β > 0, Re γ > 0, a ∈ R. Then by using the series representation and
the left-sided Riemann–Liouville integral of the power function we get

(
Iα
0+ tγ−1Eβ,γ(at

β)
)
(x) = xα+γ−1

(
Eβ,α+γ(ax

β)
)
, (4.9.8)

and, in particular, if a �= 0, then (for β = α)

(
Iα
0+ tγ−1Eα,γ(at

α)
)
(x) = xγ−1

a

(
Eα,γ(ax

α) − 1

Γ (γ)

)
. (4.9.9)

In the same manner one can obtain the formula

(
Iα
0+ tα−1Eα,β(atα)

)
(x) = xα−1

a

(
Eα,β(axα) − 1

Γ (β)

)
. (4.9.10)

Analogously, one can calculate the right-sided fractional Riemann–Liouville inte-
gral of the two-parametric Mittag-Leffler function in the case Re, α > 0, Re β > 0,
a ∈ R, a �= 0

(
Iα
− t−α−γEβ,γ(at

−β)
)
(x) = x−γ

(
Eβ,α+γ(ax

−β)
)
. (4.9.11)

If we suppose additionally that Re (α + γ) > Re β, then the last formula can be
rewritten as

(
Iα
− t−α−γEβ,γ(at

−β)
)
(x) = xβ−γ

a

(
Eβ,α+γ−β(ax−β) − 1

Γ (α + γ − β)

)
,

(4.9.12)
and, in particular,

(
Iα
− t−α−βEα,β(at−α)

)
(x) = xα−β

a

(
Eα,β(ax−α) − 1

Γ (β)

)
. (4.9.13)

In the case of the fractional differentiation of the two-parametric Mittag-Leffler
function we have

(
Dα

0+ tγ−1Eβ,γ(at
β)
)
(x) = xγ−α−1

(
Eβ,γ−α(axβ)

)
, (4.9.14)

Reα > 0, Re β > 0, a ∈ R.
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If we assume extra conditions on the parameters, namely Re γ > Re β, Re γ >

Re (α + β), a �= 0, then the following relations hold:

(
Dα

0+ tγ−1Eβ,γ(at
β)
)
(x) = xγ−α−1

Γ (γ − α)
+ axγ−α+β−1Eβ,γ−α+β(axβ). (4.9.15)

In particular (see [KilSai95b]), for Reα > 0, Re β > Reα + 1, one can prove

(
Dα

0+ tβ−1Eα,β(atα)
)
(x) = xβ−α−1

Γ (β − α)
+ axβ−1 (Eα,β(axα)

)
. (4.9.16)

Finally, the right-sided (Liouville) fractional derivative of the two-parametricMittag-
Leffler function satisfies the relation (see, e.g., [KiSrTr06, p. 86])

(
Dα

− tα−βEα,β(at−α)
)
(x) = x−β

Γ (β − α)
+ ax−α−β

(
Eα,β(ax−α)

)
, (4.9.17)

valid for all Reα > 0, Re β > Reα + 1.
We alsomention two extra integral relations for the two-parametricMittag-Leffler

function which are useful for applications.

Lemma 4.32 Let α > 0 and β > 0. Then the following formula holds

1

Γ (α)

x∫

0

tβ−1E2α,β(t2α)

(x − t)1−α
dt = xβ−1

[
Eα,β(xα) − E2α,β(x2α)

]
. (4.9.18)

Corollary 4.33 Formula (4.9.18) means

Iα
0+
(
tβ−1E2α,β(t2α)

)
(x) = xβ−1 [Eα,β(xα) − E2α,β(x2α)

]
. (4.9.19)

4.10 Historical and Bibliographical Notes

The two-parametric Mittag-Leffler function first appeared in the paper by Wiman
1905 [Wim05a], but he did not pay too much attention to it. Much later this func-
tion was rediscovered by Humbert and Agarwal, who studied it in detail in 1953
[Aga53] (see also [Hum53, HumAga53]). A new function was obtained by replac-
ing the additive constant 1 in the argument of the Gamma function in (3.1.1) by an
arbitrary complex parameter β . Later, when we deal with Laplace transform pairs,
the parameter β will be required to be positive like α .

Using the integral representations for Eα,β(z) Dzherbashian [Dzh54a, Dzh54b],
[Dzh66, Chap. III, Sect. 2] proved formulas for the asymptotic representation of
Eα,β(z) at infinity, and in [Dzh66, Chap. III, Sect. 4] he gave applications of these to
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the construction of Fourier type integrals and to the proof of theorems on pointwise
convergence of these integrals on functions defined and summable with exponential-
power weight on a finite system of rays. Note that the developed technique is based
on the representation of entire functions in the form of sums of integral transforms
with kernels of the form Eα,β(z).

By using asymptotic properties of the function Eα,β(z), Dzherbashian (see
[Dzh66, Chap. III, Sect. 2]) found itsMellin transform, established certain functional
identities and proved the inversion formula for the following integral transform with
the function Eα, β(z) in the kernel

∞∫

0

Eα,β(eiϕxαtα)tβ−1 f (t)dt (4.10.1)

in the space L2(R+).
In [Bon-et-al02] the properties of the integral transformswithMittag-Leffler func-

tion in the kernel ∞∫

0

Eα, β(−xt) f (t)dt (x > 0) (4.10.2)

are studied in weighted spaces of r -summable functions

Lν,r =
⎧
⎨

⎩ f : ‖ f ‖ν,r ≡
⎛

⎝
∞∫

0

|tν f (t)| dt
t

⎞

⎠
1/r

, 1 ≤ r < ∞, ν ∈ R

⎫
⎬

⎭ . (4.10.3)

The conditions for the boundedness of such an operator as a mapping from one
space to another were found, the images of these spaces under such a mapping were
described, and inversion formulas were established. These results are based on the
representation of (4.10.2) as a special case of the general H-transform (see Sect. F.3
in Appendix F).

In recent years mathematicians’ attention towards the Mittag-Leffler type func-
tions has increased, both from the analytical and numerical point of view, overall
because of their relation to the fractional calculus. In addition to the books and
papers already quoted in the text, here we would like to draw the reader’s atten-
tion to some recent papers on the Mittag-Leffler type functions, e.g., Al Saqabi and
Tuan [Al-STua96], Kilbas and Saigo [KilSai96], Gorenflo, Luchko and Rogosin
[GoLuRo97] and Mainardi and Gorenflo [MaiGor00]. Since the fractional calculus
has now received wide interest for its applications in different areas of physics and
engineering, we expect that the Mittag-Leffler function will soon occupy its place as
the Queen Function of Fractional Calculus.

The remarkable asymptotic properties of the Mittag-Leffler function have pro-
voked an interest in the investigation of the distribution of the zeros of Eα,β(z). Sev-
eral articles have been devoted to this problem (see [Dzh84, DzhNer68, OstPer97,
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Poly21, Pop02, Psk05, Psk06, Sed94, Sed00, Wim05b]). An extended survey of
the results is presented in [PopSed11]. Also studied is the related question of the
distribution of zeros of sections and tails of the Mittag-Leffler function (see [Ost01,
Zhe02]) and of some associated special functions (see [GraCso06, Luc00]).

The obtained results have found an application in the study of certain problems
in spectral theory (see, e.g. [Dzh70, Djr93, Nak03]), approximation theory (see, e.g.
[Sed98]), and in treating inverse problems for abstract differential equations (see,
e.g., [TikEid02, TikEid05, KarTik17]).

Except in the case when α = 1, β = −m, m ∈ {−1} ∪ Z+, the function Eα,β(z)
has an infinite set of zeros (see [Sed94]). In [Wim05b] it was shown that for α ≥ 2
all zeros of the classical Mittag-Leffler function Eα,1(z) are negative and simple (see
also [Poly21], where the case α = N ∈ N, N > 1, is considered). In [Dzh84] it was
proved that same result is valid for E2,β(z), 1 < β < 3. Note that all zeros of the

function E2,3(z) = cosh
√
z−1
z are twofold and negative, but the function E2,β(z),

β > 3, has no real zero.
Ostrovski and Pereselkova [OstPer97] formulated the problem to describe the set

W of pairs (α,β) such that all zeros of Eα,β(z) are negative and simple. The authors
conjectured that

W = {(α,β)|α ≥ 2, 0 < β < 1 + α}.

It was shown, in particular, that (α, 1), (α, 2) ∈ W for all realα ≥ 2, and {(2m,β)|m
∈ N, 0 < β < 1 + 2m} ⊂ W .

The asymptotic behavior of the zeros of the function Eα,β(z) is the subject of sev-
eral investigations. In [Sed94] asymptotic formulas for the zeros zn(α,β) of Eα,β(z)
were found for all α > 0 and β ∈ C. For 0 < α < 2 this asymptotic representation
as n → ±∞ is more exact and has the form

(zn(α,β))1/α = 2πin + a(α,β)

(
log |n| + πi

2
sign n

)

+ b(α,β) + O

(
n−α + 1

n
log |n|

)
.

The values of a(α,β), b(α,β) are given in [Sed94]. A way of enumerating the zeros
compatible with this asymptotical formula is proposed in [Sed00].

The material of Sect. 4.6.1 is due to the paper [TikEid02]. Note that another proof
of the uniqueness theorem is given in [KarTik17] for the following inverse problem
for an abstract evolution differential equation in a Banach space E

du(t)

dt
= Au(t) + g,

u(0) = u0,
1

T

T∫

0

u(t)dt = u1,
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where A is a closed linear operatorwith domain D(A) ⊂ E and the elements u0, u1 ∈
E are given. It was shown that the uniqueness of such a problem is related to the
distribution of zeros of the Mittag-Leffler function E1,3(z). The distribution of these
zeros is studied in detail in [KarTik17].

Schneider [Sch96] has proved that the generalized Mittag-Leffler function
Eα,β(−x) is completely monotonic for positive values of parameters α,β if and
only if 0 < α ≤ 1, β ≥ α. The proof was based on the use of the corresponding
probability measures and the Hankel integration path.

An analytic proof presented in Sect. 4.1.5 is due toMiller and Samko [MilSam97].
Note that themain formula (4.9.7) used in this proof is a special case of amore general
relation due to Dzherbashian [Dzh66, p. 120] which states that xβ+γ−1Eα,β+γ(−xα)

is the fractional integral of order γ of the function xβ−1Eα,β(−xα). However, the
result presented above is more simple and straightforward.

Later (see, [MilSam01]), the proof of the complete monotonicity of some other
special functions was given by Miller and Samko, see also [Mai10]. One of the
possible approaches to the proof of complete monotonicity is the use of the Volterra
and Bernstein functions, see [Ape08, Bern28, Boc37].

As a challenging open problem related to the Special Functions of Fractional Cal-
culus (such as the multi-index Mittag-Leffler functions), we mention the possibility
of their numerical computation and graphical interpretation, plots and tables, and
implementations in software packages such as Mathematica, Maple, Matlab, etc. As
mentioned earlier, the Classical Special Functions are already implemented there.
For their Fractional Calculus analogues, numerical algorithms and software pack-
ages have been developed only for the classical Mittag-Leffler function Eα;β(z) and
the Wright function φ(α,β; z)! Numerical results and plots for the Mittag-Leffler
functions for basic values of indices can be found in Caputo–Mainardi [CapMai71b]
(one of the first attempts!) and Gorenflo–Mainardi [GorMai97]. Among the very
recent achievements, we mention the following results: Podlubny [Pod06, Pod11,
PodKac09] (a Matlab routine that calculates the Mittag-Leffler function with desired
accuracy), Gorenflo et al. [GoLoLu02], Diethelm et al. [Die-et-al05] (algorithms for
the numerical evaluation of the Mittag-Leffler function and a package for compu-
tation with Mathematica), Hilfer–Seybold [HilSey06] (an algorithm for extensive
numerical calculations for the Mittag-Leffler function in the whole complex plane,
based on its integral representations and exponential asymptotics), Luchko [Luc08]
(algorithms for computation of the Wright function with prescribed accuracy), etc.

The results concerning calculation of the Mittag-Leffler function presented in
Sect. 4.7 are based on the paper [GoLoLu02]. In [GoLoLu02] a numerical scheme for
computation of the Mittag-Leffler function is given in pseudocode using a specially
developed algorithm based on the above formulated results (see also the MatLab
routine by Podlubny [Pod06, Pod11], and numerical computations of the Mittag-
Leffler function performed by Hilfer and Seybold [SeyHil05, HilSey06, SeyHil08]).

Efficient techniques for the computation of the Mittag-Leffler functions with two
parameters based on the numerical inversion of the Laplace transformhave be studied
in [GarPop13, Gar15]: essentially, a quadrature rule is applied on a suitably selected
contour in the complex plane obtained after deforming the Bromwich line. Parabolic
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contours are usually chosen since their simple geometry allows an in-depth error
analysis leading to the accurate tuning of the main parameters, thus obtaining high
accuracy. A Matlab code for the evaluation of the Mittag-Leffler function based on
the results in [Gar15] is freely available on the Mathworks website.2

4.11 Exercises

4.11.1 ([Ber-S05b]) Prove the following relations:

Eα(−x) = E2α(x2) − xE2α,1+α(x2), x ∈ R, Reα > 0, (4.11.1a)

Eα(−i x) = E2α(−x2) − i x E2α,1+α(−x2), x ∈ R, Reα > 0. (4.11.1b)

4.11.2 ([SaKaKi03]) Prove the following recurrence relation

zm Eα,β+mα(z) = Eα,β(z) −
m−1∑

n=0

zn

Γ (β + nα)
, Reα > 0, Re β > 0, m ∈ N.

4.11.3 ([Ber-S05b, p. 432]) Let the family of functions Hα be given by the formula

Hα(k) = 2

π

∞∫

0

E2α(−t2) · cos (kt)dt, k > 0, 0 ≤ α ≤ 1,

where its power series in k have the form

Hα(k) = 1

π

∞∑

n=0

bn(α)kn, 0 ≤ α < 1.

Deduce the following asymptotic formula for Eα(−x):

Eα(−x) = 1

π

∞∑

n=0

bn(α)

xn+1
, 0 ≤ α < 1.

Hint. Use the relation (4.11.1a).

4.11.4 Using the series representation of the two-parametricMittag-Leffler function
(4.1.1) prove the following recurrence relations

2www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function.

www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function
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E1,1(z) + E1,1(−z) = 2 E2,1(z
2) ⇐⇒ ez + e−z = 2 cosh(z) ,

E1,1(z) − E1,1(−z) = 2z E2,2(z
2) ⇐⇒ ez − e−z = 2 sinh(z) ,

(4.11.4a)

or in a more general form:

Eα,β(z) + Eα,β(−z) = 2 E2α,β(z2) ,

Eα,β(z) − Eα,β(−z) = 2z E2α,α+β(z2) ; (4.11.4b)

E1,3(z) = ez − 1 − z

z2
(4.11.4c)

or in a more general form (for any m ∈ N):

E1,m(z) = 1

zm−1

{
ez −

m−2∑

k=0

zk

k!

}
. (4.11.4d)

4.11.5 With α > 0 show that

tα−1 Eα,α(−tα) = − d

dt
Eα(−tα) .

4.11.6 Prove the following integral representations ([Bra96, p. 58])

1

1 + zα
=

∞∫

0

e−zx Eα,α(−xα)dx; (4.11.6a)

log(1 + zα) =
∞∫

0

(1 − e−zx )
αEα,1(−xα)

x
dx . (4.11.6b)

4.11.7 Prove the following differential relations for the two-parametric Mittag-
Leffler function ([GupDeb07])

3E1,4(z) + 5zE ′
1,4 + z2E ′′

1,4 = E1,2 − E1,3. (4.11.7a)

n(n + 2)Eα,n+3(z) + zα[2n + α + 2]E ′
α,n+3 + z2E ′′

α,n+3 = Eα,n+1 − Eα,n+2,

(4.11.7b)
which hold for any α > 0 and any n = 1, 2, . . ..

4.11.8 Prove the following Laplace transform pair for the auxiliary functions of
Mittag-Leffler type defined below

eα,β(t;λ) := tβ−1 Eα,β (−λ tα) ÷ sα−β

sα + λ
= s−β

1 + λs−α
.
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4.11.9 ([HaMaSa11]) Evaluate the following integrals:

x∫

0

Eα(tα)

(x − t)1−β
dt (4.11.9a)

for Reα > 0, Re β > 0.

∞∫

0

e−st tmα+β−1E (m)

α,β(±atα)dt (4.11.9b)

for Re s > 0, Reα > 0, Re β > 0, where

E (m)

α,β(z) = dm

dzm
Eα,β(z).

Answers.
(4.11.9a)

Γ (β)xβEα,β+1(x
α).

(4.11.9b)
m!sα−β

(sα ∓ a)m+1
.

4.11.10 Prove the following formulas for half-integer values of parameters
[Han-et-al09]:

E1/2,1/2(±x) = 1√
x

± xex
2 [1 ± erf(x)]. (4.11.10a)

E1/2,1(±x) = ex
2 [1 ± erf(x)]. (4.11.10b)

E1,1/2(+x) = 1√
x

+ √
xe+xerf(

√
x). (4.11.10c)

E1,1/2(−x) = 1√
x

+ i
√
xe−xerf(i

√
x). (4.11.10d)

E1,3/2(+x) = e+x erf(
√
x)√

x
. (4.11.10e)

E1,3/2(−x) = −ie−x erf(i
√
x)√

x
. (4.11.10f)
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4.11.11 Prove the following formulas for negative integer values of parameters
[Han-et-al09]:

E−1,2

(
±1

x

)
= 1 ± 1 − e±x

x
. (4.11.11a)

E−2,1

(
+ 1

x2

)
= 1 − cosh x . (4.11.11b)

E−2,1

(
− 1

x2

)
= 1 − cos x . (4.11.11c)

E−2,2

(
+ 1

x2

)
= 1 − sinh x

x
. (4.11.11d)

E−2,2

(
− 1

x2

)
= 1 − sin x

x
. (4.11.11e)

4.11.12 Prove the following formulas for negative semi-integer values of parameters
[Han-et-al09]:

E−1/2,1/2

(
±1

x

)
= ∓xex

2 [1 ± erf(x)]. (4.11.12a)

E−1/2,1

(
±1

x

)
= 1 − ex

2 [1 ± erf(x)]. (4.11.12b)

E−1,1/2

(
+1

x

)
= √

xe+xerf(
√
x). (4.11.12c)

E−1,1/2

(
−1

x

)
= −i

√
xe−xerf(i

√
x). (4.11.12c)

E−1,3/2

(
+1

x

)
= 2√

x
− e+x erf(

√
x)√

x
. (4.11.12d)

E−1,3/2

(
−1

x

)
= 2√

x
+ ie−x erf(i

√
x)√

x
. (4.11.12e)

4.11.13 Prove the following formula for the Laplace transform of the derivatives of
the Mittag-Leffler function ([KiSrTr06, p. 50]):

(
L tαn+β−1

(
∂

∂λ

)n

Eα,β(λtα)

)
(s) = n!sα−β

(sα − λ)n+1 (|λs−α| < 1).
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4.11.14 ([Cap13]) Prove the following relations for the Mittag-Leffler functions
with positive integer values of parameters (Capelas relations).

m∑

k=1

zk−1Em,k(z
m) = ez, m ∈ N, (4.11.14a)

E1,m(z) = 1

zm−1

(
ez −

m−2∑

k=0

zk

k!

)
, m ∈ N. (4.11.14b)

4.11.15 ([BanPra16]). Let

Eα,β(z) := Γ (β)zEα,β(z).

Prove the following relations of this function to some elementary functions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E0,1(z) = z
1−z ; E1,1(z) = zez; E2,1(z) = z cosh(

√
z);

E1,2(z) = ez − 1; E1,3(z) = 2(ez−1−z)
z ;

E1,4(z) = 6(ez−1−z)−3z2

z2 ; E2,2(z) = √
z sinh(

√
z);

E3,1(z) = z
2

[
e

3√z + 2e− 3√z cos
(√

3
2

3
√
z
)]

.

4.11.16 ([AnsShe14]) Prove the following (inverse Laplace transform of theMittag-
Leffler function)

tβ−1Eα,β(−λtα) = 1

π

∞∫

0

e−r t r
2α−β sin (βπ) − λrα−β sin ((α − β)π)

λ2 + 2λrα cos (απ) + r2α
dr.

4.11.17 ([Tua17]) In the notation of Exercise 3.9.9 prove the following inequality

∣∣∣∣t
α−1Eα,α(λt

1
α ) − 1

α
λ

1−α
α exp(λ

1
α t)

∣∣∣∣ <
M2(α,λ)

tα+1
, ∀t ≥ t0,

where

M2(α,λ) =

∫

γ(1,θ)

∣∣∣exp(ζ 1
α )ζ

1
α

∣∣∣ dζ

2πα|λ|2 sin θ0
, t0 = 1

|λ| 1
α (1 − sin θ0)

1
α

.

4.11.18 ([WaZhOR18])

(a) Let α ∈ (0, 1],β ∈ R. Prove that the following inequality holds for all t > 0:

∣∣∣∣t
β−1Eα,β(λtα) − 1

α
λ(1−β)/αexp

(
λ1/αt

)∣∣∣∣ ≤
m1(α,β,λ)

t2α−β+1
+ m2(α,β,λ)

tα−β+1
,
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where

m1(α,β,λ) = | sin(πβ)| ∫∞
0 r (1−β+α)/αexp

(−r1/α
)
dr

sin2(πα)παλ2
,

m2(α,β,λ) = | sin(π(β − α))| ∫∞
0 r (1−β)/αexp

(−r1/α
)
dr

sin2(πα)παλ
.

(b) Let α ∈ (1, 2],β > 0. Prove that the following inequality holds for all t > 0:

∣∣∣∣t
β−1Eα,β(λtα) − 1

α
λ(1−β)/αexp

(
λ1/αt

)∣∣∣∣

≤ m(α,β,λ)

(
1

t2α−β+1
+ 1

tα−β+1

)
+ 2

αλ1−1/α
exp

(
tλ1/α cos

(π

α

))
,

where
m(α,β,λ) = max {m1(α,β,λ),m2(α,β,λ)} .

4.11.19 ([WaZhOR18]) Let α,β,λ be arbitrary positive numbers. Prove that the
following inequality holds for all t > 0:

− 1

Γ (β + 1)
+ βEα,β+1(−λtα) ≤ Eα,β(−λtα) ≤ βEα,β+1(−λtα).

4.11.20 ([PrMaBa18]) Let 0 ≤ γ < 1, α ≥ 1. Prove that for all β > β2 the nor-
malized Mittag-Leffler function Eα,β(z) = Γ (β)zEα,β(z) belongs to the following
Hardy spaces in the unit disc D:

Eα,β(z) =
{
H

1
1−2γ (D), γ ∈ [0, 1/2),

H∞(D), γ ≥ 1/2,

where β2 is the largest root of the equation

(1 − γ)(β2 − β − 1)(β2 − 4β + 3) − (2 − γ)β(β−2β − 3) − β(β2 − 1) = 0.

4.11.21 ([Rad16]) Let Eα,β(z) = Γ (β)zEα,β(z) be the normalized Mittag-Leffler
function. Denote by (Eα,β)m(z) its m + 1-th partial sums:

(Eα,β)0(z) = z, (Eα,β)m(z) = z +
m∑

n=1

Anz
n+1, m ∈ N.

1. Prove that for all α ≥ 1, β ≥ 1+√
5

2 the following inequalities hold for all z in the
unit disc D:
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Re

{
Eα,β(z)

(Eα,β)m(z)

}
≥ β2 − β − 1

β2
, (4.11.21.1a)

Re

{
(Eα,β)m(z)

Eα,β(z)

}
≥ β2

β2 + β + 1
. (4.11.21.1b)

2. Prove that for all α ≥ 1, β ≥ 3+√
17

2 the following inequalities hold for all z in the
unit disc D:

Re

{
E

′
α,β(z)

(Eα,β)′m(z)

}
≥ β2 − 3β − 2

β2
, (4.11.21.2a)

Re

{
(Eα,β)′m(z)

E
′
α,β(z)

}
≥ β2

β2 + 3β + 2
. (4.11.21.2b)



Chapter 5
Mittag-Leffler Functions with Three
Parameters

5.1 The Prabhakar (Three-Parametric Mittag-Leffler)
Function

5.1.1 Definition and Basic Properties

The Prabhakar generalized Mittag-Leffler function [Pra71] is defined as

Eγ
α,β(z) :=

∞∑

n=0

(γ)n

n!Γ (αn + β)
zn , Re (α) > 0, Re (β) > 0, γ > 0, (5.1.1)

where (γ)n = γ(γ + 1) . . . (γ + n − 1) (see formula (A.17) in AppendixA).
For γ = 1 we recover the two-parametric Mittag-Leffler function

Eα,β(z) :=
∞∑

n=0

zn

Γ (αn + β)
, (5.1.2)

and for γ = β = 1 we recover the classical Mittag-Leffler function

Eα(z) :=
∞∑

n=0

zn

Γ (αn + 1)
. (5.1.3)

Let α,β > 0. Then termwise Laplace transformation of series (5.1.1) yields

∫ ∞

0
e−st tβ−1 Eγ

α,β(atα)dt = s−β
∞∑

n=0

Γ (γ + n)

Γ (γ)

(a
s

)n
. (5.1.4)
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On the other hand (binomial series!)

(1 + z)−γ =
∞∑

n=0

Γ (1 − γ)

Γ (1 − γ − n)n! z
n =

∞∑

n=0

(−1)n
Γ (γ + n)

Γ (γ)n! zn . (5.1.5)

Comparison of (5.1.4) and (5.1.5) yields the Laplace transform pair

tβ−1 Eγ
α,β (atα) ÷ s−β

(1 − as−α)γ
. (5.1.6)

Equation (5.1.6) holds (by analytic continuation) for Reα > 0, Re β > 0.
In particular we get the known Laplace transform pairs

tβ−1 Eα,β(atα) ÷ sα−β

sα − a
, (5.1.7)

Eα(atα) ÷ sα−1

sα − a
. (5.1.8)

Note that the pre-factor tβ−1 is essential for the above Laplace transform pairs.
From the above Laplace transform pair one can obtain the complete monotonicity

(CM) of the function

Eγ
α,1 (−tα) ÷ 1

s (1 + s−α)γ
. (5.1.9)

The proof is based on the following theorem (see [GrLoSt90, Theorem 2.6]): if
the real-valued function F(x), x > 0; limx→+∞ F(x) = 0, possesses an analytic
continuation in C \ R− and satisfies the inequalities Im zF(z) ≥ 0 for Im z > 0 and
Im F(x) ≥ 0 for 0 < x <= +∞, then F is the Laplace transform of a function,
locally integrable on (0,+∞) and completely monotone on this interval.

The conditions of this theorem for the function 1
s(1+s−α)γ

can be verified directly
(cf., e.g.. [HanSer08, p. 292], [OrsPol09]). A more general result holds for all λ > 0
(see, e.g.. [CdOMai11]) for the function eγ

α,β(t;λ) := tβ−1Eγ
α,β (−λtα):

eγ
α,β(t;λ) = tβ−1Eγ

α,β (−λtα) CM iff

{
0 < α,β ≤ 1,
0 < γ ≤ β/α.

(5.1.10)

In the same manner we recover the known result

Eα(−tα) CM if 0 < α ≤ 1 . (5.1.11)

Cases of Reducibility
Here we present some formulas connecting the values of three-parametric
(Prabhakar) Mittag-Leffler functions with different values of parameters (see, e.g..
[MatHau08]).
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(i) If α,β, γ ∈ C are such that Reα > 0, Reβ > 0, Re (β − α) > 0, then

zEγ
α,β = Eγ

α,β−α − Eγ−1
α,β−α. (5.1.12)

(ii) If α,β ∈ C are such that Reα > 0, Reβ > 0, (α − β) /∈ N0, then

zE1
α,β = Eα,β−α − 1

Γ (β − α)
. (5.1.13)

(iii) If α,β ∈ C are such that Reα > 0, Reβ > 1, then

αE2
α,β = Eα,β−1 − (1 + α − β)Eα,β . (5.1.14)

Differentiation of the Three-Parametric Mittag-Leffler Function
If α,β, γ, z, w ∈ C, then for any n = 1, 2, . . ., and any β,Reβ > n, the following
formula holds:

(
d

dz

)n [
zβ−1Eγ

α,β(wzα)
]

= zβ−n−1Eγ
α,β−n(wzα). (5.1.15)

In particular, for any n = 1, 2, . . ., and any β,Reβ > n,

(
d

dz

)n [
zβ−1Eα,β(wzα)

] = zβ−n−1Eα,β−n(wzα) (5.1.16)

and for any n = 1, 2, . . ., and any β,Reβ > n,

(
d

dz

)n [
zβ−1φ(γ,β;wz)

] = Γ (β)

Γ (β − n)
zβ−n−1φ(γ,β − n;wz), (5.1.17)

where
φ(γ,β; z) := 1F1(γ,β; z) = Γ (β)Eγ

1,β . (5.1.18)

�To prove formula (5.1.15) one can use term-by-term differentiation of the power
series representation of the three-parametric Mittag-Leffler function. Thus we get

(
d

dz

)n [
zβ−1Eγ

α,β(wzα)
]

=
∞∑

k=0

(γ)k

Γ (αk + β)

(
d

dz

)n [
wk zαk+β−1

k!
]

= zβ−n−1Eγ
α,β−n(wzα), Reβ > n,

and the result follows. �
Integrals of the Three-Parametric Mittag-Leffler Function
By integration of series (5.1.1) we get the following.
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If α,β, γ, z, w ∈ C, Reα > 0, Reβ > 0, Re γ > 0, then

z∫

0

tβ−1Eγ
α,β(wtα)dt = zβEγ

α,β+1(wzα). (5.1.19)

In particular,
z∫

0

tβ−1Eα,β(wtα)dt = zβEα,β+1(wzα), (5.1.20)

and
z∫

0

tβ−1φ(γ,β;wz)dt = 1

β
zβφ(γ,β + 1;wz). (5.1.21)

5.1.2 Integral Representations and Asymptotics

As for any function of the Mittag-Leffler type, the three parametric Mittag-Leffler
function can be represented via the Mellin–Barnes integral.

Let α ∈ R+, β, γ ∈ C, β �= 0, Re γ > 0. Then we have the representation

Eγ
α,β(z) = 1

Γ (γ)

1

2πi

∫

L

Γ (s)Γ (γ − s)

Γ (β − αs)
(−z)−sds, (5.1.22)

where | arg z| < π, the contour of integration begins at c − i∞, ends at c + i∞,
0 < c < Re γ, and separates all poles of the integrand at s = −k, k = 0, 1, 2, . . . to
the left and all poles at s = n + γ, n = 0, 1, . . . to the right.

� The integral in the R.H.S. of (5.1.22) is equal to the sum of residues at the poles
s = 0,−1,−2, . . .. Hence

∫

L

Γ (s)Γ (γ − s)

Γ (β − αs)
(−z)−sds =

∞∑

k=0

lim
s→−k

[
(s + k)Γ (s)Γ (γ − s)(−z)−s

Γ (β − αs)

]

=
∞∑

k=0

(−1)k

k!
Γ (γ + k)

Γ (β + αk)
(−z)k

= Γ (γ)

∞∑

k=0

(γ)k

Γ (β + αk)

zk

k! = Γ (γ)Eγ
α,β(z),

and thus (5.1.22) follows. �
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If β is a sufficiently large real number, one can use Stirling’s formula, valid for
any fixed a

Γ (z + a) ≈ √
2πzz+a−1/2e−z, as |z| → ∞, (5.1.23)

in order to get the following asymptotic formula (a > 0,α > 0,β > 0, γ > 0)

Γ (α)Eγ
α,β (a(αx)γ) ≈

∞∑

k=0

(β)kakxγk

k!
√
2παα−1/2e−α

√
2παα−1/2+γke−α

(5.1.24)

=
∞∑

k=0

(β)k

k!
(
a
( x
α

)γ)k = 1
(
1 + a

(
x
α

)γ)β , as x → +∞.

As in the case of the Mittag-Leffler function with two parameters, the asymp-
totic behavior of the three parametric function critically depends on the values of
the parameters α,β, γ and cannot easily be described. In principle, an asymptotic
expansion of the Prabhakar function can be found from its representation via a gen-
eralizedWright function or H -function (see Sect. 5.1.5 below) by using an approach
of Braaksma [Bra62] (cf. [KiSrTr06]).

Asymptotic expansions of the Prabhakar function for large values of argument
were given, e.g.., in [GarGar18]. On the basis of this work, the asymptotic expansion
of the Fox–Wright functions for large arguments has been studied by Paris [Par10]
in a paper describing an efficient algorithm for the derivation of the coefficients in
the asymptotic expansion of Fox–Wright functions.

An asymptotic expansion will be considered for α a real positive number and β, γ
arbitrary complex numbers with γ �= −1,−2, . . .. Following the approach proposed
in [Par10], we introduce two functions

H(z) := z−γ

Γ (γ)

∞∑

k=0

(−1)kΓ (k + γ)

k!Γ (β − α(k + γ))
z−k, (5.1.25)

F(z) := ez
1/α
z

γ−β
α

Γ (γ)αγ

∞∑

k=0

ckz
− k

α , (5.1.26)

where the coefficients ck = ck(α,β, γ) are obtained as coefficients in the following
expansion

Fγ
α,β(z) := Γ (s + γ)Γ (αs + ψ)

Γ (s + 1)Γ (αs + β)
= α1−γ

⎛

⎝c0 +
∞∑

j=1

c j
(αs + ψ) j

⎞

⎠ (5.1.27)

for |s| → ∞ in | arg s| ≤ π − ε and any arbitrarily small ε > 0. Here (x) j = x(x +
1) . . . (x + j − 1) denotes the Pochhammer symbol and ψ := 1 − γ + β.
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The main results for the asymptotic expansions of the Prabhakar function can
be given thanks to the following theorems related to the asymptotic expansion of
the Wright function (for the proofs see [Wri35b], [ParKam01, Sect. 2.3] or [Par10,
Theorems 1, 2 and 3]).

Theorem 5.1 ([GarGar18, Theorem 3]) Let 0 < α < 2. Then

Eγ
α,β(z) ∼

{
F(z) + H(ze∓pii ), if | arg z| < πα

2 ,

H(ze∓pii ), if | arg(−z)| < π(2−α)

2 ,
(5.1.28)

as |z| → ∞ with the sign in H(ze∓pii ) being chosen according to whether z lies in
the upper or lower half-plane, respectively.

Theorem 5.2 ([GarGar18, Theorem 4]) Let α = 2 and | arg z| ≤ π. Then

Eγ
α,β(z) ∼ F(z) + F(ze∓2πi ) + H(ze∓πi ), as |z| → ∞, (5.1.29)

with the sign in F(ze∓2πi ) and H(ze∓πi ) being chosen according to whether z lies
in the upper or lower half-plane, respectively.

Theorem 5.3 ([GarGar18, Theorem 5]) Let α > 2 and | arg z| ≤ π. Then

Eγ
α,β(z) ∼

P∑

l=−P

F(ze2πil), as |z| → ∞, (5.1.30)

where P is the integer such that 2P + 1 is the smallest odd integer satisfying 2P +
1 > α

2 .

The evaluation of the coefficients ck in F(z) is not an easy task and, indeed,
each coefficient is a function (of increasing complexity as k increases) of the three
parameters α,β and γ. An algorithm for their computation is proposed in [Par10]
and in [GarGar18, Appendix A] the main steps for the application to the Prabhakar
function are described. This algorithm makes it possible to numerically evaluate any
number of ck’s. The first few coefficients are however explicitly listed here

c0 = 1,

c1 = (γ − 1)(αγ + γ − 2β)

2
,

c2 =
(γ − 1)(γ − 2)

(
3(α + 1)2(γ + 1)2 − (α + 1)(α + 12β + 5)γ + 12β(β + 1)

)

24
.
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5.1.3 Expansion on the Negative Semi-axes

Due to its essential importance for applications (see, e.g.. [Xu17]), special attention
is paid in [GarGar18] to the asymptotic expansion of the Prabhakar function for real
negative arguments.

Theorem 5.4 Let α > 0 and t > 0. Then the following asymptotic expansion holds
for t → +∞:

Eγ
α,β(−t) ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H(t), if 0 < α < 2,

C0(t) + H(t), if α = 2,
P−1∑
l=0

Cl(t), if α > 2,

(5.1.31)

where P =
[

α/2+1
2

]
, [x] means the largest integer smaller than x and

Cl(t) = 2 exp{t1/α cos (2l+1)π
α

}
αγΓ (γ)

×
∞∑

k=0

ckt
γ−β−k

α cos

(
(2l + 1)π(γ − β − k)

α
+ t1/α sin

(2l + 1)π

α

)
.

� From the above Theorems 5.1–5.3 it follows that (since −t = teπi ) as t → ∞

Eγ
α,β(−t) ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H(t), if 0 < α < 2,

F(teπi ) + F(te−πi ) + H(t), if α = 2,
P∑

l=−P
F(teπi(2l+1)), if α > 2.

Since

exp{(teπil)1/α} = exp

{
t1/α cos

πl

α

}(
cos

(
t1/α sin

πl

α

)
+ i sin

(
t1/α sin

πl

α

))
,

(teπil)
γ−β−l

α = t
γ−β−l

α

(
cos

πl(γ − β − l)

α
+ i sin

πl(γ − β − l)

α

)
,

defining Cl(t) := F(teπil) + F(te−πil), after standard manipulations we find that
expressions Cl(t) have the form predicted in the theorem, and for Cl(t) = C2l+1(t)
all l = 0, 1, . . . , P − 1. Furthermore,
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F(teπi(2P+1)) = 2 exp{t1/α cos (2P+1)π
α

}
αγΓ (γ)

∞∑

k=0

ckt
γ−β−k

α ×
(
cos

(
(2P + 1)π(γ − β − k)

α
+ t1/α sin

(2P + 1)π

α

)
+

i sin

(
(2P + 1)π(γ − β − k)

α
+ t1/α sin

(2P + 1)π

α

))

= AP(t) + i BP(t).

If α > 2 then 2P + 1 > α/2 and hence cos (2P+1)π
α

< 0. Thus AP(t) → 0 and
BP(t) → 0 exponentially as t → ∞ and therefore all terms Cl(t) with l ≥ P in
the expansion of Eγ

α,β(−t) can be neglected. 

5.1.4 Integral Transforms of the Prabhakar Function

In a similar way as for the two-parametric Mittag-Leffler function one can calculate
theLaplace transform of the Prabhakar function (the three-parametricMittag-Leffler
function)

(
L Eγ

α,β(t)
)

(s) =
∞∫

0

e−st Eγ
α,β(t)dt = 1

s
2Ψ1

[
(γ, 1), (1, 1)
(β,α)

∣∣∣∣
1

s

]
(Res > 0).

(5.1.32)
The most useful variant of the Laplace transform of the Prabhakar function is the
following formula (see, e.g.., [KiSrTr06, p. 47]):

(
L tβ−1Eγ

α,β(λtα)
)

(s) = sαγ−β

(sα − λ)γ
, (5.1.33)

which is valid for all Res > 0, Reβ > 0, λ ∈ C such that |λs−α| < 1.
Applying the Mellin inversion formula to (5.1.22) we obtain theMellin transform

of three-parametric Mittag-Leffler function

(
M Eγ

α,β(−wt)
)

(s) =
∫ ∞

0
t s−1Eγ

α,β(−wt)dt = Γ (s)Γ (γ − s)

Γ (γ)Γ (β − αs)
w−s . (5.1.34)

Further we take into account the integral relation for the Whittaker function

∫ ∞
0

tν−1e−t/2Wλ,μ(t)dt = Γ (1/2 + μ + ν)Γ (1/2 − μ + ν)

Γ (1 − λ + ν)
, Re (ν ± μ) > −1/2,

(5.1.35)
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where

Wλ,μ(x) = e−x/2xc/2U (a, c, x), a = 1/2 − μ + ν, c = 2μ + 1,

and U (a, c, x) is the Tricomi function (or confluent hypergeometric function, or
degenerate hypergeometric function) defined, e.g.., by the integral

U (a, c, x) = 1

Γ (a)

∫ ∞

0

ta−1

t + b
e−xtdt, b = 1 + a − c.

By using (5.1.35) we obtain the so-calledWhittaker integral transform of the three-
parametric Mittag-Leffler function

∫ ∞

0
tρ−1e− pt

2 Wλ,μ(pt)E
γ
α,β(wtδ)dt = p−ρ

Γ (γ)
3Ψ2

[
w

pδ

∣∣∣∣
(γ, 1), ( 12 ± μ + ρ, δ)
(β,α), (1 − λ + ρ, δ)

]
,

(5.1.36)

where 3Ψ2 is the generalizedWright function, and |Reμ| < 1/2, Re ρ > 0,

∣∣∣∣
w

pδ

∣∣∣∣ < 1.

As a particular case of this formula we can obtain the Laplace transform of the three-
parametric Mittag-Leffler function. Indeed, since

W±1/2,0(t) = e−t/2,

the Laplace transform of Eγ
α,β can be represented by the relation

∫ ∞

0
tρ−1e−pt Eγ

α,β(wtδ)dt = p−ρ

Γ (γ)
2Ψ1

[
w

pδ

∣∣∣∣
(γ, 1), (ρ, δ)
(β,α)

]
, (5.1.37)

where Reα > 0, Reβ > 0, Re ρ > 0, Re p > 0, p > |w| 1
Reα . In particular, for ρ = β

and δ = α this result coincides with that obtained in [Pra71, Eq. 2.5]

∫ ∞

0
tβ−1e−pt Eγ

α,β(wtα)dt = p−β
(
1 − wp−α

)−γ
, (5.1.38)

where Reα > 0, Reβ > 0, Re p > 0, p > |w| 1
Reα .

5.1.5 Complete Monotonicity of the Prabhakar Function

Here we present the result on the complete monotonicity of the (“small”) Prabhakar
function

eγ
α,β(t) = tβ−1Eγ

α,β(−tα), t ≥ 0, (5.1.39)
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following [MaiGar15]. For some particular values of the parameters this function
and its Laplace transform

Eγ
α,β(s) := L

(
eγ
α,β(t)

)
(s) = sαγ−β

(sα + 1)γ
, Re s > 0, |sα| > 1, (5.1.40)

provide the response function and the complex susceptibility (s = −iω), respectively,
found in the most common models for non-Debye (or anomalous) relaxation in
dielectrics.

In [MaiGar15] a simplified proof is given of the complete monotonicity of eγ
α,β(t)

for the following values of parameters

0 < α ≤ 1, 0 < αγ ≤ β ≤ 1. (5.1.41)

Note first that for 0 < α < 1 the Laplace transform in (5.1.40) exhibits a branch
cut on the negative real semi-axis but has no poles. Therefore, the inversion of the
Laplace transform through the Bromwich integral reduces to the evaluation of the
integral on an equivalent Hankel path which starts from−∞ along the lower negative
real axis, encircles the small circle |s| = ε in the positive sense and returns to −∞
along the upper negative real axis. It can be shown (see, e.g.., [CdOMai11]) by
calculating the limit as ε → 0 that

eγ
α,β(t) =

+∞∫

0

e−r t K γ
α,β(r)dr, (5.1.42)

where

K γ
α,β(r) = ∓ 1

π
Im
[
Eγ

α,β(s)
∣∣∣
s=re±iπ

]
(5.1.43)

denotes the spectral distribution of eγ
α,β(t). In other words, since Eγ

α,β(s) is required
to be the iterated Laplace transform of K γ

α,β(r), we recognize that it is the Stieltjes
transform of the spectral distribution. As a consequence, the spectral distribution
can be determined as the inverse Stieltjes transform of Eγ

α,β(s) via the so-called
Titchmarsh inversion formula (see, e.g.., [Tit86, Wid46]).

Byvirtue of theBernstein theorem (see, e.g.. [SchSoVo12]), to ensure the complete
monotonicity of eγ

α,β(t) the spectral distribution K γ
α,β(r) has to be shown to be non-

negative for all r ≥ 0. In [MaiGar15], the spectral distribution is computed explicitly
from the Titchmarsh formula and thus the conditions of non-negativity are derived.
Indeed,

K γ
α,β(r) = r−β

π
Im

[
eiβπ

(
rα + e−iαπ

rα + 2 cos(απ) + r−α

)γ]

= −rαγ−β

π
Im

[
ei(αγ−β)π

(rαeiαπ + 1)γ

]
,
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which gives us directly the following representation of the spectral distribution

K γ
α,β(r) = rαγ−β

π

sin (γθα(r) + (β − αγ)π)

(r2α + 2rα cos(απ) + 1)γ/2
, (5.1.44)

where the value of θα(r) is chosen as follows

θα(r) = arctan

[
rα sin(απ)

rα cos(απ) + 1

]
∈ [0,π]. (5.1.45)

It can be easily checked that θα(r) is a non-negative and increasing function of r
bounded by απ ≤ π. In fact, for r � 1 we have

rα sin(απ)

rα cos(απ) + 1
= sin(απ)

cos(απ) + 1
rα

≤ sin(απ)

cos(απ)
= tan(απ). (5.1.46)

The above consideration leads us immediately to the validity of the complete mono-
tonicity of the function eγ

α,β(t) in the case when its parameters satisfy the inequalities
(5.1.41).

Note that the obtained result is illustratedbynumerical calculations in [MaiGar15].

5.1.6 Fractional Integrals and Derivatives of the Prabhakar
Function

Theorem 5.5 Letμ,α,β > 0, a ∈ R. Then the following formulas for theRiemann–
Liouville and the Liouville fractional integration and differentiation of the Prabhakar
function hold:

(i) {
I μ
0+
[
tβ−1Eγ

α,β(atα)
]}

(x) = xβ+μ−1Eγ
α,β+μ(ax

α), (5.1.47)

where
(
I μ
0+ϕ(t)

)
(x) = 1

Γ (μ)

x∫

0

ϕ(t)

(x − t)1−μ
dt, Reμ > 0,

is the left-sided Riemann–Liouville fractional integral (see, e.g.., [SaKiMa93,
p. 33]).

(ii) {
I μ
−
[
t−μ−βEγ

α,β(at−α)
]}

(x) = x−βEγ
α,β+μ(ax

−α), (5.1.48)
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where
(
I μ
−ϕ(t)

)
(x) = 1

Γ (μ)

∞∫

x

ϕ(t)

(t − x)1−μ
dt, Reμ > 0,

is the right-sided Liouville fractional integral (see, e.g.., [SaKiMa93, p. 94]).
(iii) {

Dμ
0+
[
tβ−1Eγ

α,β(atα)
]}

(x) = xβ−μ−1Eγ
α,β−μ(ax

α), (5.1.49)

where

(
Dμ
0+ϕ(t)

)
(x) = 1

Γ (n − μ)

(
d

dx

)n x∫

0

ϕ(t)

(x − t)μ−n+1 dt, Reμ > 0, n = [μ] + 1,

is the left-sidedRiemann–Liouville fractional derivative (see, e.g.., [SaKiMa93,
p. 37]).

(iv) If β − μ + {μ} > 1, then

{
Dμ

−
[
tμ−βEγ

α,β(at−α)
]}

(x) = x−βEγ
α,β−μ(ax

−α), (5.1.50)

where

(
Dμ

−ϕ(t)
)
(x) = (−1)n

Γ (n − μ)

(
d

dx

)n ∞∫

x

ϕ(t)

(t − x)μ−n+1 dt, Reμ > 0, n = [μ] + 1,

is the right-sided Liouville fractional derivative (see, e.g.., [SaKiMa93, p. 95]).

� The proof follows from the definitions of the corresponding fractional integrals
and derivatives. Thus, to prove relation (5.1.47) we put

K ≡
{
I μ
0+
[
tβ−1Eγ

α,β(atα)
]}

(x) = 1

Γ (μ)

x∫

0

(x − t)μ−1
∞∑

n=0

(γ)nantnα+β−1

Γ (nα + β)n! dt.

Since the series converges for any t > 0, interchanging the order of integration and
summation and evaluating the inner integral by means of the Beta function yields

K ≡ xμ+β−1
∞∑

n=0

(γ)n(axα)n

Γ (μ + nα + β)n! = xβ+μ−1Eγ
α,β+μ(ax

α).

The proof is complete. �
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5.1.7 Relations to the Fox–Wright Function, H-function and
Other Special Functions

Due to the integral representation (5.1.22) the three-parametric Mittag-Leffler func-
tion can be considered as a special case of the H -function (see, e.g.., [KilSai04])

Eγ
α,β(z) = 1

Γ (γ)
H 1,1

1,2

[
−z

∣∣∣∣
(1 − γ, 1)

(0, 1), (1 − β,α)

]
(5.1.51)

as well as a special case of the Fox–Wright generalized hypergeometric function
pWq (see, e.g.. Slater [Sla66], Mathai and Saxena [MatSax73])

Eγ
α,β(z) = 1

Γ (γ)
1W1

[
z

∣∣∣∣
(γ, 1)
(β,α)

]
. (5.1.52)

In particular, whenα = 1 the Prabhakar function Eγ
1,β(z) coincides with theKum-

mer confluent hypergeometric function Φ(γ;β; z), apart from the constant factor
(Γ (β))−1

Eγ
α,β(z) = 1

Γ (β)
Φ(γ;β; z), (5.1.53)

and when α = m ∈ N is a positive integer then Eγ
m,β(z) is related to the generalized

hypergeometric function

Eγ
m,β(z) = 1

Γ (β)
1Fm

(
γ; β

m
,
β + 1

m
, . . . ,

β + m − 1

m
; z

mm

)
. (5.1.54)

Here we present other special functions, which are connected with the Prabhakar
function (5.1.1) (see [KiSaSa04]). The following relation holds

E−k
m,β+1(z) = Γ (k + 1)

Γ (km + β + 1)
Z (β)

k (z;m) (k,m ∈ N;β ∈ C), (5.1.55)

where Z (β)

k (z;m) is a polynomial of degree k in zm studied in [Kon67]. In particular,

Z (β)

k (z; 1) = Lβ
k , (k ∈ N;β ∈ C), (5.1.56)

where Lβ
k is the Laguerre polynomial (see, e.g.., [ErdBat-2, Sect. 10.12]), and hence

E−k
1,β+1(z) = Γ (k + 1)

Γ (k + β + 1)
Lβ
k , (k ∈ N;β ∈ C). (5.1.57)

The Laguerre function Lβ
ν (see, e.g.., [ErdBat-1, 6.9(37)]) is also a special case of

the Prabhakar function (5.1.1):
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E−ν
1,β+1(z) = Γ (ν + 1)

Γ (β + 1)
Lβ

ν , (ν,β ∈ C). (5.1.58)

The following relation in terms of the Kummer confluent hypergeometric function
(m ∈ N;β, γ ∈ C)

Eγ
m,β(z) = (2π)(m−1)/2

(m)β−1/2

m−1∏

k=0

1

Γ ((β + k)/m)
Φ

(
γ,

β + k

m
; z

mm

)
(5.1.59)

is deduced from the definition of the Prabhakar function and from the multiplication
formula of Gauss and Legendre for the Gamma function [ErdBat-1, 1.2(11)] (see
Sect.A.1.4 in Appendix A).

5.2 The Kilbas–Saigo (Three-Parametric Mittag-Leffler)
Function

5.2.1 Definition and Basic Properties

Another form of the three-parametric Mittag-Leffler function is defined by Kilbas
and Saigo [KilSai95b] (see also [KilSai95a]) (now called theKilbas–Saigo function)

Eα,m,l(z) =
∞∑

k=0

ckz
k (z ∈ C;α, m ∈ R, l ∈ C), (5.2.1)

where

c0 = 1, ck =
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)
(k = 1, 2, · · · ). (5.2.2)

In (5.2.2) an empty product is defined to be equal to one,1 α, m are real numbers
and l ∈ C such that

α > 0, m > 0, α( jm + l) + 1 �= −1,−2,−3, · · · ( j = 0, 1, 2, · · · ). (5.2.3)

The function (5.2.1) was introduced in [KilSai95b] (see also [KilSai95a]).
In particular, if m = 1, the conditions in (5.2.3) take the form

α > 0, α( j + l) + 1 �= −1,−2,−3, · · · ( j = 0, 1, 2, · · · ) (5.2.4)

1In what follows we will call this assumption the “Empty Product Convention”.
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and (5.2.1) is reduced to the two-parametricMittag-Leffler function given in [Chap.4,
formula (4.1.1)]:

Eα,1,l(z) = Γ (αl + 1)Eα,αl+1(z). (5.2.5)

Therefore we call the three-parametric Mittag-Leffler function Eα,m,l(z) a Kilbas–
Saigo function. As we shall see later, the Kilbas–Saigo function is used to solve in
closed form new classes of integral and differential equations of fractional order.

When α = n ∈ N = {1, 2, · · · }, En,m,l(z) takes the form

En,m,l(z) = 1 +
∞∑

k=1

k−1∏

j=0

(
1

[n( jm + l) + 1] · · · [n( jm + l) + n]
)
zk, (5.2.6)

where n, m and l are real numbers such that

n ∈ N, m > 0, n( jm + l) �= −1,−2, · · · ,−n ( j = 0, 1, 2, · · · ). (5.2.7)

5.2.2 The Order and Type of the Entire Function Eα,m,l(z)

In this subsection we give a few characteristics of Eα,m,l(z). First of all we show that
the Kilbas–Saigo function is an entire function.

Lemma 5.6 If α, m and l are real numbers such that the conditions (5.2.3) are
satisfied, then Eα,m,l(z) is an entire function of the variable z.

�According to (5.2.2) and the relation [AppendixA, formula (A.27)] with z = αnm,
a = αl + α + 1 and b = αl + 1, we have the asymptotic estimate

ck
ck+1

= Γ [α(km + l + 1) + 1]
Γ [α(km + l) + 1] ∼ (αmk)α → ∞ (k → ∞).

Therefore the radius of convergence R of the series (5.2.1) is equal to +∞, i.e.
Eα,m,l(z) is an entire function. 
Corollary 5.7 For α > 0, m > 0 and Re l > −1/α the function Eα,m,l(z) is an
entire function of z.

Corollary 5.8 Ifα = n ∈ N, m > 0 and l are real numbers such that the conditions
(5.2.7) are satisfied, then the Kilbas–Saigo function En,m,l(z) given by (5.2.6) is an
entire function of z.

The order and type of the Kilbas–Saigo function (5.2.1) is given by the following
statement.
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Theorem 5.9 If α, m and l are real numbers such that the conditions (5.2.3) are
satisfied, then Eα,m,l(z) is an entire function of order ρ = 1/α and type σ = 1/m.
Moreover we have the asymptotic estimate

|Eα,m,l(z)| < exp

([
1

m
+ ε

]
|z|1/α

)
, |z| ≥ r0 > 0, (5.2.8)

whenever ε > 0 is sufficiently small.

�Applying formula (B.5) (AppendixB)we first find the order ρ of Eα,m,l(z). Accord-
ing to (5.2.2) we have

ck = Γ (αl + 1)Γ (αl + αm + 1) · · · Γ (αl + αm[k − 1] + 1)

Γ (αl + α + 1)Γ (αl + α + αm + 1) · · · Γ (αl + α + αm[k − 1] + 1)
.

Let
zn = αl + αmn + 1 (n ∈ N = {1, 2, · · · }). (5.2.9)

Using (5.2.8) with z = zn, a = 0 and b = αwe obtain that for any d > 0 there exists
an n0 ∈ N such that

(1 − d)zα
n ≤

∣∣∣∣
Γ (zn + α)

Γ (zn)

∣∣∣∣ ≤ (1 + d)zα
n ∀n > n0. (5.2.10)

Therefore for k > n0 we have

log

(
1

|ck |
)

=
k−1∑

n=0

log

∣∣∣∣
Γ (zn + α)

Γ (zn)

∣∣∣∣

=
n0∑

n=0

log

∣∣∣∣
Γ (zn + α)

Γ (zn)

∣∣∣∣+
k−1∑

n=n0+1

log

∣∣∣∣
Γ (zn + α)

Γ (zn)

∣∣∣∣

≤ d1 +
k−1∑

n=n0+1

log(1 + d) +
k−1∑

n=n0+1

log(zα
n )

= d1 + (k − n0 − 1) log(1 + d)

+ α

k−1∑

n=n0+1

[
log(n) + log(αm) + log

(
1 + αl + 1

nαm

)]

and hence

log

(
1

|ck |
)

≤ d3 + kd4 + αk log(k), (5.2.11)
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where d3 and d4 are certain positive constants. Similarly

log

(
1

|ck |
)

≥ d4 + (k − n0 − 1) log(1 − d)

+ α

k−1∑

n=n0+1

[
log(n) + log(αm) + log

(
1 + αl + 1

nlm

)]

and

log

(
1

|ck |
)

≥ d5 + kd6 + αk log(k) (5.2.12)

for some real constants d5, d6.
It follows from (5.2.11) and (5.2.12) that the usual limit

lim
k→∞

k log(k)

log(1/|ck |) = 1

α
(5.2.13)

exists and hence in accordance with formula (B.5) (Appendix B) the order ρ of
Eα,m,l(z) is given by

ρ = 1

α
. (5.2.14)

Next we use formula (B.6) (Appendix B) to find the type σ of the function
Eα,m,l(z). Applying (5.2.10), (5.2.9) and (5.2.2) we have

n0∏

n=0

∣∣∣∣
Γ (zn + α)

Γ (zn)

∣∣∣∣

(
1

1 + d

)k−n0−1 k−1∏

n=n0+1

zα
n ≤ |ck |

≤
n0∏

n=0

∣∣∣∣
Γ (zn + α)

Γ (zn)

∣∣∣∣

(
1

1 − d

)k−n0−1 k−1∏

n=n0+1

zα
n . (5.2.15)

Using this formula and the asymptotic relation

k−1∏

n=n0

(
1

αnm

)α

∼
(
1

k!
)α ( 1

αm

)αk

∼ (2πk)−α
( e

αkm

)αk
(k → ∞)

from formula (B.6) (Appendix B), we obtain σα = m−α and hence the type σ of
Eα,m,l(z) is given by

σ = 1

m
. (5.2.16)
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The asymptotic estimate (5.2.8) follows from (5.2.13)–(5.2.14) and the definitions
of the order and type of an entire function given in AppendixB. This completes the
proof of the theorem. 
Corollary 5.10 If α = n ∈ N, m > 0 and l are real numbers such that the condi-
tions (5.2.7) are satisfied, then the Kilbas–Saigo function En,m,l(z) given by (5.2.6)
is an entire function of z with order ρ = 1/n and type σ = 1/m.

Corollary 5.11 The classical Mittag-Leffler function Eα(z) and the two-parametric
Mittag-Leffler function Eα,β(z), given respectively in [Chap. 3, formula (3.1.1)] and
in [Chap.4, formula (4.1.1)], have the same order and type:

ρ = 1

α
, σ = 1. (5.2.17)

Remark 5.12 The assertions of Corollary 5.11 coincide with those in [Chap.3,
Proposition 3.1] and [Chap. 4, Sect. 4.1].

Remark 5.13 Theorem 5.9 shows that the Kilbas–Saigo function (5.2.1) has the
same order as the Mittag-Leffler functions [Chap.3, formula (3.1.1)] and [Chap.4,
formula (4.1.1)]. But the type of Eα,m,l(z) depends on m.

5.2.3 Recurrence Relations for Eα,m,l(z)

In this subsection we give recurrence relations for Eα,m,l(z).

Theorem 5.14 Let α, m and l be real numbers such that the condition (5.2.3) is
satisfied and let n ∈ N. Then the following recurrence relation holds

zn
[
Eα,m,l+nm(z) − 1

] =
n−1∏

j=0

Γ [α( jm + l + 1) + 1]
Γ [α( jm + l) + 1] ×

⎡

⎣Eα,m,l(z) − 1 −
n∑

k=1

⎛

⎝
k−1∏

j=0

Γ [α( jm + l) + 1]
Γ [α( jm + l + 1) + 1]

⎞

⎠ zk

⎤

⎦ . (5.2.18)

� By (5.2.1) we have

Eα,m,l+nm(z) = 1 +
∞∑

k=1

⎛

⎝
k−1∏

j=0

Γ [α( jm + nm + l) + 1]
Γ [α( jm + nm + l + 1) + 1]

⎞

⎠ zk .
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Changing the summation indices s = j + n and p = k + n, we obtain

Eα,m,l+nm(z) = 1 +
∞∑

k=1

(
n+k−1∏

s=n

Γ [α(sm + l) + 1]
Γ [α(sm + l + 1) + 1]

)
zk

= 1 +
∞∑

p=n+1

⎛

⎝
p−1∏

s=n

Γ [α(sm + l) + 1]
Γ [α(sm + l + 1) + 1]

⎞

⎠ z p−n

= 1 +
n−1∏

s=0

Γ [α(sm + l + 1) + 1]
Γ [α(sm + l) + 1]

∞∑

p=n+1

⎛

⎝
p−1∏

s=0

Γ [α(sm + l) + 1]
Γ [α(sm + l + 1) + 1]

⎞

⎠ z p−n

= 1 + 1

zn

n−1∏

s=0

Γ [α(sm + l + 1) + 1]
Γ [α(sm + l) + 1]

×
⎡

⎣1 +
∞∑

p=1

⎛

⎝
p−1∏

s=0

Γ [α(sm + l) + 1]
Γ [α(sm + l + 1) + 1]

⎞

⎠ z p

−
n∑

p=1

⎛

⎝
p−1∏

s=0

Γ [α(sm + l) + 1]
Γ [α(sm + l + 1) + 1]

⎞

⎠ z p − 1

⎤

⎦

= 1 + 1

zn

n−1∏

s=0

Γ [α(sm + l) + 1]
Γ [α(sm + l + 1) + 1]

×
⎡

⎣Eα,m,l (z) −
n∑

p=1

⎛

⎝
p−1∏

s=0

Γ [α(sm + l) + 1]
Γ [α(sm + l + 1) + 1]

⎞

⎠ z p − 1

⎤

⎦

and (5.2.18) is proved. 
Corollary 5.15 If the conditions of Theorem 5.14 are satisfied, then

zEα,m,l+m(z) = Γ (αl + α + 1)

Γ (αl + 1)

[
Eα,m,l(z) − 1

]
(5.2.19)

and

znEα,m,l+nm(z) =
n−1∏

j=0

Γ [α( jm + l + 1) + 1]
Γ [α( jm + l) + 1]

×
⎡

⎣Eα,m,l(z) − 1 −
n−1∑

k=1

⎛

⎝
k−1∏

j=0

Γ [α( jm + l) + 1]
Γ [α( jm + l + 1) + 1]

⎞

⎠ zk

⎤

⎦ (5.2.20)

for n = 2, 3, · · · .

The following two corollaries show what the above properties look like in special
cases.
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Corollary 5.16 If α > 0, β > 0 and n ∈ N, then for the two-parametric Mittag-
Leffler function Eα,αn+β(z) we have the recurrence relations

zEα,α+β(z) = Eα,β(z) − 1

Γ (β)
(5.2.21)

and
znΓ (αn + β)Eα,αn+β(z)

=
n−1∏

j=0

Γ (α j + α + β)

Γ (α j + β)

⎡

⎣Γ (β)Eα,β(z) − 1 −
n−1∑

k=1

⎛

⎝
k−1∏

j=0

Γ (α j + β)

Γ (α j + α + β)

⎞

⎠ zk

⎤

⎦

(5.2.22)
for n = 2, 3, · · · .

Corollary 5.17 If α > 0 and n ∈ N, then the Mittag-Leffler function Eα,α+1(z) is
expressed via the Mittag-Leffler function (3.1.1) by

zEα,α+1(z) = Eα(z) − 1 (5.2.23)

and

znEα,αn+1(z) = Eα(z) −
n∑

j=1

z j

Γ (α j + 1)
(5.2.24)

for n = 2, 3, · · · .

5.2.4 Connection of En,m,l(z) with Functions of
Hypergeometric Type

As we have mentioned in Sect. 5.2.1, the Kilbas–Saigo function Eα,m,l(z) is a gener-
alization of the two-parametric Mittag-Leffler function Eα,β(z) presented in Chap.4,
formula (4.1.1), in particular, of the Mittag-Leffler function Eα(z) presented in
Chap.3, formula (3.1.1).Whenα = n ∈ N, En,m,l(z) in (5.2.6) becomes a function of
hypergeometric type. Such a function p Fq

(
a1, a2. · · · , ap; b1, b2. · · · , bq; z

)
for p ∈

N0 = N
⋃{0},q ∈ N0, a1, a2. · · · , ap ∈ C, b1, b2, · · · , bq ∈ C and z ∈ C, |z| < 1,

is defined by the hypergeometric series [ErdBat-1]

pFq
(
a1, a2. · · · , ap; b1, b2. · · · , bq; z

) =
∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (aq)k
zk

k! , (5.2.25)

where (·)k is the Pochhammer symbol defined in [AppendixA, formula (A.17)].
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Theorem 5.18 Let the conditions (5.2.7) be satisfied. Then the function En,m,l(z) is
given via the hypergeometric function by

En,m,l(z) = 1Fn

(
1; nl + 1

nm
,
nl + 2

nm
· · · nl + n

nm
; z

(nm)n

)
(5.2.26)

and is an entire function of z with order ρ = 1/n and type σ = 1/m.

� According to (5.2.1), (5.2.25) and (5.2.26) we have

En,m,l(z) = 1 +
∞∑

k=1

⎛

⎝
k−1∏

j=0

Γ (n[ jm + l] + 1)

Γ (n[ jm + l + 1] + 1)

⎞

⎠ zk

= 1 +
∞∑

k=1

k!
(nl + 1) · · · (nl + 1 + (k − 1)nm) · · · (nl + n) · · · (nl + n + (k − 1)nm)

zk

k!

= 1 +
∞∑

k=1

(1)k
([nl + 1])/[nm])k · · · ([nl + n]/[nm])k

1

(nm)nk

zk

k!

=1 Fn

(
1; nl + 1

nm
,
nl + 2

nm
· · · nl + n

nm
; z

(nm)n

)

and (5.2.26) is proved. The last assertion follows from Theorem 5.9. This completes
the proof. 
Corollary 5.19 If n ∈ N andβ > 0, then theMittag-Leffler function En,β(z) is given
by

En,1,(β−1)/n(z) = Γ (β)En,β(z) (5.2.27)

= 1Fn

(
1; β

n
,
β + 1

n
· · · β + n − 1

n
; z

(n)n

)

and is an entire function of order ρ = 1/n and type σ = 1.

Corollary 5.20 If

m > 0, l ∈ R, jm + l �= −1,−2,−3, · · · ( j = 0, 1, 2, · · · ), (5.2.28)

then E1,m,l(z) is given by

E1,m,l(z) = 1F1

(
1; l + 1

m
; z

m

)
= Γ

(
l + 1

m

)
E1,(l+1)/m

( z

m

)
(5.2.29)

and is an entire function of z with order ρ = 1 and type σ = 1/m.
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Corollary 5.21 If l �= −1,−2,−3, · · · , then E1,1,l(z) is given by

E1,1,l(z) = 1F1(1; l + 1; z) = Γ (l + 1)E1,l+1(z) (5.2.30)

and is an entire function of z with order ρ = 1 and typeσ = 1. In particular, if l ∈ N0,

E1,1,l(z) = l!E1,l+1(z) = l!
zl

[
ez −

l−1∑

k=0

zk

k!

]
(5.2.31)

and
E1,1,0(z) = E1(z) = ez . (5.2.32)

5.2.5 Differentiation Properties of En,m,l(z)

In this subsection we give two differentiation formulas for the Kilbas–Saigo function
(5.2.1) with an integer first parameter α = n. The first of these is given by the
following statement.

Theorem 5.22 Let n ∈ N, m > 0 and l ∈ R be such that the conditions in (5.2.7)
are satisfied and let λ ∈ C. Then the following differentiation formula

(
d

dz

)n [
zn(l−m+1)En,m,l(λz

nm)
] =

n∏

j=1

[n(l − m) + j]zn(l−m) + λznl En,m,l(λz
nm)

(5.2.33)
holds. In particular, if

n(l − m) = − j for some j = 1, 2, · · · , n, (5.2.34)

then (
d

dz

)n [
zn(l−m+1)En,m,l(λz

nm)
] = λznl En,m,l(λz

nm). (5.2.35)

� If λ = 0, then by (5.2.1) En,m,l(z) = 1, and formula (5.2.33) takes the well-known
form (

d

dz

)n [
zn(l−m+1)

] =
n∏

j=1

[n(l − m) + j]zn(l−m).

If λ �= 0, then by (5.2.1) we have
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(
d

dz

)n [
zn(l−m+1)En,m,l(λz

nm)
]

=
(

d

dz

)n
[
zn(l−m+1) +

∞∑

k=1

ckλ
k zn(l−m+1)+nmk

]

= [n(l − m + 1)][n(l − m + 1) − 1] · · · [n(l − m + 1) − n + 1]zn(l−m)

+
∞∑

k=1

⎛

⎝
k−1∏

j=0

Γ (n[ jm + l] + 1)

Γ (n[ jm + l + 1] + 1)

⎞

⎠ Γ [n{(k − 1)m + l + 1} + 1]
Γ [n({(k − 1)m + l} + 1] λk zn(l−m)+nmk

=
n∏

k=1

[n(l − m) + k]zn(l−m) + λznl

+
∞∑

k=2

⎛

⎝
k−2∏

j=0

Γ (n[ jm + l] + 1)

Γ (n[ jm + l + 1] + 1)

⎞

⎠λk zn(l−m)+nmk .

By index substitution s = k − 1 we obtain

(
d

dz

)n [
zn(l−m+1)En,m,l(λz

nm)
]

=
n∏

k=1

[n(l − m) + j]zn(l−m) + λznl

+
∞∑

s=1

⎛

⎝
s−1∏

j=0

Γ (n[ jm + l] + 1)

Γ (n[ jm + l + 1] + 1)

⎞

⎠λs+1znl+nms

=
n∏

k=1

[n(l − m) + k]zn(l−m)

+ λznl

⎡

⎣1 +
∞∑

s=1

⎛

⎝
s−1∏

j=0

Γ (n[ jm + l] + 1)

Γ (n[ jm + l + 1] + 1)

⎞

⎠ (λznm)s

⎤

⎦

and (5.2.33) is proved in accordance with (5.2.1). (5.2.35) follows from (5.2.33). The
theorem is proved. 
Corollary 5.23 If α = n = 1, 2, · · · , β > 0 and λ ∈ C, then for the Mittag-Leffler
type function En,β(azn) in [Chap.4, formula (4.1.1)] we have

(
d

dz

)n [
zβ−1En,β(λzn)

] = 1

Γ (β − n)
zβ−n−1 + λzβ−1En,β(λzn). (5.2.36)
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Special cases of the above property have the form:

Corollary 5.24 If α = n = 1, 2, · · · , β = k ∈ N (1 ≤ k ≤ n) and λ ∈ C, then for
the Mittag-Leffler type function En,k(λzn) we have

(
d

dz

)n [
zk−1En,k(λz

n)
] = λzk−1En,k(λz

n). (5.2.37)

In particular, when k = 1, for the Mittag-Leffler function En(λzn) in [Chap.3, for-
mula (3.1.1)] we have

(
d

dz

)n [
En(λz

n)
] = λEn(λz

n). (5.2.38)

Remark 5.25 By [Chap.4, formula (4.1.1)], the relation (5.2.36) can be represented
in the form (

d

dz

)n [
zβ−1En,β(λzn)

] = λzβ−n−1En,β−n(λz
n), (5.2.39)

which coincides with [Chap.4, formula (4.3.6)].

Remark 5.26 When a = 1, the relation (5.2.38) coincides with [Chap.3, formula
(3.1.1)].

Another differentiation relation for the Kilbas–Saigo function (5.2.1) is given by
the following:

Theorem 5.27 Let α = n ∈ N, m > 0 and l ∈ R be such that the conditions in
(5.2.7) are satisfied and let λ ∈ C. Then for En,m,l(az−nm) the differentiation formula

(
d

dz

)n [
zn(m−l)−1En,m,l(λz

−nm)
]

(5.2.40)

=
n∏

j=1

[n(m − l) − j]zn(m−l−1)−1 + (−1)nλz−n(l+1)−1En,m,l(λz
−nm)

holds. In particular, if the conditions

n(l − m) = j f or some j = 1, 2, · · · , n, (5.2.41)

are satisfied, then

(
d

dz

)n [
zn(m−l)−1En,m,l(λz

−nm)
] = (−1)nλz−n(l+1)−1En,m,l(λz

−nm). (5.2.42)
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� If λ = 0, then by (5.2.1) En,m,l(z) = 1, and formula (5.2.40) takes the well-known
form (

d

dz

)n [
zn(m−l)−1

] =
n∏

j=1

[n(m − l) − j]zn(m−l−1)−1.

When λ �= 0, according to (5.2.1) we have

(
d

dz

)n [
zn(m−l)−1)En,m,l(λz

−nm)
]

=
(

d

dz

)n

zn(m−l)−1

[
1 +

∞∑

k=1

ckλ
k zn(m−l)−nmk−1

]

= [n(m − l) − 1] · · · [n(m − l) − n]zn(m−l)−1−n

+
∞∑

k=1

λk

⎛

⎝
k−1∏

j=0

Γ (n[ jm + l] + 1)

Γ (n[ jm + l + 1] + 1)

⎞

⎠

× [n(m − l) − nmk − 1] · · · [n(m − l) − nmk − n]zn(m−l)−nmk−n−1

=
n∏

k=1

[n(m − l) − k]zn(m−l−1)−1

+ (−1)n
∞∑

k=1

⎛

⎝
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠

× Γ (n[{k − 1}m + l + 1] + 1)

Γ (n[{k − 1}m + l] + 1)
λ j zn(m−l)−nmk−n−1

=
n∏

k=1

[n(m − l) − k]zn(m−l−1)−1

+ (−1)naz−n(l+1)−1

⎡

⎣1 +
∞∑

k=2

λk

⎛

⎝
k−2∏

j=0

Γ (n[ jm + l] + 1)

Γ (n[ jm + l + 1] + 1)

⎞

⎠λk z−nm(k−1)

⎤

⎦ .

By changing the index s = k − 1 we obtain

(
d

dz

)n [
zn(m−l)−1En,m,l(λz

−nm)
]

=
n∏

k=1

[n(m − l) − k]zn(m−l−1)−1

+ (−1)nλz−n(l+1)−1

⎡

⎣1 +
∞∑

s=1

⎛

⎝
s−1∏

j=0

Γ (n[ jm + l] + 1)

Γ (n[ jm + l + 1] + 1)

⎞

⎠ (λz−nm)s

⎤

⎦
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and (5.2.40) is proved in accordance with (5.2.1). (5.2.42) follows from (5.2.40). The
theorem is proved. 

Special cases of the above property have the form:

Corollary 5.28 Ifα = n = 1, 2, · · · , β > 0 and λ ∈ C, then for the two-parametric
Mittag-Leffler function En,β(az−n) in [Chap.4, formula (4.1.1)] we have

(
d

dz

)n [
zn−βEn,β(λz−n)

] = (−1)n

Γ (β − n)
z−β + (−1)nλz−n−βEn,β(λz−n). (5.2.43)

Corollary 5.29 If α = n = 1, 2, · · · , β = k ∈ N (1 ≤ k ≤ n) and λ ∈ C, then for
the two-parametric Mittag-Leffler function En,k(az−n) we have

(
d

dz

)n [
zn−k En,k(λz

−n)
] = (−1)nλz−n−k En,k(λz

−n). (5.2.44)

In particular, when k = 1, for the Mittag-Leffler function En(λz−n) we have

(
d

dz

)n [
zn−1En(λz

−n)
] = (−1)nλz−n−1En(λz

−n). (5.2.45)

Remark 5.30 The relations (5.2.33), (5.2.40) and (5.2.35), (5.2.42) can be con-
sidered as inhomogeneous and homogeneous differential equations of order n for
the functions zn(l−m+1)En,m,l(λznm) and zn(m−l)−1En,m,l(λz−nm), respectively. In this
way explicit solutions of new classes of ordinary differential equations were obtained
in [KilSai95b, SaiKil98], [SaiKil00]. In particular, (5.2.36), (5.2.43) and (5.2.37),
(5.2.44) are inhomogeneous and homogeneous differential equations for the func-
tions zβ−1En,β(λzn) and zn− j En,β(λz−n). The function z j−1En,β(λzn) as an explicit
solution to a differential equation was found earlier by reduction of the differential
equation to the corresponding Volterra integral equation [SaKiMa93, Section42.1].

5.2.6 Complete Monotonicity of the Kilbas–Saigo Function

Complete monotonicity of the Kilbas–Saigo function Eα,m,l(z) was treated in con-
nection with relaxation phenomena in dielectrics (see [CdOMai14, GaMaMa16]).
In [CdOMai14], this question was studied in the case 0 < α ≤ 1. The authors also
made a conjecture about the domain of parameters α,m, l for which the function
Eα,m,l(z) is completely monotonic. The conjecture is based on physical and numer-
ical considerations. This conjecture was partially solved in [BoSiVa19]. The result
reads.
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Proposition 5.31 ([BoSiVa19, Prop. 4.3])Letα,m > 0 and l > −1/α. TheKilbas–
Saigo function

x �→ Eα,m,l(−x)

is completely monotonic on (0,+∞) if and only if α ≤ 1 and l ≥ m − 1/α.

5.2.7 Fractional Integration of the Kilbas–Saigo Function

In this subsection we present applications of the Riemann–Liouville and Liouville
fractional integrals (Iα

0+ϕ)(x) and (Iα−ϕ)(x) of orderα > 0, defined by the respective
formulas [SaKiMa93, formulas (5.1) and (5.3)]

(Iα
0+ϕ)(x) = 1

Γ (α)

∫ x

0

ϕ(t)

(x − t)1−α
dt (x > 0) (5.2.46)

and

(Iα
−ϕ)(x) = 1

Γ (α)

∫ ∞

x

ϕ(t)

(t − x)1−α
dt (x > 0), (5.2.47)

to the Kilbas–Saigo function (5.2.1).
The first statement shows the effect of Iα

0+ on Eα,m,l(z).

Theorem 5.32 Let α > 0, m > 0, l > −1/α and λ ∈ C. Then

λ
(
Iα
0+
[
tαl Eα,m,l

(
λtαm

)])
(x) = xα(l−m+1)

[
Eα,m,l

(
λxαm

)− 1
]
. (5.2.48)

� Ifλ = 0, then (5.2.48) takes the form 0 = 0. Letλ �= 0. In accordancewith (5.2.46)
and (5.2.1) we have

J ≡ λ
(
Iα
0+
[
tαl Eα,m,l

(
λtαm

)])
(x)

= λ

Γ (α)

∫ x

0
(x − t)α−1

⎡

⎣tαl +
∞∑

k=1

λk
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)
tα(mk+l)

⎤

⎦ dt.

Interchanging integration and summation and evaluating the inner integrals by using
the well-known formula [SaKiMa93, formula (2.44)]

(
Iα
0+
[
tβ−1]) (x) = Γ (β)

Γ (α + β)
xα+β−1 (α > 0, β > 0), (5.2.49)

we find
Where the interchange is possible since all integrals converge under the conditions

of the theorem. Shifting the summation index k + 1 to k we obtain
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J = xα(l−m+1)
∞∑

k=1

λk

⎛

⎝
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠ xαmk

= xα(l−m+1) [Eα,m,l
(
λxαm

)− 1
]
.

This completes the proof of the theorem. 
The following corollary shows what the above properties look like in special

cases.

Corollary 5.33 For α > 0, β > 0 and λ ∈ C the following formulas hold:

λ
(
Iα
0+
[
tβ−1Eα,β (λtα)

])
(x) = xβ−1

[
Eα,β (λxα) − 1

]
, (5.2.50)

λ
(
Iα
0+
[
Eα (λtα)

])
(x) = Eα (λxα) − 1. (5.2.51)

Remark 5.34 In view of [Chap.4, formula (4.1.1)] (5.2.50) can be written as

λ
(
Iα
0+
[
tβ−1Eα,β (λtα)

])
(x) = xα+β−1Eα,α+β (λxα) , (5.2.52)

which coincides with the formula [SaKiMa93, Table9.1, formula 23], if λ = 1. In
particular, (5.2.51) takes the form

λ
(
Iα
0+
[
Eα (λtα)

])
(x) = xαEα,α+1 (λxα) , (5.2.53)

by putting β = 1 in (5.2.52).

Next, we calculate the right-sided Liouville fractional operator Iα− of the gener-
alized Mittag-Leffler function.

Theorem 5.35 Letα > 0, m > 0, l > −1/α andλ ∈ C. Then the following formula
holds:

λ
(
Iα
−
[
t−α(l+1)−1Eα,m,l

(
λt−αm

)])
(x) = x−α(l−m)−1)

[
Eα,m,l

(
λx−αm

)− 1
]
.

(5.2.54)

� If λ = 0, then (5.2.54) takes the form 0 = 0. If λ �= 0 we have in accordance with
(5.2.47) and (5.2.1)

J = λ

⎡

⎣
(
Iα0+

[
tαl
])

(x) +
∞∑

k=1

λk+1

⎛

⎝
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠
(
Iα0+

[
tα(mk+l)

])
(x)

⎤

⎦

=
∞∑

k=0

λk+1

⎛

⎝
k∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠ xα(mk+l+1),
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Interchanging integration and summation and evaluating the inner integrals be using
the formula [SaKiMa93, Table9.3, formula 1]

(
Iα
−
[
t−γ
])

(x) = Γ (γ − α)

Γ (γ)
xα−γ (γ > α > 0), (5.2.55)

and using the same arguments as in the proof of Theorem 5.32 we have

J = λ
[(
Iα
−
[
t−α(l+1)−1

])
(x)

+
∞∑

k=1

λk+1

⎛

⎝
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠(Iα
−
[
t−α(mk+l+1)−1

])
(x)

⎤

⎦

=
∞∑

k=0

λk+1

⎛

⎝
k∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠ x−α(mk+l)−1

= x−α(l−m)−1
∞∑

k=1

λk

⎛

⎝
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠ x−αmk

= x−α(l−m)−1
[
Eα,m,l

(
λx−αm

)− 1
]
,

and the theorem is proved. 
The following corollary shows what the above properties look like in special

cases.

Corollary 5.36 For α > 0, β > 0 and λ ∈ C the following formulas hold:

λ
(
Iα
−
[
t−α−βEα,β

(
λt−α

)])
(x) = xα−β

[
Eα,β

(
λx−α

)− 1

Γ (β)

]
, (5.2.56)

λ
(
Iα
−
[
t−α−1Eα

(
λt−α

)])
(x) = xα−1 [Eα

(
λx−α

)− 1
]
. (5.2.57)

5.2.8 Fractional Differentiation of the Kilbas–Saigo Function

In this subsection we present applications of the Riemann–Liouville and Liouville
fractional derivatives Dα

0+ and Dα−, defined by the respective formulas [SaKiMa93,
formulas (5.8)]

(Dα
0+ f )(x) =

(
d

dx

)n

(I n−α
0 f )(x) (5.2.58)

=
(

d

dx

)n 1

Γ (n − α)

∫ x

0

f (t)

(x − t)1−n+α
dt (x > 0; n = [α] + 1)
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and

(Dα
− f )(x) =

(
− d

dx

)n

(I n−α
− f )(x) (5.2.59)

=
(

− d

dx

)n 1

Γ (n − α)

∫ ∞

x

f (t)

(t − x)1−n+α
dt (x > 0; n = [α] + 1)),

to the Kilbas–Saigo function (5.2.1).
The application of Dα

0+ to Eα,m,l(z) is given by the following statement.

Theorem 5.37 Let α > 0 and m > 0 be such that

l > m − 1 − 1

α
, α( jm + l) �= 0,−1,−2, · · · ( j ∈�= N0),

and let λ ∈ C. Then the following formula holds:

(
Dα

0+
[
tα(l−m+1)Eα,m,l

(
λtαm

)])
(x)

= Γ [α(l − m + 1) + 1]
Γ [α(l − m) + 1] xα(l−m) + λxαl Eα,m,l

(
λxαm

)
. (5.2.60)

In particular, if α(l − m) = − j for some j = 1, · · · ,−[−α], then
(
Dα

0+
[
tα(l−m+1)Eα,m,l

(
λtαm

)])
(x) = λxαl Eα,m,l

(
λxαm

)
. (5.2.61)

� Ifλ = 0, then Eα,m,l(z) = 1, and applying the formula [SaKiMa93, formula (2.44)]

(
Dα

0+
[
tβ−1

])
(x) = Γ (β)

Γ (β − α)
xβ−α−1 (α > 0, β > 0), (5.2.62)

with β = α(l − m + 1) + 1, we have

(
Dα

0+
[
tα(l−m+1)

])
(x) = Γ [α(l − m + 1) + 1]

Γ [α(l − m) + 1] xα(l−m),

which proves (5.2.60) for λ = 0.
If λ �= 0, then setting n = [α] + 1, using (5.2.1) and (5.2.58), interchanging the

order of summation and integration and applying (5.2.62), we have

J ≡ (
Dα

0+
[
tα(l−m+1)Eα,m,l

(
λtαm

)])
(x)

= (
Dα

0+
[
tα(l−m+1)]) (x)

+
(

d

dx

)n
⎛

⎝I n−α
0+

⎡

⎣
∞∑

k=1

λk

⎛

⎝
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠ tα(km+l−m+1)

⎤

⎦

⎞

⎠ (x)
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= Γ [α(l − m + 1) + 1]
Γ [α(l − m) + 1] xα(l−m)

+
∞∑

k=1

λk

⎛

⎝
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠(Dα
0+
[
tα(km+l−m+1)

])
(x)

= Γ [α(l − m + 1) + 1]
Γ [α(l − m) + 1] xα(l−m)

+
∞∑

k=1

λk

⎛

⎝
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠ Γ [α(km + l − m + 1) + 1]
Γ [α(km + l − m) + 1] xα(km+l−m)

= Γ [α(l − m + 1) + 1]
Γ [α(l − m) + 1] xα(l−m)

+ λxαl

⎡

⎣1 +
∞∑

k=2

λk−1

⎛

⎝
k−2∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠ xα(km−m)

⎤

⎦

= Γ [α(l − m + 1) + 1]
Γ [α(l − m) + 1] xα(l−m) + xαl Eα,m,l

(
λxαm

)
.

This yields (5.2.60).
Formula (5.2.61) then follows from the fact that the Gamma function has poles

at every non-positive integer. This completes the proof of the theorem. 
Corollary 5.38 For α > 0, β > 0 and λ ∈ C the following formula holds:

(
Dα

0+
[
tβ−1Eα,β (λtα)

])
(x) = xβ−α−1

Γ (β − α)
+ λxβ−1Eα,β (λxα) . (5.2.63)

If further β − α = 0,−1,−2, · · · , then
(
Dα

0+
[
tβ−1Eα,β (λtα)

])
(x) = λxβ−1Eα,β (λxα) . (5.2.64)

In particular, for β = 1 we have

(
Dα

0+
[
Eα (λtα)

])
(x) = x−α

Γ (1 − α)
+ λEα (λxα) . (5.2.65)

Remark 5.39 If α = n ∈ N, then

(
Dn

0+ f
)
(x) = y(n)(x) (n ∈ N), (5.2.66)

and therefore formula (5.2.60) is reduced to relation (5.2.33), proved in Theorem
5.22 under weaker conditions. Similarly (5.2.65) is reduced to (5.2.38).

The next statement holds for the operator Dα− given by (5.2.59).
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Theorem 5.40 Let λ ∈ C and let α > 0 and m > 0 be such that l > m − {α}/α,
where {α} is the fractional part of α. Then

(
Dα

−
[
tα(m−l)−1Eα,m,l

(
λt−αm

)])
(x) (5.2.67)

= Γ [α(l − m + 1) + 1]
Γ [α(l − m) + 1] xα(m−l−1)−1 + λx−α(l+1)−1Eα,m,l

(
λx−αm

)
.

� Ifλ = 1, then Eα,m,l(z) = 1 and applying the formula [KiSrTr06, formula (2.2.13)]

(
Dα

−
[
t−γ
])

(x) = Γ (γ + α)

Γ (γ)
x−γ−α (α > 0, γ > 1 − {α}) (5.2.68)

with γ = α(l − m) we get

(
Dα

−
[
tα(m−l)−1

])
(x) = Γ [α(l − m + 1) + 1]

Γ [α(l − m) + 1] xα(m−l−1),

which proves (5.2.67) for λ = 0.
If λ �= 0, then we note that, in accordance with the condition l > m − {α}/α,

l > −{α}/α > −1/α. Therefore condition (5.2.3) is satisfied and the Kilbas–Saigo
function Eα,m,l(z) is properly defined. In view of (5.2.59) and (5.2.1) we have

J ≡ (
Dα

−
[
tα(m−l)−1Eα,m,l

(
λt−αm

)])
(x) = (

Dα
−
[
t−α(l−m)−1

])
(x)

+
∞∑

k=1

λk

⎛

⎝
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠(Dα
−
[
t−α(km+l−m)−1

])
(x).

Applying (5.2.68) with γ = α(km + l − m) + 1 (k ∈ N0), we obtain

J = Γ [α(l − m + 1) + 1]
Γ [α(l − m) + 1] xα(m−l−1)−1

+
∞∑

k=1

λk

⎛

⎝
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠ Γ [α(km + l − m + 1) + 1]
Γ [α(km + l − m) + 1] x−α(km+l−m−1)−1

= Γ [α(l − m + 1) + 1]
Γ [α(l − m) + 1] xα(m−l−1)−1 + λx−α(l−1)−1

+
∞∑

k=2

λk

⎛

⎝
k−2∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠ x−α(km+l−m−1)−1

= Γ [α(l − m + 1) + 1]
Γ [α(l − m) + 1] xα(m−l−1)−1 + λx−α(l−1)−1

+ λx−α(l−1)−1

⎡

⎣1 +
∞∑

k=1

λk

⎛

⎝
k−1∏

j=0

Γ (α[ jm + l] + 1)

Γ (α[ jm + l + 1] + 1)

⎞

⎠ x−αkm

⎤

⎦ .



5.2 The Kilbas–Saigo (Three-Parametric Mittag-Leffler) Function 147

This, in accordance with (5.2.1), yields (5.2.67), and the theorem is proved. 
Corollary 5.41 For α > 0, β > [α] + 1 and λ ∈ C the following formula holds:

(Dα
−
[
tα−βEα,β

(
λt−α

)])
(x) = x−β

Γ (β − α)
+ λx−α−βEα,β

(
λx−α

)
. (5.2.69)

Remark 5.42 If α = n ∈ N, then according to (5.2.66), formula (5.2.67) is reduced
to relation (5.2.40), proved in Theorem 5.27 under weaker conditions. Similarly
(5.2.69) is reduced to (5.2.43).

5.3 The Le Roy Type Function

Recently S. Gerhold [Ger12] and R. Garra and F. Polito [GarPol13] independently
introduced a new function related to the special functions of the Mittag-Leffler fam-
ily. This function is a generalization of the function studied by É. Le Roy [LeR99,
LeR00] in the period 1895–1905 in connection with the problem of analytic contin-
uation of power series with a finite radius of convergence. The study of this func-
tion was continued in [GaRoMa17]. In this section we mostly follow the results in
[GaRoMa17].

5.3.1 Definition and Main Analytic Properties

In [Ger12, GarPol13] a new function was introduced

F (γ)

α,β(z) =
∞∑

k=0

zk

[Γ (αk + β)]γ , z ∈ C, α,β, γ ∈ C, (5.3.1)

which is related to the so-called Le Roy function (see, e.g.. [GaRoMa17])

Rγ(z) =
∞∑

k=0

zk

[(k + 1)!]γ , z ∈ C. (5.3.2)

Here, for short, we use the name Le Roy type function for F (γ)

α,β(z) defined by
(5.3.1). It can also be considered as a generalization of the Wright function, since
F (γ)

α,β(z) has some properties similar to those of theWright function (or better to say,
of the Fox–Wright function pΨq(z), see below).

By applying the properties of the Gamma function one can see that (5.3.1) is an
entire function of the complex variable z for all values of the parameters such that
Reα > 0, β ∈ R and γ > 0.
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The order ρ and the type σ of the Le Roy type function can be found directly from
the series representation (5.3.1) by using standard formulas for ρ := ρF and σ := σF

valid for any entire function of the form (see e.g.. AppendixB below in this book)

F(z) =
∞∑

n=0

cnz
n,

namely

ρ = lim sup
n→∞

n log n

log 1
|cn |

, (5.3.3)

(σeρ)
1
ρ = lim sup

n→∞

(
n

1
ρ |cn| 1

n

)
. (5.3.4)

By using the Stirling formula for theGamma function (see e.g.. AppendixA below
in this book)

Γ (αz + β) ≈ √
2πe−αz(αz)αz+β−1/2

(
1 + O

(
1

z

))
(5.3.5)

we get the following result, which helps us to predict the maximal possible growth
of the function F (γ)

α,β(z).

Lemma 5.43 Let α,β, γ > 0. The order and type of the entire Le Roy type function
F (γ)

α,β(z) are

ρF (γ)

α,β
= 1

αγ
, σF (γ)

α,β
= α. (5.3.6)

These formulas still hold for any α,β, γ such that Reα > 0, β ∈ C, γ > 0 if the
parameter α is replaced with Reα in (5.3.6).

Note that the above results agree well with the corresponding ones for the order
and type of the Mittag-Leffler function (1.0.1) and its multi-index extension (see
Chaps. 3, 4, 6 in this book and [Al-BLuc95, Kir99, Kir10b, KiKoRo13]).

The study of the asymptotic behavior of the Le Roy type function is of special
interest due to existing and perspective applications. Themain result in [Ger12] reads
that (5.3.1) has the following asymptotic

F (γ)

α,β(z) ∼ 1

α
√

γ
(2π)(1−γ)/2z(γ−2βγ+1)/2αγeγz1/αγ

, |z| → ∞, (5.3.7)

in the sector
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| arg z| ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2αγπ − ε, 0 < αγ < 2,

(2 − 1
2αγ)π − ε, 2 ≤ αγ < 4,

0, 4 ≤ αγ,

(5.3.8)

where ε is an arbitrary small number. This result was obtained by using the saddle
point method as described in [Evg78] and the purpose of the analysis in [Ger12] was
to apply asymptotics in order to deliver certain holonomicity results for power series.

5.3.2 Integral Representations of the Le Roy Type Function

One of the important tools used to study the behavior ofMittag-Leffler type functions
is theirMellin–Barnes integral representation (see e.g.. [GKMR, ParKam01]). Below
we establish two integral representations for our function E (γ)

α,β which use a technique
similar to that in the Mellin–Barnes formulas. However, we should note that our
integral representations cannot always be called Mellin–Barnes type representations
since in the case of non-integer γ the integrands in these formulas contain a function
[Γ (αs + β)]γ which is multi-valued in s.

For simplicity we consider here and in what follows the function F (γ)

α,β(z) with
positive values of all parameters (α,β, γ > 0). In this case the function Γ (αs + β)

is a meromorphic function of the complex variable s with just simple poles at the
points s = − β+k

α
, k = 0, 1, 2, . . .. We fix the principal branch of the multi-valued

function [Γ (αs + β)]γ by drawing the cut along the negative semi-axes starting from
− β

α
, ending at −∞ and by supposing that [Γ (αx + β)]γ is positive for all positive

x . In addition, let the function (−z)s be defined in the complex plane cut along the
negative semi-axis and

(−z)s = exp{s[log |z| + i arg (−z)]},

where arg (−z) is any arbitrary chosen branch of Arg (−z).

Theorem 5.44 Letα,β, γ > 0 and [Γ (αs + β)]γ , (−z)s be the described branches
of the corresponding multi-valued functions. Then the Le Roy type function has the
following L+∞-integral representation

F (γ)

α,β(z) = 1

2πi

∫

L+∞

Γ (−s)Γ (1 + s)

[Γ (αs + β)]γ (−z)sds + 1

[Γ (β)]γ , z ∈ C \ (−∞, 0],

(5.3.9)
where L+∞ is a right loop situated in a horizontal strip starting at the point +∞ +
iϕ1 and terminating at the point +∞ + iϕ2, −∞ < ϕ1 < 0 < ϕ2 < +∞, crossing
the real line at a point c, 0 < c < 1.
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� The chosen contour L+∞ separate the poles s = 1, 2, . . . of the function Γ (−s)
and s = −1,−2, . . . of the function Γ (1 + s), together with the pole at s = 0 of the
functionΓ (−s). So, the integral locally exists (see, e.g.., [KilSai04, p. 1], [ParKam01,
p. 66]).

Now we prove the convergence of the integral in (5.3.9). To this end we use the
reflection formula for the Gamma function [GKMR, p. 250]

Γ (z)Γ (1 − z) = π

sin πz
, z /∈ Z, (5.3.10)

and the Stirling formula (5.3.5), which holds for any α,β > 0.
First we note that on each ray s = x + iϕ j , j = 1, 2, ϕ j > 0, we have

Γ (−s)Γ (1 + s) = −1

s
Γ (1 − s)sΓ (s) = −π

sin πs

= −2πi

cos πx
(
e−πϕ j − eπϕ j

)+ i sin πx
(
e−πϕ j + eπϕ j

)

and hence,
|Γ (−s)Γ (1 + s)| = π√

sinh2 πϕ j + sin2 πx
.

Since
sinh2 πϕ j + sin2 πx > sinh2 πϕ j > 0,

this gives
|Γ (−s)Γ (1 + s)| ≤ C1, s ∈ L+∞. (5.3.11)

Next, it follows from (5.3.5) that

log [Γ (αs + β)]γ

= γ
[1
2
log 2π + (αs + β − 1/2) log αs − αs + log

(
1 + O (z−1))]

= γ
1

2
log 2π + γ(αx + iαϕ j + β − 1/2) log (αx + iαϕ j )

− γα(x + iϕ j ) + γ log
(
1 + O (z−1

))
.

Hence

log |[Γ (αs + β)]γ | = Re log [Γ (αs + β)]γ

= γ
1

2
log 2π − γαx + γ(αx + β − 1/2)(log α + log |x + iϕ j |)

− γαϕ j arg (x + iϕ j ) + γRe log
(
1 + O (z−1

))
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and therefore,

|[Γ (αs + β)]γ | = C2e
−γαxαγx |x + iϕ j |γ(αx+β−1/2). (5.3.12)

At last,
|(−z)s | = |z|xe−ϕ j arg (−z), z = x + iϕ j . (5.3.13)

The obtained asymptotic relations (5.3.11)–(5.3.13) give us the convergence of
the integral in (5.3.9) for each fixed z ∈ C \ (−∞, 0].

Finally, we evaluate the integral by using the residue theorem (since the poles
s = 1, 2, . . . are bypassed by the contour L+∞):

1

2πi

∫

L+∞

Γ (−s)Γ (1 + s)

[Γ (αs + β)]γ (−z)sds = −
∞∑

k=1

Ress=k

[
Γ (−s)Γ (1 + s)

[Γ (αs + β)]γ (−z)s
]

.

Since

Ress=kΓ (−s) = − (−1)k

k! , Γ (1 + k) = k!,

then we obtain the final relation

1

2πi

∫

L+∞

Γ (−s)Γ (1 + s)(−z)sds

[Γ (αs + β)]γ =
∞∑

k=1

zk

[Γ (αk + β)]γ = F (γ)

α,β(z) − 1

[Γ (β)]γ .

Now we get another form of the representation of the Le Roy type function via a
generalization of the Mellin–Barnes integral. We consider the multi-valued function
[Γ (α(−s) + β)]γ and fix its principal branch by drawing the cut along the positive
semi-axis starting from β

α
and ending at +∞ and supposing that [Γ (α(−x) + β)]γ

is positive for all negative x . We also define the function z−s in the complex plane
cut along positive semi-axis as

z−s = exp{(−s)[log |z| + i arg z]},

where arg z is any arbitrary chosen branch of Arg z.

Theorem 5.45 Let α,β, γ > 0 and [Γ (α(−s) + β)]γ , z−s be the described
branches of the corresponding multi-valued functions. Then the Le Roy type
function has the following L−∞-integral representation

F (γ)

α,β(z) = 1

2πi

∫

L−∞

Γ (s)Γ (1 − s)

[Γ (α(−s) + β)]γ z
−sds + 1

[Γ (β)]γ , (5.3.14)
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whereL−∞ is a left loop situated in a horizontal strip starting at the point−∞ + iϕ1

and terminating at the point −∞ + iϕ2, −∞ < ϕ1 < 0 < ϕ2 < +∞, crossing the
real line at a point c,−1 < c < 0.

The proof repeats all the arguments of the proof of Theorem 5.44 by using the
behavior of the integrand on the contourL−∞ and calculating the residue at the poles
s = −1,−2, . . ..

Remark 5.46 Note that in both representations (5.3.9) and (5.3.14) we cannot
include the term corresponding to the pole at s = 0 in the integral term, since in
this case either L+∞ or L−∞ should cross the branch cut of the corresponding multi-
valued function.

5.3.3 Laplace Transforms of the Le Roy Type Function

Let us consider the case γ > 1 and evaluate the Laplace transform pair related to
the Le Roy type function by means of an expression which is similar to that used to
obtain the Laplace transform of the Mittag-Leffler function

Lemma 5.47 Let α,β > 0, γ > 1 be positive numbers, and λ ∈ C. The Laplace
transform of the Le Roy type function is

L
{
tβ−1F (γ)

α,β(λtα)
}

(s) = 1

sβ
F (γ−1)

α,β (λs−α). (5.3.15)

� For the above mentioned values of its parameters F (γ)

α,β(·) is an entire function of
its argument. Therefore the below interchanging of the integral and the sum is valid

L
{
tβ−1F (γ)

α,β(λtα)
}

(s) =
∞∫

0

e−st
∞∑

k=0

tβ−1 λk tαk

[Γ (αk + β)]γ dt

=
∞∑

k=0

λk

[Γ (αk + β)]γ
∞∫

0

e−st tβ−1tαkdt

=
∞∑

k=0

λk

[Γ (αk + β)]γ
Γ (αk + β)

sαk+β
= 1

sβ
F (γ−1)

α,β (λs−α),

which allows us to conclude the proof. 
Corollary 5.48 For particular values of the parameter γ formula (5.3.15) allows
us to establish the following simple relationships between the Laplace transform of
the Le Roy type function and the Mittag-Leffler function:
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γ = 2 : L
{
tβ−1F (2)

α,β(λtα)
}

(s) = 1

sβ
Eα,β(λs−α), (5.3.16)

γ = 3 : L
{
tβ−1F (3)

α,β(λtα)
}

(s) = 1

sβ
Eα,β;α,β(λs−α), (5.3.17)

where Eα,β and Eα,β;α,β are respectively the 2-parameter and 4-parameter
Mittag-Leffler functions in the sense of Luchko–Kilbas–Kiryakova (see [GKMR,Chs.
4, 6]).

For any arbitrary positive integer value of the parameter γ the Laplace transform
of the Le Roy type-function can be represented in terms of the generalized Wright
function, known also as the Fox–Wright function (see e.g.. [GKMR, Appendix F]):

pWq(z) ≡ pWq(z)

[
(ρ1, a1), . . . , (ρp, ap)

(σ1, b1), . . . , (σq , bq)
; z
]

=
∞∑

k=0

zk

k!

p∏

r=1

Γ (ρr k + ar )

q∏

r=1

Γ (σr k + br )

,

(5.3.18)
where p and q are integers and ρr , ar ,σr , br are real or complex parameters.

Lemma 5.49 Let α,β > 0 and γ = m ∈ N. The Laplace transform of the Le Roy
type function is given by

L
{
F (m)

α,β (t)
}

(s) = 1

s
2Wm

⎛

⎝

⎡

⎣
(1, 1), (1, 1)

(β,α), . . . , (β,α)︸ ︷︷ ︸
m−times

⎤

⎦ ; 1
s

⎞

⎠ . (5.3.19)

Formula (5.3.19) is obtained directly by using the definitions of the Laplace trans-
form and the generalized Wright function (cf. [KiSrTr06, p. 44]).

5.3.4 The Asymptotic Expansion on the Negative Semi-axis

In this section we study the asymptotic expansion of the Le Roy type function for
large arguments. In particular, we pay attention to the case of a positive integer
parameter γ = m and, with major emphasis, we discuss the behavior of the function
along the negative real semi-axis.

Since in this case (positive integer γ = m), the Le Roy type function is a particular
instance of the generalized Wright function (5.3.18), namely

F (m)

α,β (z) = 1Ψm(z),

with ρ1 = 1, a1 = 1, σ1 = σ2 = · · · = σm = α and b1 = b2 = · · · = bm = β,
some of the results on the expansion of the Wright function, discussed first in
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[Wri40a, Wri40c] and successively in [Bra62, Par10], can be exploited to derive
suitable expansions of the Le Roy type function.

In particular, by applying to F (m)

α,β (z) the reasoning proposed in [Par10], we intro-
duce the functions

H(z) =
∞∑

k=0

(−1)k z−(k+1)

[Γ (β − α(k + 1))]m = −
∞∑

k=1

(−1)k z−k

[Γ (β − αk)]m (5.3.20)

and

E(z) = m
1
2 (m+1)−mβz

m+1−2mβ
2αm emz

1
αm

∞∑

j=0

A jm
− j z− j

αm ,

where the A j are the coefficients in the inverse factorial expansion of

Γ (αms + θ′)
[
Γ (αs + β)

]m = αm
M−1∑

j=0

A j

(αms + θ′) j
+ O(1)

(αms + θ′)M
, θ′ = mβ − m − 1

2
,

with (x) j = x(x + 1) · · · (x + j − 1) denoting the Pochhammer symbol. The fol-
lowing results directly descend from Theorem 1, 2 and 3 in [Par10].

Theorem 5.50 Let m ∈ N and 0 < αm < 2. Then

F (m)

α,β (z) ∼
⎧
⎨

⎩

E(z) + H(ze∓πi ), if | arg z| ≤ 1
2παm,

H(ze∓πi ), otherwise,
as |z| → ∞,

with the upper or lower signs chosen according as arg z > 0 or arg z < 0, respec-
tively.

Theorem 5.51 Let m ∈ N, αm = 2 and | arg z| ≤ π. Then

F (m)

α,β (z) ∼ E(z) + E(ze∓2πi ) + H(ze∓πi ), as |z| → ∞,

with the upper or lower signs chosen according as arg z > 0 or arg z < 0, respec-
tively.

Theorem 5.52 Let m ∈ N, αm > 2 and | arg z| ≤ π. Then

F (m)

α,β (z) ∼
P∑

r=−P

E(ze2πir ), as |z| → ∞,

with P the integer such that 2P + 1 is the smallest odd integer satisfying 2P + 1 >
1
2mα.
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Deriving the coefficients A j in E(z) is quite a cumbersome process (a sophisti-
cated algorithm is however described in [Par10]). Nevertheless, the first coefficient

A0 = 1

α
(2π)(1−m)/2m−1− 1

2m+mβ

is explicitly available, thus allowing us to write

E(z) = a0z
m+1−2mβ

2αm emz
1

αm
(
1 + O(z− 1

αm )
)

, (5.3.21)

where

a0 = 1

α
√
m

(2π)(1−m)/2.

We are then able to represent the asymptotic behavior of the Le Roy type function
on the real negative semi axis by means of the following theorem.

Theorem 5.53 Let α > 0, m ∈ N and t > 0. Then

F (m)

α,β (−t) ∼
⎧
⎨

⎩

H(t), 0 < αm < 2,
G(t) + H(t), αm = 2,
G(t), 2 < αm,

, t → ∞,

where H(t) is the same function introduced in (5.3.20) and

G(t) = 2a0t
m+1−2mβ

2αm exp
(
mt

1
αm cos π

αm

)
cos
(

π(m+1−2mβ)

2αm + mt
1

αm sin π
αm

)
.

� Since for real and negative values z = −t , with t > 0, we can write z = teiπ , the
use of Theorems 5.50–5.52 allows us to describe the asymptotic behavior of the Le
Roy type function along the negative semi-axis according to

F (m)

α,β (−t) ∼
{
H(t), 0 < αm < 2,
E(teiπ) + E(te−iπ) + H(t), αm = 2,

, t → ∞,

and when αm > 2 we have, for an integer P ≥ 1,

F (m)

α,β (−t) ∼
P∑

r=−P

E(tei(2r+1)π), 2(2P − 1) ≤ αm < 2(2P + 1). (5.3.22)

We define

φr (t) := rπ(m + 1 − 2mβ)

2αm
+ mt

1
αm sin

rπ

αm
,
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and, by means of some standard trigonometric identities, we observe that

E(teirπ) = a0t
m+1−2mβ

2αm exp
(
mt

1
αm cos rπ

αm

)[
cosφr (t) + i sin φr (t)

]
,

from which it is immediate that

E(teirπ) + E(te−irπ) = 2a0t
m+1−2mβ

2αm exp
(
mt

1
αm cos rπ

αm

)
cosφr (t),

and, clearly, for αm < 2(2P + 1) we have

lim
t→∞ E(tei(2P+1)π) = 0.

Therefore, after introducing the functions

Gr (t) = 2a0t
m+1−2mβ

2αm exp
(
mt

1
αm cos rπ

αm

)
cos
(
rπ(m+1−2mβ)

2αm + mt
1

αm sin rπ
αm

)

for r = 1, 2, . . . , P , with

P =
⌊
1

2

(αm

2
+ 1

)⌋

and �x� the greatest integer smaller than x , we can summarize the asymptotic behav-
ior of the Le Roy type function as t → ∞ by means of

F (m)

α,β (−t) ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H(t), 0 < αm < 2,
G1(t) + H(t), αm = 2,
P∑

r=1

Gr (t), αm > 2.
(5.3.23)

Observe now that since cos π
αm > cos 2π

αm > · · · > cos Pπ
αm > 0 the exponential in

G1(t) dominates the exponential in the other functions Gr (t), r ≥ 2, which can
therefore be neglected for t → ∞ and hence the proof follows after putting G(t) =
G1(t). 

We note that the asymptotic representation for αm < 2 is similar to a well-known
representation for the 2-parametricMittag-Leffler function used in [GoLoLu02], also
for computational purposes.

As we can clearly observe, αm = 2 is a threshold value (compare with (5.3.6) for
the order of this entire function) for the asymptotic behavior of F (m)

α,β (−t) as t → ∞.
Whenever αm < 2 the function is expected to decay in an algebraic way, while for
αm > 2 an increasing but oscillating behavior is instead expected.
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5.3.5 Extension to Negative Values of the Parameter α

The L−∞-integral representation can be used to extend the function F (γ)

α,β(z) to
negative values of the parameter α (we follow here the approach described in
[KiKoRo13]). To clearly distinguish the two cases we denote this extended Le Roy
type function by F (γ)

−α,β(z).

Definition 5.54 The function F (γ)

−α,β(z), α,β, γ is defined by the following

F (γ)

−α,β(z) = − 1

2πi

∫

L−∞

Γ (−s)Γ (1 + s)

[Γ (−αs + β)]γ (−z)sds, (5.3.24)

whereL−∞ is a right loop situated in a horizontal strip starting at the point−∞ + iϕ1

and terminating at the point −∞ + iϕ2, −∞ < ϕ1 < 0 < ϕ2 < +∞, crossing the
real line at a point c,−1 < c < 0, values of (−z)s are calculated as described above,
and the branch of themulti-valued function [Γ (−αs + β)]γ is defined in the complex
plane cut along the positive semi-axes starting from β

α
and ending at +∞, with

[Γ (−αx + β)]γ being positive for all negative x .

Using the slight correction of the proof of Theorem 5.44 we get the following
result.

Theorem 5.55 Let α,β, γ > 0, then the extended Le Roy type function (5.3.24)
satisfies the following series representation

F (γ)

−α,β(z) = −
∞∑

k=1

1

[Γ (αk + β)]γ
1

zk
, z ∈ C \ {0}. (5.3.25)

Corollary 5.56 The Le Roy type function (5.3.1) and its extension (5.3.24) are con-
nected via the following relation

F (γ)

−α,β(z) = 1

[Γ (β)]γ − F (γ)

α,β

(
1

z

)
. (5.3.26)

Observe that the relation (5.3.26) is similar to the ones presented in [Han-et-al09,
KiKoRo13].

5.4 Historical and Bibliographical Notes

Bymeans of the series representation, a generalization of theMittag-Leffler function
Eγ

α,β(z)was introduced byPrabhakar in [Pra71] (see also [MatHau08]). This function
is a special case of theWright generalizedhypergeometric function [Wri35a, Wri35b]
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as well as the H -function [MaSaHa10]. For various properties of this function with
applications, see [Pra71]. Like any function of the Mittag-Leffler type, the three
parametricMittag-Leffler function Eγ

α,β(z) can be represented via theMellin–Barnes
integral.

Differentiation and integration formulas for the three-parametric Mittag-Leffler
function (Prabhakar function) were obtained in [KiSaSa04]. Some of these formulas
were generalized and given in the form of the Laplace transform (see [Sax02]).
Relations connecting the function Eγ

α,β(z) and the Riemann–Liouville fractional
integrals and derivatives are given in [SaxSai05].

Most of the interest in the Prabhakar function is related to the description of
relaxation and response in anomalous dielectrics of Havriliak–Negami type (e.g..,
see [GarGar18, GaMaMa16, Pan18, StaWer16]), a model of complex susceptibil-
ity introduced to keep into account the simultaneous nonlocality and nonlinearity
observed in the response of disorderedmaterials and heterogeneous systems [Mis09].
Further applications of the Prabhakar function are however encountered in proba-
bility theory [Go-et-al16, Jam10, PogTom16], in the study of stochastic processes
[D’OPol17, PolSca16] and of systems with strong anisotropy [ChaTon06, Ton07],
in fractional viscoelasticity [GiuCol18], in the solution of some fractional boundary-
value problems [BazDim13, BazDim14, EshAns16, FiCaVa12, LucSri95], in the
description of dynamical models of spherical stellar systems [AnVHBa12] and
in connection with other fractional or integral differential equations [AskAns16,
KiSaSa02, LiSaKa17]. We should also mention a survey of the key results and
applications emerging from the Prabhakar function [Giu-et-al20].

Another three-parametric generalization of the Mittag-Leffler function Eα,m,l(z)
was proposed in the form of a power series by Kilbas and Saigo as the solution
of a certain Abel–Volterra type integral equation (see [KilSai95b]). In particu-
lar, in [KilSai95b], a number of differential relations involving the Kilbas–Saigo
function Eα,m,l(z) were obtained. The corresponding formulas were considered as
inhomogeneous and homogeneous differential equations of order n for the func-
tions zn(l−m+1)En,m,l(λznm) and zn(m−l)−1En,m,l(λz−nm), respectively. In this way
explicit solutions of new classes of ordinary differential equations were obtained in
[KilSai95a, SaiKil98, SaiKil00] (see also [KiSrTr06]). Analytic properties of this
function are studied in [GoKiRo98]. One of the first applications of the Kilbas–Saigo
function is given in the paper by Orsinger and Polito [OrsPol09], where the birth-
death stochastic process was discussed. A theoretical application is presented by Kil-
bas and Repin [KilRep10]. They studied an analog of the Tricomi problem for mixed
type equations with fractional partial derivatives. In [HanSer12] the solution of the
Bloch–Torrey equation for space-time fractional anisotropic diffusion is expressed in
terms of the three-parametric Mittag-Leffler function Eα,m,l(z). Recently, an interest
in the use of the Kilbas–Saigo function has been revisited, see e.g.. [CdOMai14],
where relaxation phenomena in dielectrics are discussed by using the Kilbas–Saigo
function, and [Mag-et-al19] presents recent results on ultraslow diffusion in hetero-
geneous media. A numerical routine for the Kilbas–Saigo function is presented in
[Mag19].
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Le Roy introduced his function

Rγ(z) =
∞∑

k=0

zk

[(k + 1)!]γ , z ∈ C, (5.4.1)

and used it in [LeR99] to study the analytic continuation of the sum of power series.
This reason for the origin of (5.4.1) sounds close toMittag-Leffler’s idea to introduce
the function Eα(z) for the aims of analytic continuation (we have to note that Mittag-
Leffler and Le Roywere working on this idea in competition). The Le Roy function is
involved in the solution of problems of various types; in particular it has recently been
used in the construction of a Convey–Maxwell–Poisson distribution [ConMax62],
which is important due to its ability to model count data with different degrees of
over- and under-dispersion [Pog16, SLSPL].

An interest in the Le Roy type function has been revisited with its generalization
proposed in [Ger12, GarPol13, GaRoMa17]. The work in [Ger12] was devoted
to the study of asymptotic properties of F (γ)

α,β(z) as an analytic function in some
sectors of the complex plane (it was implicitly shown that this function has order
ρ = 1/αγ and type σ = γ). In [GarPol13] the function F (γ)

α,β(z) is considered from an
operational point of view.More specifically, the properties of this function are studied
in relation to some integro-differential operators involving the Hadamard fractional
derivatives (e.g.., see [SaKiMa93, Sect. 18.3]) or hyper-Bessel-type operators. By
using these properties, the operational (or formal) solutions to certain boundary and
initial value problems for fractional differential equations are derived. An application
of the developed technique to a modified Lamb–Bateman integral equation is also
presented. Further properties of the LeRoy type function are studied in [GaRoMa17].

Among the most studied properties of the above discussed three-parametric
Mittag-Leffler functions is their complete monotonicity, see, e.g.., [GarGar18,
GiuCol18], cf. [AnhMcV]. We also recall the paper [BoSiVa19], where the rela-
tions of the Le Roy function and the Kilbas–Saigo function to certain probability
distributions is mentioned and the complete monotonicity of the respective cases of
these functions is discussed.

5.5 Exercises

5.5.1 Prove the following reducibility formulas for the three-parametric Mittag-
Leffler function Eγ

α,β(z):

(a) If β, γ ∈ C are such that Reβ > 0, Re (γ − β) > 2, then

zE3
β,γ = 1

2β2

[
Eβ,γ−β−2) − (2γ − 3β − 3)Eβ,γ−β−1

+ (2β2 + γ2 − 3βγ + 3β − 2γ + 1)Eβ,γ−β

]
.
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(b) If β, γ ∈ C are such that Reβ > 0, Re γ > 2, then

E3
β,γ = 1

2β2

[
Eβ,γ−2) − (2γ − 3β − 3)Eβ,γ−1

+ (2β2 + γ2 − 3βγ + 3β − 2γ + 1)Eβ,γ−β

]
.

5.5.2 ([Cap19, p. 112]) Let Reα > 0,Re β > 0, γ > 0. Prove the following

(β − αγ)Eγ
α,β+1 = Eγ

α,β − αγEγ+1
α,β+1.

5.5.3 ([MatHau08, p. 96]) Prove the following integral relations for the three-
parametric Mittag-Leffler function Eγ

α,β(z) valid for all Reα > 0, Re β > 0, γ >

0, Re δ > 0:

(a) 1
Γ (δ)

1∫

0
uβ−1(1 − u)δ−1Eγ

α,β(zuα)du = Eγ
α,β+δ(z);

(b) 1
Γ (δ)

x∫
t
(x − u)δ−1(u − t)β−1Eγ

α,β(λ(u − t)α)du

= (x − t)β+δ−1Eγ
α,β+δ(λ(x − t)α).

5.5.4 ([KiSaSa02, p. 383–384]) Let

(
Eγ

ρ,μ,ω;a+ϕ
)

(x) =
x∫

a

(x − t)μ−1Eγ
ρ,μ[ω(x − t)ρ]ϕ(t)dt, x > a,

be the integral transform with the Prabhakar function in the kernel.

(a) Find the value of this transform of the power-type function (t − a)β−1.
(b) Calculate the composition of the operator Eγ

ρ,μ,ω;a+ and the left-sided Riemann–
Liouville fractional integration operator Iα

a+.
(c) Prove the semigroup property of the integral transform with the Prabhakar func-

tion in the kernel:
Eγ

ρ,μ,ω;a+E
σ
ρ,μ,ω;a+ϕ = Eγ+σ

ρ,μ,ω;a+ϕ.

5.5.5 ([KilSai00, p. 194]) Show that the linear homogeneous differential equation

y(n)(x) = axβ y(x) (0 < x ≤ d < +∞)

(a �= 0, βR,β > −n, (n + β)(i + 1) �= 1, 2, . . . , n − 1, i ∈ N) has n solutions of
the form

y j (x) = x j−1En,1+β/n,(β+ j−)/n(ax
β+n) ( j = 1, 2, . . . , n).

Prove that if β ≥ 0, then these solutions are linearly independent.
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5.5.6 ([KilSai00, p. 197]) Let n ∈ N, β ∈ R,β > −n, fk,μk ∈ R, k = 0, 1, . . . , p,
and i(n + β) + μk �= − j (i ∈ N0, k = 0, 1, . . . , p, j = 1, 2, . . . , n). Show that the
inhomogeneous differential equation

y(n)(x) = axβ y(x) +
p∑

k=0

fk x
μk (0 < x ≤ d < +∞)

has a particular solution of the form

y0(x) =
p∑

k=0

⎡

⎣
n∏

j=1

1

μk + j

⎤

⎦ fk x
μk+n En,1+β/n,1+(β+μk )/n(ax

n+β).

5.5.7 ([KilSai96, p. 365]) Letα > 0,m > 0, μk > −1, fk ∈ R (k0, 1, . . . , l). Prove
that the Abel–Volterra equation with quasi-polynomial free term

ϕ(x) = axα(m−1)

Γ (α)

x∫

0

ϕ(t)

(x − t)1−α
dt +

l∑

k=0

fk x
μk (0 < x < d ≤ +∞)

has a unique solution of the form

ϕ(x) =
l∑

k=0

fk x
μk Eα,m,μk/α

(
axαm

)
.



Chapter 6
Multi-index and Multi-variable
Mittag-Leffler Functions

6.1 The Four-Parametric Mittag-Leffler Function: The
Luchko–Kilbas–Kiryakova Approach

6.1.1 Definition and Special Cases

Consider the function defined for α1, α2 ∈ R (α2
1 + α2

2 �= 0) and β1,β2 ∈ C by the
series

Eα1,β1;α2,β2(z) ≡
∞∑

k=0

zk

Γ (α1k + β1)Γ (α2k + β2)
(z ∈ C). (6.1.1)

Such a function with positive α1 > 0, α2 > 0 and real β1,β2 ∈ R was introduced
by Dzherbashian [Dzh60]. When α1 = α, β1 = β and α2 = 0, β2 = 1, this function
coincides with the Mittag-Leffler function (4.1.1):

Eα,β;0,1(z) = Eα,β(z) ≡
∞∑

k=0

zk

Γ (αk + β)
(z ∈ C). (6.1.2)

Therefore (6.1.1) is sometimes called the generalizedMittag-Leffler function or four-
parametric Mittag-Leffler function.

Certain special functions of Bessel type are expressed in terms of
Eα1,β1;α2,β2(z):

The Bessel function of the first kind (see e.g., [ErdBat-2, n. 7.2.1-2], [NIST, p.
217, 219])

Jν(z) =
( z
2

)ν

E1,ν+1;1,1
(

− z2

4

)
. (6.1.3)

The Struve function (see e.g., [ErdBat-2, n. 7.5.4], [NIST, p. 288])
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Hν(z) =
( z
2

)ν+1
E1,ν+3/2;1,3/2

(
− z2

4

)
. (6.1.4)

The Lommel function (see e.g., [ErdBat-2, n. 7.5.5])

Sμ,ν(z) = zμ+1

4
Γ

(
μ − ν + 1

2

)
Γ

(
μ + ν + 1

2

)
E1, μ−ν+1

2 ;1, μ+ν+1
2

(
− z2

4

)
.

(6.1.5)
The Bessel–Maitland function (see e.g., [Kir94, App. E, ii])

Jμ
ν (z) = Eμ,ν+1;1,1(−z). (6.1.6)

The generalized Bessel–Maitland function (see e.g., [Kir94, App. E, ii])

Jμ
ν,λ(z) =

( z
2

)ν+2λ
Eμ,λ+ν+1;1,λ+1(−z). (6.1.7)

6.1.2 Basic Properties

First of all we prove that (6.1.1) is an entire function if α1 + α2 > 0.

Theorem 6.1 Let α1, α2 ∈ R and β1,β2 ∈ C be such that α2
1 + α2

2 �= 0 and α1 +
α2 > 0. Then Eα1,β1;α2,β2(z) is an entire function of z ∈ C of order

ρ = 1

α1 + α2
(6.1.8)

and type

σ =
(

α1 + α2

|α1|
) α1

α1+α2
(

α1 + α2

|α2|
) α2

α1+α2

. (6.1.9)

� Rewrite (6.1.1) as the power series

Eα1,β1;α2,β2(z) =
∞∑

k=0

ckz
k, ck = 1

Γ (α1k + β1)Γ (α2k + β2)
. (6.1.10)

Using Stirling’s formula for the Gamma function we obtain

|ck |
|ck+1| ∼ |α1|α1 |α2|α2kα1+α2 → +∞ (k → ∞).

Thus, Eα1,β1;α2,β2(z) is an entire function of z when α1 + α2 > 0.
We use [Appendix B, formulas (B.5) and (B.6)] to evaluate the order ρ and the

type σ of (6.3.1). For this we apply the asymptotic formula for the logarithm of the
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Gamma function Γ (z) at infinity [ErdBat-1, 1.18(1)]:

logΓ (z) =
(
z − 1

2

)
log z − z + 1

2
log(2z) + O

(
1

z

)
(|z| → ∞, |argz| < π).

(6.1.11)
Applying this formula and taking (6.1.10) into account, we deduce the asymptotic
estimate

log

(
1

ck

)
∼ k log(k)(α1 + α2) (k → ∞)

from which, in accordance with [Appendix B, (B.5)], we obtain (6.1.8).
Further, according to [Appendix A, (A.24)], we have

Γ (α j k + β j ) (6.1.12)

= (2π)1/2
(
α j k + β j

)α j k+β j− 1
2 e−(α j k+β j )

[
1 + O

(
1

k

)]
(k → ∞)

for j = 1, 2, and we obtain the asymptotic estimate

Γ (α1k + β1)Γ (α2k + β2) ∼ 2π
2∏

j=1

(α j k)
α j k+β j− 1

2 e−α j k (k → ∞). (6.1.13)

From (6.1.10) and (6.1.13) we have

lim sup
k→∞

(
k1/ρ|ck |1/k

) = lim sup
k→∞

k1/ρ
2∏

j=1

[
(|α j |k)−α j eα j

]

= eα1+α2

2∏

j=1

|α j |−α j = e1/ρ
2∏

j=1

|α j |−α j .

Substituting this relation into [Appendix B, (B.6)] we obtain

σ = 1

ρ

⎛

⎝
2∏

j=1

|α j |−α j

⎞

⎠
ρ

= (α1 + α2)
(|α1|−α1 |α2|−α2

) 1
α1+α2

=
(

α1 + α2

|α1|
) α1

α1+α2
(

α1 + α2

|α2|
) α2

α1+α2

,

which proves (6.1.9). 	
Remark 6.2 For α1 > 0 and α2 > 0, relations (6.1.8) and (6.1.9) were proved by
Dzherbashian [Dzh60].
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6.1.3 Integral Representations and Asymptotics

The four-parametric Mittag-Leffler function has the Mellin–Barnes integral repre-
sentation

Eα1,β1;α2,β2(z) = 1

2πi

∫

L

Γ (s)Γ (1 − s)

Γ (β1 − α1s)Γ (β2 − α2s)
(−z)−sds, (6.1.14)

where L = L−∞ is a left loop, i.e. the contour which is situated in a horizontal strip,
starting at −∞ + iϕ1 and ending at −∞ + iϕ2, with −∞ < ϕ1 < 0 < ϕ2 < +∞.
This contour separates poles of the Gamma functions Γ (s) and Γ (1 − s).

By using (6.1.14) the function Eα1,β1;α2,β2 can be extended to non-real values of
the parameters. If the parameters α1,β1;α2,β2 are such that Re (α1 + α2) > 0, then
the integral (6.1.14) converges for all z �= 0. This is a consequence of the following
asymptotic formulas for the function H(s) = Γ (s)Γ (1−s)

Γ (β1−α1s)Γ (β2−α2s)
in the integrand of

(6.1.14), where s = t + iσ, (t → −∞), and the properties of the Mellin–Barnes
integral:

– for Reα1 > 0, Reα2 > 0

|H(s)| ∼ M1

( |t |
e

)Re(α1+α2)t [Re(α1)
Re(α1)Re(α2)

Re(α2)]t

|t |
2∑
j=1

[Re(β j )+σIm(αi )]−1

; (6.1.15)

– for Reα1 < 0, Reα2 > 0

|H(s)| ∼ M2

( |t |
e

)Re(α1+α2)t [|Re(α1)|Re(α1)Re(α2)
Re(α2)]t

|t |
2∑

i=1
[Re(βi )+σIm(αi )]−1

e−πIm(α1)t ; (6.1.16)

– for Reα1 > 0, Reα2 < 0

|H(s)| ∼ M3

( |t |
e

)Re(α1+α2)t [Re(α1)
Re(α1)|Re(α2)|Re(α2)]t

|t |
2∑

i=1
[Re(βi )+σIm(αi )]−1

e−πIm(α2)t . (6.1.17)

We do not present here exact asymptotic formulas for Eα1,β1;α2,β2(z) as z → ∞. They
can be considered as formulas for a special case of the generalized Wright function
and H -function (see Sect. 6.1.5 below).

From the series representation of the four-parametric Mittag-Leffler function we
derive a simple asymptotics at zero, valid in the case Re {α1 + α2} > 0 for all N ∈ N:

Eα1,β1;α2,β2(z) =
N∑

k=0

zk

Γ (α1k + β1)Γ (α2k + β2)
+ O

(|z|N+1) , z → 0. (6.1.18)
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The following integral representation of the four-parametric Mittag-Leffler func-
tion (see [RogKor10]) shows its tight connection to the generalized Wright function
(see Chap.7).

Let 0 < α j < 2, β j ∈ C, j = 1, 2. Then the following representation of the four-
parametric generalized Mittag-Leffler function Eα1,β1; α2,β2(z) holds ([RogKor10]).

Eα1,β1; α2,β2(z) = (6.1.19)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I0(z), z ∈ G(−)(ε,μ2),

I0(z) + z
−β2+1

α2

2πiα2
φ

(
α1

α2
,
β1α2 − β2α1 + 1

α2
; z 1

α2

)
, z ∈ G(∓)(ε,μ1,μ2),

I0(z) + z
−β2+1

α2

2πiα2
φ

(
α1

α2
,
β1α2 − β2α1 + 1

α2
; z 1

α2

)

+ z
−β1+1

α1

2πiα1
φ

(
α2

α1
,
β2α1 − β1α2 + 1

α1
; z 1

α1

)
, z ∈ G(+)(ε,μ1),

(6.1.20)

with

I0(z) = −1

4π2α1α2

⎧
⎪⎨

⎪⎩

∫

γ(ε;μ1)

eζ1 1/α1
ζ1

(−β1+1)
α1 dζ1

∫

γ(ε;μ2)

eζ2 1/α2ζ2
(−β2+1)

α2 dζ2
ζ1ζ2 − z

⎫
⎪⎬

⎪⎭
,

(6.1.21)

φ (α,β; z) :=
∞∑

k=0

zk

k!Γ (αk + β)
, (6.1.22)

where φ (α,β; z) is the classical Wright function (see Appendix F),
μ j ∈ ( πα j

2 ,min{πα j ,π}), 0 < μ1 < μ2 < 2, and ε > 0 is an arbitrary positive num-
ber.

Here γ(ε; θ) (ε > 0, 0 < θ ≤ π) is a contourwith non-decreasing arg ζ consisting
of the following parts:

(1) the ray arg ζ = −θ, |ζ| ≥ ε;
(2) the arc −θ ≤ arg ζ ≤ θ of the circle |ζ| = ε;
(3) the ray arg ζ = θ, |ζ| ≥ ε.

In the case 0 < θ < π the complex ζ-plane is divided by the contour γ(ε; θ) into two
unbounded parts: the domain G(−)(ε; θ) to the left of the contour and the domain
G(+)(ε; θ) to the right. If θ = π, the contour γ(ε; θ) consists of the circle |ζ| = ε
and of the cut −∞ < ζ ≤ −ε. In this case the domain G(−)(ε; θ) becomes the circle
|ζ| < ε and the domain G(+)(ε; θ) becomes the domain {ζ : |arg ζ| < π, |ζ| > ε}.
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For two different values of θ1, θ2, 0 < θ1 < θ2 < π the union of the two unbounded
domains between the curves γ(ε; θ1) and γ(ε; θ2) is denoted by G(∓)(ε; θ1, θ2) .

6.1.4 Extended Four-Parametric Mittag-Leffler Functions

Let the contour L in the Mellin–Barnes integral

1

2πi

∫

L

Γ (s)Γ (1 − s)

Γ (β1 − α1s)Γ (β2 − α2s)
(−z)−sds, (6.1.23)

now coincide with the right loop L+∞, i.e. with a curve starting at +∞ + iϕ1 and
ending at +∞ + iϕ2 (−∞ < ϕ1 < ϕ2 < +∞), leaving the poles of Γ (s) at the left
and the poles ofΓ (1 − s) at the right. Then this integral exists for all z �= 0 whenever
Re {α1 + α2} < 0.

Thus the integral (6.1.23) possesses an extension to another set of parameters.
It defines a new function which is called the extended generalized Mittag-Leffler
function and is denoted Eα1,β1;α2,β2(z) (see [KilKor05], [KilKor06a]).

Using the same approach as before, i.e. calculating the integral (6.1.23) by the
Residue Theorem, one can obtain the following Laurent series representation of
Eα1,β1;α2,β2(z):

Eα1,β1;α2,β2(z) =
∞∑

k=0

dk
zk+1

, (6.1.24)

where

dk = − 1

Γ (−α1(k + 1) − β1)Γ (−α2(k + 1) − β2)
.

In the case Re {α1 + α2} < 0 the series (6.1.24) is convergent for all z ∈ C, z �= 0.
The function Eα1,β1;α2,β2(z) has an asymptotics at z → 0 similar to that of the standard
four-parametricMittag-Leffler function Eα1,β1;α2,β2(z), Re {α1 + α2} > 0 at z → ∞.
The asymptotics of Eα1,β1;α2,β2(z) at z → ∞ can be displayed in the form

Eα1,β1;α2,β2(z) =
N∑

k=0

dk
zk+1

+ O

(
1

|z|N+1

)
, z → ∞. (6.1.25)

6.1.5 Relations to the Wright Function and the H-Function

For short, let us use the common notation Eα1,β1;α2,β2 for the usual four-parametric
Mittag-Leffler function and for its extension in this subsection. For real values of
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the parameters α1,α2 ∈ R and complex values of β1,β2 ∈ C the four-parametric
Mittag-Leffler function Eα1,β1;α2,β2 can be represented in terms of the generalized
Wright function and the H–function.

These representations follow immediately from theMellin–Barnes integral repre-
sentation of the function Eα1,β1;α2,β2 and the properties of the corresponding integrals.

Let us present some formulas relating Eα1,β1;α2,β2 to the generalized Wright func-
tion p�q :

(1) If α1 + α2 > 0 and the contour of integration in (6.1.14) is chosen asL = L−∞,
then

Eα1,β1;α2,β2(z) = 1�2

[
(1, 1)
(β1,α1), (β2,α2)

∣∣∣∣z
]

. (6.1.26)

(2) If α1 + α2 < 0 and the contour of integration in (6.1.14) is chosen asL = L+∞,
then

Eα1,β1;α2,β2(z) = 1

z
1�2

[
(1, 1)
(β1 − α1,−α1), (β2 − α2,−α2)

∣∣∣∣
1

z

]
. (6.1.27)

Analogously, one can obtain the following representation of Eα1,β1;α2,β2 in terms
of the H -function:

(1) If α1 > 0, α2 > 0 and the contour of integration in (6.1.14) is chosen as L =
L−∞, then

Eα1,β1;α2,β2(z) = H 1,1
1,3

[
(0, 1)
(0, 1), (1 − β1,α1), (1 − β2,α2)

∣∣∣∣z
]

. (6.1.28)

(2) If α1 > 0, α2 < 0 and the contour of integration in (6.1.14) is chosen as L =
L−∞ when α1 + α2 > 0 or L = L+∞ when α1 + α2 < 0, then

Eα1,β1;α2,β2(z) = H 1,1
2,2

[
(0, 1), (β2,−α2)

(0, 1), (1 − β1,α1)

∣∣∣∣x
]

. (6.1.29)

(3) If α1 < 0, α2 > 0 and the contour of integration in (6.1.14) is chosen as L =
L−∞ when α1 + α2 > 0 or L = L+∞ when α1 + α2 < 0, then

Eα1,β1;α2,β2(z) = H 1,1
2,2

[
(0, 1), (β1,−α1)

(0, 1), (1 − β2,α2)

∣∣∣∣x
]

. (6.1.30)

(4) If α1 < 0, α2 < 0 and the contour of integration in (6.1.14) is chosen as L =
L+∞, then

Eα1,β1;α2,β2(z) = H 1,1
3,1

[
(0, 1), (β1,−α1), (β2,−α2)

(0, 1)

∣∣∣∣x
]

. (6.1.31)
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6.1.6 Integral Transforms of the Four-Parametric
Mittag-Leffler Function

In order to present elements of the theory of integral transforms of the extended four-
parametric Mittag-Leffler function we introduce a set of weighted Lebesgue spaces
Lν,r (R+). These spaces are suitable for the above mentioned integral transforms
since the latter are connected with the classical Mellin transform (see, e.g., [Mari83,
p. 36–39]).

Let us denote by Lν,r (R+) (1 ≤ r ≤ ∞, ν ∈ R) the space of all Lebesgue mea-
surable functions f such that ‖ f ‖ν,r < ∞, where

‖ f ‖ν,r ≡
⎛

⎝
∞∫

0

|tν f (t)|r dt
t

⎞

⎠
1/r

< ∞ (1 ≤ r < ∞); ‖ f ‖ν,∞ ≡ ess sup
t>0

‖tν f (t)‖.

(6.1.32)
In particular, for ν = 1/r the spaces Lν,r coincide with the classical spaces of

r -summable functions: L1/r,r = Lr (R+) endowed with the norm

‖ f ‖r =
⎧
⎨

⎩

∞∫

0

| f (t)|r dt
⎫
⎬

⎭

1/r

< ∞ (1 ≤ r < ∞).

For any function f ∈ Lν,r (R+) (1 ≤ r ≤ 2) its Mellin transformM f is defined
(see, e.g., [KilSai04, (3.2.5)]) by the equality

(M f )(s) =
+∞∫

−∞
f (eτ ) esτ dτ (s = ν + i t; ν, t ∈ R). (6.1.33)

If f ∈ Lν,r
⋂Lν,1, then the transform (6.1.33) can be written in the form of the

classical Mellin transform with Re s = ν (see Appendix C):

(M f )(s) =
+∞∫

0

f (t) t s−1 dt . (6.1.34)

An inverse Mellin transform in this case can be determined by the formula

f (t) = 1

2πi

ν+i∞∫

ν−i∞
(M f )(s)t−sds (ν = Re s).

We have for theMellin transform of the generalized hypergeometricWright func-
tion
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M
[
p�q

[
(ai ,αi )1,p
(b j ,β j )1,q

∣∣∣t
]]

(s) =
Γ (s)

p∏
i=1

Γ (ai − αi s)

q∏
j=1

Γ (b j − β j s)
, (6.1.35)

(
αi > 0, β j > 0; i = 1, . . . , p; j = 1, . . . , q; 0 < Re s < min

1≤i≤p

[
Re (ai )

αi

])
,

and, in particular, for the Mellin transform of the classical Wright function

M [φ(α,β; t)] (s) = Γ (s)

Γ (β − αs)
(Re s > 0). (6.1.36)

TheMellin transform of the H -function under certain assumptions on its parame-
ters coincides with the functionHm,n

p,q (s) in theMellin–Barnes integral representation
of the H -function (see [PrBrMa-V3, 8.4.51.11], [KilSai04, Theorem 2.2]).

Let us introduce the following parameters characterizing the behavior of the H -
function (see Appendix F)

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣
(ai ,αi )1,p
(b j ,β j )1,q

]

a∗ =
n∑

i=1

αi −
p∑

i=n+1

αi +
m∑

j=1

β j −
q∑

j=m+1

β j ,

μ =
q∑

j=1

β j −
p∑

i=1

αi + p − q

2
, Δ =

q∑

j=1

β j −
p∑

i=1

αi ,

α = − min
1≤ j≤m

[
Re b j

β j

]
,β = min

1≤i≤n

[
1 − Re ai

αi

]
. (6.1.37)

Let a∗ ≥ 0, s ∈ C be such that

α < Re s < β (6.1.38)

and for a∗ = 0 assume the following additional inequality holds:

ΔRe s + Reμ < −1. (6.1.39)

Then the Mellin transform of the H -function exists and satisfies the relation
(
M Hm,n

p,q

[
z

∣∣∣∣
(ai ,αi )1,p
(b j ,β j )1,q

])
(s) = Hm,n

p,q

[
(ai ,αi )1,p
(b j ,β j )1,q

∣∣∣∣ s
]

. (6.1.40)
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Since the four-parametric Mittag-Leffler function is related to the generalized
Wright function and to the H -function (see Sect. 6.1.5), then one can use (6.1.35)
or (6.1.40) to define the Mellin transform of the function Eα1,β1;α2,β2(z) and of its
extension Eα1,β1;α2,β2(z).

6.1.7 Integral Transforms with the Four-Parametric
Mittag-Leffler Function in the Kernel

Integral transformswith the four-parametricMittag-Leffler function in the kernel can
be considered as a special case of the more general H-transform. Let us recall a few
facts from the theory of the H-transform following [KilSai04]). The H-transform is
introduced as a Mellin-type convolution with the H -function in the kernel:

(H f )(x) =
∞∫

0

Hm,n
p,q

[
xt

∣∣∣∣
(ai ,αi )1,p
(b j ,β j )1,q

]
f (t) dt (x > 0). (6.1.41)

Let us recall some results on the H-transform in Lν,2-type spaces following
[KilSai04, Chap. 3] (elements of the so-called Lν,2-theory of H-transforms). Here
we use the notation (6.1.37) for the parameters a∗,μ,Δ,α,β. We also introduce a
so-called exceptional set EH for the function H(s):

EH = {ν ∈ R : α < 1 − ν < β and H(s) has zeros on Re s = 1 − ν} . (6.1.42)

Let

(i) α < 1 − ν < β and suppose one of the following conditions holds:
(ii) a∗ > 0, or
(iii) a∗ = 0, Δ(1 − ν) + Reμ ≤ 0.

Then the following statements are satisfied:

(a) There exists an injective transform H∗ ∈ [Lν,2,L1−ν,2] such that for any f ∈
Lν,2 the Mellin transform satisfies the relation

(MH∗ f )(s) = Hm,n
p,q

[
(ai ,αi )1,p
(b j ,β j )1,q

∣∣∣∣s
]

(M f )(1 − s) (Re s = 1 − ν).

(6.1.43)
If a∗ = 0, Δ(1 − ν) + Reμ = 0, ν /∈ EH, then H∗ is bijective from Lν,2 onto
L1−ν,2.

(b) For any f, g ∈ Lν,2 the following equality holds:

∞∫

0

f (x)(H∗g)(x) dx =
∞∫

0

(H∗ f )(x)g(x) dx . (6.1.44)
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(c) Let f ∈ Lν,2, λ ∈ C and h > 0. If Re λ > (1 − ν)h − 1, then for almost all
x > 0 the transform H∗ can be represented in the form:

(H∗ f )(x) = hx1−(λ+1)/h d

dx
x (λ+1)/h

×
∞∫

0

Hm,n+1
p+1,q+1

[
xt

∣∣∣∣
(−λ, h), (ai ,αi )1,p

(b j ,β j )1,q , (−λ − 1, h)

]
f (t) dt . (6.1.45)

If Re λ < (1 − ν)h − 1, then

(H∗ f )(x) = −hx1−(λ+1)/h d

dx
x (λ+1)/h

×
∞∫

0

Hm+1,n
p+1,q+1

[
xt

∣∣∣∣
(ai ,αi )1,p , (−λ, h)

(−λ − 1, h), (b j ,β j )1,q

]
f (t) dt . (6.1.46)

(d) The H∗-transform does not depend on ν in the following sense: if two values of
the parameter, say ν and ν̃, satisfy condition (i) and one of the conditions (ii) or
(iii), and if the transformsH∗ and H̃∗ are defined by the relation (6.1.43) in Lν,2

and Lν̃,2, respectively, then H∗ f = H̃∗ f for any f ∈ Lν,2
⋂Lν̃,2.

(e) If either a∗ > 0 or a∗ = 0, and Δ(1 − ν) + Reμ < 0, then for any f ∈ Lν,2 we
have H∗ f = H f , i.e. H∗ is defined by the equality (6.1.41).

An extended Lν,r -theory (for any 1 ≤ r ≤ +∞) of the H-transform is presented
in [KilSai04].

The integral transform with the four-parametric Mittag-Leffler function in the
kernel is defined for α1,α2 ∈ R, β1,β2 ∈ C by the formula:

(
Eα1,β1;α2,β2 f

)
(x) =

∞∫

0

Eα1,β1;α2,β2(−xt) f (t)dt (x > 0), (6.1.47)

where for α1 + α2 > 0 the kernel Eα1,β1;α2,β2 = Eα1,β1;α2,β2 (i.e. it is the four-
parametric generalized Mittag-Leffler function defined by (6.1.1)), and for α1 +
α2 < 0 the kernel Eα1,β1;α2,β2 is the extended four-parametric generalized Mittag-
Leffler function defined by (6.1.23).

The properties of this transform follow from its representation as a special case
of the H-transform.

(1) If α1 > 0, α2 > 0, then

(
Eα1,β1;α2,β2 f

)
(x) =

∞∫

0

H 1,1
1,3

⎡

⎣xt
∣∣∣∣
(0, 1)

(0, 1), (1 − β1,α1), (1 − β2,α2)

⎤

⎦ f (t)dt.

(6.1.48)
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(2) If α1 > 0, α2 < 0, then

(
Eα1,β1;α2,β2 f

)
(x) =

∞∫

0

H 1,1
2,2

⎡

⎣xt
∣∣∣∣
(0, 1), (β2,−α2)

(0, 1), (1 − β1,α1)

⎤

⎦ f (t)dt. (6.1.49)

(3) If α1 < 0, α2 > 0, then

(
Eα1,β1;α2,β2 f

)
(x) =

∞∫

0

H 1,1
2,2

⎡

⎣xt
∣∣∣∣
(0, 1), (β1,−α1)

(0, 1), (1 − β2,α2)

⎤

⎦ f (t)dt. (6.1.50)

(4) If α1 < 0, α2 < 0, then

(
Eα1,β1;α2,β2 f

)
(x) =

∞∫

0

H 1,1
3,1

⎡

⎣xt
∣∣∣∣
(0, 1), (β1,−α1), (β2,−α2)

(0, 1)

⎤

⎦ f (t)dt.

(6.1.51)

Based on (6.1.48)–(6.1.51) and on the above presented elements of theLν,2-theory of
the H-transform one can formulate the following results for the integral transforms
with the four-parametric generalized Mittag-Leffler function in the kernel. Let us
present these only in the case (1) (i.e. when α1 > 0, α2 > 0). All other cases can be
considered analogously (see, e.g.. [KilKor06a], [KilKor06b]).

Let α1 > 0, α2 > 0. Then the parameters a∗,μ,Δ,α,β are related to the param-
eters of the four-parametric Mittag-Leffler function as follows:

a∗ = 2 − α1 − α2, Δ = α1 + α2, μ = 1 − β1 − β2, α = 0, β = 1.

Let 0 < ν < 1, α1 > 0,α2 > 0 and β1,β2 ∈ C be such that α1 + α2 < 2 or α1 +
α2 = 2 and 3 − 2ν ≤ Re (β1 + β2). Then:

(a) There exists an injective mapping E∗
α1,β1;α2,β2

∈ [Lν,2,L1−ν,2
]
such that for any

f ∈ Lν,2 the following relation holds:

(
ME∗

α1,β1;α2,β2
f
)

(s) = Γ (s)Γ (1 − s)

Γ (β1 − α1s)Γ (β2 − α2s)
(M f )(1 − s) (Re s = 1 − ν).

(6.1.52)

If either α1 + α2 < 2 or α1 + α2 = 2 and 3 − 2ν ≤ Re (β1 + β2) and the addi-
tional conditions

s �= β1 + k

α1
, s �= β2 + l

α2
(k, l = 0, 1, 2, · · · ), for Re s = 1 − ν, (6.1.53)

are satisfied, then the operator E∗ is bijective from Lν,2 onto L1−ν,2.
(b) For any f, g ∈ Lν,2 we have the integration by parts formula
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∞∫

0

f (x)E∗
α1,β1;α2,β2

g(x)dx =
∞∫

0

E∗
α1,β1;α2,β2

f (x)g(x)dx . (6.1.54)

(c) If f ∈ Lν,2, λ ∈ C, h > 0, then E∗
α1,β1;α2,β2

f is represented in the form:

(
E∗

α1,β1;α2,β2
f
)
(x) = hx1−(λ+1)/h d

dx
x (λ+1)/h

×
∞∫

0

H 1,2
2,4

[
xt

∣∣∣∣
(−λ, h), (0, 1)
(0, 1), (1 − β1,α1), (1 − β2,α2), (−λ − 1, h)

]
f (t)dt

(6.1.55)

when Re λ > (1 − ν)h − 1, and in the form:

(
E∗

α1,β1;α2,β2
f
)
(x) = −hx1−(λ+1)/h d

dx
x (λ+1)/h

×
∞∫

0

H 2,1
2,4

[
xt

∣∣∣∣
(0, 1), (−λ, h)

(−λ − 1, h), (0, 1), (1 − β1,α1), (1 − β2,α2)

]
f (t)dt

(6.1.56)

when Re λ < (1 − ν)h − 1.
(d) The mapping E∗

α1,β1;α2,β2
does not depend on ν in the following sense: if

0 < ν1, ν2 < 1 and the mappings E∗
α1,β1;α2,β2;1, E

∗
α1,β1;α2,β2;2 are defined on the

spaces Lν1,2, Lν2,2 respectively, then E∗
α1,β1;α2,β2;1 f = E∗

α1,β1;α2,β2;2 f for all
f ∈ Lν1,2

⋂Lν2,2.
(e) If f ∈ Lν,2 and eitherα1 + α2 < 2 orα1 + α2 = 2 and 3 − 2ν ≤ Re (β1 + β2),

then for all f ∈ Lν,2 we have E∗
α1,β1;α2,β2

f = Eα1,β1;α2,β2 f , i.e. the mapping
E∗

α1,β1;α2,β2
is defined by the formula (6.1.48).

6.1.8 Relations to the Fractional Calculus

Let us present a number of (left- and right-sided) Riemann–Liouville fractional inte-
gration and differentiation formulas for the four-parametric Mittag-Leffler function.
Both cases (α1 + α2 > 0 and α1 + α2 < 0) will be considered simultaneously (see
[KiKoRo13]). For simplicity we use the notation Eα1,β1;α2,β2 for the four-parametric
Mittag-Leffler function in both cases.

Let α1,α2 ∈ R, α1 �= 0, α2 �= 0, β1,β2 ∈ C, and let the contour of integration in
(6.1.14) be chosen as L = L−∞ when α1 + α2 > 0, and as L = L+∞ when α1 +
α2 < 0. Let the additional parameters γ,σ,λ ∈ C be such that Re γ > 0, Re σ > 0
and ω ∈ R, (ω �= 0).
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The left-sided Riemann–Liouville fractional integral of the four-parametric
Mittag-Leffler function is given by the following formulas:

(a) If α1 < 0 and α2 > 0, then for x > 0

(
I γ
0+t

σ−1Eα1,β1; α2,β2(λt
ω)
)
(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xσ+γ−1H 1,2
3,3

[
−λxω

∣∣∣∣
(0, 1), (1 − σ,ω), (β1,−α1)

(0, 1), (1 − σ − γ,ω), (1 − β2,α2)

]
(ω > 0),

xσ+γ−1H 2,1
3,3

[
−λxω

∣∣∣∣
(0, 1), (σ + γ,−ω), (β1,−α1)

(0, 1), (σ,−ω), (1 − β2,α2)

]
(ω < 0).

(b) If α1 < 0 and α2 < 0, then for x > 0

(
I γ
0+t

σ−1Eα1,β1; α2,β2(λt
ω)
)
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xσ+γ−1H 1,2
4,2

[
−λxω

∣∣∣∣
(0, 1), (1 − σ,ω), (β1,−α1), (β2,−α2)

(0, 1), (1 − σ − γ,ω)

]

(ω > 0),

xσ+γ−1H 2,1
4,2

[
−λxω

∣∣∣∣
(0, 1), (σ + γ,−ω), (β1,−α1), (β2,−α2)

(0, 1), (σ,−ω)

]

(ω < 0).

(c) If α1 > 0 and α2 > 0, then for x > 0

(
I γ
0+t

σ−1Eα1,β1; α2,β2(λt
ω)
)
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xσ+γ−1H 1,2
2,4

[
−λxω

∣∣∣∣
(0, 1), (1 − σ,ω)

(0, 1), (1 − σ − γ,ω), (1 − β1,α1), (1 − β2,α2)

]

(ω > 0),

xσ+γ−1H 2,1
2,4

[
−λxω

∣∣∣∣
(0, 1), (σ + γ,−ω)

(0, 1), (σ,−ω), (1 − β1,α1), (1 − β2,α2)

]

(ω < 0).

The right-sided Riemann–Liouville fractional integral of the four-parametric
Mittag-Leffler function is given by the following formulas:

(a) If α1 < 0 and α2 > 0, then for x > 0

(
I γ
−t−σEα1,β1; α2,β2(λt

−ω)
)
(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xγ−σH 1,2
3,3

[
−λx−ω

∣∣∣∣
(0, 1), (1 − σ + γ,ω), (β1,−α1)

(0, 1), (1 − σ,ω), (1 − β2,α2)

]
(ω > 0),

xγ−σH 2,1
3,3

[
−λx−ω

∣∣∣∣
(0, 1), (σ,−ω), (β1,−α1)

(0, 1), (σ − γ,−ω), (1 − β2,α2)

]
(ω < 0).
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(b) If α1 < 0 and α2 < 0, then for x > 0

(
I γ
−t−σEα1,β1; α2,β2(λt

−ω)
)
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xγ−σH 1,2
4,2

[
−λx−ω

∣∣∣∣
(0, 1), (1 − σ + γ,ω), (β1,−α1), (β2,−α2)

(0, 1), (1 − σ,ω)

]

(ω > 0),

xγ−σH 2,1
4,2

[
−λx−ω

∣∣∣∣
(0, 1), (σ,−ω), (β1,−α1), (β2,−α2)

(0, 1), (σ − γ,−ω)

]

(ω < 0).

(c) If α1 > 0 and α2 > 0, then for x > 0

(
I γ
−t−σEα1,β1; α2,β2(λt

−ω)
)
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xγ−σH 1,2
2,4

[
−λx−ω

∣∣∣∣
(0, 1), (1 − σ + γ,ω)

(0, 1), (1 − σ,ω), (1 − β1,α1), (1 − β2,α2)

]

(ω > 0),

xγ−σH 2,1
2,4

[
−λx−ω

∣∣∣∣
(0, 1), (σ,−ω)

(0, 1), (σ − γ,−ω), (1 − β1,α1), (1 − β2,α2)

]

(ω < 0).

The left-sidedRiemann–Liouville fractional derivative of the four-parametricMittag-
Leffler function is given by the following formulas:

(a) If α1 < 0 and α2 > 0, then for x > 0

(
Dγ

0+t
σ−1Eα1,β1; α2,β2(λt

ω)
)
(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xσ−γ−1H 2,1
3,3

[
−λxω

∣∣∣∣
(0, 1), (1 − σ,ω), (β1,−α1)

(0, 1), (1 − σ + γ,ω), (1 − β2,α2)

]
(ω > 0),

xσ−γ−1H 1,2
3,3

[
−λxω

∣∣∣∣
(0, 1), (σ − γ,−ω), (β1,−α1)

(0, 1), (σ,−ω), (1 − β2,α2)

]
(ω < 0).

(b) If α1 < 0 and α2 < 0, then for x > 0

(
Dγ

0+t
σ−1Eα1,β1; α2,β2(λt

ω)
)
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xσ−γ−1H 1,2
4,2

[
−λxω

∣∣∣∣
(0, 1), (1 − σ,ω), (β1,−α1), (β2,−α2)

(0, 1), (1 − σ + γ,ω)

]

(ω > 0),

xσ−γ−1H 2,1
4,2

[
−λxω

∣∣∣∣
(0, 1), (σ − γ,−ω), (β1,−α1), (β2,−α2)

(0, 1), (σ,−ω)

]

(ω < 0).
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(c) If α1 > 0 and α2 > 0, then for x > 0

(
Dγ

0+t
σ−1Eα1,β1; α2,β2(λt

ω)
)
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xσ−γ−1H 1,2
2,4

[
−λxω

∣∣∣∣
(0, 1), (1 − σ,ω)

(0, 1), (1 − σ + γ,ω), (1 − β1,α1), (1 − β2,α2)

]

(ω > 0),

xσ−γ−1H 2,1
2,4

[
−λxω

∣∣∣∣
(0, 1), (σ − γ,−ω)

(0, 1), (σ,−ω), (1 − β1,α1), (1 − β2,α2)

]

(ω < 0).

The right-sided Riemann–Liouville fractional derivative of the four-parametric
Mittag-Leffler function is given by the following formulas:

(a) If α1 < 0 and α2 > 0, then for x > 0

(
Dγ

−t−σEα1,β1; α2,β2(λt
−ω)
)
(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x−σ−γH 2,1
3,3

[
−λx−ω

∣∣∣∣
(0, 1), (1 − σ − γ,ω), (β1,−α1)

(0, 1), (1 − σ,ω), (1 − β2,α2)

]
(ω > 0),

x−σ−γH 1,2
3,3

[
−λx−ω

∣∣∣∣
(0, 1), (σ,−ω), (β1,−α1)

(0, 1), (σ + γ,−ω), (1 − β2,α2)

]
(ω < 0).

(b) If α1 < 0 and α2 < 0, then for x > 0

(
Dγ

−t−σEα1,β1; α2,β2(−λt−ω)
)
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x−σ−γH 2,1
4,2

[
−λx−ω

∣∣∣∣
(0, 1), (1 − σ − γ,ω), (β1,−α1), (β2,−α2)

(0, 1), (1 − σ,ω)

]

(ω > 0),

x−σ−γH 1,2
4,2

[
−λx−ω

∣∣∣∣
(0, 1), (σ,−ω), (β1,−α1), (β2,−α2)

(0, 1), (σ + γ,−ω)

]

(ω < 0).

(c) If α1 > 0 and α2 > 0, then for x > 0

(
Dγ

−t−σEα1,β1; α2,β2(−λt−ω)
)
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x−σ−γH 2,1
2,4

[
−λx−ω

∣∣∣∣
(0, 1), (1 − σ − γ,ω)

(0, 1), (1 − σ,ω), (1 − β1,α1), (1 − β2,α2)

]

(ω > 0),

x−σ−γH 1,2
2,4

[
−λx−ω

∣∣∣∣
(0, 1), (σ,−ω)

(0, 1), (σ + γ,−ω), (1 − β1,α1), (1 − β2,α2)

]

(ω < 0).
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6.2 The Four-Parametric Mittag-Leffler Function: A
Generalization of the Prabhakar Function

In this section we mainly follow the article [SriTom09].

6.2.1 Definition and General Properties

A generalization of the Prabhakar function (5.1.1) is proposed in [SriTom09] in the
following form

Eγ,κ
α,β(z) :=

∞∑

n=0

(γ)κn

Γ (αn + β)

zn

n! (z;β, γ ∈ C;Reα > max{0,Re κ − 1};Re κ > 0),

(6.2.1)
where (γ)δ with δ > 0 is the generalized Pochhammer symbol (γ)δ = Γ (γ+δ)

Γ (γ)

(cf. Appendix A, Sect.A.1.5). The function (6.2.1) is sometimes called the four-
parametric Mittag-Leffler function (a four-parametric generalization of the Prab-
hakar function). With κ = q ∈ N0, min{Re β,Re γ} > 0, this definition coincides
with the definition proposed in [ShuPra07].

Theorem 6.3 ([SriTom09, Thm. 1]) The four-parametric Mittag-Leffler function
Eγ,κ

α,β(z) defined by (6.2.1) is an entire function in the complex z-plane of order ρ and
type σ given by

ρ = 1

Re (α − κ) + 1
, σ = 1

ρ

(
(Re κ)Re κ

(Reα)Reα

)ρ

. (6.2.2)

Moreover, the power series in the defining equation (6.2.1) converges absolutely in
the disc |z| < (Reα)Reα

(Reκ)Reκ
whenever

Reα = Re κ − 1 > 0.

� The proof follows from the asymptotic properties of the Gamma function

Γ (z) = zze−z

√
2π

z

[
1 + 1

12z
+ 1

288z2
+ O

(
1

z3

)]
,

where
(z → ∞, |argz| ≤ π − ε(0 < ε < π)),

and
Γ (z + a)

Γ (z + b)
= za−b

[
1 + (a − b)(a + b − 1)

2z
+ O

(
1

z2

)]
,
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where a, b ∈ C and z → ∞ along any curve joining z = 0 and z = ∞ provided
z �= −a,−a − 1, . . . and z �= −b,−b − 1, . . ..

To determine the radius of convergence R of the power series
∞∑
n=0

cnzn one can

use the Cauchy–Hadamard formula

R = lim sup
n→∞

∣∣∣∣
cn
cn+1

∣∣∣∣ ,

and for the orderρ and the typeσ of an entire function the following standard formulas
(see [Lev56])

ρ = lim sup
n→∞

n log n

log 1/|cn| , eρσ = lim sup
n→∞

n|cn| ρ
n .

�
A number of further properties of the four-parametric Mittag-Leffler function

follows from its relation with the Fox–Wright function

Eγ,κ
α,β(z) = 1

Γ (γ)
1W1(z)

[
(γ,κ)

(β,α)

∣∣∣z
]

, (6.2.3)

and with the Fox H-function (see [AgMiNi15])

Eγ,κ
α,β(z) = 1

Γ (γ)
H 1,2

2,2 (z)

[
z
∣∣∣ (1 − γ,κ), (0, 1)
(0, 1), (1 − β,α)

]
. (6.2.4)

6.2.2 The Four-Parametric Mittag-Leffler Function of a Real
Variable

Following [SriTom09] one can introduce an integral operatorwith the four-parametric
Mittag-Leffler function in the kernel

(
Eω;γ,κ
a+;α,βϕ

)
(x) :=

x∫

a

(x − t)β−1Eγ,κ
α,β(ω(x − t)α−1)ϕ(t)dt. (6.2.5)

It is well-defined for the following values of parameters:

γ,ω ∈ C; Reα > max{0,Re κ − 1}, min{Re β,Re κ} > 0.

Moreover, this operator is bounded in the Lebesgue space L1 on any finite interval
[a, b], b > a:

‖Eω;γ,κ
a+;α,βϕ‖1 ≤ C1‖ϕ‖1,
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where

C1 = (b − a)Re β
∞∑

n=0

|(γ)κn

(nReα + Re β)|Γ (αn + β)|
|ω(b − a)Reα|n

n! .

The following theorem describes the action of the Riemann–Liouville fractional
integral I μ

a+ and derivative Dμ
a+ as well as the generalized Riemann–Liouville frac-

tional derivative (the Hilfer fractional derivative)

(
Dμ,ν

a+ φ
)
(x) :=

(
I ν(1−μ)
a+

d

dx

(
I (1−ν)(1−μ)
a+ φ

))
(x) (6.2.6)

on the four-parametric Mittag-Leffler function Eγ,κ
α,β(t)

Theorem 6.4 ([SriTom09, Thm3]) Let x > a, a ∈ R+, 0 < μ < 1, 0 ≤ ν ≤ 1, and

Reα > max{0,Re κ − 1}, min{Re β,Re κ,Re λ} > 0, γ,ω ∈ C.

Then the following relations hold:

(
I λ
a+
(
(t − a)β−1Eγ,κ

α,β(ω(t − a)α)
))

(x) = (x − a)β+λ−1Eγ,κ
α,β+λ(ω(t − a)α),

(6.2.7)
(
Dλ

a+
(
(t − a)β−1Eγ,κ

α,β(ω(t − a)α)
))

(x) = (x − a)β−λ−1Eγ,κ
α,β−λ(ω(t − a)α),

(6.2.8)
(
Dμ,ν

a+
(
(t − a)β−1Eγ,κ

α,β(ω(t − a)α)
))

(x) = (x − a)β−μ−1Eγ,κ
α,β−μ(ω(t − a)α).

(6.2.9)

The Laplace transform of the four-parametric Mittag-Leffler function is given by
the following formula, which can be obtained using a term-by-term transformation
of the corresponding power series

L
[
xa−1Eγ,κ

α,β(ωxb)
]
(s) = s−a

Γ (γ)
2W1

[
(a, b), (γ,κ)

(β,α)

∣∣∣
ω

sb

]
. (6.2.10)

6.3 Mittag-Leffler Functions with 2n Parameters

6.3.1 Definition and Basic Properties

Consider the function defined for αi ∈ R (α2
1 + · · · + α2

n �= 0) and βi ∈ C (i =
1, · · · , n ∈ N) by
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E ((α,β)n; z) =
∞∑

k=0

zk∏n
j=1 Γ (α j k + β j )

(z ∈ C). (6.3.1)

When n = 1, (6.3.1) coincides with the Mittag-Leffler function (4.1.1):

E ((α,β)1; z) = Eα,β(z) ≡
∞∑

k=0

zk

Γ (αk + β)
(z ∈ C), (6.3.2)

and, for n = 2, with the four-parametric function (6.1.1):

E ((α,β)2; z) = Eα1,β1;α2,β2(z) ≡
∞∑

k=0

zk

Γ (α1k + β1)Γ (α2k + β2)
(z ∈ C).

(6.3.3)
First of all we prove that (6.3.1) under the condition α1 + α2 + · · · + αn > 0 is

an entire function.

Theorem 6.5 Let n ∈ N and αi ∈ R, βi ∈ C (i = 1, 2, · · · , n) be such that

α2
1 + · · · + α2

n �= 0, α1 + α2 + · · · + αn > 0. (6.3.4)

Then E ((α,β)n; z) is an entire function of z ∈ C of order

ρ = 1

(α1 + α2 + · · · + αn)
(6.3.5)

and type

σ =
n∏

i=1

(
α1 + · · · + αn

|αi |
) αi

α1+···+αn

. (6.3.6)

� Rewrite (6.3.1) as the power series

E ((α,β)n; z) =
∞∑

k=0

ckz
k, ck =

⎡

⎣
n∏

j=1

Γ (α j k + β j )

⎤

⎦
−1

. (6.3.7)

According to the asymptotic property (A.27) we have

|ck |
|ck+1| ∼

n∏

j=1

|α j k|α j =
n∏

j=1

|α j |α j kα1+α2+···+αn → +∞ (k → ∞).

Then, if α1 + α2 · · · + αn > 0, we see that R = ∞, where R is the radius of con-
vergence of the power series in (6.3.7). This means that E ((α,β)n; z) is an entire
function of z.
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We use [Appendix B, (B.5) and (B.6)] to evaluate the order ρ and the type σ of
(6.3.1). Applying Stirling’s formula for the Gamma function Γ (z) at infinity and
taking (6.3.7) into account, we have

log

(
1

ck

)
= log

⎡

⎣
n∏

j=1

Γ (α j k + β j )

⎤

⎦

=
n∑

j=1

(
α j k + β j − 1

2

)
log(α j k) −

n∑

j=1

(
α j k

)+ n

2
log(2π) + O

(
1

k

)
(k → ∞).

Hence the following asymptotic estimate holds:

log

(
1

ck

)
∼ k log(k)(α1 + α2 + · · · + αn) (k → ∞). (6.3.8)

Thus, in accordance with [Appendix B, (B.5)], we obtain (6.3.5).
Further, according to (6.1.12) we obtain the asymptotic estimate

n∏

j=1

Γ (α j k + β j ) ∼ (2π)n/2
n∏

j=1

(α j k)
α j k+β j− 1

2 e−α j k (k → ∞). (6.3.9)

By (6.3.7) and (6.3.9) we have

lim sup
k→∞

(
k1/ρ|ck |1/k

) = lim sup
k→∞

k1/ρ
n∏

j=1

[
(|α j |k)−α j eα j

]

= eα1+α2+···+αn

n∏

j=1

|α j |−α j = e1/ρ
n∏

j=1

|α j |−α j .

Substituting this relation into [Appendix B, (B.6)] we have

σ = 1

ρ

⎛

⎝
n∏

j=1

|α j |−α j

⎞

⎠
ρ

= (α1 + α2 + · · · + αn)

⎛

⎝
n∏

j=1

|α j |−α j

⎞

⎠

1
α1+···+αn

=
n∏

j=1

(
α1 + · · · + αn

|α j |
) α j

α1+···+αn

,

which proves (6.3.6). 	
Remark 6.6 In the general case α1 + · · ·αn > 0 the relations (6.3.5) and (6.3.6)
have been proved by Kilbas and Koroleva [KilKor05] (and also in a paper by
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Rogosin, Kilbas and Koroleva [KiKoRo13]), while in the particular case α j > 0
( j = 1, . . . , n), in the works of Kiryakova, as [Kir99], [Kir00]. Note that if n > 1
the type σ in (6.3.6) is greater than 1 (Th.1, Kiryakova [Kir10b]).

Remark 6.7 Whenn = 1,α1 = α > 0 andβ1 = β ∈ C, relations (6.3.5) and (6.3.6)
yield the known order and type of theMittag-Leffler function Eα,β(z) in (4.1.1) [Sect.
4.1]:

ρ = 1

α
, σ = 1. (6.3.10)

Remark 6.8 When n = 2, α j ∈ R, β j ∈ C ( j = 1, 2) with α2
1 + α2

2 �= 0 and α1 +
α2 > 0, formulas (6.3.5) and (6.3.6) coincide with (6.1.8) and (6.1.9), respectively.

6.3.2 Representations in Terms of Hypergeometric Functions

We consider the generalized Mittag-Leffler function E ((α,β)n; z) in (6.3.1) under
the conditions of Theorem 6.5. First we give a representation of E ((α,β)n; z)
in terms of the generalized Wright hypergeometric function p�q(z) defined in
Appendix F, (F.2.6)]. By (A.17), (1)k = k! = Γ (k + 1) (k ∈ N0) and we can rewrite
(6.3.1) in the form

E ((α,β)n; z) =
∞∑

k=0

Γ (k + 1)∏n
j=1 Γ (β j + α j k)

zk

k! (z ∈ C). (6.3.11)

This yields the following representation of E ((α,β)n; z) via the generalizedWright
hypergeometric function 1�n(z):

E ((α,β)n; z) = 1�n

⎡

⎣
(1, 1)

(β1,α1), · · · , (βn,αn)

∣∣∣∣ z

⎤

⎦ (z ∈ C). (6.3.12)

Next we consider the generalized Mittag-Leffler function (6.3.1) with n ≥ 2 and
α j = m j ∈ N ( j = 1, · · · , n):

E ((m,β)n; z) =
∞∑

k=0

zk∏n
j=1 Γ (m jk + β j )

=
∞∑

k=0

(1)k∏n
j=1 Γ (m jk + β j )

zk

k! (z ∈ C). (6.3.13)

According to (A.14) with z = k + β j

mi
, m = m j ( j = 1, · · · , n) and (A.17) we have
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Γ (m jk + β j ) = Γ

[
m j

(
k + β j

m j

)]

= (2π)(1−m j )/2m
m jk+β j− 1

2
j

m j−1∏

s=0

Γ

(
β j + s

m j
+ k

)

= (2π)(1−m j )/2m
m jk+β j− 1

2
j

m j−1∏

s=0

Γ

(
β j + s

m j

)(
β j + s

m j

)

k

= mmik
j

⎡

⎣(2π)(1−m j )/2m
β j− 1

2
j

m j−1∏

s=0

Γ

(
β j + s

m j

)⎤

⎦
m j−1∏

s=0

(
β j + s

m j

)

k

.

Then applying (A.14) with z = β j

mi
, m = m j , we get

Γ (m jk + β j ) = m
m jk
j Γ (β j )

m j−1∏

s=0

(
β j + s

m j

)

k

.

Hence

E ((m,β)n; z) = 1
n∏
j=1

Γ (β j )

∞∑

k=0

(1)k
n∏
j=1

m j−1∏
s=0

(
β j+s
m j

)

k

⎛

⎜⎜⎜⎝
z

n∏
j=1

m
m j

j

⎞

⎟⎟⎟⎠

k

1

k! .

Therefore,weobtain the following representationof the 2n-parametricMittag-Leffler
function via a generalized hypergeometric function in the case of positive integer first
parameters α j = m j ∈ N ( j = 1, · · · , n)

E ((m,β)n; z) = 1
n∏
j=1

Γ (β j )

(6.3.14)

×1Fm1+...+mn

⎛

⎜⎜⎜⎝1;
β1

m1
, . . . ,

β1 + m1 − 1

m1
, . . . ,

βn

mn
, . . . ,

βn + mn − 1

mn
; z

n∏
j=1

m
m j

j

⎞

⎟⎟⎟⎠ .
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6.3.3 Integral Representations and Asymptotics

The 2n-parametric Mittag-Leffler function can be introduced either in the form of a
series (6.3.1) or in the form of a Mellin–Barnes integral

E(α, β)n (z) = 1

2πi

∫

L

Γ (s)Γ (1 − s)
n∏
j=1

Γ (β j − α j s)
(−z)−sds (z �= 0). (6.3.15)

For Reα1 + . . . + αn > 0 one can choose the left loop L−∞ as a contour of integra-
tion in (6.3.15). Calculating this integral by using Residue Theory we immediately
obtain the series representation (6.3.1).

Ifα j > 0;β j ∈ R ( j = 1, . . . , n), then the 2n-parametricMittag-Leffler function
E((α, β)n; z) is an entire function of the complex variable z ∈ C of finite order, see
Theorem 6.5.

This result gives an upper bound for the growth of the 2n-parametric Mittag-
Leffler function at infinity, namely, for any positive ε > 0 there exists a positive rε
such that ∣∣E(α, β)n (z)

∣∣ < exp{(σ + ε)|z|ρ}, ∀z, |z| > rε. (6.3.16)

Moreprecisely, the asymptotic behavior of the function E(α, β)n (z) canbedescribed
using the representation of the latter in terms of the H -function with special values
of parameters (see Sect. 6.3.7 below) and asymptotic results for the H -function (see
[KilSai04]).

6.3.4 Extension of the 2n-Parametric Mittag-Leffler
Function

An extension of the 2n-parametric Mittag-Leffler function is given by the represen-
tation

E((α, β)n; z) = 1

2πi

∫

L

Γ (s)Γ (1 − s)
n∏
j=1

Γ (β j − α j s)
(−z)−sds (z �= 0), (6.3.17)

where the right loop L = L+∞ is chosen as the contour of integration L.
By using Stirling’s asymptotic formula for the Gamma function

|Γ (x + iy)| = (2π)1/2|x |x−1/2e−x−π[1−sign(x)]y/2 (x, y ∈ R; |x | → ∞), (6.3.18)

one can showdirectly thatwith the above choice of the integration contour the integral
(6.3.17) is convergent for all values of parameters α1, . . . ,αn ∈ C, β1, . . . ,βn ∈ C

such that Reα1 + . . . + αn < 0 (cf., e.g., [KilKor05]).
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Under these conditions (the choice of contour and assumption on the parameters)
the integral (6.3.17) can be calculated by using Residue Theory. This gives the fol-
lowing Laurent series representation of the extended 2n-parametric Mittag-Leffler
function: let α j ,β j ∈ C ( j = 1...n), z ∈ C (z �= 0) with Reα1 + . . . + αn < 0 and
L = L+∞, then the function E((α, β)n; z) has the Laurent series representation

E((α, β)n; z) =
∞∑

k=0

dk
zk+1

, dk =
n∏

j=1

1

Γ (−α j k − α j + β j )
. (6.3.19)

The series in (6.3.19) is convergent for all z ∈ C \ {0}. Convergence again follows
from the asymptotic properties of the Gamma function, which yield the relation

|dk |
|dk+1| ∼

n∏

j=1

[|α j |−Re (α j )eIm (α j )arg(−α j k)
]
k

−
n∑
j=1

Re (α j )

(k → ∞).

By using the series representation of the extended 2n-parametric Mittag-Leffler
function it is not hard to obtain an asymptotic formula for z → ∞. Namely, if
α j ,β j ∈ C ( j = 1, . . . , n), z ∈ C (z �= 0) and Reα1 + . . . + αn) < 0, with con-
tour of integration in (6.3.17) chosen as L = L+∞, then for any N ∈ N we have for
z → ∞ the asymptotic representation

E((α, β)n; z) =
N∑

k=0

1
n∏
j=1

Γ (−α j k − α j + β j )zk+1

[
1 + O

(
1

z

)]
(z → ∞).

The main term of this asymptotics is equal to

E((α, β)n; z) =
n∏

j=1

1

Γ (−α j + β j )

[
1 + O

(
1

z

)]
(z → ∞).

The asymptotics at z → 0 is more complicated. It can be derived by using the
relations of the extended 2n-parametric Mittag-Leffler function with the generalized
Wright function and the H -functions (see Sect. 6.3.5 below) and the asymptotics of
the latter presented in [KilSai04].

Another possible way to get the asymptotics of E((α, β)n; z) for z → 0 is to
use the following. If α j ,β j ∈ C ( j = 1...n), z ∈ C (z �= 0), Reα1 + ... + αn < 0,
L = L+∞, then the extended 2n-parametricMittag-Leffler function can be presented
in terms of the “usual” 2n-parametric Mittag-Leffler function:

E((α, β)n; z) = 1

z
E

(
(−α, β − α)n;

1

z

)
. (6.3.20)
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6.3.5 Relations to the Wright Function and to the H-Function

In this section we present some formulas representing the 2n-parametric Mitttag-
Leffler function E((α, β)n; z) and its extension E((α, β)n; z) in terms of the gen-
eralized Wright function p�q and the H -function.

For short, we use the same notation E((α, β)n; z) for the 2n-parametric Mitttag-
Leffler function and for its extension. These functions differ in values of the param-
eters αi and in the choice of the contour of integration L in their Mellin–Barnes
integral representation.

For real values of the parameters α j ∈ R and complex β j ∈ C ( j = 1, . . . , n)

the following representations hold:

(1) if
n∑
j=1

α j > 0,L = L−∞, then

E((α, β)n; z) = 1�n

[
(1, 1)
(β1,α1), . . . , (βn,αn)

∣∣∣∣z
]

; (6.3.21)

(2) if
n∑
j=1

α j < 0,L = L+∞, then

E((α, β)n; z) = 1

z
1�2

[
(1, 1)
(β1 − α1,−α1), . . . , (βn − αn,−αn)

∣∣∣∣
1

z

]
. (6.3.22)

The above representations can be obtained by comparing the series representation
of the corresponding functions. In the case (6.3.22) one can also use the relation
(6.3.20).

In the same manner one can obtain the following representations of the 2n-
parametric Mittag-Leffler function and its extension in terms of the H -function:

(1) if α j > 0 ( j = 1, . . . , n), and L = L−∞, then

E((α, β)n; z) = H 1,1
1,n+1

[
(0, 1)
(0, 1)(1 − β1,α1), . . . , (1 − βn,αn)

∣∣∣∣z
]

; (6.3.23)

(2) if α j > 0 ( j = 1, . . . , p, p < n), α j < 0 ( j = p + 1, . . . , n), and either
n∑
j=1

α j > 0, L = L−∞, or
n∑
j=1

α j < 0, L = L+∞, then

E((α, β)n; z) = H 1,1
n−p+1,p+1

[
(0, 1)(βp+1,−αp+1) . . . (βn,−αn)

(0, 1)(1 − β1,α1), . . . , (1 − βp,αp)

∣∣∣∣z
]

;
(6.3.24)

(3) if α j < 0 ( j = 1, . . . , p, p < n), α j > 0 ( j = p + 1, . . . , n), and either
n∑
j=1

α j > 0, L = L−∞, or
n∑
j=1

α j < 0, L = L+∞, then
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E((α, β)n; z) = H 1,1
p+1,n−p+1

[
(0, 1)(β1,−α1) . . . (βp,−αp)

(0, 1)(1 − βp+1,αp+1), . . . , (1 − βn,αn)

∣∣∣∣z
]

;
(6.3.25)

(4) if α j < 0, ( j = 1, . . . , n) and L = L+∞, then

E((α, β)n; z) = H 1,1
n+1,1

[
(0, 1)(β1,−α1), . . . , (βn,−αn)

(0, 1)

∣∣∣∣z
]

. (6.3.26)

6.3.6 Integral Transforms with the Multi-parametric
Mittag-Leffler Functions

Here we consider only the case when the parameters αi in the definition of the
2n-parametric Mittag-Leffler function and its extension are real numbers.

Since the 2n-parametric Mittag-Leffler function is related to the generalized
Wright function and to the H -function with special values of parameters (see Sect.
6.3.5), one can use (6.1.35) or (6.1.40) to define the Mellin transform of the function
E((α, β)n; z) and of its extension E((α, β)n; z).

Now we present a few results on integral transforms with the 2n-parametric func-
tion in the kernel. The transforms are defined by the formula

(
E(α, β)n f

)
(x) =

∞∫

0

E((α, β)n;−xt) f (t)dt (x > 0), (6.3.27)

with the 2n-parametric Mittag-Leffler function in the kernel. These transforms are
special cases of more general H-transforms (see Sect. 6.1.7). This can be seen from
the definition of the H-transforms (6.1.32) and the following formulas which relate
E(α, β)n-transforms toH-transforms under different assumptions on the parameters.

(1) Let α j > 0 ( j = 1, . . . , n), L = L−∞, then

(E(α, β)n f )(x) = (6.3.28)
∞∫

0

H 1,1
1,n+1

[
xt

∣∣∣∣
(0, 1)
(0, 1), (1 − β1,α1), . . . , (1 − βn,αn)

]
f (t)dt.

(2) Let α j > 0 ( j = 1, . . . , p, p < n), α j < 0 ( j = p + 1, . . . , n) and either
n∑
j=1

α j > 0, L = L−∞ or
n∑
j=1

α j < 0, L = L+∞, then
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(E(α, β)n f )(x) = (6.3.29)
∞∫

0

H 1,1
n−p+1,p+1

[
xt

∣∣∣∣
(0, 1), (βp+1,−αp+1), . . . , (βn,−αn)

(0, 1), (1 − β1,α1), . . . , (1 − βp,αp)

]
f (t)dt.

(3) Let α j < 0 ( j = 1, . . . , p, p < n), α j > 0 ( j = p + 1, . . . , n) and either
n∑
j=1

α j > 0, L = L−∞, or
n∑
j=1

α j < 0, L = L+∞, then

(E(α, β)n f ) = (6.3.30)
∞∫

0

H 1,1
p+1,n−p+1

[
xt

∣∣∣∣
(0, 1), (β1,−α1), . . . , (βp,−αp)

(0, 1), (1 − βp+1,αp+1), . . . , (1 − βn,αn)

]
f (t)dt.

(6.3.31)

(4) Let α j < 0,( j = 1, . . . , n) and L = L+∞, then

(E(α, β)n f )(x) =
∞∫

0

H 1,1
n+1,1

[
xt

∣∣∣∣
(0, 1), (β1,−α1), . . . , (βn,−αn)

(0, 1)

]
f (t)dt.

(6.3.32)

Convergence of the integrals depends on the values of some constants (as defined
in formula (F.4.9), Appendix F). The constant a∗ takes different values in the above
cases:

1) a∗ = 2 −
n∑
j=1

α j ; (2) a∗ = 2 −
p∑

j=1
α j +

n∑
j=p+1

α j ;

3) a∗ = 2 +
p∑

j=1
α j −

n∑
j=p+1

α j ; 4) a∗ = 2 +
n∑
j=1

α j ;

and the constants Δ,μ,α,β take the same values in all four cases:

Δ =
n∑

j=1

α j ; μ = n

2
−

n∑

j=1

β j ; α = 0; β = 1.

We present results on E(α, β)n-transforms for two essentially different cases,
namely for the case when all α j are positive, and for the case when some of them
are negative.
A. Let 0 < ν < 1,α j > 0 ( j = 1, . . . , n), β j ∈ C ( j = 1, . . . , n) be such that either

0 <
n∑
j=1

α j < 2 or
n∑
j=1

α j = 2 and 2ν +
n∑
j=1

Re β j ≥ 2 + n
2 .

(a) There exists an injective mapping (transform) E∗(α, β)n ∈ [Lν,2,L1−ν,2
]
such

that the equality
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(ME∗(α, β)n f
)
(s) = Γ (s)Γ (1 − s)

n∏
j=1

Γ (β j − α j s)
(M f ) (1 − s), (Re s = 1 − ν)

(6.3.33)
holds for any f ∈ Lν,2.

If
n∑
j=1

α j = 2, 2ν +
n∑
j=1

Re β j = 2 + n
2 and

s �= β1 + k

α1
, . . . , s �= βn + l

αn
(k, l = 0, 1, 2, · · · ) for Re s = 1 − ν, (6.3.34)

then the mapping E∗(α, β)n is bijective from Lν,2 onto L1−ν,2.

(b) For any f, g ∈ Lν,2 the following integration by parts formula holds:

∞∫

0

f (x)
(
E∗(α, β)ng

)
(x)dx =

∞∫

0

(
E∗(α, β)n f

)
(x)g(x)dx . (6.3.35)

(c) If f ∈ Lν,2, λ ∈ C, h > 0, then the value E∗(α, β)n f can be represented in the
form:

(
E∗(α, β)n f

)
(x) = hx1−(λ+1)/h d

dx
x (λ+1)/h (6.3.36)

×
∞∫

0

H 1,2
2,n+2

[
xt

∣∣∣∣
(−λ, h), (0, 1)
(0, 1), (1 − β1,α1), . . . , (1 − βn,αn), (−λ − 1, h)

]
f (t)dt,

(6.3.37)

when Re (λ) > (1 − ν)h − 1, or

(
E∗(α, β)n f

)
(x) = −hx1−(λ+1)/h d

dx
x (λ+1)/h (6.3.38)

×
∞∫

0

H 2,1
2,n+2

[
xt

∣∣∣∣
(0, 1), (−λ, h)

(−λ − 1, h), (0, 1), (1 − β1,α1), . . . , (1 − βn,αn)

]
f (t)dt,

(6.3.39)

when Re (λ) < (1 − ν)h − 1.
(d) The mapping E∗(α, β)n does not depend on ν in the following sense: if

two values of the parameter 0 < ν1, ν2 < 1 and the corresponding mappings
E∗(α, β)n;1, E∗(α, β)n;2 are defined on the spaces Lν1,2, Lν2,2, respectively,
then E∗(α, β)n;1 f = E∗(α, β)n;2 f for all f ∈ Lν1,2

⋂Lν2,2.
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(e) If f ∈ Lν,2 and either 0 <
n∑
j=1

α j < 2 or
n∑
j=1

α j = 2 and 2ν +
n∑
j=1

Re β j ≥
2 + n

2 , then the mapping (transform) E∗(α, β)n coincides with the transform
E(α, β)n given by the formula (6.3.27), i.e. E∗(α, β)n f = E(α, β)n f,∀ f ∈
Lν,2.

B. Let 0 < ν < 1, α j > 0 ( j = 1, . . . , j p, j p < n) and α j < 0 ( j = p + 1,

j . . . , n), β j ∈ C ( j = 1, . . . , n), be such that either 2 −
p∑

j=1
α j +

n∑
j=p+1

α j > 0 or

2 −
p∑

j=1
αi +

n∑
j=p+1

α j = 0 and (1 − ν)
n∑
j=1

α j + n
2 ≤

n∑
j=1

βi .

(a) There exists an injective mapping (transform) E∗(α, β)n ∈ [Lν,2,L1−ν,2
]
such

that the equality (6.3.33) holds for any f ∈ Lν,2.

If 2 −
p∑

j=1
α j +

n∑
j=p+1

α j = 0, (1 − ν)
n∑
j=1

α j + n
2 =

n∑
j=1

β j and the parameter s

(which determines the line of integration for the inverse Mellin transform in
(6.3.33)) satisfies (6.3.34), then the mapping E∗(α, β)n is bijective from Lν,2

onto L1−ν,2.

(b) For any f, g ∈ Lν,2 the integration by parts formula (6.3.35) is satisfied.
(c) If f ∈ Lν,2, λ ∈ C, h > 0, then the value E∗(α, β)n f can be represented in
the form:

(
E∗(α, β)n f

)
(x) = hx1−(λ+1)/h d

dx
x (λ+1)/h (6.3.40)

×
∞∫

0

H 1,2
n−p+2,p+2

[
xt

∣∣∣∣
(−λ, h), (0, 1), (βp+1,−αp+1), . . . , (βn,−αn)

(0, 1), (1 − β1,α1), . . . , (1 − βp,αp), (−λ − 1, h)

]
f (t)dt,

when Re (λ) > (1 − ν)h − 1, or

(
E∗(α, β)n f

)
(x) = −hx1−(λ+1)/h d

dx
x (λ+1)/h (6.3.41)

×
∞∫

0

H 2,1
n−p+2,p+2

[
xt

∣∣∣∣
(0, 1), (βp+1,−αp+1), . . . , (βn,−αn), (−λ, h)

(−λ − 1, h), (0, 1), (1 − β1,α1), . . . , (1 − βp,αp)

]
f (t)dt,

when Re (λ) < (1 − ν)h − 1.
(d) The mapping E∗(α, β)n does not depend on ν in the following sense: if

0 < ν1, ν2 < 1 and the mappings E∗(α, β)n;1, E∗(α, β)n;2 are defined on the
spaces Lν1,2, Lν2,2, respectively, then E∗(α, β)n;1 f = E∗(α, β)n;2 f for all
f ∈ Lν1,2

⋂Lν2,2.
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(e) If f ∈ Lν,2 and either 2 −
p∑

i=1
αi +

n∑
i=p+1

αi > 0 or 2 −
p∑

i=1
αi +

n∑
i=p+1

αi =

0 and (1 − ν)
n∑

i=1
αi + n

2 ≤
n∑

i=1
βi , then the mapping (transform) E∗(α, β)n

coincides with the transform E(α, β)n given by the formula (6.3.27), i.e.
E∗(α, β)n f = E(α, β)n f,∀ f ∈ Lν,2.

6.3.7 Relations to the Fractional Calculus

In this subsection we present a few formulas relating the 2n-parametric Mittag-
Leffler function (with different values of the parameters α j ) to the left- and right-
sided Riemann–Liouville fractional integral and derivative. For short, we use the
same notation E((α, β)n; z) for the 2n-parametricMitttag-Leffler function and for its
extension.These functions differ in values of the parametersαi and in the choice of the
contour of integration L in their Mellin–Barnes integral representation. The results
in this subsection are obtained (see [KiKoRo13]) by using known formulas for the
fractional integration and differentiation of power-type functions (see [SaKiMa93,
(2.44) and formula 1 in Table9.3]).

Let α j ∈ R, α j �= 0 ( j = 1, . . . , n), α1 < 0, . . . ,αl < 0, αl+1 > 0, . . . ,αn > 0
(1 ≤ l ≤ n) and let the contour L be given by one of the following:

L = L−∞ if α1 + . . . + αn > 0 or L = L+∞ if α1 + . . . + αn < 0.

Let γ,σ,λ ∈ C be such that Re(γ) > 0, Re (σ) > 0 and ω ∈ R, (ω �= 0). Then the
following assertions are true.
A. Calculation of the left-sided Riemann–Liouville fractional integral.

(a) If ω > 0, then for x > 0

(
I γ
0+t

σ−1E((α,β)n;λtω)
)
(x) (6.3.42)

= xσ+γ−1H 1,2
2+l,2+n−l

[
−λxω

∣∣∣∣
(0, 1), (1 − σ,ω), (β j ,−α j )1, l
(0, 1), (1 − σ − γ,ω), (1 − β j ,α j )l+1,n

]
.

(b) If ω < 0, then for x > 0

(
I γ
0+t

σ−1E((α,β)n;λtω)
)
(x) (6.3.43)

= xσ+γ−1H 2,1
2+l,2+n−l

[
−λxω

∣∣∣∣
(0, 1), (γ + σ,−ω), (β j ,−α j )1,l
(0, 1), (σ,−ω), (1 − β j ,α j )l+1,n

]
.

B. Calculation of the right-sided Liouville fractional integral.

(a) If ω > 0, then for x > 0
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(
I γ
−t−σE((α,β)n;λt−ω)

)
(x) (6.3.44)

= xγ−σH 1,2
2+l,2+n−l

[
−λxω

∣∣∣∣
(0, 1), (1 − σ + γ,ω), (β j ,−α j )1,l
(0, 1), (1 − σ,ω), (1 − β j ,α j )l+1,n

]
.

(b) If ω < 0, then for x > 0

(
I γ
−t−σE((α,β)n;λt−ω)

)
(x) (6.3.45)

= xγ−σH 2,1
2+l,2+n−l

[
−λx−ω

∣∣∣∣
(0, 1), (σ,−ω), (β j ,−α j )1,l
(0, 1), (σ − γ,−ω), (1 − β j ,α j )l+1,n

]
.

C. Calculation of the left-sided Riemann–Liouville fractional derivative.

(a) If ω > 0, then for x > 0

(
Dγ

0+t
σ−1E((α,β)n;λtω)

)
(x) (6.3.46)

= xσ−γ−1H 1,2
2+l,2+n−l

[
−λxω

∣∣∣∣
(0, 1), (1 − σ,ω), (β j ,−α j )1,l
(0, 1), (1 − σ + γ,ω), (1 − β j ,α j )l+1,n

]
.

(b) If ω < 0, then for x > 0

(
Dγ

0+t
σ−1E((α,β)n;λtω)

)
(x) (6.3.47)

= xσ−γ−1H 2,1
2+l,2+n−l

[
−λxω

∣∣∣∣
(0, 1), (γ − σ,−ω), (β j ,−α j )1,l
(0, 1), (σ,−ω), (1 − β j ,α j )l+1,n

]
.

D. Calculation of the right-sided Liouville fractional derivative.

(a) If ω > 0, then for x > 0

(
Dγ

−t−σE((α,β)n;−λt−ω)
)
(x) (6.3.48)

= x−σ−γH 2,1
2+l,2+n−l

[
−λx−ω

∣∣∣∣
(0, 1), (1 − σ − γ,ω), (β j ,−α j )1,l
(0, 1), (1 − σ,ω), (1 − β j ,α j )l+1,n

]
.

(b) If ω < 0 then for x > 0

(
Dγ

−t−σE((α,β)n;λt−ω)
)
(x) (6.3.49)

= x−σ−γH 1,2
2+l,2+n−l

[
−λx−ω

∣∣∣∣
(0, 1), (σ,−ω), (β j ,−α j )1,l
(0, 1), (σ + γ,−ω), (1 − β j ,α j )l+1,n

]
.

6.4 Mittag-Leffler Functions of Several Variables

In this section we present a few results onMittag-Leffler function of several variables
(see, e.g., [Lav18])
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E(α)n ,β(z1, z2, . . . , zn) =
∑

m1,m2,...,mn≥0

zm1
1 zm2 · · · zmn

n

Γ (α1m1 + α2m2 + . . . + αnmn + β)

=:
∞∑

m=0

zm

Γ (〈,m〉 + β)
, = (α1,α2, . . . ,αn) ∈ C

n,Reα j > 0, β ∈ C. (6.4.1)

Other forms of the Mittag-Leffler type functions of several variables can be found
too (see, e.g., [GaMaKa13], [Dua18], [Mam18] and references therein). There is a
natural interest in studying the properties of this class of functions as it is related to
the presentation of solutions of systems of linear fractional differential equations (in
particular, of incommensurate orders).

In order to avoid additional technical details we focus here only on the case of two
variables. The definition of the Mittag-Leffler function of two complex variables is
similar the above presented for n variables (to avoid additional indexing we use the
following variable names: x = z1, y = z2, α = α1,β = α2, γ = β, n = m1,m =
m2)

Eα,β;γ(x, y) =
∑

n,m≥0

xn ym

Γ (αn + βm + γ)
, α,β, γ ∈ C, Reα,Re β > 0. (6.4.2)

It is straightforward to check that, under above conditions, Eα,β;γ(x, y) is an entire
function of two complex variables (x, y) ∈ C

2.

6.4.1 Integral Representations

For applications it is interesting to describe the behavior of the function (6.4.2) for
large values of arguments. For this we use the known results in the case of the
Mittag-Leffler function of one variable. First, we find the integral representations
of the considered function Eα,β;γ(x, y). Let us recall the definition of the Hankel
path (see Sect. 3.4). For fixed θ ∈ (0,π), ε > 0 it is denoted by ω(ε, θ). The path
oriented by non-decreasing arg ζ consists of two rays Sθ := {ζ ∈ C : arg ζ = θ, |ζ| >

ε}, S−θ := {arg ζ = −θ, |ζ| > ε} and a part of the circle Cε(θ) := {ζ ∈ C : |ζ| =
ε,−θ ≤ arg ζ ≤ θ}. When θ = π the rays S±θ degenerate into parts of the sides of
negative semi-axes. This path divides the complex plane into two domainsΩ(−)(ε; θ)
and Ω(+)(ε; θ) which are situated, respectively, to the left and to the right of ω(θ, ε)
with respect to the orientation on it.

Belowwe derive integral representations of Eα,β;γ(x, y) in four different domains
in C

2, namely Ω(−)(εα; θα) × Ω(−)(εβ; θβ), Ω(+)(εα; θα) × Ω(−)(εβ; θβ),
Ω(−)(εα; θα) × Ω(+)(εβ; θβ), andΩ(+)(εα; θα) × Ω(+)(εβ; θβ). For this we use two
representations of the reciprocal to the Gamma functions appearing in definition
(6.4.2) (see Sect. 3.4 of this book).
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1

Γ (αn + βm + γ)
= 1

2πiα

∫

ω(ε,θα)

eζ
1
α ζ

−αn−βm−γ+1
α dζ, (6.4.3)

1

Γ (αn + βm + γ)
= 1

2πiβ

∫

ω(ε,θβ)

eζ
1
β
ζ

−αn−βm−γ+1
α dζ. (6.4.4)

In the first integral (6.4.3) we have inequalities for θα (see, e.g., Sect. 3.4)

πα

2
< θα ≤ min {π;πα},

and in the second integral (6.4.4) we have analogous inequalities for θβ (see, e.g.,
Sect. 3.4)

πβ

2
< θβ ≤ min {π;πβ}.

In order to satisfy both sets of inequalities we put θα = θ
β
, θβ = θ

α
and fix θ such

that
παβ

2
< θ ≤ min{π, ,πα,πβ,παβ}, (6.4.5)

and write εα := ε1/β , εβ := ε1/α. In all cases we also suppose that α,β are “small”,
i.e.

0 < α, β < 2, αβ < 2. (6.4.6)

Note that it follows from (6.4.6) that the left-hand side is smaller than the right-hand
side in (6.4.5).

Let us start with the derivation of the integral representation in the first domain.
Let y ∈ Ω(−)(εβ; θβ), x ∈ C, |x | < εα. Then

sup
ζ∈ω(θβ ,εβ)

|xζ−α/β | < 1.

This allows us to reduce to the one-dimensional case, due to the identity

Eα,β;γ(x, y) =
∞∑

n=0

xn
∞∑

m=0

ym

Γ (βm + (αn + γ))
=

∞∑

n=0

xn Eβ,αn+γ(y),

and the corresponding integral representation for Eβ,αn+γ(y):

Eα,β;γ(x, y) =
∞∑

n=0

xn
1

2πiβ

∫

ω(εβ ,θβ)

eζ1/β ζ
1−αn−γ

β

ζ − y
dζ
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= 1

2πiβ

∫

ω(εβ ,θβ)

eζ1/β ζ
1−γ
β dζ

ζ − y

∞∑

n=0

(
xζ−α/β

)n = 1

2πiβ

∫

ω(εβ ,θβ)

eζ1/β ζ
1+α−γ

β dζ

(ζ − y)(ζα/β − x)
.

By changing variables ζ = ξ1/α we arrive at the following representation

Eα,β;γ(x, y) = 1

2πiαβ

∫

ω(ε,θ)

eξ
1

αβ
ξ

α+β−γ
αβ −1dξ

(ξ1/β − x)(ξ1/α − y)
, |x | < εα, y ∈ Ω(−)(εβ; θβ).

(6.4.7)
Since the circle x ∈ C, |x | < εα, is contained in the domain of analyticity of the
right-hand side of (6.4.7), by the Principle of Analytic Continuation formula (6.4.7)
is valid in Ω(−)(εα; θα) × Ω(−)(εβ; θβ).

In order to prove the formula for the domain Ω(−)(εα; θα) × Ω(+)(εβ; θβ) we
take ε1 > ε. Then by the previous case we obtain for y ∈ Ω(−)(ε1β; θβ), y < ε1β and
x ∈ Ω(−)(εα; θα) the following representation

Eα,β;γ(x, y) = 1

2πiβ

∫

ω(ε1β ,θβ)

eζ1/β ζ
1+α−γ

β dζ

(ζ − y)(ζα/β − x)
. (6.4.8)

On the other hand, for each εβ < |y| < ε1β , |arg y| < θβ , we have by the Cauchy
theorem

Eα,β;γ(x, y) = 1

2πiβ

∫

ω(ε1β ,θβ)−ω(εβ ,θβ)

eζ1/β ζ
1+α−γ

β dζ

(ζ − y)(ζα/β − x)
= 1

β

ey
1/β
y

1+α−γ
β

yα/β − x
. (6.4.9)

By adding the difference between the right-hand side and the middle integral in the
last formula to the right-hand side of (6.4.8) and performing the change of variables
in the integral term we arrive at the following representation

Eα,β;γ(x, y) = 1

β

ey
1/β
y

1+α−γ
β

yα/β − x
+ 1

2πiαβ

∫

ω(ε,θ)

eξ
1

αβ
ξ

α+β−γ
αβ −1dξ

(ξ1/β − x)(ξ1/α − y)
(6.4.10)

valid for all (x, y) ∈ Ω(−)(εα; θα) × Ω(+)(εβ; θβ). The result in the domain
Ω(+)(εα; θα) × Ω(−)(εβ; θβ) has a symmetric form, namely

Eα,β;γ(x, y) = 1

α

ey
1/α
x

1+β−γ
α

xβ/α − y
+ 1

2πiαβ

∫

ω(ε,θ)

eξ
1

αβ
ξ

α+β−γ
αβ −1dξ

(ξ1/β − x)(ξ1/α − y)
. (6.4.11)
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Finally, by unifying the argument of the previous cases we obtain an inte-
gral representation of the Mittag-Leffler function of two variables in the domain
Ω(+)(εα; θα) × Ω(+)(εβ; θβ):

Eα,β;γ(x, y) = 1

α

ex
1/α
x

1+β−γ
α

xβ/α − y
+ 1

β

ey
1/β
y

1+α−γ
β

yα/β − x
(6.4.12)

+ 1

2πiαβ

∫

ω(ε,θ)

eξ
1

αβ
ξ

α+β−γ
αβ −1dξ

(ξ1/β − x)(ξ1/α − y)
.

By assumption, each of the points x and y lies on the right-hand side of the
Hankel contours ω(εα; θα) and ω(εβ; θβ), respectively. Note that the parameters in
the definition of the above paths depend on a certain number ε > 0. Now choose ε1

(ε1 > ε) such that one of the coordinates is to the right of the contour (say y) and the
other coordinate to its left (i.e. x). Thismeans (x, y) ∈ Ω(−)(ε1α; θα) × Ω(+)(ε1β; θβ).
In this case we have representation (6.4.11) with ε replaced by ε1 in the integral. This
integral can be rewritten as

1

2πiα

∫

ω(ε1α,θα)

eζ1/αζ
1+β−γ

α dζ

(ζ − x)(ζβ/α − y)
.

For each εα < |x | < ε1α, |arg x | < θα, we have by the Cauchy theorem

1

2πiβ

∫

ω(ε1α,θα)−ω(εα,θα)

eζ1/αζ
1+β−γ

α dζ

(ζ − x)(ζβ/α − x)
= 1

α

ex
1/α
x

1+β−γ
α

xβ/α − y
. (6.4.13)

As before, this immediately yields the desired formula (6.4.12), valid in the domain
Ω(+)(εα; θα) × Ω(+)(εβ; θβ).

6.4.2 Asymptotic Behavior for Large Values of Arguments

Here we describe the asymptotic behavior of theMittag-Leffler function Eα,β;γ(x, y)
of two complex variables x and y for large values of |x | and |y|. The result follows
from the above integral representations and the standard techniques for the descrip-
tion of the asymptotics of the corresponding integrals presented in Sects. 3.4 and 4.4.

Theorem 6.9 ([Lav18, Thm. 3.1]) Let 0 < α,β < 2, αβ < 2 and the angle θ be
chosen as

παβ

2
< θ ≤ min{π,πα,πβ,παβ}.
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Then, for all pairs of positive integers p = (pα, pβ), pα, pβ > 1, the following
asymptotic formulas for the function Eα,β;γ(x, y) hold as |x | → ∞, |y| → ∞.

(i) If |arg x | < θ
β
, |arg y| < θ

α
, then

Eα,β;γ(x, y) = 1

α

ex
1/α
x

1+β−γ
α

xβ/α − y
+ 1

β

ey
1/β
y

1+α−γ
β

yα/β − x
(6.4.14)

+
pα∑

n=1

pβ∑

m=1

x−n y−m

Γ (γ − αn − βm
+ o

(|xy|−1|x |−pα
)+ o

(|xy|−1|y|−pβ
) ;

(ii) If |arg x | < θ
β
, θ

α
< |arg y| ≤ π, then

Eα,β;γ(x, y) = 1

α

ex
1/α
x

1+β−γ
α

xβ/α − y
(6.4.15)

+
pα∑

n=1

pβ∑

m=1

x−n y−m

Γ (γ − αn − βm
+ o

(|xy|−1|x |−pα
)+ o

(|xy|−1|y|−pβ
) ;

(iii) If θ
β

< |arg x | ≤ π, |arg y| < θ
α
, then

Eα,β;γ(x, y) = 1

β

ey
1/β
y

1+α−γ
β

yα/β − x
(6.4.16)

+
pα∑

n=1

pβ∑

m=1

x−n y−m

Γ (γ − αn − βm
+ o

(|xy|−1|x |−pα
)+ o

(|xy|−1|y|−pβ
) ;

(iv) If θ
β

< |arg x | ≤ π, θ
α

< |arg y| ≤ π, then

Eα,β;γ(x, y) =
pα∑

n=1

pβ∑

m=1

x−n y−m

Γ (γ − αn − βm
+ o

(|xy|−1|x |−pα
)+ o

(|xy|−1|y|−pβ
)
.

(6.4.17)

The result of the theorem is obtained by expanding and further estimating the kernel
in the integral terms. The complete proof is presented in [Lav18] (cf. [GoLoLu02]).
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6.5 Mittag-Leffler Functions with Matrix Arguments

In this section the problem of defining and evaluating Mittag-Leffler functions with
matrix arguments is discussed. The idea to generalize a given function of a scalar
variable to matrix arguments goes back to the work of Cayley (1858) and nowadays
this topic attracts the attention of researchers due to its applications to numerical solu-
tions of fractional multiterm differential equations and fractional partial differential
equations, in control theory and so on.

Since Mittag-Leffler functions are entire, it is not a problem to introduce the
formal definition

Eα,β(A) =
∞∑

j=0

A j

Γ (α j + β)
, (6.5.1)

which is valid for any n × n square matrix A. This series representation is suitable
for defining the value of a Mittag-Leffler function with matrix argument but not for
practical and computational needs since the main issues related to the slow con-
vergence of (6.5.1) and the possible numerical cancellation in summing terms with
alternate signs are amplified by the presence of the matrix argument.

The Jordan canonical form provides an alternative way to introduce a function
with matrix argument which (if suitably modified) can also be exploited for compu-
tational purposes.

If the n × n matrix A has s distinct eigenvalues λk , k = 1, . . . , s, each with geo-
metric multiplicity mk (namely the smallest integer such that
(A − λk I )mk = 0), the Jordan canonical form of A is

A = Z

⎛

⎜⎜⎜⎜⎝

J1

J2
. . .

. . .

Js

⎞

⎟⎟⎟⎟⎠
Z−1, Jk =

⎛

⎜⎜⎜⎜⎝

λk 1

λk
. . .

. . . 1
λk

⎞

⎟⎟⎟⎟⎠
∈ C

mk×mk .

Based on the Jordan canonical form it is possible to define the extension of a
Mittag-Leffler function to a matrix argument according to

Eα,β(A) = Z

⎛

⎜⎜⎜⎝

Eα,β(J1)
Eα,β(J2)

. . .

Eα,β(Js)

⎞

⎟⎟⎟⎠ Z−1

with each Jordan block Jk , k = 1, . . . , s, being mapped to
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Eα,β(Jk) =

⎛

⎜⎜⎜⎜⎜⎜⎝

Eα,β(λk) E [1]
α,β(λk) E [2]

α,β(λk) . . . E [mk−1]
α,β (λk)

Eα,β(λk) E [2]
α,β(λk) . . . E [mk−2]

α,β (λk)

. . .
. . .

...

Eα,β(λk) E [1]
α,β(λk)

Eα,β(λk)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where, for compactness, we denote by E [k]
α,β(z) the k-th term in the Taylor expansion

of Eα,β(z), forwhichwe incidentally note its relationshipwith the Prabhakar function
Ek

α,β(z) since

E [k]
α,β(z) = 1

k!
dk

dzk
Eα,β(z) = Ek+1

α,αk+β(z).

It is clear that the evaluation of a Mittag-Leffler function with matrix arguments
reduces to the evaluation of derivatives of the scalar function in the spectrum of
the matrix. We refer to Sect. 4.3 for a more detailed discussion about derivatives of
Mittag-Leffler functions.

From the practical point of view, however, evaluating the Jordan canonical form
is an ill-conditioned problem and, except for matrices with favorable properties, in
most cases it cannot be used in practice. A more efficient strategy considers the
Schur–Parlett algorithm [DavHig03], which is based on the Schur decomposition of
thematrix argument combinedwith Parlett recurrence to evaluate thematrix function
of the triangular factors. In this case extensive computation of derivatives of scalar
Mittag-Leffler functions is required. This problem has been extensively discussed in
[GarPop18], where a series of applications to fractional calculus are also illustrated.

The numerical experiments presented in [GarPop18] have shown that combin-
ing the Schur–Parlett algorithm with techniques for the evaluation of derivatives of
Mittag-Leffler functions makes it possible to evaluate thematrixMittag-Leffler func-
tions with high accuracy, in some cases very close to machine precision. A Matlab
code for evaluatingMittag-Leffler functionswithmatrix arguments is freely available
in the file exchange service of the Mathworks website.1

6.6 Historical and Bibliographical Notes

In recent decades, starting from the eighties in the last century, we have observed
a rapidly increasing interest in the classical Mittag-Leffler function and its general-
izations. This interest mainly stems from their use in the explicit solution of certain
classes of fractional differential equations (especially those modelling processes of
fractional relaxation, oscillation, diffusion and waves). This topic is under develop-

1www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-
arguments.

www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
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ment and scientists are looking for further applications of the results presented in
this chapter and their generalizations.

Forα1, α2 ∈ R (α2
1 + α2

2 �= 0) andβ1,β2 ∈ C the four-parametricMittag-Leffler
function is defined by the series

Eα1,β1;α2,β2(z) ≡
∞∑

k=0

zk

Γ (α1k + β1)Γ (α2k + β2)
(z ∈ C). (6.6.1)

For positive α1 > 0, α2 > 0 and real β1,β2 ∈ R it was introduced by Djrbashian
[Dzh60]. When α1 = α, β1 = β and α2 = 0, β2 = 1, it coincides with the Mittag-
Leffler function Eα,β(z):

Eα,β;0,1(z) = Eα,β(z) ≡
∞∑

k=0

zk

Γ (αk + β)
(z ∈ C). (6.6.2)

Generalizing the four-parametricMittag-Leffler function, Al-Bassam and Luchko
[Al-BLuc95] introduced the Mittag-Leffler type function

E((α, β)n; z) =
∞∑

k=0

zk

n∏
j=1

Γ (α j k + β j )

(n ∈ N) (6.6.3)

with 2n real parameters α j > 0;β j ∈ R ( j = 1, ..., n) and with complex z ∈ C. In
[Al-BLuc95] an explicit solution to a Cauchy type problem for a fractional differ-
ential equation is given in terms of (6.6.3). The theory of this class of functions
was developed in a series of articles by Kiryakova et al. [Kir99], [Kir00], [Kir08],
[Kir10a], [Kir10b].

Among the results dealing with multi-index Mittag-Leffler functions we point
out those which show their relation to a general class of special functions, namely
to Fox’s H -function. Representations of the multi-index Mittag-Leffler functions as
special cases of the H -function and the generalized Wright function are obtained in
[AlKiKa02], [Kir10b]. Relations of such multi-index functions to the Erdelyi–Kober
(E-K) operators of fractional integration are discussed. The novel Mittag-Leffler
functions are also used as generating functions of a class of so-called Gelfond–
Leontiev (G-L) operators of generalized differentiation and integration. Laplace-
type integral transforms corresponding to these G-L operators are considered too.
Themulti-indexMittag-Leffler functions (6.6.3) canbe regarded as “fractional index”
analogues of the hyper-Bessel functions, and the multiple Borel–Dzrbashian integral
transforms (being H-transforms) as “fractional index” analogues of the Obrechkoff
transforms (being G-transforms).

In a more precise terminology, these are Gelfond–Leontiev (G-L) operators of
generalized differentiation and integrationwith respect to the entire function, amulti-
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index generalization of the Mittag-Leffler function. Fractional multi-order integral
equations

y(z) − λLy(z) = f (z) (6.6.4)

and initial value problems for the corresponding fractional multi-order differential
equations

Dy(z) − λy(z) = f (z) (6.6.5)

are considered. From the known solution of the Volterra-type integral equation with
m-fold integration, via a Poisson-type integral transformation P as a transformation
(transmutation) operator, the corresponding solution of the integral equation (6.6.4)
is found. Then a solution of the fractional multi-order differential equation (6.6.5)
comes out, in an explicit form, as a series of integrals involving Fox’s H -functions.
For each particularly chosen right-hand side function f (z), such a solution can be
evaluated as an H -function. Special cases of the equations considered here lead to
solutions in terms of the Mittag-Leffler, Bessel, Struve, Lommel and hyper-Bessel
functions, and some other known generalized hypergeometric functions.

In [Kir10b] (see also [Kir10a]) a brief description of recent results byKiryakova et
al. on an important class of “Special Functions of Fractional Calculus” is presented.
These functions became important in solutions of fractional order (or multi-order)
differential and integral equations, control systems and refined mathematical models
of various physical, chemical, economical, management and bioengineering phe-
nomena. The notion “Special Functions of Fractional Calculus” essentially means
the Wright generalized hypergeometric function p�q , as a special case of the Fox
H -function.

A generalization of the Prabhakar type functionwas given by Shukla and Prajapati
[ShuPra07]:

Eγ,κ
α;β(z) = E(α,β; γ,κ; z) =

∞∑

k=0

(γ)κnzn

Γ (αn + β)
(n ∈ N), (6.6.6)

where the generalized Pochhammer symbol is defined by

(γ)κn = Γ (γ + κn)

Γ (γ)
.

In [SriTom09] the existence of the function (6.6.6) for a wider set of parameters
was shown, and its relation to the fractional calculus operators was described (see
also [AgMiNi15], [GaShMa15]). Definition (6.6.6) was combined with (6.6.3) in
[SaxNis10] (see also [Sax-et-al10]). As a result, the following definition of the gen-
eralized multi-index Mittag-Leffler function appears:
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Eγ,κ
(α j ,β j )m

(z) = Eγ,κ((α j ,β j )
m
j=1; z) =

∞∑

n=0

(γ)κnzn

m∏
j=1

Γ (α j n + β j )

(m ∈ N). (6.6.7)

A four-parametric generalization of the Mittag-Leffler function similar to (6.6.6)
(a so-called k-Mittag-Leffler function) was proposed in [DorCer12]

Eγ
k,α,β :=

∞∑

n=0

(γ)n,k

Γk(αn + β)n! z
n, (6.6.8)

with Pochhammer k-symbol

(z)n,k := z(z + k) . . . (z + (n − 1)k)

and k-Gamma function

Γk(z) =
∞∫

0

t z−1e− tk

k dt = k1−
z
k Γ
( z
k

)
, (z)n,k = Γk(z + nk)

Γk(z)
,

appearing in the definition.Ageneralization of the function (6.6.8) (a (p − k)-Mittag-
Leffler function) was proposed and studied in [CeLuDo18]:

pE
γ
k,α,β :=

∞∑

n=0

p(γ)n,k

pΓk(αn + β)n! z
n, (6.6.9)

p(z)n,k := zp

k

( zp
k

+ p
) ( zp

k
+ 2p

)
. . .
( zp
k

+ (n − 1)p
)

,

pΓk(z) =
∞∫

0

t z−1e− tk

p dt = p
z
k

k
Γ
( z
k

)
, p(z)n,k = pΓk(z + nk)

pΓk(z)
.

Generalizations of the Mittag-Leffler function involving the Beta function and
generalized Beta function were defined and studied in [OzaYlm14], [MiPaJo16].

Chudasama and Dave proposed a unification of the Mittag-Leffler and Wright
functions in the following form, with conditions on the parameters (Re(αδ) ≥ 0,
Re(βδ + σγ − δ/2 − r + 1) > 0, α,σ �= 0, μ ∈ C)

Eσ,ν,γ
α,β,δ (μ, r; z) =

∞∑

k=0

(μ)rk

Γ δk(αk + β)Γ γ(σk + ν)

zk

k! . (6.6.10)
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On the basis of the above described results a special H -transformwas constructed
in [Al-MKiVu02] (see also [KilSai04]). This transform turns out to exhibit many
properties similar to the Laplace transform. Moreover, the inverse transform and
the operational calculus, which is based on it, are related to the recently introduced
multi-indexMittag-Leffler function. Some basic operational properties, complex and
real inversion formulas, as well as a convolution theorem, have been derived.

Further generalizations of the Mittag-Leffler functions have been proposed
recently in [Pan-K11], [Pan-K12], [Pan-K13].

The 3m-parametric Mittag-Leffler functions generalizing the Prabhakar three pa-
rametric Mittag-Leffler function are introduced by the relation

E
(γ j ),m
(α j ),(β j )

=
∞∑

k=0

(γ1)k . . . (γm)k

Γ (α1k + β1) . . . Γ (αmk + βm)

zk

k! , (6.6.11)

where (γ)k is the Pochhammer symbol, α j ,β j , γ j ∈ C, j = 1, . . . ,m, Reα j > 0.
These are entire functions for which the order and the type have been calculated. Rep-
resentations of the 3m-parametric Mittag-Leffler functions as generalized Wright
functions and Fox H -functions have been obtained. Special cases of novel spe-
cial functions have been discussed. Composition formulas with Riemann–Liouville
fractional integrals and derivatives have been given. Analogues of the Cauchy–
Hadamard, Abel, Tauber and Hardy–Littlewood theorems for the three multi-index
Mittag-Leffler functions have also been presented.

Pathway type fractional integration of the 3m-parametricMittag-Leffler functions
is performed in [JaAgKi17].

Two important families of special functions, namely the Bessel functions and
Mittag-Leffler functions, and their multi-parametric generalizations are discussed in
[Pan-K16]. The following main problems related to the classical and generalized
functions of Bessel and Mittag-Leffler type are studied: integral representations and
convergence, asymptotic behavior, Tauberian type theorems, completeness of sys-
tems of these functions, representations in terms of the generalized Wright function,
the Meijer G- and the Fox H -functions with special values of parameters. Special
attention is paid to the relations of these functions to the problems of Fractional
Calculus.

The extension of the Mittag-Leffler function to a wider set of parameters by using
Mellin–Barnes integrals was realized in a series of papers [KilKor05]–[KilKor06c]
(see also the paper [Han-et-al09]). The method of extension of different special
functions having a representation via a Mellin–Barnes integral has been developed
recently.

First of all we have to mention the paper [Han-et-al09]. In this paper the Mittag-
Leffler function Eα,β(z) for negative values of the parameter α is introduced. This
definition is based on an analytic continuation of the integral representation

Eα,β(z) = 1

2πi

∫

Ha

tα−βet

tα − z
dt, z ∈ C, (6.6.12)
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where the path of integrationHa is theHankel path, a loop starting and ending at−∞,
and encircling the disk |t | ≤ |z|1/α counterclockwise in the positive sense: −π <

arg t ≤ π on Ha. The integral representation of Eα,β(z) given in Eq. (6.6.12) can be
shown to satisfy the criteria for analytic continuation by noting that for the domain
α > 0, Eq. (6.6.12) is equivalent to the infinite series representation for the Mittag-
Leffler function. This is accomplished by expanding the integrand in Eq. (6.6.12) in
powers of z and integrating term-by-term, making use of Hankel’s contour integral
for the reciprocal of the Gamma function (see, e.g., [NIST]).

To find a defining equation for E−α,β(z), the integral representation of theMittag-
Leffler function is rewritten as

Eα,β(z) = 1

2πi

∫

Ha

et

tβ − zt−α+β
dt, z ∈ C. (6.6.13)

By expanding a part of the integrand in Eq. (6.6.13) into partial fractions

1

tβ − zt−α+β
= 1

tβ
− 1

tβ − z−1tα+β
,

substituting it into (6.6.13) we get another representation

Eα,β(z) = 1

2πi

∫

Ha

et

tβ
dt − 1

2πi

∫

Ha

et

tβ − z−1tα+β
dt, z ∈ C \ {0}. (6.6.14)

Thus we arrive at the following definition of the Mittag-Leffler function Eα,β(z) for
negative values of the parameter α:

E−α,β(z) = 1

Γ (β)
− Eα,β

(
1

z

)
. (6.6.15)

General properties of E−α,β(z) were discussed and many of the common rela-
tionships between Mittag-Leffler functions of negative α were compared with their
analogous relationships for positiveα. A special case of (6.6.15), namely the function
E−α(z), has found application in the analysis of the transient kinetics of a two-state
model for anomalous diffusion (see [Shu01]). TheMittag-Leffler functions with neg-
ative α and the results of this work are likely to become increasingly important as
fractional-order differential equations find more applications.

This method of extension was also applied recently in [Kil-et-al12] for the gener-
alized hypergeometric functions. This paper is devoted to the study of a certain func-
tion pFq [z] ≡ pFq

[
a1, · · · , ap; b1, · · · , bq; z

]
(with complex z �= 0 and complex

parameters a j ( j = 1, · · · p) and b j ( j = 1, · · · , q)), represented by the Mellin–
Barnes integral. Such a function is an extension of the classical generalized hyperge-
ometric function pFq [a1, · · · , ap; b1, · · · , bq; z] defined for all complex z ∈ Cwhen
p < q + 1 and for |z| < 1 when p = q + 1. Conditions are given for the existence
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of pFq [z] and of its representations by the Meijer G-function and the H -function.
Such an approach allows us to give meaning to the function pFq [z] for all ranges of
parameters when p < q + 1, p = q + 1 and p > q + 1. The series representations
and the asymptotic expansions of pFq [z] at infinity and at the origin are established.
Special cases have been considered.

In Sect. 6.4 we mainly follow the article [Lav18]. Several other attempts to con-
sider Mittag-Leffler functions and their generalizations as functions of several com-
plex variables have to be mentioned: [SaKaSa11], [GaMaKa13], [Dua18], [Mam18]
along with the book [SrGuGo82] devoted to the multivariable analog of the Fox
H-function. We also have to mention here the article [YuZha06] in which an (n + 1)-
variable analog of the Mittag-Leffler function is introduced and studied

ε(t, y;α,β, γ) := tβ−1Eα,β(−D|y|γ tα),

where t > 0 is a time variable, y = (y1, y2, . . . , yn) ∈ R
n , α,β, γ are arbitrary real

parameters and D is a physical constant. This function is used in the study of the
diffusion-wave equation in (n + 1) variables.

Section 6.5 presents in a condensed way the results from [GarPop18], which is
devoted to the numerical evaluation of Mittag-Leffler functions with a matrix argu-
ment. The corresponding routine implemented in Matlab is also mentioned there.
The evaluation of matrix Mittag-Leffler functions is closely related to the evalua-
tion of exponential functions, a problem which has been deeply investigated due its
applications to the solution of ordinary differential equations. Several methods have
been proposed for matrix exponentials and a comparative discussion is available
in the famous review paper by Moler and Van Loan [MolvLoa78] and in its 2003
extension [MolvLoa03]. Unfortunately, not all the methods presented in these two
papers can be applied to Mittag-Leffler functions, often due to the absence of the
semigroup property, which is exploited in several methods for the computation of
the exponential.

The method described in Sect. 6.5 is however based on the work in [DavHig03]
which is successive to the two reviews by Moler and Van Loan. Although it exploits
some ideas (such as the Schur decomposition) already discussed in these papers, it
exploits the more sophisticated Schur–Parlett algorithm, which is presently one of
the most powerful methods for matrix computations.

6.7 Exercises

6.7.1 Let I γ
0+ be the left-sided Riemann–Liouville fractional integral and

Eα1,β1;α2,β2(z) be either the four-parametric Mittag-Leffler function or its extension.
In the case α1 > 0, α2 < 0 calculate the following compositions

a)
(
I γ
0+t

σ−1Eα1,β1;α2,β2(λt
ω)
)
(x) (ω,λ > 0, 0 < x ≤ d < +∞);
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b)
(
I γ
0+t

−σEα1,β1;α2,β2(λt
−ω)
)
(x) (ω,λ > 0, 0 < x ≤ d < +∞).

6.7.2 Let Dγ
0+ be the left-sided Riemann–Liouville fractional derivative and

Eα1,β1;α2,β2(z) be either the four-parametric Mittag-Leffler function or its extension.
In the case α1 > 0, α2 < 0 calculate the following compositions

(a)
(
Dγ

0+t
σ−1Eα1,β1;α2,β2(λt

ω)
)
(x) (ω,λ > 0, 0 < x ≤ d < +∞);

(b)
(
Dγ

0+t
−σEα1,β1;α2,β2(λt

−ω)
)
(x) (ω,λ > 0, 0 < x ≤ d < +∞).

6.7.3 In the case of positive integer α1 = m1 and α2 = m2 represent the four-
parametric Mittag-Leffler function Em1,β1;m2,β2(z) in term of a generalized hyper-
geometric function pFq with appropriate p, q.

6.7.4 [KirLuc10, p. 601]. Prove that the Laplace transform of a hyper-Bessel type
generalized hypergeometric function 0�m is related to the 2n-parametric Mittag-
Leffler function as follows

(
L0�m

[ − − −
(β1,α1), . . . , (βn,αn)

])
(s) = 1

s
E(α1,β1),...,(αn ,βn)

(
1

s

)
.

6.7.5 [KirLuc10, p. 603–604]. Let I (γi ),(δi )
(βi ),n

f (z) =
[

n∏
i=1

I (γi ),(δi )
(βi ),n

]
f (z) be the gener-

alized fractional integral of multi-order, where

I γ,δ
β f (z) = 1

Γ (δ)

1∫

0

(1 − σ)δ−1σγ f (z)σ1/βdσ (δ,β > 0, γ ∈ R)

is the Erdelyi–Kober fractional integral.
Prove the following formulas

(λz)
(
I (βi−1),(αi )

(1/αi ),n
E(αi ),(βi )

)
(λz) = E(αi ),(βi )(λz) − 1

n∏
i=1

Γ (βi )

,

(
D(βi−1−αi ),(αi )

(1/αi ),n
E(αi ),(βi )

)
(λz) = (λz)E(αi ),(βi )(λz) + 1

n∏
i=1

Γ (βi − αi )

.



Chapter 7
The Classical Wright Function

7.1 Definition and Basic Properties

This chapter deals with the classical Wright function. Like the functions of Mittag-
Leffler type, the functions of Wright type are known to play fundamental roles in
various applications of the fractional calculus. This is mainly due to the fact that
they are interrelated with the Mittag-Leffler functions through Laplace and Fourier
transformations.

The Wright function is defined via a power series

φ(α,β; z) =
∞∑

k=0

zk

k!Γ (αk + β)
, α > −1,β ∈ C. (7.1.1)

Originally Wright assumed α ≥ 0, see [Wri33, Wri35a, Wri35b] and he only con-
sidered −1 < α < 0 later, in 1940, see [Wri40b]. We note that in the handbook of
the Bateman Project [ErdBat-3, Chap. 18], presumably a misprint, the first index α
is restricted to be non-negative.

In the section on historical and bibliographical notes we will provide more infor-
mation on the Wright functions for the readers’ convenience.

We have to mention the tight relation between the family of the Mittag-Leffler
functions and the Wright function. The latter can be considered as a special case of
the Mittag-Leffler function with four parameters (see Chap. 6 of the present book,
[RogKor10, ParVin16]):

Eα1,β1;α2,β2(z) =
∞∑

k=0

zk

Γ (α1k + β1)Γ (α2k + β2)

In recent times another notation has been introduced by Mainardi, who has revis-
ited this function and pointed out its applications in certain partial differential equa-

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
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tions of fractional order, see e.g. [Mai94a, Mai96a, Mai96b, Mai10]. In this notation,
we write the Wright function as

Wλ,μ(z) =
∞∑

k=0

zk

k!Γ (λk + μ)
, λ > −1,μ ∈ C. (7.1.2)

As a consequence we have replaced φ by W and the parameters {α,β} by {λ,μ}.
In this chapter, from now on, we prefer to use theMainardi notation (7.1.2), which

is also present inmost recent papers and books. However, in other parts of our treatise
the alternative notation (7.1.1) can be found. Following Mainardi, see e.g. [Mai10,
Appendix F] we distinguish between the Wright functions of the first kind (λ ≥ 0)
and the second kind (−1 < λ < 0).

It follows from the Stirling asymptotic formula for the Gamma function,

Γ (z) = √
2πzz−1/2e−z

(
1 + O(

1

z

)
(|arg z| < π − ε, ε > 0, |z| → ∞),

that the Wright function is an entire function.
To characterize the behavior of the Wright function at infinity we first calculate

its order ρ and type σ. These characteristics for an entire function represented in the

form of a power series f (z) =
∞∑
k=0

ckzk can be calculated by using standard formulas

(see [Lev56] and Appendix B below)

ρ = lim sup
k→∞

k log k

log 1
|ck |

, (σeρ)
1
ρ = lim sup

k→∞
k

1
ρ k
√|ck |

and the Stirling asymptotic formula.
The corresponding result reads: the Wright function Wλ,μ(z) (λ > −1; μ �=

−n(n ∈ N0) if λ = 0) is an entire function of finite order with the order ρ and the
type σ given by the formulas

ρ = 1

1 + λ
, σ = (1 + λ)|λ|− 1

1+λ . (7.1.3)

Remark 7.1 In the case λ = 0 the Wright function is reduced to the exponential
function with the constant factor 1

Γ (μ)
:

W0,μ(z) = exp(z)

Γ (μ)
, (7.1.4)

which turns out to vanish identically for μ = −n (n ∈ N0). For all other values of
the parameter μ and λ = 0 formulas (7.1.3) (with σ = lim

λ→0
(1 + λ)|λ|− 1

1+λ = 1) are

still valid.
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The basic characteristic of the growth of an entire function f = f (z) of finite
order ρ in different directions is its indicator function h = h f (θ) (|θ| ≤ π) defined
by

h(θ) = lim sup
r→+∞

log | f (reiθ)|
rρ

.

The corresponding result reads ([Luc00, Theorem 2]): Let λ > −1; μ �= −n (n ∈
N0) if λ = 0. Then the indicator function hW (θ) of the Wright function Wλ,μ(z) is
given by one of the following formulas:

(a) in the case λ ≥ 0 by

hW (θ) = σ cos (ρθ) (|θ| ≤ π); (7.1.5)

(b) in the cases

(i) − 1
3 ≤ λ < 0,

(ii) λ = − 1
2 , μ = −n (n ∈ N0),

(iii) λ = − 1
2 , μ = 1

2 − n (n ∈ N0)

by

hW (θ) =
{−σ cos (θ + π), for −π ≤ θ ≤ 0,

−σ cos (θ − π), for 0 ≤ θ ≤ π,
(7.1.6)

(c) in the case −1 < λ < − 1
3 (μ �= −n (n ∈ N0) and μ �= 1

2 − n (n ∈ N0) if λ =
− 1

2 ) by

hW (θ) =

⎧
⎪⎨

⎪⎩

−σ cos (θ + π), for −π ≤ θ ≤ 3π
2ρ − π,

0, for |θ| ≤ π − 3π
2ρ ,

−σ cos (θ − π), for π − 3π
2ρ ≤ θ ≤ π.

(7.1.7)

Here ρ and σ are the order and type of the Wright function, respectively, defined by
(7.1.3).

7.2 Relations to Elementary and Special Functions

As was already mentioned, the degenerate case λ = 0 of the Wright function leads
to the following representation via the exponential function (see (7.1.4)):

W0,μ(z) = exp(z)

Γ (μ)
,

which vanishes identically for μ = −n, n ∈ N0.
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For λ = 1 and μ = ν + 1 the Wright function turns out to be related to the well-
known Bessel function of the first kind Jν (see [NIST, p. 217]) and the modified
Bessel function Iν (see [NIST, p. 249]) by the following identity

(z/2)ν W1,ν+1(∓z2/4) := (z/2)ν
∞∑

k=0

(∓1)k
(
z2/4

)k

Γ (k + ν + 1)
=

{
Jν(z),
Iν(z).

(7.2.1)

The functions Jν and Iν are known to be solutions to the Bessel differential equation

z2
d2w

dz2
+ z

dw

dz
+ (z2 − ν2) = 0,

and to the modified Bessel differential equation

z2
d2w

dz2
+ z

dw

dz
− (z2 + ν2) = 0,

respectively.
In view of this property some authors refer to the Wright function as the Wright

generalized Bessel function (also misnamed as the Bessel–Maitland function after
the second name of Edward Maitland Wright) and introduce the notation

J (λ)
ν (z) := (z/2)ν

∞∑

k=0

(−1)k
(z/2)2k

Γ (λk + ν + 1)
, J (1)

ν (z) = Jν(z). (7.2.2)

As a matter of fact, the Wright function appears as the natural generalization of the
entire function known as the Bessel–Clifford function, see e.g. [Kir94, p. 336], and
referred to by Tricomi, see e.g. [Tri60], [Gat73, pp. 196–197], as the uniform Bessel
function

Tν(z) := z−ν/2 Jν(2
√
z) =

∞∑

k=0

(−1)k zk

k! Γ (k + ν + 1)
= W1,ν+1(−z).

Some of the properties which the Wright functions share with the popular Bessel
functions were enumerated by Wright himself. Hereafter, we quote two relevant
relations from the Bateman Project [ErdBat-3], which can easily be derived from the
definitions of the Wright functions (7.1.1)–(7.1.2) or from its integral representation
(see the next subsection)

λz Wλ,λ+μ(z) = Wλ,μ−1(z) + (1 − μ)Wλ,μ(z) , (7.2.3)

d

dz
Wλ,μ(z) = Wλ,λ+μ(z). (7.2.4)
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Another natural relation of theWright function is to the function of hypergeomet-
ric type. In the case of the rational first parameter, the Wright function is represented
via the following formula

W n
m ,μ(z) =

m−1∑

p=0

z p

p!Γ ( n
m p + β)

0Fm+n−1(−;Δ(n,
β

n
+ p

m
),Δ∗(m,

p + 1

m
); zm

mmnn
),

(7.2.5)
where

pFq = pFq((a)p; (b)q; z) =
∞∑

k=0

(a1)k, . . . , (ap)k

(b1)k, . . . , (bq)k

zk

k!

is the generalized hypergeometric function (see [NIST, Chap. 16]), and the vectors
Δ(n, c), Δ∗(m, d) in (7.2.5) are defined by the formulas

Δ(n, c) =
(

(c)n, (c + 1

n
)n, . . . , (c + n − 1

n
)n

)
, c = β

n
+ p

m
,

Δ∗(m, d) = Δ(m, d) \ {1}, d = p + 1

m
.

This expression means that element (1)m is removed from the collection (d)m, (d +
1
m )m, . . . , (d + m−1

m )m (note that such an element always exists since 0 ≤ p ≤ m −
1). Representation (7.2.5) can be obtained (see [GoLuMa99]) by calculation, via the
residue theorem, of the integral in the Mellin–Barnes type integral representation of
the Wright function with rational first parameter. In the above formulas (a)m , m =
0, 1, 2, . . . , denotes Pochhammer’s symbol (a)m := a(a + 1) . . . (a + m − 1) (for
a > 0 we have (a)m = Γ (a+m)

Γ (a)
).

The same considerations can be applied in the case of negative rationalλ but under
the additional condition that the parameter μ is also a rational number. In particular,
we obtain the formulas (see, e.g., [GoLuMa99])

W− 1
2 ,−n(z) = (−1)n+1

π
Γ (

3

2
+ n)1F1(

3

2
+ n; 3

2
;− z2

4
), n ∈ N0, (7.2.6)

W− 1
2 , 12 −n(z) = (−1)n

π
Γ (

1

2
+ n)1F1(

1

2
+ n; 1

2
;− z2

4
), n ∈ N0. (7.2.7)

For n = 0 we have some interesting formulas related to the Gaussian, as pointed out
by Mainardi, see e.g. [Mai10], in the case when z is replaced with −z

W− 1
2 ,0(z) = − z

2
√

π
e−z2/4, (7.2.8)

W− 1
2 , 12

(z) = − 1√
π
e−z2/4. (7.2.9)
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By using the Kummer formula [NIST, p. 325]

1F1(a; c; z) = ez1F1(c − a; c;−z)

we can represent (7.2.6) and (7.2.7) in the form

W− 1
2 ,−n(z) = e−z2/4zPn(z

2), n ∈ N0, (7.2.10)

W− 1
2 , 12 −n(z) = e−z2/4Qn(z

2), n ∈ N0, (7.2.11)

where Pn(z), Qn(z) are polynomials of degree n defined as

Pn(z) = (−1)n+1

π
Γ (

3

2
+ n)1F1(−n; 3

2
; z/4),

Qn(z) = (−1)n

π
Γ (

1

2
+ n)1F1(−n; 1

2
; z/4).

In a paper by Stankovic [Sta70], the following representation of the Wright func-
tion is obtained

W− 2
3 ,0(−x− 2

3 ) = − 1

2
√
3π

exp

{
− 2

27x2

}
W− 1

2 , 16

(
− 4

27x

)
(7.2.12)

via the Whittaker function Wμ,ν(x), which is defined as a solution to the following
differential equation

d2

dx2
Wμ,ν(x) +

(
−1

4
+ μ

x
+ ν2

4x2

)
Wμ,ν(x) = 0.

We note that in this book we have given priority to Mittag-Leffler and Wright func-
tions in that we have adopted for them the notation E and W , respectively, formerly
used for the Exponential integral and Whittaker function. As a consequence, for the
latter functions we have adopted the calligraphic notation E and W .

Another formula for the Wright function with rational parameters can be men-
tioned (see the paper by Mainardi and Tomirotti [MaiTom95])

W− 1
3 , 23

(z) = 32/3Ai(−z/31/3), (7.2.13)

where Ai(z) is the Airy function (see [NIST, Chap. 9]).
Lastly, the Wright function can be represented in terms of the Fox H-function

with special values of parameters

Wλ,μ(z) = H 1,0
0,2

[
−z

∣∣∣∣
−

(0, 1), (1 − μ,λ)

]
. (7.2.14)
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7.3 Integral Representations and Asymptotics

Probably the most important characteristic of a special function is its asymptotics. In
the case of an entire function there are deep relations between its asymptotic behavior
in the neighborhood of its only singular point – the essential singularity at z = ∞ –
and other properties of this function, including the distribution of its zeros (see, for
example, Evgrafov [Evg78], Levin [Lev56]). It follows from the Stirling asymptotic
formula for the Gamma function that the Wright function

Wλ,μ(z) =
∞∑

k=0

zk

k!Γ (λk + μ)
, λ > −1, μ ∈ C,

is an entire function of z for λ > −1 and, consequently, as we will see in the later
parts of our survey, some elements of the general theory of entire functions can be
applied.

The complete picture of the asymptotic behavior of the Wright function for large
values of z was given byWright [Wri35a] in the case λ > 0 and byWright [Wri40b]
in the case −1 < λ < 0. In both cases he used the method of steepest descent and
the integral representation

Wλ,μ(z) = 1

2πi

∫

Ha
eζ+zζ−λ

ζ−μ dζ, λ > −1, μ ∈ C, (7.3.1)

where Ha denotes the Hankel path in the ζ-plane with a cut along the negative
real semi-axis argζ = π. Formula (7.3.1) is obtained by substituting the Hankel
representation for the reciprocal of the Gamma function

1

Γ (s)
= 1

2πi

∫

Ha
eζζ−s dζ, s ∈ C (7.3.2)

for s = λk + μ into (7.1.2) and changing the order of integration and summation.
Let us first consider the case λ > 0.

Theorem 7.2 If λ > 0, arg(−z) = ξ, |ξ| ≤ π, and

Z1 = (λ|z|)1/(λ+1)ei(ξ+π)/(λ+1), Z2 = (λ|z|)1/(λ+1)ei(ξ−π)/(λ+1),

then we have
Wλ,μ(z) = H(Z1) + H(Z2), (7.3.3)

where H(Z) is given by

H(Z) = Z
1
2 −μe

1+λ
λ Z

{
M∑

m=0

(−1)mam
Zm

+ O

(
1

|Z |M+1

)}
, Z → ∞ (7.3.4)
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and the am, m = 0, 1, . . . , are defined as the coefficients of v2m in the expansion of

Γ (m + 1
2 )

2π

(
2

λ + 1

)m+ 1
2

(1 − v)−β{g(v)}−2m−1

with

g(v) =
{
1 + λ + 2

3
v + (λ + 2)(λ + 3)

3 · 4 v2 + . . .

} 1
2

.

In particular, if μ ∈ R we get the asymptotic expansion of the Wright function
Wλ,μ(−x) for x → +∞ in the form

Wλ,μ(−x) = x p( 1
2 −β)eσx p cosπ p cos

(
π p(

1

2
− μ) + σx p sin π p

) {
c1 + O(x−p)

}
,

(7.3.5)
where p = 1

1+λ
, σ = (1 + λ)λ− λ

1+λ and the constant c1 can be exactly evaluated.
If we exclude from the consideration an arbitrary small angle containing the

negative real semi-axis, we get a simpler result.

Theorem 7.3 If λ > 0, argz = θ, |θ| ≤ π − ε, ε > 0, and

Z = (λ|z|)1/(λ+1)eiθ/(λ+1),

then we have
φ(λ,β; z) = H(Z), (7.3.6)

where H(z) is given by (7.3.4).

In the case λ = 0 the Wright function is reduced to the exponential function with
the constant factor 1/Γ (β):

φ(0,β; z) = exp(z)/Γ (β), (7.3.7)

which turns out to vanish identically for β = −n, n = 0, 1, . . . .
To formulate the results for the case −1 < λ < 0 we introduce some notation.

Let
y = −z, −π < argz ≤ π, −π < argy ≤ π, (7.3.8)

and let
Y = (1 + λ)

(
(−λ)−λy

)1/(1+λ)
. (7.3.9)

Theorem 7.4 If −1 < λ < 0, |argy| ≤ min{ 32π(1 + λ),π} − ε, ε > 0, then

Wλ,μ(z) = I (Y ), (7.3.10)
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where

I (Y ) = Y
1
2 −μe−Y

{
M−1∑

m=0

AmY
−m + O(Y−M)

}
, Y → ∞, (7.3.11)

and the coefficients Am, m = 0, 1 . . . , are defined by the asymptotic expansion

Γ (1 − μ − λt)

2π(−λ)−λt (1 + λ)(1+λ)(t+1)Γ (t + 1)
=

M−1∑

m=0

(−1)m Am

Γ ((1 + λ)t + μ + 1
2 + m)

+O

(
1

Γ ((1 + λ)t + μ + 1
2 + M)

)
,

valid for argt, arg(−λt), and arg(1 − μ − λt) all lying between −π and π and t
tending to infinity.

If−1/3 ≤ λ < 0, the only region not covered byTheorem7.4 is the neighborhood
of the positive real semi-axis. Here we have the following result.

Theorem 7.5 If −1/3 < λ < 0, |argz| ≤ π(1 + λ) − ε, ε > 0, then

Wλ,μ(z) = I (Y1) + I (Y2), (7.3.12)

where I (Y ) is defined by (7.3.11),

Y1 = (1 + λ)
(
(−λ)−λzeπi

)1/(1+λ)
, Y2 = (1 + λ)

(
(−λ)−λze−πi

)1/(1+λ)
,

(7.3.13)
hence

Y1 = Y if − π < argz ≤ 0, and Y2 = Y if 0 < argz ≤ π.

As a consequencewe get the asymptotic expansion of theWright functionWλ,μ(x)
for x → +∞ in the case −1/3 < λ < 0, μ ∈ R in the form:

Wλ,μ(x) = x p( 1
2 −μ)e−σx p cosπ p cos(π p(

1

2
− μ) − σx p sin π p)

{
c2 + O(x−p)

}
,

(7.3.14)
where p = 1

1+λ
, σ = (1 + λ)(−λ)−

λ
1+λ and the constant c2 can be exactly evaluated.

When −1 < λ < −1/3, there is a region of the plane in which the expansion is
algebraic.

Theorem 7.6 If −1 < λ < −1/3, |argz| ≤ 1
2π(−1 − 3λ) − ε, ε > 0, then

Wλ,μ(z) = J (z), z → ∞, (7.3.15)

where
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J (z) =
M−1∑

m=0

z(μ−1−m)/(−λ)

(−λ)Γ (m + 1)Γ (1 + (β − m − 1)/(−λ))
+ O(z

β−1−M
−λ ). (7.3.16)

Finally, the asymptotic expansions of the Wright function in the neighborhood of
the positive real semi-axis in the case λ = −1/3 and in the neighborhood of the lines
argz = ± 1

2π(−1 − 3λ) when −1 < λ < −1/3 are given by the following results by
Wright.

Theorem 7.7 If λ = −1/3, |argz| ≤ π(1 + λ) − ε, ε > 0, then

Wλ,μ(z) = I (Y1) + I (Y2) + J (z), (7.3.17)

where I (Y ) is defined by (7.3.11), Y1,Y2 by (7.3.13), and J (z) by (7.3.16).

Theorem 7.8 If −1 < λ < −1/3, |argz ± 1
2π(−1 − 3λ)| ≤ π(1 + λ) − ε, ε > 0,

then
Wλ,μ(z) = I (Y ) + J (z), (7.3.18)

where I (Y ) is defined by (7.3.11) and J (z) by (7.3.16).

The above given results contain the complete description of the asymptotic behav-
ior of the Wright function for large values of z and for all values of the parameters
λ > −1, μ ∈ C. We will use them repeatedly in our further discussions.

7.4 Distribution of Zeros

In the caseλ = 0 theWright function is an exponential functionwith a constant factor
(equal to zero ifβ = −n, n ∈ N0) and it has no zeros. Forλ = − 1

2 ,μ = −n (n ∈ N0)

and λ = − 1
2 ,μ = 1

2 − n (n ∈ N0) the Wright function is reduced to a product of an
exponential function and a polynomial of degree 2n + 1 and 2n, respectively (see
formulas (7.2.10)–(7.2.11)), and it has exactly 2n + 1 and 2n zeros in the complex
plane, respectively. For all other values of parameters the Wright function has an
infinite number of zeros. Following Luchko [Luc00] we present here the asymptotics
of zeros of the Wright function in two cases, namely, λ ≥ − 1

3 and −1 < λ < − 1
3

(μ �= −n, n ∈ N0 or μ �= 1
2 − n, n ∈ N0 if λ = − 1

2 ).

Theorem 7.9 ([Luc00, Theorem 3]) Let (γk)
∞
k=1 be the sequence of zeros of the

function Wλ,μ(z) (λ ≥ − 1
3 , but λ �= 0, β ∈ R), where γk ≤ γk+1 and each zero is

counted according to its multiplicity. Then:
(A) In the case λ > 0 all zeros with large enough k are simple and lie on the

negative real semi-axis. The asymptotic formula

γk = −
(

πk + π(ρμ − ρ−1
2 )

σ sin πρ

)1/ρ (
1 + O(k−2

)
(k → +∞) (7.4.1)
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holds. Here and in the next formulas ρ and σ are the order and type of the Wright
function given by (7.1.3), respectively.

(B) In the case − 1
3 ≤ λ < 0 all zeros with large enough k are simple, lie on the

positive real semi-axis, and the asymptotic formula

γk =
(

πk + π(ρμ − ρ−1
2 )

−σ sin πρ

)1/ρ (
1 + O(k−2

)
(k → +∞) (7.4.2)

holds.

Remark 7.10 Combining the representation

Jν(z) =
( z
2

)ν

φ(1, ν + 1;− z2

4
)

with the asymptotic formula (7.4.1) we get the known formula (see, for example,
[Wat66, p. 506]) for the asymptotic expansion of the large zeros rk of the Bessel
function Jν(z):

rk = π

(
k + ν

2
− 1

4

)
+ O(k−1) (k → +∞).

We consider now the case −1 < λ < − 1
3 . It follows from the asymptotic formula

(7.4.2) that in this case all zeros of the function Wλ,μ(z) with large enough absolute
value lie inside the angular domains

Ω(±)
ε = {z ∈ C : |argz ∓ (π − 3π

2ρ
)| < ε},

where ε is any number in the interval (0,min{π − 3π
2ρ , 3π

2ρ }). Consequently, the func-
tion Wλ,μ(z) has on the real axis only finitely many zeros. Let

(
γ(+)
k

)∞
k=1

∈ �+ = {z ∈ C : Im > 0},
(
γ(−)
k

)∞
k=1

∈ �− = {z ∈ C : Im < 0},

be sequences of zeros of the function Wλ,μ(z) in the upper and lower half-plane,
respectively, such that |γ(+)

k | ≤ |γ(+)
k+1| and |γ(−)

k | ≤ |γ(−)
k+1| and each zero is counted

according to its multiplicity. Then the following result holds.

Theorem 7.11 ([Luc00, Theorem 4]) In the case−1 < λ < − 1
3 (β �= −n (n ∈ N0)

and β �= 1
2 − n (n ∈ N0)) all zeros of the function Wλ,μ(z) with large enough k are

simple and the asymptotic formula
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γ(±)
k = e±i(π− 3π

2ρ )

(
2πk

σ

)1/ρ (
1 + O(

log k

k
)

)
(k → +∞) (7.4.3)

holds.

7.5 Further Analytic Properties

7.5.1 Additional Properties of the Wright Function in the
Complex Plane

Summarizing all the results concerning the asymptotic behavior of the Wright func-
tion, its indicator function and the distribution of its zeros, we get the following
theorem.

Theorem 7.12 ([GoLuMa99, Theorem 2.4.5]) The Wright function Wλ,μ(z), λ >

−1, is an entire function of completely regular growth.

We recall ([Lev56, Chap. 3]) that an entire function f (z) of finite order ρ is called
a function of completely regular growth (CRG-function) if for all θ, |θ| ≤ π, there
exist a set Eθ ⊂ R

+ and the limit

lim
r→+∞
r∈E∗

θ

log | f (reiθ) |
r p

, (7.5.1)

where

E∗
θ = R

+ \ Eθ, lim
r→+∞

meas(Eθ

⋂
(0, r))

r
= 0.

It is known ([Evg78, Chap. 2.6]) that the zeros of a CRG-function f (z) are regularly
distributed, that is, they possess a finite angular density

lim
r→+∞

n(r, θ)

rρ
= ν(θ), (7.5.2)

where n(r, θ) is the number of zeros of f (z) in the sector 0 < argz < θ, |z| < r and
ρ is the order of f (z).

From the other side, the angular density ν(θ) is connected with the indicator
function h(θ) of a CRG-function. In particular (see [Evg78, Chap. 2.6]), the jump
of h′(θ) at θ = θ0 is equal to 2π pΔ, where Δ is the density of zeros of f (z) in an
arbitrarily small angle containing the ray argz = θ0.

In our case we get from Theorem 7.12, that the derivative of the indicator function
of the Wright function has a jump 2σ p sin π p at θ = π for λ > 0, the same jump
at θ = 0 for −1/3 < λ < 0, and a jump σ p at θ = ±(π − 3π

2ρ ) for −1 < λ < −1/3
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(β �= −n, n = 0, 1, . . . and μ �= 1/2 − n, n = 0, 1, . . . if λ = −1/2), where again
ρ and σ are the order and type of the Wright function, respectively; if λ = 0 or
λ = −1/2 and either μ = −n, n = 0, 1, . . . , or μ = 1/2 − n, n = 0, 1, . . . , the
derivative of the indicator function has no jumps. As we see, the behavior of the
derivative of the indicator function of the Wright function is in accordance with
the distribution of its zeros given in Sect. 7.4, as predicted by the general theory of
CRG-functions.

7.5.2 Geometric Properties of the Wright Function

The Wright function (more exactly, certain normalizations of this function) has cer-
tain geometric properties, including univalency, starlikeness, convexity and close-to-
convexity in the open unit disk. For the above properties it is necessary to consider
only functions belonging to the class A of analytic functions f in the unit disc nor-
malized by the conditions f (0) = 0, f ′(0) = 1. Let us describe some results of this
type following Prajapat [Pra15]. The necessary definitions are presented in Sect. 4.8.2
(cf. [Goo83, Dur83]).

Observe that the restriction of the Wright function Wλ,μ(z) to the unit disc does
not belong to the class A. Thus, it is natural to consider the following two kinds of
normalization of the Wright function:

W
(1)
λ,μ(z) = Γ (μ)zWλ,μ(z) =

∞∑

n=0

Γ (μ)zn+1

n!Γ (λn + μ)
, λ > −1, μ > 0; z ∈ U;

Vλ,μ(z) := Wλ,μ(z)

z
;

W
(2)
λ,μ(z) = Γ (λ + μ)

[
Wλ,μ(z) − 1

Γ (μ)

]
=

∞∑

n=0

Γ (λ + μ)zn+1

(n + 1)!Γ (λn + λ + μ)
,

λ > −1, λ + μ > 0; z ∈ U.

Note that
W

(1)
1,ν+1(−z) = Jν(z) := Γ (ν + 1)z1−ν/2 Jν(2

√
z).

We present here a few of the main results of Prajapat [Pra15], which read

(a) for λ ≥ 1, β ≥ 1 + √
3 the function W

(1)
λ,μ(z) is starlike in U;

(b) for λ ≥ 1, λ + μ ≥ 1 + √
3 the function Vλ,β(z) is convex in U;

(c) for λ ≥ 1, λ + μ ≥ 1 + √
3 the function W

(2)
λ,μ(z) is convex in U.

These results can be obtained by estimating the corresponding magnitudes char-
acterizing starlikeness or convexity.
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Unfortunately Prajapat’s notation for the second normalization of the classical
Wright function coincideswith that used for theWhittaker function.Wehave changed
the notation for the two Prajapat functions to W

(1) and W
(2).

7.5.3 Auxiliary Functions of the Wright Type

In the earliest analysis of the time-fractional diffusion-wave equation Mainardi
[Mai94a], see also [Mai10], introduced two auxiliary functions of the Wright type
Fν(z) and Mν(z), where z is a complex variable and ν is a real parameter 0 < ν < 1 .

Both functions turn out to be analytic in the whole complex plane, i.e. they are entire
functions. Their respective integral representations read,

Fν(z) := 1

2πi

∫

Ha
e ζ − zζν

dζ , 0 < ν < 1 , z ∈ C , (7.5.3)

Mν(z) := 1

2πi

∫

Ha
e ζ − zζν dζ

ζ1−ν
, 0 < ν < 1 , z ∈ C. (7.5.4)

Clearly these functions are special cases of the classicalWright function of the second
kind, namely:

Fν(z) = W−ν,0(−z), Mν(z) = W−ν,1−ν(−z), (7.5.5)

and their connection follows immediately from (7.5.3)–(7.5.4) via an integration by
parts in (7.5.4)

Mν(z) = νzMν(z).

The series representations for these auxiliary functions can be obtained by using
the well-known reflection formula for the Gamma function Γ (ζ) Γ (1 − ζ) =
π/ sin πζ :

Fν(z) :=
∞∑

n=1

(−z)n

n! Γ (−νn)
= − 1

π

∞∑

n=1

(−z)n

n! Γ (νn + 1) sin(πνn) , (7.5.6)

Mν(z) :=
∞∑

n=0

(−z)n

n! Γ [−νn + (1 − ν)] = 1

π

∞∑

n=1

(−z)n−1

(n − 1)! Γ (νn) sin(πνn) .

(7.5.7)

Furthermorewe note that Fν(0) = 0 , Mν(0) = 1/Γ (1 − ν) and that the relations
(7.5.5) can also be derived from the series representations (7.5.6)–(7.5.7) and the
definition of the Wright function.

Explicit expressions of Fν(z) andMν(z) in terms of known functions are expected
for some particular values of ν . It was shown in [MaiTom95] that for ν = 1/q ,with
an integer q ≥ 2 , the auxiliary function Mν(z) can be expressed as a sum of (q − 1)
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simpler entire functions,

M1/q(z) = 1

π

q−1∑

h=1

c(h, q)G(z; h, q) (7.5.8)

with

c(h, q) = (−1)h−1 Γ (h/q) sin(πh/q) , (7.5.9)

G(z; h, q) =
∞∑

m=0

(−1)m(q+1)

(
h

q

)

m

zqm+h−1

(qm + h − 1)! . (7.5.10)

Here (a)m , m = 0, 1, 2, . . . , denotes Pochhammer’s symbol

(a)m := Γ (a + m)

Γ (a)
= a(a + 1) . . . (a + m − 1) .

We note that (−1)m(q+1) is equal to (−1)m for q even and +1 for q odd. In the
particular cases q = 2 , q = 3 we find, respectively

M1/2(z) = 1√
π
exp

(− z2/4
)

,

M1/3(z) = 32/3 Ai
(
z/31/3

)
,

where Ai denotes the Airy function, see e.g. [NIST].
Furthermore it can be proved thatM1/q(z) (for integer≥ 2) satisfies the differential

equation of order q − 1 ,

dq−1

dzq−1
M1/q(z) + (−1)q

q
z M1/q(z) = 0 , (7.5.11)

subjected to the q − 1 initial conditions at z = 0, derived from the series expansion
in (7.5.8)–(7.5.10),

M (h)
1/q(0) = (−1)h

π
Γ [(h + 1)/q] sin[π (h + 1)/q] , h = 0, 1, . . . q − 2 .

(7.5.12)
We note that, for q ≥ 4 , Eq. (7.5.11) is akin to the hyper-Airy differential equation
of order q − 1 , see e.g. Bender and Orszag [BenOrs87]. Consequently, the function
Mν(z) is a generalization of the hyper-Airy function. In the limiting case ν = 1 we
get M1(z) = δ(z − 1) , i.e. the M function degenerates into a generalized function
of Dirac type.
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Since these functions are used to describe time-fractional diffusion processes, it
is appropriate to consider the Mν function for a positive (real) argument, which will
be denoted by r .

The asymptotic representation of Mν(r) , as r → ∞, can be obtained by using
the ordinary saddle-point method. Choosing as a variable r/ν rather than r the com-
putation is easier and yields, see [MaiTom95]

Mν(r/ν) ∼ a(ν) r (ν−1/2)/(1−ν) exp
[−b(ν) r (1/(1−ν)

]
, r → +∞ , (7.5.13)

where a(ν) = 1/
√
2π (1 − ν) > 0 , and b(ν) = (1 − ν)/ν > 0 .

The above asymptotic representation is consistent with the first term of the asymp-
totic expansion

W−ν,μ(z) = Y 1/2−μ e−Y

(
M−1∑

m=0

Am Y−m + O(|Y |−M)

)
, |z| → ∞ ,

with Y = (1 − ν) (−νν z)1/(1−ν) , obtained by Wright for W−ν,μ(−r) .

In fact, taking μ = 1 − ν so 1/2 − μ = ν − 1/2 , we obtain

Mν(r) ∼ A0 Y
ν−1/2 exp (−Y ) , r → ∞ , (7.5.14)

where

A0 = 1√
2π (1 − ν)ν ν2ν−1

, Y = (1 − ν) (νν r)1/(1−ν) . (7.5.15)

Because of the above exponential decay, any moment of order δ > −1 for Mν(r)
is finite. In fact,

∫ ∞

0
r δ Mν(r) dr = Γ (δ + 1)

Γ (νδ + 1)
, δ > −1 , 0 < ν < 1 . (7.5.16)

In particular, we get the normalization property in R+ ,
∫ ∞
0 Mν(r) dr = 1 .

We can now obtain the Laplace transform pairs related to our auxiliary functions.
Indeed, following Mainardi [Mai97] and using the integral representations (7.5.3)–
(7.5.4), we get

1

r
Fν

(
cr−ν

) = cν

rν+1
Mν

(
cr−ν

) ÷ exp(−csν) , 0 < ν < 1, c > 0 . (7.5.17)

By applying the formula for differentiation of the image of the Laplace transform
to Eq. (7.5.17), we get a Laplace transform pair useful for our further discussions,
namely
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1

rν
Mν(cr

−ν) ÷ sν−1 exp(−csν) , 0 < ν < 1 , c > 0 . (7.5.18)

As particular cases of Eqs. (7.5.17)–(7.5.18), we recover the well-known pairs, see
e.g. [Doe74],

1

2r3/2
M1/2(1/r

1/2)) = 1

2
√

π
r−3/2 exp

(−1/(4r2)
) ÷ exp

(−s1/2
)

(7.5.19)

1

r1/2
M1/2(1/r

1/2)) = 1√
π
r−1/2 exp

(−1/(4r2)
) ÷ s−1/2 exp

(−s1/2
)
. (7.5.20)

More generallywe can use the results of Stankovic in [Sta70] to state the following
relevant formula for the Laplace transform related to Wright functions of the second
kind:

rμ−1 W−ν,μ(−cr−ν) ÷ s−μ exp(−csν) , 0 < ν < 1 , μ > 0 , c > 0 . (7.5.21)

We note that this formula can be formally derived by anti-transforming the Laplace
transform term by term, as was done independently in a paper by Buchen and
Mainardi in 1975 without being aware of the Wright functions.

7.6 The Wright Function of a Real Variable

7.6.1 Relation to Fractional Calculus

For the left-sidedRiemann–Liouville fractional integration operator and for the right-
sided Liouville fractional integration operator these formulas read:

Let λ, γ, a ∈ C, μ > 0.

(a) If Reλ > 0 and Reγ > 0, then

(
I λ
0+[tγ−1φ(μ, γ, atμ)]) (x) = xγ+λ−1φ(μ, γ + λ, axμ). (7.6.1)

(b) If Reγ > Reλ > 0, then

(
I λ
−[t−γφ(μ, γ − λ, at−μ)]) (x) = xλ−γφ(μ, γ, ax−μ). (7.6.2)

For the left-sided Riemann–Liouville fractional differentiation operator and for
the right-sided Liouville fractional differentiation operator these formulas read:

Let λ, γ, a ∈ C, μ > 0.
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(c) If Reλ > 0 and Reγ > 0, then

(
Dλ

0+[tγ−1φ(μ, γ, atμ)]) (x) = xγ−λ−1φ(μ, γ − λ, axμ). (7.6.3)

(d) If Reγ > [Reλ] + 1 − Reλ, then

(
Dλ

−[t−γφ(μ, γ + λ, at−μ)]) (x) = x−λ−γφ(μ, γ, ax−μ). (7.6.4)

Analogous formulas are valid for the Bessel–Maitland function (7.2.2):

Letλ, ν, a ∈ C, Re λ > 0, Re ν > −1, and letμ > 0.Then the following relations
hold

(
I λ
0+[tν J (μ)

ν (atμ)]) (x) = xν+λ J (μ)

ν+1+λ(ax
μ), (7.6.5)

(
I λ
−[t−λ−ν−1 J (μ)

ν (at−μ)]) (x) = x−ν−1 J (μ)

ν+1+λ(ax
−μ), (7.6.6)

(
Dλ

0+[tν J (μ)
ν (atμ)]) (x) = xν−λ J (μ)

ν+1−λ(ax
μ), (7.6.7)

if additionally Re ν > [Re λ], then
(
Dλ

−[tλ−ν−1 J (μ)
ν (at−μ)]) (x) = x−ν−1 J (μ)

ν+1−λ(ax
−μ). (7.6.8)

Formulas (7.6.1)–(7.6.8) can be obtained by using formulas for fractional integra-
tion and differentiation of the power monomial and summation of the corresponding
series.

7.6.2 Laplace Transforms of the Mittag-Leffler and the
Wright Functions

In the case λ > 0 the Wright function is an entire function of order less than 1
and consequently its Laplace transform can be obtained by transforming term-by-
term its Taylor expansion (7.1.1) at the origin. As a result we get (0 ≤ t < +∞,
s ∈ C, 0 < ε < |s|, ε arbitrarily small)

Wλ,μ(±t) ÷ L [
Wλ,μ(±t); s] =

∫ ∞

0
e−stWλ,μ(±t) dt (7.6.9)

=
∫ ∞

0
e−st

∞∑

k=0

(±t)k

k!Γ (λk + μ)
dt =

∞∑

k=0

(±1)k

k!Γ (λk + μ)

∫ ∞

0
e−st t k dt

= 1

s

∞∑

k=0

(±s−1)k

Γ (λk + μ)
= 1

s
Eλ,μ(±s−1), λ > 0, μ ∈ C,
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where÷ denotes the juxtaposition of a functionϕ(t)with its Laplace transform ϕ̃(s),
and

Eλ,μ(z) =
∞∑

k=0

zk

Γ (λk + μ)
, λ > 0, μ ∈ C, (7.6.10)

is the two-parametricMittag-Leffler function. In this case the resulting Laplace trans-
form turns out to be analytic, vanishing at infinity and exhibiting an essential singu-
larity at s = 0.

For −1 < λ < 0 the method just applied cannot be used since then the Wright
function is an entire function of order greater than one. The existence of the Laplace
transform of the function Wλ,μ(−t), t > 0, follows in this case from Theorem 7.4,
which tells us that the functionWλ,μ(z) is exponentially small for large z in a sector of
the plane containing the negative real semi-axis. To get the transform in this case we
use an idea given in Mainardi [Mai97]. Recalling the integral representation (7.3.1)
we have (−1 < λ < 0)

Wλ,μ(−t) ÷
∫ ∞

0
e−stWλ,μ(−t) dt =

∫ ∞

0
e−st 1

2πi

∫

Ha
eζ−tζ−λ

ζ−μ dζ dt

= 1

2πi

∫

Ha
eζζ−μ

∫ ∞

0
e−t (s+ζ−λ) dt dζ (7.6.11)

= 1

2πi

∫

Ha

eζζ−μ

s + ζ−λ
dζ = E−λ,μ−λ(−s),

again with the two-parametric Mittag-Leffler function. We use here the integral rep-
resentation (see Djrbashian [Dzh66] and Gorenflo and Mainardi [GorMai97])

Eλ,μ(z) = 1

2πi

∫

Ha

eζζλ−μ

ζλ − z
dζ, (7.6.12)

which is obtained by substituting the Hankel representation (7.3.2) for the reciprocal
of the gamma function into the series representation (7.6.10).

7.6.3 Mainardi’s Approach to the Wright Functions of the
Second Kind

For the sake of convenience we first derive the Laplace transform for the special case
of Mν(r) ; the exponential decay as r → ∞ of the original function provided by
(7.5.13) ensures the existence of the image function. From the integral representation
(7.5.7) of the Mν function we obtain
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Mν(r) ÷ 1

2πi

∫ ∞

0
e−s r

[∫

Ha
eσ − rσν dσ

σ1−ν

]
dr

= 1

2πi

∫

Ha
eσ σν−1

[∫ ∞

0
e−r(s + σν) dr

]
dσ = 1

2πi

∫

Ha

eσ σν−1

σν + s
dσ .

Then, by recalling the integral representation (3.4.12) of the Mittag-Leffler function,

Eλ(z) = 1

2πi

∫

Ha

ζλ−1 e ζ

ζλ − z
dζ , λ > 0 ,

we obtain the Laplace transform pair

Mν(r) ÷ Eν(−s) , 0 < ν < 1 . (7.6.13)

Although transforming the Taylor series of Mν(r) term-by-term is not legitimate,
this procedure yields a series of negative powers of s that represents the asymptotic
expansion of the correct Laplace transform, Eν(−s), as s → ∞, in a sector around
the positive real axis. Indeed we get

∞∑

n=0

∫ ∞
0 e−sr (−r)n dr

n!Γ (−νn + (1 − ν))
=

∞∑

n=0

(−1)n

Γ (−νn + 1 − ν)

1

sn+1

=
∞∑

m=1

(−1)m−1

Γ (−νm + 1)

1

sm
∼ Eν(−s) , s → ∞ ,

which is consistent with the asymptotic expansion (3.4.15).
We note that (7.6.13) contains the well-known Laplace transform pair, see e.g.

[Doe74],

M1/2(r) := 1√
π
exp

(− r2/4
) ÷ E1/2(−s) := exp

(
s2

)
erfc(s) ,

which is valid for all s ∈ C.
In the limit as λ → 0− we formally obtain the Laplace transform pair

W0−,μ(−r) := e−r

Γ (μ)
÷ 1

Γ (μ)

1

s + 1
.

In order to be consistent with (7.6.13) we rewrite

W0−,μ(−r) ÷ E0,μ(−s) = 1

Γ (μ)
E0(−s) , |s| < 1 . (7.6.14)
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Therefore, as λ → 0± , we note a sort of continuity in the formal results [Mai10,
(F.23)] and (7.6.14) because

1

(s + 1)
=

{
(1/s) E0(−1/s) , |s| > 1 ;
E0(−s) , |s| < 1 .

(7.6.15)

We now point out the relevant Laplace transform pair related to the auxiliary
functions of argument r−ν proved in [Mai94a, Mai96a, Mai96b]:

1

r
Fν (1/rν) = ν

rν+1
Mν (1/rν) ÷ e−sν

, 0 < ν < 1 , (7.6.16)

1

ν
Fν (1/rν) = 1

rν
Mν (1/rν) ÷ e−sν

s1−ν
, 0 < ν < 1 . (7.6.17)

We recall that the Laplace transform pairs in (7.6.16) were formerly considered by
[Poll46], who provided a rigorous proof based on a formal result by [Hum45]. Later
[Mik59] achieved a similar result based on his theory of operational calculus, and
finally, albeit unaware of the previous results, [BucMai75] derived the result in a
formal way. We note, however, that none of these authors were informed about the
Wright functions. To our actual knowledge, the first author to derive the Laplace
transforms pairs (7.6.16)–(7.6.17) in terms of Wright functions of the second kind
was Stankovic̀, see [Sta70].

Hereafter, we will provide two independent proofs of (7.6.16) by carrying out
the inversion of exp(−sν), either by the complex Bromwich integral formula, see
[Mai94a, Mai96b], or by the formal series method, see [BucMai75]. We can proceed
similarly for the Laplace transform pair (7.6.17).

For the complex integral approach we deform the Bromwich path Br into the
Hankel pathHa,which is equivalent to the original path, andwe setσ = sr . Recalling
(7.5.3)–(7.5.4), we get

L−1
[
exp (−sν)

] = 1

2πi

∫

Br
e sr − sν

ds = 1

2πi r

∫

Ha
eσ − (σ/r)ν dσ

= 1

r
Fν (1/rν) = ν

rν+1
Mν (1/rν) .

For the series approach, let us expand the Laplace transform in a series of positive
powers of s and formally invert term by term. Then, after recalling (7.5.6)–(7.5.7),
we obtain:

L−1
[
exp (−sν)

] =
∞∑

n=0

(−1)n

n! L−1
[
sνn

] =
∞∑

n=1

(−1)n

n!
r−νn−1

Γ (−νn)

= 1

r
Fν (1/rν) = ν

rν+1
Mν (1/rν) .
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We note the relevance of Laplace transforms (7.6.13) and (7.6.16) in pointing out the
non-negativity of the Wright function Mν(x) and the complete monotonicity of the
Mittag-Leffler functions Eν(−x) for x > 0 and 0 < ν < 1. In fact, since exp (−sν)

denotes the Laplace transform of a probability density (precisely, the extremal Lévy
stable density of index ν, see [Fel71]) the l.h.s. of (7.6.16) must be non-negative,
and so also must the l.h.s. of (7.6.13). As a matter of fact the Laplace transform pair
(7.6.13) shows that, replacing s by x , the spectral representation of theMittag-Leffler
function Eν(−x) can be expressed in terms of the Wright M-function Mν(r), that
is:

Eν(−x) =
∫ ∞

0
e−r x Mν(r) dr , 0 < ν < 1 , x ≥ 0 . (7.6.18)

We now recognize that Eq. (7.6.18) is consistent with the equations in [GKMR,
Proposition 3.23] derived by [Poll48].

It is instructive to compare the spectral representation of Eν(−x) with that of
the function Eν(−tν). From the properties of the Mittag-Leffler function of a real
argument (see, e.g. [GKMR, Sect. 3.7]) we can write

Eν(−tν) =
∫ ∞

0
e−r t Kν(r) dr , 0 < ν < 1 , t ≥ 0 , (7.6.19)

where the spectral function reads

Kν(r) = 1

π

rν−1 sin(νπ)

r2ν + 2 rν cos (νπ) + 1
. (7.6.20)

The relationship between Mν(r) and Kν(r) is worth exploring. Both functions are
non-negative, integrable and normalized inR+, so they can be adopted in probability
theory as density functions. The normalization conditions derive from Eqs. (7.6.18)
and (7.6.19) since

∫ +∞

0
Mν(r) dr =

∫ +∞

0
Kν(r) dr = Eν(0) = 1 .

In the following section we will discuss the probability interpretation of the Mν

function with support both in R
+ and in R whereas for Kν we note that it has been

interpreted as the spectral distribution of relaxation/retardation times in the fractional
Zener viscoelastic model, see [Mai10, Chap. 3, Sect. 3.2, Fig. 3.3].

We also note that for certain renewal processes, functions of Mittag-Leffler and
Wright type can be adopted as probability distributions of waiting times, as shown in
[MaGoVi05], where such distributions are compared. We refer the interested reader
to that paper for details.
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7.7 Historical and Bibliographical Notes

TheWright function, which we denote byWλ,μ(z) , z ∈ C , with the parameters λ >

−1 and μ ∈ C , is so named after the British mathematician E.MaitlandWright, who
introduced and investigated it between 1935 and 1940 [Wri35a, Wri35b, Wri40a,
Wri40b]. We note that originally Wright considered such a function restricted to
λ ≥ 0 in his paper [Wri35a] in connection with his investigations in the asymptotic
theory of partitions. Only later, in 1940, did he extend his investigation to−1 < λ <

0 [Wri40b].
Like for the Mittag-Leffler functions, a description of the most important prop-

erties of the Wright functions (with relevant references up to the fifties) can be
found in the third volume of the Bateman Project [ErdBat-3], in chapter XV I I I on
Miscellaneous Functions. However, probably a misprint, there λ is restricted to be
positive.

Relevant investigations on the Wright functions have been carried out by
Stanković, [Sta70, GajSta76], in Kiryakova’s book [Kir94, p. 336], and, later, by
Luchko and Gorenflo (1998) [LucGor98], Gorenflo, Luchko and Mainardi (1999,
2000) [GoLuMa99, GoLuMa00] and Luchko (2000) [Luc00]. Just recently Luchko
[? ] and Paris [Par19] have considered this function in two chapters of the Handbook
of Fractional Calculus and Application (HFCA).

The order and type of the Wright function as well as its indicator function have
been calculated byLuchko in [Luc00]. For−1 < λ < 0 this had already been done by
Dzherbashian [=Djrbashian] in [Djr93], but in relation to the Mittag-Leffler function
without knowing the existence of theWright function. At least in the Russian edition
of 1966 the name Wright is not mentioned.

The fact that the functionWλ,μ(z) is an entire function for all values of the param-
eters λ > −1 and μ ∈ C was already known to Wright (see [Wri35a, Wri40b]).

In the paper by Djrbashian and Bagian [DjrBag75] (see also Djrbashian [Djr93])
the order and type of this function as well as an estimate of its indicator function were
given for the case −1 < λ < 0. Wright [Wri40b] also remarked that the zeros of the
function [Wri40b] lie near the positive real semi-axis if −1/3 ≤ λ < 0 and near the
two lines argz = ± 1

2π(3α + 1) if −1 < α < −1/3. In [GoLuMa99] the investiga-
tion of the Wright function from the viewpoint of the theory of entire functions is
continued. Exact formulas for the order, the type and the indicator function of the
entire function Wλ,μ(z) for λ > −1, μ ∈ C are given. On the basis of these results
the problem of the distribution of the zeros of the Wright function is considered. In
all cases this function is shown to be a function of completely regular growth.

It can be seen from the formulas (7.1.5)–(7.1.7) that the indicator function hW (θ)
of the Wright function Wλ,μ(z) reduces to the function cos θ – the indicator function
of the exponential function ez – if λ → 0.

This property does not hold for another generalization of the exponential function
– the Mittag-Leffler function. Even though

E1(z) = ez,
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the indicator function of the Mittag-Leffler function Eα,β(z), given for 0 < α <

2, α �= 1 by ([Evg78, Chap. 2.7])

hEα,β
(θ) =

{
cos θ/α, |θ| ≤ πα

2 ,

0, πα
2 ≤ |θ| ≤ π

does not coincide with the indicator function of ez if α → 1.
Geometric properties (such as starlikeness, convexity and close-to-

convexity) of different normalizations of the classical Wright function are discussed
by Prajapat in [Pra15] (see also [BanPra16]).

In Sect. 7.3 we mainly follow the papers of Gorenflo, Luchko and Mainardi
[GoLuMa99, GoLuMa00]. Further asymptotic result for the classical Wright func-
tion as well as for the Fox–Wright function pWq can be found in papers by Paris
[Par10, Par17, ParVin16].

Composition formulas of fractional integrals and derivatives with the classical
Wright function are presented in the paper by Kilbas [Kil05].

The Laplace inversion in Eq. (7.5.17) was properly carried out by Pollard (1948)
[Poll48] (based on a formal result by Humbert (1945) [Hum45]) and by Mikusiński
(1959) [Mik59]. A formal series inversion was carried out by Buchen and Mainardi
(1975) [BucMai75], albeit unaware of the previous results.

TheWright function has appeared in papers related to partial differential equations
of fractional order.Considering boundary-value problems for the fractional diffusion-
wave equation, i.e., the linear partial integro-differential equation obtained from the
classical diffusion or wave equation by replacing the first- or second-order time
derivative by a fractional derivative of order α with 0 < α ≤ 2, it was found that the
corresponding Green functions can be represented in terms of theWright function of
the second kind. A very informative survey of these results can be found in the paper
by Mainardi [Mai97] and in the survey paper by Mainardi, Luchko and Pagnini
devoted to the 70th anniversary of the late Prof. Gorenflo [MaLuPa01].

Finally, in the papers [BucLuc98, GoLuMa00] the scale-invariant solutions of
some partial differential equations of fractional order have been given in terms of the
Wright and the generalized Wright functions (see also the present book).

The special cases λ = −ν , μ = 0 and λ = −ν , μ = 1 − ν with 0 < ν < 1 and
z replaced by−z provide theWright type functions, Fν(z) and Mν(z) , respectively,
that have been so denoted and investigated by Mainardi (1994–1997), see [Mai97].
Since these functions are of special interest for us, we returned to them to present a
detailed analysis, see alsoGorenflo, Luchko andMainardi (1999, 2000) [GoLuMa99,
GoLuMa00]. We have referred to them as the auxiliary functions of the Wright type.

A long exposition on the properties of classical Wright function and its applica-
tions is presented in [Luc19].
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7.8 Exercises

7.8.1 ([AnsShe14, Lemma3.1]) Let E(α1,β1),(α2,β2)(z) be the four-parametricMittag-
Leffler function

E(α1,β1),(α2,β2)(z) =
∞∑

k=0

zk

Γ (α1k + β1)Γ (α2k + β2)
, α j > 0, β j > 0, j = 1, 2.

Prove the following identities (t > 0):

(a)

tβγ−2Eαγ,βγ(−λtαγ) =
∞∫

0

Eα,β(−λτα)φ(−γ, 0;−τ t−γ)dτ ;

α > 0,β > 0, 0 < γ < 1;

(b)

tγ−2E(γ,α),(γ,β)(t
γ) =

∞∫

0

φ(α,β; τ )φ(−γ, 0;−τ t−γ)dτ ;

α > 0,β > 0, 0 < γ < 1;

(c)

φ(−α1α2, 0;−λt−α1α2) =
∞∫

0

φ(−α1, 0;−λτα1)φ(−α2, 0;−τ t−α2)
dτ

τ
;

0 < α1,α2 < 1.

7.8.2 ([AnsShe14, Lemma 3.4]) LetHn ,Fs ,Fc be the Hankel, the Fourier-sine and
the Fourier-cosine transforms, respectively:

Hn{ f (t); s} =
∞∫

0

t Jn(st) f (t)dt,

Fs{ f (t); s} =
√

2

π

∞∫

0

sin(st) f (t)dt,

Fc{ f (t); s} =
√

2

π

∞∫

0

cos(st) f (t)dt.
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Prove the following identities:

(a)

L
(
tn/2Hn{u−nφ(α,β; u2); 2√t}; s

)
= 1

2sn
Eα,β(s);

(b)

L
(
Fs{φ(α,β; u2); 2√t}; s

)
=

√
1

s
Eα,β(s);

(c)

L
(
t−1/2Fc{φ(α,β; u2); 2√t}; s

)
= √

sEα,β(s).

7.8.3 ([Meh17, Lemma 1]) Prove that for any β > α > 0 the following integral
representation of the classical Wright function holds:

φ(α,β; t) = cα,β

1∫

0

(1 − τ 1/α)β−α−1φ(α,α; tτ )dτ , t ∈ R

with cα,β = 1
αΓ (β−α)

.

7.8.4 ([Pra15, Theorem 2.9]) Let α ≥ 1 and β > β∗, where β∗ is a positive root
of the equation β2 − √

5β − √
5 = 0. Show that the normalized Wright function

Wα,β(z) = Γ (β)zφ(α,β; z) is starlike in U.



Chapter 8
Applications to Fractional Order
Equations

In this chapter we consider a number of integral equations and differential equations
(mainly of fractional order). In representations of their solution, the Mittag-Leffler
function, its generalizations and some closely related functions are used.

8.1 Fractional Order Integral Equations

8.1.1 The Abel Integral Equation

Let us consider the Abel integral equation of the first kind in the classical setting (i.e.
for 0 < α < 1)

1

Γ (α)

∫ t

0

u(τ )

(t − τ )1−α
dτ = f (t) , 0 < α < 1 , (8.1.1)

where f (t) is a given function.Weeasily recognize that this equation canbe expressed
in terms of a fractional integral, i.e.

(
Iα
0+ u

)
(t) = f (t) , 0 < α < 1. (8.1.2)

Consequently it is solved in terms of a fractional derivative:

u(t) = (Dα
0+ f

)
(t) . (8.1.3)

To this end we need to recall the definition of a fractional integral and derivative and
the property Dα

0+ Iα
0+ = II. Certainly, the solution (8.1.3) exists if the right-hand side

satisfies certain conditions (see the discussion below).
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A formal solution can be obtained for the Eq. (8.1.1) (or, what is equivalent, to
the Eq. (8.1.2)) for any positive value of the parameter α.

Let us considerEq. (8.1.2)with an arbitrary positive parameterα. Letm = −[−α],
i.e.m − 1 < α ≤ m,m ∈ N. We apply the operator I m−α

a+ to both sides of Eq. (8.1.2)

I m−α
a+ Iα

0+u = I m−α
0+ f. (8.1.4)

Then using the semigroup property of the fractional integral operators we get

(
I mu

)
(t) = (I m−α

a+ f
)
(t), (8.1.5)

where I m is the m-times repeated integral. Since m-times differentiation Dm is the
left-inverse operator to I m we obtain finally

u(t) = (Dm Im−α
0+ f

)
(t) =: (Dα

0+ f
)
(t) , (8.1.6)

with
Dα

0+ = Dm Im−α
0+ .

Thus, the solution to Eq. (8.1.1) has the form (8.1.6), if it exists. The problem is that
Eqs. (8.1.2) and (8.1.4) are not equivalent since the operator Dα

0+ is only left-inverse
to Iα

0+, but not right-inverse. Solvability conditions for the Abel integral equation of
the first kind are given in [SaKiMa93, pp. 31, 39]:
Letα be a positive non-integer (i.e. m − 1 < α < m), then the Abel integral equation
of the first kind has a solution in L1(a, b) iff fm−α(x) ∈ ACm([a, b]), where

fm−α(x) = 1

Γ (m − {α})
x∫

a

f (t)

(x − t){α} dt (8.1.7)

and
f (k)
m−α(a) = 0, k = 0, 1, . . . ,m − 1. (8.1.8)

Condition (8.1.7) means that the function fm−α is (m − 1)-times differentiable and
the (m − 1)th derivative f (m−1)

m−α is absolutely continuous on the interval [a, b].
An alternative approach is to use the Laplace transform for the solution of the

Abel integral equation (8.1.1). Note that the operator in the left-hand side of (8.1.2)
can be written in the form of the Laplace convolution. Let us for simplicity consider
only the case m = 1.

The relation Iα u(t) = Φα(t) ∗ u(t) ÷ ũ(s)/sα holds with Φα(t) = 1
Γ (α)

1
t1−α .

This gives
ũ(s)

sα
= f̃ (s) =⇒ ũ(s) = sα f̃ (s) . (8.1.9)
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Now one can choose two different ways to get the inverse Laplace transform from
(8.1.9), according to the standard rules.

(a) Writing (8.1.9) as

ũ(s) = s

[
f̃ (s)

s1−α

]
, (8.1.10)

we obtain

u(t) = 1

Γ (1 − α)

d

dt

∫ t

0

f (τ )

(t − τ )α
dτ . (8.1.11)

(b) On the other hand, writing (8.1.9) as

ũ(s) = 1

s1−α
[s f̃ (s) − f (0+)] + f (0+)

s1−α
, (8.1.12)

we obtain

u(t) = 1

Γ (1 − α)

∫ t

0

f ′(τ )

(t − τ )α
dτ + f (0+)

t−α

Γ (1 − a)
. (8.1.13)

Thus, the solutions (8.1.11) and (8.1.13) are expressed in terms of the Riemann–
Liouville and Caputo fractional derivatives Dα

0+ and CDα
0+ respectively, according to

properties of fractional derivatives with m = 1 .

Method (b) requires f (t) to be differentiable with L-transformable derivative;
consequently 0 ≤ | f (0+)| < ∞ . Then it turns out from (8.1.13) that u(0+) can
be infinite if f (0+) �= 0 , being u(t) = O(t−α) , as t → 0+ . Method (a) requires
weaker conditions in that the integral on the right-hand side of (8.1.11) must vanish
as t → 0+; consequently f (0+) could be infinite but with f (t) = O(t−ν) , 0 <

ν < 1 − α as t → 0 + . Then it turns out from (8.1.11) that u(0+) can be infinite
if f (0+) is infinite, being u(t) = O(t−(α+ν)) , as t → 0 + .

Finally, let us remark that the case of Eq. (8.1.1) with 0 < α < 1 replaced by
α > 0 can be treated analogously. If m − 1 < α ≤ m with m ∈ N , then again we
have (8.1.2), now with Dα

0+ f (t) given by the formula which can also be obtained
by the Laplace transform method.

The Abel Integral Equation of the Second Kind
Let us now consider the Abel equation of the second kind

u(t) + λ

Γ (α)

∫ t

0

u(τ )

(t − τ )1−α
dτ = f (t) , α > 0 , λ ∈ C . (8.1.14)

In terms of the fractional integral operator this equation reads

(
1 + λ Iα

0+
)
u(t) = f (t) , (8.1.15)
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and consequently it can be formally solved as follows:

u(t) = (1 + λIα
0+
)−1

f (t) =
(
1 +

∞∑
n=1

(−λ)n Iαn
0+

)
f (t) . (8.1.16)

The formula is obtained by using the standard technique of successive approximation.
Covergence of the Neumann series simply follows for any function f ∈ C[0, a] (cf.,
e.g., [GorVes91, p. 130]). Note that

Iαn
0+ f (t) = Φαn(t) ∗ f (t) = tαn−1

+
Γ (αn)

∗ f (t).

Thus the formal solution reads

u(t) = f (t) +
( ∞∑

n=1

(−λ)n
tαn−1
+

Γ (αn)

)
∗ f (t) . (8.1.17)

Recalling

eα(t;λ) := Eα(−λ tα) =
∞∑
n=0

(−λ tα)n

Γ (αn + 1)
, t > 0 , α > 0 , λ ∈ C , (8.1.18)

∞∑
n=1

(−λ)n
tαn−1
+

Γ (αn)
= d

dt
Eα(−λtα) = e′

α(t;λ) , t > 0 . (8.1.19)

Finally, the solution reads

u(t) = f (t) + e′
α(t;λ) ∗ f (t) . (8.1.20)

Of course the above formal proof can be made rigorous. Simply observe that
because of the rapid growth of the Gamma function the infinite series in (8.1.17) and
(8.1.19) are uniformly convergent in every bounded interval of the variable t so that
term-wise integrations and differentiations are allowed.1

Alternatively one can use the Laplace transform, which will allow us to obtain
the solution in different forms, including the result (8.1.20).

Applying the Laplace transform to (8.1.14) we obtain

[
1 + λ

sα

]
ũ(s) = f̃ (s) =⇒ ũ(s) = sα

sα + λ
f̃ (s) = s

sα−1

sα + λ
f̃ (s) . (8.1.21)

1In other words, we use that the Mittag-Leffler function is an entire function for all α > 0.
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Now, let us proceed to find the inverseLaplace transformof (8.1.21) using theLaplace
transform pair (see AppendixC)

eα(t;λ) := Eα(−λ tα) ÷ sα−1

sα + λ
. (8.1.22)

We have

e′
α(t;λ) ÷ s

sα−1

sα + λ
. (8.1.23)

Therefore the inverse Laplace transform of the right-hand side of (8.1.21) is the
Laplace convolution of e′

α(t;λ) and f , i.e. the solution to the Abel integral equation
of the second kind has the form

u(t) = f (t) + e′
α(t;λ) ∗ f (t) = f (t) +

t∫

0

f (t − τ )e′
α(τ ;λ)dτ . (8.1.24)

Formally, one can apply integration by parts and rewrite (8.1.24):

u(t) = f (t) +
t∫

0

f ′(t − τ )eα(τ ;λ)dτ + f (0+)eα(t;λ) . (8.1.25)

Note that this formula is more restrictive with respect to conditions on the given
function f (see, e.g. [GorVes91]).

If the function f is continuous on the interval [0, a] then formula (8.1.20) (or,
what is the same, (8.1.24)) gives the unique continuous solution to the Abel integral
equation of the second kind (8.1.14) for any real λ. The existence of the integral in
(8.1.20) follows for any absolutely integrable function f .

8.1.2 Other Integral Equations Whose Solutions Are
Represented Via Generalized Mittag-Leffler Functions

In many physical applications the Abel integral equations of the first kind arise in
more general forms:

1

Γ (α)

x∫

a

u(t)dt

(h(x) − h(t))1−α
= f (x), a < x < b, (8.1.26)
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1

Γ (α)

b∫

x

u(t)dt

(h(t) − h(x))1−α
= f (x), a < x < b, (8.1.27)

where h is a strictly increasing differentiable function in (a, b). An especially impor-
tant case is h(x) = x2, a = 0, α = 1/2 (see, e.g., [GorVes91, Chap. 3]).

Following [GorVes91], we treat Eq. (8.1.26) using the substitutions ξ = h(t), a′ =
h(a),b′ = h(b) and introducing a newunknown function v andnew right-hand side g:

v(τ ) = u
(
h−1(τ )

)
h′ (h−1(τ )

) , g(ξ) = f
(
h−1(τ )

)
, a′ < ξ < b′.

Using this notation, Eq. (8.1.26) becomes the Abel integral equation of the first kind.
Thus by inverse substitutions in (8.1.11) we obtain the formal solution to (8.1.26) in
the following form

u(x) = 1

Γ (1 − α)

d

dt

x∫

a

h′(t) f (t)
(h(x) − h(t))α

dt, a < x < b. (8.1.28)

In a similar way one can obtain the formal solution to (8.1.27)

u(x) = − 1

Γ (1 − α)

d

dt

b∫

x

h′(t) f (t)
(h(t) − h(x))α

dt, a < x < b. (8.1.29)

Another method for solving (8.1.26) and (8.1.27) is given in [Sri63]. Thus, in the
case of Eq. (8.1.26) we multiply both sides of the equation by

1

Γ (1 − α)

h′(x)
(h(y) − h(x))α

, x ≤ y ≤ b,

and integrate with respect to x over the interval (a, y). Then after changing the order
of integration we obtain the following relation

1

Γ (α)Γ (1 − α)

y∫

a

u(t)dt

y∫

t

h′(x)dx
(h(y) − h(x))α(h(x) − h(t))1−α

=
y∫

a

h′(x) f (x)dx
(h(y) − h(x))α

.

We observe that after making a suitable substitution one can show that the inner
integral on the left-hand side is equal to Γ (α). Hence formula (8.1.28) follows.

Solvability conditions of Eqs. (8.1.26) and (8.1.27) in different functional spaces
can be derived by using arguments similar to that for the classical Abel integral
equation of the first kind (see, e.g., [SaKiMa93, p. 31]).
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A number of integral equations which reduce to the Abel integral equation of
the first or the second kind are presented in the Handbook of Integral Equations
[PolMan08]. Among them we single out the following:

1.
x∫

0

(
1 + b

√
x − t

)
y(t)dt = f (x), b = const, (8.1.30)

which reduces to the Abel integral equation of the second kind by differentiating
with respect to x ;

2.
x∫

0

(
b + 1√

x − t

)
y(t)dt = f (x), b = const, (8.1.31)

which can be solved as a combination of the Abel integral equations of the first
and the second kind.

8.2 Fractional Ordinary Differential Equations

8.2.1 Fractional Ordinary Differential Equations with
Constant Coefficients

Herewe focus on results concerning ordinary fractional differential equations (FDEs)
which are solved in an explicit form via the Mittag-Leffler function, its generaliza-
tions, and related special functions. We choose the most simple equations in order
to reach the main aim of this subsection, namely, to demonstrate the role of the
Mittag-Leffler function in the solution of ordinary FDEs.

For a wider exposition presenting a classification of equations and initial bound-
ary value problems for FDEs, and different methods of solution, we refer to the
monograph [KiSrTr06] (see also [Bal-et-al17, Die10, Die19, Pod99] and references
therein).

A Cauchy Type Problem for One-Term Equations
Let us start with a simple linear ordinary differential equation with one fractional
derivative of Riemann–Liouville type

(
Dα

a+y
)
(x) − λy(x) = f (x) (a < x ≤ b; α > 0; λ ∈ R). (8.2.1)

Standard initial conditions for such an equation are the so-called Cauchy type initial
conditions
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(
Dα−k

a+ y
)
(a+) = bk (bk ∈ R, k = 1, . . . , n = −[−α]), (8.2.2)

where [·] indicates the integral part of a number.
If we suppose that the right-hand side in (8.2.1) is Hölder-continuous, i.e. f ∈

Cγ[a, b], 0 ≤ γ < 1, γ < α, then (see [KiSrTr06, p. 172]) the Cauchy type problem
(8.2.1)–(8.2.2) is equivalent in the space Cn−α[a, b] to the Volterra integral equation

y(x) =
n∑
j=1

b j (x − a)α− j

Γ (α − j + 1)
+ λ

Γ (α)

x∫

a

y(t)

(x − t)1−α
dt + 1

Γ (α)

x∫

a

f (t)

(x − t)1−α
dt.

(8.2.3)
Here and in what follows C0[a, b] means simply the set of continuous functions on
[a, b], i.e. C[a, b].

One can solve Eq. (8.2.3) by the method of successive approximation (for the
justification of this method in the present case, see, e.g. [KiSrTr06, pp. 172, 222]).
If we set

y0(x) =
n∑
j=1

b j

Γ (α − j + 1)
(x − a)α− j , (8.2.4)

then we get the recurrent relation

ym(x) = y0(x) + λ

Γ (α)

x∫

a

ym−1(t)

(x − t)1−α
dt + 1

Γ (α)

x∫

a

f (t)

(x − t)1−α
dt. (8.2.5)

This can be rewritten in terms of the Riemann–Liouville fractional integrals

ym(x) = y0(x) + λ
(
Iα
a+ym−1

)
(x) + (Iα

a+ f
)
(x). (8.2.6)

Performing successive substitutions one can obtain from (8.2.6) the following for-
mula for the mth approximation ym to the solution of (8.2.3)

ym(x) =
n∑
j=1

b j

m+1∑
k=1

λk−1(x − a)αk− j

Γ (αk − j + 1)
+

x∫

a

[
m∑

k=1

λk−1

Γ (αk)
(x − t)αk−1

]
f (t)dt.

(8.2.7)
Taking the limit as m → ∞ we get the solution of the integral equation (8.2.3) (and
thus of the Cauchy type problem (8.2.1)–(8.2.2))

y(x) =
n∑
j=1

b j

∞∑
k=1

λk−1(x − a)αk− j

Γ (αk − j + 1)
+

x∫

a

[ ∞∑
k=1

λk−1

Γ (αk)
(x − t)αk−1

]
f (t)dt,

(8.2.8)
or



8.2 Fractional Ordinary Differential Equations 243

y(x) =
n∑
j=1

b j

∞∑
k=0

λk(x − a)αk+α− j

Γ (αk + α − j + 1)
(8.2.9)

+
x∫

a

[ ∞∑
k=0

λk

Γ (αk + α)
(x − t)αk+α−1

]
f (t)dt.

The latter yields the following representation of the solution to (8.2.1)–(8.2.2) in
terms of the Mittag-Leffler function:

y(x) =
n∑
j=1

b j (x − a)α− j Eα,α− j+1
[
λ(x − a)α

]
(8.2.10)

+
x∫

a

(x − t)α−1Eα,α

[
λ(x − t)α

]
f (t)dt.

The Cauchy Problem for One-Term Equations
Another important problem for linear ordinary differential equations is the Cauchy
problem for FDEs with one fractional derivative of Caputo type

(
C Dα

a+y
)
(x) − λy(x) = f (x) (a ≤ x ≤ b; n − 1 ≤ α < n; n ∈ N; λ ∈ R),

(8.2.11)
y(k)(a) = ck (ck ∈ R, k = 1, . . . , n − 1). (8.2.12)

In this case it is possible to pose initial conditions in the same form as that for ordinary
differential equations (i.e. by involving usual derivatives) due to the properties of the
Caputo derivative (see the corresponding discussion in Appendix E).

Under the assumption f ∈ Cγ[a, b], 0 ≤ γ < 1, γ < α, the Cauchy problem
(8.2.11)–(8.2.12) is equivalent (see, e.g., [KiSrTr06, pp. 172, 230]) to the Volterra
integral equation

y(x) =
n−1∑
j=0

c j
j ! (x − a) j + λ

Γ (α)

x∫

a

y(t)

(x − t)1−α
dt + 1

Γ (α)

x∫

a

f (t)

(x − t)1−α
dt.

(8.2.13)
By applying the method of successive approximation with initial approximation

y0(x) =
n−1∑
j=0

c j
j ! (x − a) j (8.2.14)

we get the solution to the Volterra equation (8.2.13) (and thus to the Cauchy problem
(8.2.11)–(8.2.12)) in the form



244 8 Applications to Fractional Order Equations

y(x) =
n−1∑
j=0

c j

∞∑
k=0

λk(x − a)αk+ j

Γ (αk + j + 1)
+

x∫

a

[ ∞∑
k=1

λk−1

Γ (αk)
(x − t)αk−1

]
f (t)dt.

(8.2.15)
The latter yields the following representation of the solution to (8.2.11)–(8.2.12) in
terms of the Mittag-Leffler function:

y(x) =
n∑
j=1

b j (x − a) j Eα, j+1
[
λ(x − a)α

]+
x∫

a

(x − t)α−1Eα,α

[
λ(x − t)α

]
f (t)dt.

(8.2.16)

8.2.1.1 Solution Methods for Multi-term Ordinary FDEs

The Operational Method
The operational calculus for fractional differential equations has been developed
in series of articles (see, e.g. [HiLuTo09] and the references therein). The idea of
this approach goes back to the work by Mikusiński [Mik59] in which the Laplace
convolution

( f ∗ g) (x) =
x∫

0

f (x − t)g(t)dt (8.2.17)

is interpreted as an algebraic multiplication in a ring of continuous functions on the
real half-axis.

We briefly describe this approach (for a more detailed exposition we refer to the
book [KiSrTr06, Sect. 4.3]). For any λ ≥ 1 the mapping ◦λ,

( f ◦λ g) (x) = (I λ−1
0+ f ∗ g

)
(x) =

x∫

0

I λ−1
0+ f (x − t)g(t)dt (8.2.18)

becomes the convolution (without zero divisors) of the Liouville fractional integral
operator Iα

0+(α > 0) in the space

C−1 := {y ∈ C(0,+∞) : ∃p > −1, y(x) = x p y1(x), y1(x) ∈ C[0,+∞)
}
.

(8.2.19)
If α > 0 and 1 ≤ λ < α + 1, then the fractional integral Iα

0+ has the following con-
volutional representation

(
Iα
0+ f

)
(x) = (h ◦λ f ) (x), h(x) = xα−λ

Γ (α − λ − 1)
. (8.2.20)
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By the semigroup property and linearity of the fractional integral Iα
0+, the space C−1

with the operations ◦λ and “+” becomes a commutative ring without zero divisors.
As in the Mikusiński approach, one can see that this ring can be extended to the
quotient field

P = C−1 × (C−1 \ {0}) / ∼ (8.2.21)

with the standard equivalence relation determined by the convolution. Then the alge-
braic inverse to Iα

0+ in the quotient fieldP can be defined as an element S ofP which
is reciprocal to the element h(x) in the field P:

S = I

h
:= h

(h ◦λ h)
= h

h2
, (8.2.22)

where I is an identity in P with respect to convolution.
For any α > 0 and m ∈ N we introduce the space

Ωm
α (C−1) :=

{
y ∈ C−1 : (Dα

0+
)k

y ∈ C−1, k = 1, . . . ,m
}

, (8.2.23)

where
(
Dα

0+
)k

is the kth power of the operator
(
Dα

0+
)
:

(
Dα

0+
)k

(·) = (Dα
0+ . . . Dα

0+
)
(·).

If α > 0, m ∈ N and f ∈ Ωm
α (C−1), then the following relation

((
Dα

0+
)m

f
) = Sm −

m−1∑
k=0

Sm−k F
((

Dα
0+
)k

f
)

(8.2.24)

holds in the field P . Here F = E − Iα
0+Dα

0+ is a projector of Iα
0+ determined in

Ω1
α (C−1) by the formula

(
E − Iα

0+D
α
0+y
)
(x) =

n∑
k=1

(
Dα−k

0+ y
)
(0+)

Γ (α − k − 1)
xk−α, y ∈ Ω1

α (C−1) , n − 1 < α ≤ n,

and E : Ω1
α (C−1) → Ω1

α (C−1) is the identity operator on Ω1
α (C−1).

If α > 0, 1 ≤ λ < α + 1, m ∈ N, ω ∈ C, then convolution relations follow from
the analytical property in the field P (see, e.g., [KiSrTr06, p. 265])

I

S − ω
= h

E − ωh
= h

(
E + ωh + ω2h2 + . . .

) = xα−λEα,α−λ+1(ωx
α),

(8.2.25)

I

(S − ω)m
= xmα−λEm

α,mα−λ+1(ωx
α), (8.2.26)
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where Eα,β , E
γ
α,β are two- and three-parametric Mittag-Leffler functions, respec-

tively.
By using these relations one can represent solutions to the Cauchy type problem

for certain multi-term fractional differential equations in terms of the Mittag-Leffler
function. Since the application of this method critically depends on the analytical
properties of the corresponding differential operator, we have taken the liberty of
reproducing an example of such a problem from [KiSrTr06]. For this problem the
method gives the solution in a final form.

Example ([KiSrTr06, p. 269]) Letω ∈ C, λ ∈ R be arbitrary numbers such that 1 ≤
λ < 3/2. We consider in the space Ω3

1/2 (C−1) the following Cauchy type problem:

(
D3/2

0+ y
)

(x) − ωy′(x) + λ2
(
D1/2

0+ y
)

(x) − ωλ2y(x) = f (x), f ∈ C−1 (8.2.27)

lim
x→0+

(
D1/2

0+ y
)

(x) = 0, y(0) = 0, lim
x→0+

(
I 1/20+ y

)
(x) = 0. (8.2.28)

Here α = 1/2 and the problem is reduced in the field P to the algebraic equation

S3y − ωS2y + λ2Sy − ωλ2y = f. (8.2.29)

Since the polynomial on the left-hand side possesses a simple decomposition

P(S) = S3 − ωS2 + λ2S − ωλ2 = (S2 + λ2)(S − ω)

one can find a representation of an algebraic inverse to the differential operator in
(8.2.27) as the reciprocal to P(S) in the field P:

I

P(S)
= 1

ω2 + λ2

{
− S

S2 + λ2
− ω

S2 + λ2
+ I

S − ω

}
. (8.2.30)

Using the identity (8.2.25) we have the solution of the considered problem in the
form

y(x) =
x∫

0

K (x − t) f (t)dt, (8.2.31)

where

K (x) = 1

ω2 + λ2
(8.2.32)

×
{
−x

1
2 −λE1,2−λ(−λ2x) − ωx1−λE1,2−λ(−λ2x) + x

1
2 −λE 1

2 , 32 −λ(ωx
1
2 )
}

.
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The Laplace Transform Method
Another useful method which leads to the explicit solution of ordinary fractional
differential equations is the Laplace transform method. The direct application of the
Laplace transform to the homogeneous multi-term fractional differential equation

m∑
k=1

Ak
(
CDαk

0+y
)
(x) + A0y(x) = 0 (x > 0, m ∈ N, 0 < α1 < . . . < αm)

(8.2.33)
yields an explicit representation of the fundamental system {yi (x)}, i = 0, . . . , l −
1, l = −[−αm], for this equation, i.e. of the solutions to the Cauchy problems

y( j)
i (0) = δ

j
i , i, j = 0, 1, . . . , l − 1, (8.2.34)

for Eq. (8.2.33). This representation critically depends on the properties of the so-
called quasi-polynomial

P(s) = A0 +
m∑

k=1

Aks
αk , s ∈ C.

Thus, the system of fundamental solutions for the one-term fractional differential
equation

(
C Dα

0+y
)
(x) − λy(x) = 0 (x > 0, l − 1 < α ≤ l, l ∈ N) (8.2.35)

has the form
yi (x) = xi Eα,i+1(λx

α), i = 0, . . . , l − 1; (8.2.36)

and the systemof fundamental solutions for two-term fractional differential equations
with derivatives of orders α and β (α > β > 0, l − 1 < α ≤ l, l ∈ N, n − 1 < β ≤
n, n ∈ N) (

C Dα
0+y
)
(x) − λ

(
C Dβ

0+y
)

(x) = 0 (x > 0) (8.2.37)

consists of two groups of functions (see [KiSrTr06, p. 314])

yi (x) = xi Eα−β,i+1(λx
α−β) − λxα−β+i Eα−β,α−β+i+1(λx

α−β), i = 0, . . . , n − 1;
(8.2.38)

yi (x) = xi Eα−β,i+1(λx
α−β), i = n, . . . , l − 1. (8.2.39)

For multi-term equations with a greater number of derivatives, the system of funda-
mental solutions has also been found (see [KiSrTr06, pp. 319–321]). The correspond-
ing formulas are rather cumbersome. They have the form of series with coefficients
represented in terms of the Wright function 1�1.
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The inhomogeneous equation, corresponding to (8.2.33), can also be solved by
using the Laplace transform method. The solution is represented in the form

y(x) =
x∫

0

Gα1,...,αm (x − t) f (t)dt +
l−1∑
i=0

ci yi (x), (8.2.40)

where {yi (x)}, i = 0, . . . , l − 1, is the fundamental system of solutions of the homo-
geneous equation and

Gα1,...,αm (x) =
(
L−1

[
1

P(s)

])
(x) (8.2.41)

is the function determined by the inverse transform of the reciprocal to the quasi-
polynomial (an analogueofGreen’s function). In somecases the functionGα1,...,αm (x)
can be represented in an explicit form (see [KiSrTr06]).

In a similar way the Cauchy type problem for multi-term equations can be studied
using the Laplace transform method.

8.2.2 Ordinary FDEs with Variable Coefficients

Here we describe certain approaches concerning the solution of ordinary differential
equations with variable coefficients. All of them are related to the case when the
coefficients in the equations are power-type functions.

Let us consider first the following Cauchy type problem for the one-term differ-
ential equation with Riemann–Liouville fractional derivative:

(
Dα

0+y
)
(x) − λ(x − a)β y(x) = 0 (a < x ≤ b;α > 0, β > −{α}; λ ∈ R),

(8.2.42)(
Dα−k

0+ y
)
(a+) = bk (bk ∈ R; k = 1, . . . , n, n = −[−α]). (8.2.43)

As in the above considered case of the equations with constant coefficients, one
can prove that problem (8.2.42)–(8.2.43) is equivalent in the space Cn−α[a, b] to the
Volterra integral equation

y(x) =
n∑
j=1

b j (x − a)α− j

Γ (α − j + 1)
+ λ

Γ (α)

x∫

a

(x − a)β y(t)

(x − t)1−α
dt. (8.2.44)

By applying the successive approximation method and using formulas for fractional
integrals of power-type functions we can derive the following series representation
of the solution to (8.2.42)–(8.2.43):
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y(x) =
n∑
j=1

b j (x − a)α− j

Γ (α − j + 1)

[
1 +

∞∑
k=1

ck, j
(
λ(x − a)α+β

)k]
, (8.2.45)

where

ck, j =
k∏

r=1

Γ (r(α + β) − j + 1)

Γ (r(α + β) + α − j + 1)
.

Changing in the last product the index r to i = r − 1 we arrive at the representation
of the solution to (8.2.42)–(8.2.43) in terms of the three-parametric Mittag-Leffler
function (Kilbas–Saigo function) Eα,m,l(z) (see Sect. 5.2)

y(x) =
n∑
j=1

b j (x − a)α− j

Γ (α − j + 1)
Eα,1+β/α,1+(β− j)/α

(
λ(x − a)α+β

)
. (8.2.46)

In a similar way we can consider the Cauchy problem for the one-term fractional
differential equation with Caputo fractional derivative

(
CDα

0+y
)
(x) − λ(x − a)β y(x) = 0 (a ≤ x ≤ b;α > 0, β > −α; λ ∈ R),

(8.2.47)
y(k)(a) = dk (dk ∈ R; k = 0, . . . , n − 1, n − 1 < α < n). (8.2.48)

In this case theCauchyproblem (8.2.47)–(8.2.48) is equivalent in the spaceCn−1[a, b]
to the Volterra integral equation

y(x) =
n−1∑
j=0

d j (x − a) j

j ! + λ

Γ (α)

x∫

a

(x − a)β y(t)

(x − t)1−α
dt. (8.2.49)

Here, the successive approximation method gives the following representation (see
[KiSrTr06, p. 233]) of the solution to (8.2.46)–(8.2.47) in terms of the three-
parametric Mittag-Leffler function (Kilbas–Saigo function):

y(x) =
n−1∑
j=0

d j

j ! (x − a) j Eα,1+β/α,(β+ j)/α
(
λ(x − a)α+β

)
. (8.2.50)

The Cauchy type problem for the inhomogeneous equation corresponding to
Eq. (8.2.42) is treated via the differentiation formulas (of integer and fractional order)
for the three-parametric Mittag-Leffler function derived in [KilSai95b, GoKiRo98].
Let

α > 0, n − 1 < α < n, n ∈ N; β > −{α}; fr ,μr ∈ R,μr > −1, r = 1, . . . , k.
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Let us consider the Cauchy type problem for the inhomogeneous fractional differ-
ential equation with quasi-polynomial free term

(
Dα

0+y
)
(x) = λ(x − a)β y(x) +

k∑
r=1

fr (x − a)μr (a < x < b ≤ +∞; λ ∈ R),

(8.2.51)(
Dα− j

0+ y
)

(a+) = b j (b j ∈ R; j = 1, . . . , n). (8.2.52)

This problem has a unique solution in the space Iloc(a, b) of locally integrable func-
tions on (a, b) (see [KiSrTr06, pp. 251–252])

y(x) = y0 +
n∑
j=1

b j

Γ (α − j + 1)
(x − a)α− j Eα,1+β/α,(β− j)/α

(
λ(x − a)α+β

)
,

(8.2.53)
where

y0 =
k∑

r=1

frΓ (μr + 1)

Γ (μr + α + 1)
(x − a)α+μr Eα,1+β/α,(β+μr )/α

(
λ(x − a)α+β

)
. (8.2.54)

TheMellin transformmethod is applied to solve the following fractional differen-
tial equations with power-type coefficients (which are sometimes called Euler type
fractional equations, see, e.g. [Zhu12, ZhuSit18])

m∑
k=0

Akx
α+k
(
Dα+k

0+ y
)
(x) = f (x) (x > 0,α > 0). (8.2.55)

In this case one can use the following property of the Mellin transform

(Mxα+k
(
Dα+k

0+ y
))

(s) = Γ (1 − s)

Γ (1 − s − α − k)
(My) (s).

Hence by applying the Mellin transform to (8.2.55), one obtains the solution in the
form of a Mellin convolution (see, e.g. [KiSrTr06, p. 330])

y(x) =
∞∫

0

Gα(t) f (xt)dt, (8.2.56)

where the Mellin fractional analogue of Green’s function Gα(x) is given by the
formula

Gα(x) =
(
M−1

[
1

Pα(1 − s)

])
, Pα(s) =

m∑
k=0

Ak
Γ (s)

Γ (s − α − k)
. (8.2.57)
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In some cases it is possible to determine an explicit representation of the analogue of
Green’s function (and thus an explicit solution to Eq. (8.2.55)) (see, e.g. [KilZhu08,
KilZhu09a, KilZhu09b]). For instance, in the case m = 1, the corresponding ana-
logue of Green’s function Gα,λ(x) for the equation

xα+1
(
Dα+1

0+ y
)
(x) + λxα

(
Dα

0+y
)
(x) = f (x) (α > 0,λ ∈ R) (8.2.58)

has the form

Gα(x) = Gα,λ(x) (8.2.59)

= x−α

{
Γ (1 − λ)

Γ (α + 1 − λ)
xλ−1 − 1�2

[
(1 − λ, 1)
(α,−1), (2 − λ, 1)

∣∣∣∣− x

]}
.

8.2.3 Other Types of Ordinary Fractional Differential
Equations

In [KiSrTr06] fractional ordinary differential equations with another type of frac-
tional derivative have been considered.

Here we focus on only a few of them which are solved in an explicit form.
Let us consider the following Cauchy type problem:

(Dα
a+y
)
(x) − λy(x) = f (x) (a < x ≤ b, α > 0, λ ∈ R), (8.2.60)

(Dα−k
a+ y

)
(a+) = bk (bk ∈ R, k = 1, . . . , n, n = −[−α]) (8.2.61)

where f ∈ Cγ,log[a, b] := {g : (a, b] → R : [log (x/a)g(x)
] ∈ C[a, b] and Dα

a+ is
the Hadamard fractional derivative

(Dα
a+y
)
(x) =

(
x
d

dx

)n 1

Γ (n − α)

x∫

a

(
log

x

t

)n−α−1 y(t)dt

t
. (8.2.62)

Employing the same techniques as for one-term ordinary fractional differential equa-
tions with Riemann–Liouville fractional derivative, one can show that the Cauchy
type problem (8.2.60)–(8.2.61) is equivalent in the space Cn−α,log[a, b] to theVolterra
integral equation

y(x) =
n∑

k=1

bk
Γ (α − k + 1)

(
log

x

a

)α−k

+ λ

Γ (α)

x∫

a

(
log

x

t

)α−1
y(t)

dt

t
+ 1

Γ (α)

x∫

a

(
log

x

t

)α−1
f (t)

dt

t
. (8.2.63)
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By applying the method of successive approximation we obtain (see [KiSrTr06, p.
234]) the unique solution to theVolterra integral equation (and thus to theCauchy type
problem (8.2.60)–(8.2.61)) in terms of the two-parametric Mittag-Leffler function

y(x) =
n∑

k=1

bk
(
log

x

a

)α−k
Eα,α−k+1

[
λ
(
log

x

a

)α]

+
x∫

a

(
log

x

t

)α−1
Eα,α−k+1

[
λ
(
log

x

t

)α]
f (t)dt. (8.2.64)

The solution to the fractional ordinary differential equation

m∑
k=1

Ak (Dαk y) (x) + A0y(x) = f (x) (8.2.65)

(0 < α1 < . . . < αm, Ak ∈ R, k = 1, . . . ,m)

with the Riesz fractional derivative

(Dαy) (x) = 1

d1(l,α)

+∞∫

−∞

(
Δl

t y
)
(x)

|t |1+α
dt (l > α) (8.2.66)

is given (see, e.g., [KiSrTr06, p. 344–345]) in term of the Fourier convolution

y(x) =
+∞∫

−∞
GF

α1,...,αm
(x − t) f (t)dt. (8.2.67)

Here GF
α1,...,αm

is a fractional analogue of Green’s function, which has the following
form in the case of an equation with constant coefficients:

GF
α1,...,αm

(x) = 1

π

+∞∫

0

1[
m∑

k=1
Ak |τ |αk + A0

] cos τ x dτ . (8.2.68)

Finally, we single out an important class of so-called sequential fractional differ-
ential equations

(
Dnα

a+y
)
(x) +

n−1∑
k=0

ak(x)
(
Dkα

a+y
)
(x) = f (x) (8.2.69)
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treated, e.g., in [KiSrTr06, Chap. 7] by different methods. In the case of constant
coefficients the solution of the corresponding Cauchy type problem is given in terms
of the α-exponential function

eλz
α = zα−1Eα,α(λzα).

8.3 Optimal Control for Equations with Fractional
Derivatives and Integrals

In this section we present some results on the problem of fractional order optimal
control, mainly following [Pet19]. Since this subject and related topics (such as
stability, observability etc.) have attracted extended interest in the last few years we
do not pretend to give a complete presentation, but instead have restricted ourselves
to basic formulations and facts. Among the sources for further study we recommend
the reader to look at the paper in the 6th volume of the Handbook of Fractional
Calculus with Applications [HAND6]. There are several connections between the
fractional optimal control problem and the subject of this book. Thus in some special
cases the controller can be similar to what we obtain as the Laplace transform of
certain generalizations of the Mittag-Leffler function. Moreover, in the time domain
the fractional optimal control problem is reduced to a fractional differential equation.
For more details we refer to [Pod99, Chap. 9] (see also [Pod99a]).

8.3.1 Linear Fractional-Order Controllers

The fractional-order P I λDδ (known also as P I λDμ) controller (FOC) was proposed
in [Pod99a] as a generalization of the PID controller with integrator of real order λ
and differentiator of real order δ. The transfer function of such a parallel controller
in the Laplace domain has the form:

C(s) = U (s)

E(s)
= Kp + Ti s

−λ + Tds
δ, (λ, δ > 0), (8.3.1)

where Kp is the proportional constant, Ti is the integration constant and Td is the dif-
ferentiation constant. The internal structure of the fractional-order controller consists
of the parallel connection of the proportional, integration, and derivative part. The
transfer function (8.3.1) corresponds in the time domain to a fractional differential
equation of the form:

u(t) = Kpe(t) + Ti (D
−λe)(t) + Td(D

δe)(t). (8.3.2)
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Particular cases of the fractional-order controller, which is more flexible, give an
opportunity to better adjust the dynamical properties of the fractional-order control
system.

A Matlab implementation of the FOC in discrete form is proposed and described
in [Pet11a].

8.3.2 Nonlinear Fractional-Order Controllers

In this subsection, a nonlinear fractional-order controller is defined. Following the
traditional structure of a nonlinear PID controller, which is well known in the litera-
ture, one can write a new formula for a nonlinear fractional-order P I λDδ controller
(NFOC) of the following form

u(t) = f (e)
[
Kpe(t) + Ti (D

−λe)(t) + Td(D
δe)(t)

]
, (8.3.3)

where f (e) is a function of the variable e.
Below various types of the nonlinear function f used in the definition of nonlinear

fractional order controllers are presented (see [Pet19]).

A. A commonly used function in such a definition (see, e.g. [Bob-et-al99]) is

f (e) = K0 + (1 − K0)|e(t)|, (8.3.4)

which leads to the linear controller (8.3.2) if K0 = 1. If K0 �= 1, then the con-
troller possesses 6 degrees of freedom (6DOF-controller).

B. Generalizing this kind of nonlinearity, various other piecewise linear functions
of nonlinear gain can also be used.

C. For desired low el and high eh control error bounds, we obtain a controller with
variable gain and the function f (e) is defined, for example, as in [Bob-et-al99]

f (e) =
⎧⎨
⎩
1 for e < el ,
K0 for e ∈ (el, eh), K0 ≥ 0,
1 for e > eh

(8.3.5)

When K0 = 0 within the interval (el , eh), the output of the controller does not
change and, therefore, the actuator behavior is much smoother.

D. It is also possible to consider a scaled error function to be in the form f (e) =
k(e) · e(t), where the nonlinear gain k(e) represents any general nonlinear func-
tion of the error e(t), which is bounded in a sector. In this case a general form
of the nonlinear fractional-order P I λDδ controller is the following:

u(t) = [Kp + Ti D
−λ + Td D

δ
]
f (e) (8.3.6)

= Kp(·)e(t) + Ti (·)D−λe(t) + Td(·)Dδe(t),
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where Kp(·), Ti (·), Td(·) are time-varying controller parameters, which may
depend on the system state, input, control error, or other variables (see, e.g.
[SuSuDu05]). It should be taken into account that by using the nonlinear con-
troller parameters as in Eq. (8.3.6), we obtain a controller with variable structure.
Controllers of such kind are often called super-twisting controllers. A nonlinear
fractional-order P I λDδ controller can also be tuned as a combination of the
linear and nonlinear parameters—for instance, pure gain for the proportional
part and a nonlinear time constant for integration and derivation constants, and
so on.

E. Another general modification of the nonlinear fractional-order PID controller
(8.3.3) is a controller with piecewise linear gain which depends on the signal
ν(t). Then the proportional controller gain is Kp = f (ν), where the piecewise
linear function f (v) can be defined as in A. or B.

When we take into account all possible nonlinear functions and all possible par-
ticular cases of the fractional-order controllers, we are presented with a new wide
class of controllers. This opens a new area of research and many questions are still
open. On the other hand, it is possible to turn to the experimental approach and
employ well-known tuning methods proposed for linear fractional-order controllers.
However, we still have to check the performance of a control loop via simulation
before applying the proposed controller to real objects in order to verify and vali-
date requirements on the control system. For Matlab implementation of the NFOC
with nonlinearity (8.3.4) in a discrete form, the function NFOC(·) can be used (see
[Pet15]).

8.3.3 Modification of the Control Actions in
Fractional-Order PID Controllers

In [Pet19], several modifications of the fractional-order control are described which
can be used in order to avoid such problems as wind-up effect, actuator saturation,
and derivative action limitation (see also [Pet12]). Let us list them:

(1) Filtering the desired value r(t). Here filtering the desired value r(t), known as
setpoint tracking, by a first- or second-order filter is a very frequently used trick
to avoid problems with derivative action. The first-order prefilter in the discrete
form

Hp(z) = k f

1 − k f z−1

is recommended, where k f is the prefilter constant.
(2) Using a controlled value in proportional and derivative parts of a controller.

The problem related to step changes of the control signal due to step changes of
the desired value r(t) can also be solved by replacing the control error e(t) =
r(t) − y(t) by the controlled value y(t).
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(3) Filtering the derivative action. Due to a noisy signal on the measured controlled
value, the differentiation of noise can involve inappropriate changes in the control
signal. For the first-order filter in the derivative part and with a genuine integral
action, we can write the transfer function of the fractional-order controller (in
the Laplace domain) in the following form:

C(s) = U (s)

E(s)
= Kp + Ti

s1−λ

s
+ Tdsδ

T f s + 1
, (λ, δ > 0), (8.3.7)

where T f = N
Td

is the filter constant.
(4) Limitation of integral action. This limitation (wind-up of the controller) is due to

the fact that the actuator also has limitations and, for instance, if the actuator is at
the end position and the control error is not zero, the integral part of the controller
rapidly grows, the controller calculates an unrealistic value of the control signal
and, therefore, the actuator stays at the end position until the sign of control error
is changed. There are different ways to avoid wind-up of the controllers.

Filtering can be also obtained automatically if the derivative is implemented by
taking the difference between the reference signal and its filtered version. Instead of
filtering just the derivative, it is also possible to use the usual controller and filter
the measured signal. The transfer function of the fractional order controller with the
filter is then

C(s) = U (s)

E(s)
= [Kp + Ti s

−λ + Tds
δ
] 1

T f s + 1
, (λ, δ > 0), (8.3.8)

where a σth order filter is used.

8.3.4 Further Possible Modifications of the Fractional-Order
PID Controllers

Besides the linear and nonlinear fractional-order PID controllers presented in pre-
vious subsections, there are many additional possible modifications. Below we list
just a few of them for illustration.

– Fractional-order PID controllers presented in [ValCos12]:

C(s) = Kp

(
1 + 1

Ti s

)λ

(1 + Tds)
δ , (8.3.9)

or

C(s) = Kp

(
1 + 1

Ti sλ

)
(1 + Tds)

δ . (8.3.10)
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– Fractional-order [PI] and [PD] controllers, respectively, introduced in [LuoChe13]:

C(s) =
(
Kp + Ti

s

)λ

, and C(s) = (Kp + Tds
)δ

, respectively, (8.3.11)

– Fractional-order PID controllers suggested in [PadVis15]:

C(s) = Kp
1 + Ti sλ

Ti sλ

(
1 + Tds

δ
)
, (8.3.12)

or

C(s) = Kp

(
1 + 1

Ti sλ
+ Tds

δ

)
1

1 + T f s
, (8.3.13)

or

C(s) = Kp
1 + Ti sλ

Ti sλ

1 + Tdsδ

1 + (Td/N )s
. (8.3.14)

8.4 Differential Equations with Fractional Partial
Derivatives

Partial fractional differential equations are of great theoretical and practical impor-
tance (see, e.g., [KiSrTr06, Chap. 6], [KilTru02] and the references therein). Recently
a number of books presenting results in this area have been published (e.g., [Die10,
Mai10, Psk06, Tar10, Uch13a, Uch13b]). One can find there different aspects of
the theory and applications of partial fractional differential equations. Indeed, we
have to note that this branch of analysis is far from complete. Furthermore, many
partial differential equations serve to describe some models in mechanics, physics,
chemistry, biology etc. Some of these equations will be discussed in the following
two chapters.

In this section we present a few results concerning the simplest fractional partial
differential equations. Our main focus will be on the one-dimensional diffusion-
wave equation (with Riemann–Liouville fractional derivative, see Sect. 8.4.1, and
with Caputo fractional derivative, see Sect. 8.4.2). The main idea is to present to
the reader elements of the techniques developed for fractional partial differential
equations. Some more specific equations dealing with certain models are presented
in the next two chapters. We point out here that the huge variety of fractional partial
differential equations and their methods of solution cannot be completely described
within the scope of a single chapter.
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8.4.1 Cauchy-Type Problems for Differential Equations with
Riemann–Liouville Fractional Partial Derivatives

The simplest partial differential equation with Riemann–Liouville fractional deriva-
tive is the so-called fractional diffusion equation

(
Dα

0+,t u
)
(x, t) = λ2 ∂2u

∂x2
(x ∈ R; t > 0;λ > 0;α > 0). (8.4.1)

Here Dα
0+,t is the Riemann–Liouville fractional derivative of order α with respect to

time t .
Partial differential equations where the Riemann–Liouville fractional derivative

are in time are supplied by initial conditions known as Cauchy-type conditions. Let
us consider Eq. (8.4.1) for 0 < α < 2. The Cauchy-type initial conditions then have
the form (

Dα−k
0+,t u

)
(x, 0+) = fk(x), x ∈ R, (8.4.2)

where k = 1 if 0 < α < 1, and two conditions with k = 1, 2 if 1 < α < 2.2

Theproblem (8.4.1)–(8.4.2) is usually solvedby themethodof integral transforms.
Let us apply to Eq. (8.4.1) successively the Laplace transformwith respect to the time
variable t

(Lt u) (x, s) =
∞∫

0

u(x, t)e−stdt (x ∈ R; s > 0),

and the Fourier transform with respect to the spatial variable x

(Fxu) (σ, t) =
+∞∫

−∞
u(x, t)ei xσdx (σ ∈ R; t > 0).

The Laplace transform of the Riemann–Liouville fractional derivative satisfies the
relation

(Lt D
α−k
0+,t u

)
(x, s) = sα (Lt u) (x, s) −

l∑
j=1

s j−1
(
Dα− j

0+,t u
)

(x, 0+), (x ∈ R),

(8.4.3)
where l − 1 < α ≤ l, l ∈ N. In the considered case (0 < α < 2)we take into account
the initial conditions (8.4.2) we get from (8.4.1)

2Note that for α = 1 Eq. (8.4.1) becomes the standard diffusion equation and the initial condition
(8.4.2) becomes the standard Cauchy condition.
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sα (Lt u) (x, s) =
k∑
j=1

s j−1 f j (x) + λ2

(
∂2

∂x2
Lt u

)
. (8.4.4)

Here either k = 1 or k = 2. For the Fourier transform the following relation is known

(
Fx

[
∂2u

∂x2

])
(σ, t) = −|σ|2 (Fxu) (σ, t). (8.4.5)

Thus applying the Fourier transform to (8.4.4) we get for k = 1 or k = 2

(FxLt u) (σ, s) =
k∑
j=1

s j−1

sα + λ2|σ|2 (σ ∈ R; s > 0). (8.4.6)

In order to obtain an explicit solution to problem (8.4.1)–(8.4.2) we use the inverse
Fourier and the inverse Laplace transform and corresponding tables of these trans-
forms. The final result reads (see, e.g., [KiSrTr06, Thm. 6.1]):
Let 0 < α < 2 and λ > 0. Then the formal solution of the Cauchy-type problem
(8.4.1)–(8.4.2) is represented in the form

u(x, t) =
k∑
j=1

+∞∫

−∞
Gα

j (x − τ , t) f j (τ )dτ , (8.4.7)

where k = 1 if 0 < α < 1, and k = 2 if 1 < α < 2,

Gα
j (x, t) = 1

2λ
tα/2− jϕ

(
−α

2
,
α

2
− j + 1;−|x |

λ
t−α/2

)
, ( j = 1, 2) (8.4.8)

where ϕ (a, b; z) is the classical Wright function (see Definition (7.1.1) in Chap.7).
The formal solution (8.4.7) becomes the real one if the integrals on the right-hand
side of (8.4.7) converge.

8.4.2 The Cauchy Problem for Differential Equations with
Caputo Fractional Partial Derivatives

As an example we consider here the Cauchy problem for the partial fractional dif-
ferential equation with Caputo derivative

(
CDα

0+,t u
)
(x, t) = λ2 ∂2u

∂x2
(x ∈ R; t > 0;λ > 0; 0 < α < 2). (8.4.9)
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This equation is a particular case of the so-called fractional diffusion-wave equation

(
CDα

0+,t u
)
(x, t) = λ2Δxu(x, t) (x ∈ R

n; t > 0;λ > 0; 0 < α < 2). (8.4.10)

The Eq. (8.4.9) is supplied by the Cauchy condition(s)

∂ku

∂xk
(x, 0) = fk(x) (x ∈ R), (8.4.11)

where k = 0, if 0 < α < 1, and two conditions with k = 0, 1, if 1 < α < 2; the 0th
order derivative means the value of the solution u at the points (x, 0).3

To solve the Cauchy problem (8.4.11) for the fractional differential equation
(8.4.9) we use the same method as in the previous subsection. We first apply the
Laplace integral transform with respect to the time variable t using the relation

(Lt
CDα

0+,t u
)
(x, s) = sα (Lt u) (x, s) −

k−1∑
j=0

sα− j−1 ∂ j u

∂t j
(x, 0), (8.4.12)

and then the Fourier transformwith respect to the spatial variable x using the relation
(8.4.5). Then in view of the Cauchy initial condition(s) we obtain from equation
(8.4.9)

(FxLt u) (σ, s) =
k−1∑
j=0

sα− j−1

sα + λ2|σ|2 (Fx fk) (σ). (8.4.13)

By using the inverse Fourier and the inverse Laplace transform and corresponding
tables of these transforms we get the final result in the form (see, e.g., [KiSrTr06,
Thm. 6.3]):
Let 0 < α < 2 and λ > 0. Then the formal solution of the Cauchy problem (8.4.9),
(8.4.11) is represented in the form

u(x, t) =
k−1∑
j=0

+∞∫

−∞
Gα

j (x − τ , t) f j (τ )dτ , (8.4.14)

where k = 1 if 0 < α < 1, and k = 2 if 1 < α < 2,

Gα
j (x, t) = 1

2λ
t j−α/2ϕ

(
−α

2
, j + 1 − α

2
;−|x |

λ
t−α/2

)
, ( j = 0, 1) (8.4.15)

3Note once again that for α = 1 Eq. (8.4.9) becomes the standard diffusion equation and the initial
condition (8.4.11) becomes the standard Cauchy condition.
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where ϕ (a, b; z) is the classical Wright function (see Definition (7.1.1)). The formal
solution (8.4.14) becomes the real one if the integrals on the right-hand side of
(8.4.14) converge.

8.5 Numerical Methods for the Solution of Fractional
Differential Equations

In previous sections we presented several results on fractional differential equations
forwhich theMittag-Leffler function either plays the role of the solution or is incorpo-
rated into oneor another construction related to the solution (for example, in fractional
analogs of Green’s function, see, e.g. [KiSrTr06]). For such a situation it is of great
interest to find an approximate scheme for the calculation of values of the Mittag-
Leffler function. In relation to this, wemention the numerical procedures proposed in
[GoLoLu02] (where algorithms for numerical evaluation of the Mittag-Leffler func-
tion and its derivatives for all α > 0, β ∈ R in the complex planeC are proposed), in
[GarPop13] (for evaluation of the function eα,β(t;λ) = tβ−1Eα,β(−tαλ) on the real
line), in [Gar15] (for approximate calculation of two- and three-parametric Mittag-
Leffler functions in different domains in the complex plane), and in [GaRoMa17]
(for a numerical study of the Le Roy type function). We also have to mention here
the paper [ZenChe14] in which the Padé approximation procedure is applied to cal-
culate Eα,β(−x) and its inverse for certain values of the parameters. Finally, we
mention [RaPaZv69], where the first table of values of the Mittag-Leffler function is
presented.

Another approach which is frequently used in the study of fractional and differ-
ential equations is to approximate the fractional differential or integral operators.
This direction goes back to brilliant works by Letnikov and Grünwald. We mention
here the papers [Let68a], [Let68b], [Gru67], as well as the book [LetChe11]. How-
ever, this approach is discussed more or less completely in any book on Fractional
Calculus.

Lastly, there are many approaches to fractional differential equations (mainly
nonlinear) by direct or indirect procedures. Some of these procedures are presented in
the survey byDiethelmon such numericalmethods included in the book [Bal-et-al17]
(see also [Die10], [Die-et-al05, Die19]).Webriefly outline below the essence of these
methods. Note that we apply the numerical methods to specific fractional differential
equations. Extension of these methods to other types of equations needs certain extra
techniques.
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8.5.1 Direct Numerical Methods

Let us consider the initial value problem for the nonlinear fractional differential
equation with the Caputo fractional derivative

CDα
0+y(x) = f (x, y(x)), x ∈ [0, T ], y(k)(0) = y(k)

0 (k = 0, 1, . . . , [α] − 1).
(8.5.1)

As was already mentioned, the first idea to construct a numerical scheme for the
solution is to approximate the fractional derivative using a grid of points 0 = x0 <

x1 < . . . < xm = X

CDα
0+y(xn) ≈

n∑
k=0

ak,n y(xk), (8.5.2)

which by replacing unknown values y(xk) by their approximate values yk leads to
the following system

n∑
k=0

ak,n yk = f (xn, yn), n = 1, 2, . . . . (8.5.3)

For simplicity we can consider the uniform grid on [0, X ]

x j = j

N
X ( j = 0, 1, . . . , N ); h = X/N . (8.5.4)

Thus the question is how to determine yk for k = 1, 2, . . . , N (y0 = y(0)
0 is already

prescribed by the initial conditions in (8.5.1)).
First we mention quadrature based direct methods. Since there is an evident

connection between the Caputo and the Riemann–Liouville fractional derivatives

CDα
0+y(x) = RLDα

0+

(
y

n−1∑
k=0

t k

k! y
(k)(0)

)
(x)

it is sufficient to discretize the Riemann–Liouville fractional operator. The latter
gives

hα
k∑
j=0

A j,k y j = f (xk, yk), k = 1, 2, . . . , N . (8.5.5)

With Ak,k = 1
Γ (2−α)

this leads to the following system of nonlinear equations

yk = Γ (2 − α)hα f (xk, yk) − Γ (2 − α)

k−1∑
j=0

A j,k y j , k = 1, 2, . . . , N . (8.5.6)
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This system has a unique solution if f is continuous, satisfies the Lipschitz condition
with respect to y with Lipschitz constant L and h < (Γ (2 − α)L)−1/α. Moreover
[Bal-et-al17, Thm. 2.6] the system (8.5.6) generates the solution to (8.5.1), satisfying

|y(x j ) − y j | = O
(
h2−α

)

uniformly for each j whenever y ∈ C2[0, X ]).

8.5.2 Indirect Numerical Methods

Thebasic idea for suchmethods is to reduce the initial boundary value problem (8.5.1)
to the following nonlinear Volterra equation with weakly singular kernel. It can be
obtained by applying the Riemann–Liouville integral operator Jα to the fractional
differential equation in (8.5.1) and taking into account the initial conditions:

y(x) =
[α]−1∑
k=0

y(k)
0

k! xk + (Jα f (·, y(·))) (x). (8.5.7)

It is known (see, e.g. [DieFor02]) that if the function f is continuous then every
continuous solution to (8.5.7) is a solution to (8.5.1) and vice versa.

Thefirst indirectmethodwemention is anAdams typepredictor-correctormethod,
which is based on the approximation of the integral operator in (8.5.7) by the product
trapezoid method (see [Bal-et-al17, (2.1.8-9)]). By this we arrive at the following
system of nonlinear equations

yk =
[α]−1∑
j=0

x j
k

k! y
( j)
0 + hα

k∑
j=0

a jk f (x j , y j ), k = 1, 2, . . . , N , (8.5.8)

where a j k are coefficients in the approximate formula for the integral operator Jα.
Relation (8.5.8) is called in [Bal-et-al17] a fractional Adams–Moulton formula.
Sufficient conditions for the unique solvability of the system (8.5.8) are given in
[Bal-et-al17, Thm. 2.8]. Based on the Adams–Moulton formula, the following iter-
ative procedure is proposed (which is known as the predictor-corrector method):

(1) Compute the so-called predictor, i.e. the first approximation yk,0 of the solution
yk of (8.5.8) by means of the O(h p−1)-order explicit algorithm.

(2) Determine the so-called corrector yk,1 by using a one step iteration via the
formula

yk,1 =
[α]−1∑
j=0

x j
k

k! y
( j)
0 + hα

k−1∑
j=0

a jk f (x j , y j ) + hαakk f (xk, yk,0) (8.5.9)

and use this value in place of the true solution yk in all further steps.
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The theory of numerical methods says that yk = yk,1 approximates the solution y(xk)
up to an error of order O(h p).

A modification of the above approach (known as the fractional Adams–Bashforth
method) appears when the product trapezoidal formula is replaced by the product
rectangle formula for approximation of the integral operator Jα.

Another modification of the above described predictor-corrector method is pro-
posed in [Den07] and is based on the idea of splitting the Riemann–Liouville integral
into subintervals and using the product rectangle formula only on the last subinterval
( j = k − 1) in order to obtain a suitable predictor yk,0 and then m-fold corrector.

8.5.3 Other Numerical Methods

Other numerical methods are also described in [Bal-et-al17, Chap. 2]. Among them
we point out linear fractional multistep methods (which originated in the paper by
Lubich [Lub85], see also [Lub86]).Wealsomention the article [ForCon06] inwhich a
comparison of the performance of the linear multistepmethods with other algorithms
for the approximate solution to fractional differential equations is provided.

A class of numerical methods is proposed and investigated in [ZayKar14] (which
can be called spectral methods). These are methods based on the expansion of the
solutions in terms of eigenfunctions of certain operators (for details, see [Bal-et-al17,
Sect. 2.5]).

From the classical books by Adomian [Ado89], [Ado94] follows the approach
known as the decomposition method. A comprehensive review of the new itera-
tive method (NIM) (which is an Adomian decomposition method) is presented in
[GejKum17], see also [Gej14].

Someothermethods are briefly discussed in [Bal-et-al17,Chap. 2] (see also the list
of references corresponding to the results presented in the above mentioned chapter).
These are the variational iteration method, which is initiated as an Adomian decom-
position from the study of abstract operator equations, the method of nonclassical
representations of FDO based on certain identities for fractional derivatives, col-
location methods, which are extensively used in the theory of nonlinear equations
and make use of a presentation of the unknown function via linear combinations of
basis functions in a properly chosen functional space, the method of the terminal
value condition, when one of the initial conditions is replaced by the condition at the
end-point of the considered interval.

8.6 Historical and Bibliographical Notes

The most simple integral equations of fractional order, namely the Abel integral
equations of the first kind, were investigated by Abel himself [Abe26a]. Abel inte-
gral equations of the second kind were studied by Hille and Tamarkin [HilTam30].
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In this paper for the first time the solution was represented via the Mittag-Leffler
function. The interested reader is referred to [SaKiMa93], [CraBro86], [GorVes91],
and [Gor96], [Gor98] for historical notes and detailed analyses with applications.

It is well known that Niels Henrik Abel was led to his famous equation by the
mechanical problem of the tautochrone, that is by the problem of determining the
shape of a curve in the vertical plane such that the time required for a particle to slide
down the curve to its lowest point is equal to a given function of its initial height
(which is considered as a variable in an interval [0, H ]). After appropriate changes of
variables he obtained his famous integral equation of the first kind with α = 1/2. He
did, however, solve the general case 0 < α < 1. As a special case Abel discussed the
problem of the isochrone, in which it is required that the time taken for the particle
to slide down is independent of the initial height. Already in his earlier publication
[Abe23] he had recognized the solution as a derivative of non-integer order.We point
out that integral equations of Abel type, including the simplest (8.1.1) and (8.1.14),
have found so many applications in diverse fields that it is almost impossible to
provide an exhaustive list of them.

Abel integral equations occur in many situations where physical measurements
are to be evaluated. In many of these the independent variable is the radius of a circle
or a sphere and only after a change of variables does the integral operator take the
form Jα , usually with α = 1/2 , and the equation is of the first kind. Applications
are, for example, in the evaluation of spectroscopic measurements of cylindrical gas
discharges, the study of the solar or a planetary atmosphere, the investigation of
star densities in a globular cluster, the inversion of travel times of seismic waves
for the determination of terrestrial sub-surface structure, and spherical stereology.
Descriptions and analyses of several problems of this kind can be found in the books
by Gorenflo and Vessella [GorVes91] and by Craig and Brown [CraBro86], see also
[Gor96]. Equations of the first and of the second kind, depending on the arrangement
of the measurements, arise in spherical stereology. See [Gor98] where an analysis of
the basic problems and many references to the previous literature are given.

Another field in which Abel integral equations or integral equations with more
general weakly singular kernels are important is that of inverse boundary value
problems in partial differential equations, in particular parabolic ones in which the
independent variable naturally has the meaning of time.

A number of integral equations similar to the Abel integral equation of the second
kind are discussed in the book by Davis [Dav36, Chap. 6].

In this part of the historical overviewof solutions of linear andnon-linear fractional
differential equations we partly follow the survey papers [KilTru01], [KilTru02], and
the books [KiSrTr06] and [Die10].

The paper ofO’Shaughnessay [O’Sha18]was probably thefirstwhere themethods
for solving the differential equation of half-order

(D1/2y)(x) = y

x
(8.6.1)
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were considered. Two solutions of such an equation

y(x) = x−1/2e−1/x (8.6.2)

and a series solution

y(x) = 1 − i
√

πx−1/2e−1/x + x−1/2e−1/x
∫ x

−∞
t3/2e1/tdt

= 1 − i
√

πx−1/2 − 2x−1 + i
√

πx−3/2 + · · · (8.6.3)

were suggested by O’Shaughnessay and discussed later by Post [Pos19]. Their argu-
ments were formal and based on an analogy with the Leibnitz rule, which for the
Riemann–Liouville fractional derivative has the form

(
Dα

0+( f g)
)
(x) =

∞∑
k=0

Γ (α + 1)

Γ (α − k + 1)k! (D
α−k
0+ f )(x)g(k)(x). (8.6.4)

As was proved later (see, e.g. [MilRos93, pp. 195–199]), (8.6.2) is really a solution
of the Eq. (8.6.1)

(D1/2
0+ y)(x) = y

x
(8.6.5)

with the Riemann–Liouville fractional derivative D1/2
0+ y.

As for (8.6.3), it is not a solution of the equation (8.6.1) with Dα = Dα
a+, a being

any real constant, because O’Shaughnessay and Post made a mistake while using the
relation for the composition of I 1/2D1/2y. Such a relation for the Riemann–Liouville
derivative Dα

a+y has the form

(Iα
a+D

α
a+y)(x) = y(x) −

n∑
k=1

Bk
(x − a)α−k

Γ (α − k + 1)
, (8.6.6)

where

Bk = y(n−k)
n−α (a), yn−α(x) = (I n−α

a+ y)(x), (α ∈ C n = [Re(α)] + 1), (8.6.7)

in particular,

(Iα
a+D

α
a+y)(x) = y(x) − B

(x − a)α−1

Γ (α)
, B = y1−α(a), (8.6.8)
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for 0 < Re(α) < 1. O’Shaughnessay and Post applied (8.6.8) forα = 1/2 and a = 0
by considering the constant B instead of the monomial Bx−1/2 (see, e.g., [KilTru01,
Sect. 3]).

Mandelbroit [Man25] arrived at a differential equation of fractional order when
he investigated an extremum problem for the functional

∫ 1

0
F[Dα

a+y(x); x]dx

with the Riemann–Liouville fractional derivative Dα
a+y(x). He had assumed that the

corresponding variations are equal to zero and obtained the differential equation with
Cauchy conditions

dF ≡ F[Dα
a+y(x); x] = 0, y(k)(a) = bk (k = 1, 2, · · · , n). (8.6.9)

Fujiwara [Fuj33] considered the differential equation of fractional order

(Dα
+y)(x) =

(α

x

)α

y(x) (8.6.10)

with the Hadamard fractional derivative of order α > 0 defined as followed

(Dα
+y)(x) =

(
d

dx

)n 1

Γ (n − α)

∫ x

0

y(t)dt

t (log(x/t))α−n+1
(n = [α] + 1), (8.6.11)

with n ∈ N = {1, 2, . . .} and α /∈ N. He obtained a formal solution of (8.6.10) in the
form of the Mellin–Barnes integral

y(x) = 1

2πi

∫ γ+i∞

γ−i∞
[Γ (s)xs]αds (γ > 0), (8.6.12)

and proved that y(x) has the following asymptotics at zero

y(x) ∼ Axλe−μ/x , (8.6.13)

with

A = 1√
α

(2π)(α−1)/2, λ = α − 1

2
, μ = α. (8.6.14)

Pitcher and Sewell [PitSew38] first considered the non-linear FDE

(Dα
a+y)(x) = f (x, y(x)) (0 < α < 1, a ∈ R) (8.6.15)
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with the Riemann–Liouville fractional derivative Dα
a+y provided that f (x, y) is

bounded in the special region G lying in R × R (R = (−∞,∞)) and satisfies the
Lipschitz condition with respect to y:

| f (x, y1) − f (x, y2)| ≤ A|y1 − y2|, (8.6.16)

where the constant A > 0 does not depend on x . They tried to prove the uniqueness
of a continuous solution y(x) of such an equation on the basis of the corresponding
result for the non-linear integral equation

y(x) − 1

Γ (α)

∫ x

a

f [t, y(t)]dt
(x − t)1−α

= 0 (x > a; 0 < α < 1). (8.6.17)

But the result of Pitcher and Sewell given in [PitSew38, Theorem 4.2] is not correct
since they made the same mistake as O’Shaughnessay [O’Sha18] and Post [Pos19]
by using the relation Iα

a+Dα
a+y = y instead of (8.6.8).

However, the paper of Pitcher and Sewell [PitSew38] contained the idea of the
reduction of the fractional differential equation (8.6.15) to the Volterra integral equa-
tion (8.6.17).

Al-Bassam [Al-B65] first considered the following Cauchy-type problem

(Dα
a+y)(x) = f (x, y(x)) (0 < α ≤ 1), (8.6.18)

(Dα−1
a+ y)(x)|x=a ≡ (I 1−α

a+ y)(x)|x=a = b1, b1 ∈ R, (8.6.19)

in the space of continuous functions C[a, b] provided that f (x, y) is a real-
valued, continuous and Lipschitzian function in a domain G ⊂ R × R such that
sup(x,y)∈G | f (x, y)| = b0 < ∞. Applying the operator Iα

a+ to both sides of (8.6.18),
using the relation (8.6.8) and the initial conditions (8.6.19), he reduced (8.6.18)–
(8.6.19) to the Volterra non-linear integral equation

y(x) = b1(x − a)α−1

Γ (α)
+ 1

Γ (α)

∫ x

a

f [t, y(t)]dt
(x − t)1−α

(x > a; 0 < α ≤ 1). (8.6.20)

Using the method of successive approximations he established the existence of a
continuous solution y(x) of the Eq. (8.6.20). Furthermore, he was probably the first
to indicate that the method of contracting mapping can be applied to prove the
uniqueness of this solution y(x) of (8.6.20), and gave such a formal proof. Al-Bassam
also indicated—but did not prove—the equivalence of the Cauchy-type problem
(8.6.18)–(8.6.19) and the integral equation (8.6.20), and therefore his results on the
existence and uniqueness of the continuous solution y(x), formulated in [Al-B65,
Theorem 1], could be true only for the integral equation (8.6.20). We also note that
the conditions suggested by Al-Bassam are not suitable to solve the Cauchy-type
problem (8.6.18)–(8.6.19) in the simplest linear case when f [x, y(x)] = y(x).
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The same remarks apply to the existence and uniqueness results formulated with-
out proof in [Al-B65, Theorems 2, 4, 5, 6] for a more general Cauchy-type problem
of the form (8.6.18)–(8.6.19) with real α > 0:

(Dα
a+y)(x) = f (x, y(x)) (n − 1 < α ≤ n, n = −[−α]), (8.6.21)

(Dα−k
a+ y)(x)|x=a = bk, bk ∈ R (k = 1, 2, · · · , n), (8.6.22)

where the corresponding Volterra equation has the form (8.6.20):

y(x) =
n∑

k=1

bk(x − a)α−k

Γ (α − k + 1)
+ 1

Γ (α)

∫ x

a

f [t, y(t)]dt
(x − t)1−α

(x > a; n − 1 < α ≤ n)

(8.6.23)

for the system of equations (8.6.18) and for non-linear fractional equations more
general than (8.6.18)

(Dnα
a+y)(x) =

f
(
x, y(x), (Dα

a+y)(x), (D
2α
a+y)(x), · · · , (D(n−1)α

a+ y)(x)
)

(0 < α ≤ 1) (8.6.24)

and linear fractional equations

n∑
k=0

ck(x)(D
(n−k)α
a+ y)(x) = f (x), (0 < α ≤ 1) (8.6.25)

for continuous f (x, x1, x2, · · · , xm) and f (x), pk(x) (0 ≤ k ≤ m) and under the
initial conditions

(Dkα−1
a+ y)(x)|x=a = bk (k = 1, 2, · · · , n). (8.6.26)

The above and some other results were presented in Al-Bassam [Al-B82]–
[Al-B87]. Cauchy-type problems for non-linear ordinary differential equations of
fractional order have been studied by many authors (in particular, developing Al-
Bassam’s method). An extended bibliography on subject is presented in the survey
paper [KilTru01], and in the book [KiSrTr06].

Cauchy-type problems for linear ordinary differential equations of fractional order
were investigated mainly by using the method of reduction to Volterra integral equa-
tions. First, we have to mention the paper by Barrett [Barr54], which first considered
the Cauchy-type problem for the linear differential equation with the Riemann–
Liouville fractional derivative on a finite interval (a, b) of the real axis
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(Dα
a+y)(x) − λy(x) = f (x) (n − 1 ≤ Re(α) < n; λ ∈ C), (8.6.27)

(Dα−k
a+ y)(x)|x=a+ = bk ∈ C (k = 1, 2, · · · , n) (8.6.28)

n = [Re(α)] + 1, α �= n − 1.Heproved that if f (x)belongs to L(a, b)or L(a, b)
⋂

C(a, b], then the problem has a unique solution y(x) in some subspaces of L(a, b)
and this solution is given by

y(x) =
n∑

k=1

bk(x − a)α−k Eα,α−k+1 (λ(x − a)α)

+
∫ x

a
(x − t)α−1Eα,α (λ(x − t)α) f (t)dt (8.6.29)

where Eα,β(z) is the two-parametric Mittag-Leffler function. Barrett’s argument was
based on the formula (8.6.6) for the product Iα

a+Dα
a+ f . From (8.6.29)Barrett obtained

the unique solution

y(x) =
n∑

k=1

bk(x − a)α−k Eα,α−k+1 (λ(x − a)α) (8.6.30)

of the Cauchy-type problem for the homogeneous equation ( f (x) = 0) correspond-
ing to (8.6.27):

(Dα
a+y)(x) − λy(x) = 0 (n − 1 ≤ Re(α) < n), (8.6.31)

(Dα−k
a+ y)(x)|x=a+ = bk ∈ C (k = 1, 2, · · · , n). (8.6.32)

He also proved the uniqueness of the solution y(x) of the simplest such Cauchy-type
problem (8.6.31)–(8.6.32) with 0 < α < 1 and λ = −1. Barrett implicitly used the
method of reduction of the Cauchy-type problem (8.6.27)–(8.6.28) to the Volterra
integral equation of the second kind and the method of successive approximations.

Dzhrbashian and Nersesyan [DzhNer68] studied the linear differential equation
of fractional order

(Dσ y)(x) ≡ (Dσn y)(x) +
n−2∑
k=0

ak(x)(D
σn−k−1 y)(x) + an(x)y(x) = f (x) (8.6.33)

with sequential fractional derivatives (Dσ y)(x) and (Dσn−k−1 y)(x) (k = 0, 1, · · · ,

n − 1) defined in terms of the Riemann–Liouville fractional derivatives. Here, the
term “sequential” means that the orders of the derivatives are related in the following
manner:
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σk =
k∑
j=0

α j − 1 (k = 0, 1, · · · , n); 0 < α j ≤ 1 ( j = 0, 1, · · · , n), (8.6.34)

(αk = σk − σk−1 (k = 1, 2, · · · , n), α0 = σ0 + 1) .

They proved that for α0 > 1 − αn the Cauchy-type problem

(Dσ y)(x) = f (x), (Dσk y)(x)|x=0 = bk (k = 0, 1, · · · , n − 1) (8.6.35)

has a unique continuous solution y(x) on an interval [0, d] provided that the functions
ak(x) (0 ≤ k ≤ n − 1) and f (x) satisfy some additional conditions. In particular,
when ak(x) = 0 (k = 0, 1, · · · , n), they obtained the explicit solution

y(x) =
n−1∑
k=0

bkxσk

Γ (1 + σk)
+ 1

Γ (σn)

∫ x

a
(x − t)σn−1 f (t)dt (8.6.36)

of the Cauchy-type problem

(Dσn y)(x) = f (x), (Dσk y)(x)|x=0 = bk (k = 0, 1, · · · , n − 1). (8.6.37)

Laplace transform methods for ordinary fractional differential equations have
successfully been used by many authors. Maravall [Mara71] was probably the first
who suggested a formal approach based on the Laplace transform to obtain the
explicit solution of a particular case of the equation

m∑
k=1

ck(D
αk
a+y)(x) + c0y(x) = f (x) (0 < Re(α1) < Re(α2) < · · · < Re(αm)),

(8.6.38)

wherem ≥ 1, Dαk
a+y (k = 1, 2, · · · ,m), are theRiemann–Liouville fractional deriva-

tives, and ck �= 0, (k = 0, 2, · · · ,m), are real or complex constants. However, since
this paper was published in Spanish, it was practically unknown. Later the method
of Laplace transforms was used in a different form, based on the main properties
of the Laplace transform (see, e.g., [Doe74] and [DitPru65]) and the analytic prop-
erties of so-called characteristic quasi-polynomials. Special attention was paid to
this approach in recent FDA-Congresses and FDTAs symposiums (see [Adv-07],
[NewTr-10] and references therein, as well as [KilTru01], and the books [KiSrTr06],
[Cap-et-al10]).

The operational calculus method for ordinary differential equations of fractional
order is based on the interpretation of the Laplace convolution

( f ∗ g)(x) =
∫ x

0
f (x − t)g(t)dt (8.6.39)
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as a multiplication of elements f and g in the ring of continuous functions on the
half-axis R+ (see, e.g., [Mik59]). In [LucSri95], the operational calculus for the
Riemann–Liouville fractional derivative Dα

0+y was constructed. This method was
generalized and developed by several authors (see [KilTru01]). This calculus was
applied to the solution of Cauchy-type problems for fractional differential equations
of a special kind.

The idea of the composition method for ordinary differential equations of frac-
tional order is based on the known formula for the Riemann–Liouville fractional
derivative

(Dα
a+(t − a)β−1)(x) = Γ (β)

Γ (β − α)
(x − a)β−α−1 (Re(β) > Re(α) > 0) (8.6.40)

(see [SaKiMa93, (2.26) and (2.35)]). These arguments lead us to the conjecture
that compositions of fractional derivatives and integrals with elementary functions
can give exact solutions of differential and integral equations of fractional order.
Moreover, from here we deduce another possibility concerning such results for com-
positions of fractional calculus operators with special functions. It allows us to find
the exact solutions of new classes of differential and integral equations of fractional
order. Thismethodwas developed byA.Kilbaswith co-authors and uses composition
of Riemann–Liouville fractional operators with different types of special functions
(in particular, the three parametricMittag-Leffler function, or the Kilbas–Saigo func-
tion, see, e.g. [KilSai95a] and [KiSrTr06] and the references therein).

The above investigations were devoted to the solution of the fractional differential
equations with the Riemann–Liouville fractional derivative Dα

a+y on a finite interval
[a, b] of the real axisR. Such equations with the Caputo fractional derivative C Dα

a+y
have not been studied extensively. Gorenflo and Mainardi [GorMai96] applied the
Laplace transform to solve the fractional differential equation

(
C Dα

0+y
)
(x) − λy(x) = f (x) (x > 0; a > 0;λ > 0)

with the Caputo fractional derivative of order α > 0 and with the initial conditions

y(k)(0) = bk (k = 0, 1, . . . , n − 1; n − 1 < α ≤ n; n ∈ N).

They discussed the key role of the Mittag-Leffler function for the cases 1 < α < 2
and 2 < α < 3. In relation to this, see also the papers by Gorenflo and Mainardi
[GorMai97], Gorenflo and Rutman [GorRut94], and Gorenflo et al. [GoMaSr98].
Luchko and Gorenflo [LucGor99] used the operational method to prove that the
above Cauchy problem has a unique solution in terms of theMittag-Leffler functions
in a special space of functions on the half-axis R+. They also obtained the explicit
solution to the Cauchy problem for the more general fractional differential equation
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(
C Dα

0+y
)
(x) −

m∑
k=1

ck
(
C Dαk

0+y
)
(x) = f (x) (α > α1 > . . . > αm ≥ 0)

via certain multivariate Mittag-Leffler functions.
It was probably Dzhrbashian [Dzh70] who first considered the Dirichlet-type

problem for the integro-differential equations of fractional order. The problem is to
find the solution y(x) (in L(0, T ) or in L2(0, T )) on a finite interval (0, T ) of the
following equation

(Dσ y)(x) − [λ + q(x)]y(x) = 0 (0 < x < T ), (8.6.41)

where the operator Dσ is defined in terms of theRiemann–Liouville fractional deriva-
tives and integrals with a = 0, which satisfy the initial conditions

a(I 1−α0
0+ y)(x)|x=0 + b(I 1−α1

0+ y)(x)|x=0 = 0, (8.6.42)

and

c(I 1−α0
0+ y)(x)|x=T + d(I 1−α1

0+ y)(x)|x=T = 0, (8.6.43)

with Lipschitzian q(x) and real a, b, c and d such that a2 + b2 = 1 and c2 + d2 = 1.
When α0 = α1 = α2 = 1 the problem (8.6.41), (8.6.42)–(8.6.43) is reduced to the
Sturm–Liouville problem for the ordinary differential equation of second order:

y′′(x) − [λ + q(x)]y(x) = 0 (0 < x < T ), ay(0) + by(0) = 0, cy(T ) + by(T ) = 0.
(8.6.44)

In particular, the latter problem is reduced to the study of the distribution of zeros
for different types of special functions (two- and multi-parametric Mittag-Leffler
functions among them). The approach was developed in a series of articles (see, e.g.,
[Ale82], [Ale84], [Del94], [Djr93], [Nak74], [Nak77], [Veb88]).

The well-known space S of Schwartz test functions, which are infinitely differen-
tiable and rapidly vanish at infinity together with all derivatives, as well as the space
C∞
0 ⊂ S of infinitely differentiable functionswith compact support, is not completely

adapted for fractional derivatives and integrals. Although fractional derivatives and
integrals of functions from these spaces are infinitely differentiable, they do not have
sufficiently good behavior at infinity. Therefore differential equations of fractional
order have to be studied in some spaces of test and generalized functions which are
invariant with respect to fractional differentiation and integration. A series of results
of this type was described in the survey paper [KilTru02]. Some other methods and
results for linear and non-linear ordinary differential equations of fractional order
are also presented.

In Sect. 8.3 wemainly follow a survey paper by I. Petráš [Pet19] in the 6th volume
of the Handbook of Fractional Calculus with Applications (see also [Pet11], as well
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as the papers in the above mentioned volume [HAND6] and references therein). We
mention here some specific results in the area of fractional order control.We also note
that there are several connections of the fractional optimal control problem to the
subject of this book. Thus in some special cases the controller can be similar to what
we obtain as the Laplace transform of certain generalizations of the Mittag-Leffler
function. Moreover, in the time domain the fractional optimal control problem is
reduced to a fractional differential equation. For more details we refer to [Pod99,
Chap. 9] (see also [Pod99a]). Not all cases of fractional order control problems are
solved by means of generalizations of the Mittag-Leffler function. We hope that our
presentation of some fractional optimal control models will give some perspective
on applications of the Mittag-Leffler function in this area.

Close to the above direction is the study of extremal problems (optimal control
problems in a fractional context), which involve the optimization of a certain func-
tional on a set of solutions to a fractional order dynamical system. In [BerBou18]
attention is paid to a general optimal control problem involving a dynamical system
described by a nonlinear Caputo fractional differential equation of order 0 < α ≤ 1,
associated to a general Bolza cost written as the sum of a standard Mayer cost and a
Lagrange cost given by a Riemann–Liouville fractional integral of order β ≥ α. The
thesis [Tep17] is devoted to the study of fractional-order calculus-basedmodeling and
control of dynamic systems with process control applications. In particular, methods
for time and frequency domain identification of fractional order models are proposed
and discussed. These methods largely form the foundation of model-based control
design, which constitutes the next part of the thesis, where newmethods dealing with
optimization of fractional controllers as well as stabilization of unstable systems are
presented. Implementation of fractional-order systems and controllers is also investi-
gated, as it is especially important in real-time control applications. All the methods
discussed are then presented in the context of a fractional-order modeling and control
framework developed for the MATLAB/Simulink environment.

The classification of linear and non-linear partial differential equations of frac-
tional order is still far from complete. Several results for partial differential equations
are described in [KilTru02] (see also [KiSrTr06]). Among these results we mention
the pioneering work by Gerasimov [Ger48] and recent books [Die10], [Mai10]. This
area is rapidly growing since most of the results are related to different types of
applications. Therefore it is impossible to describe all existing results.

We also mention here several contributions by different authors. In addition
to the above cited work we indicate the papers by Veber ([Veb74]–[Veb85b]),
Malakhovskya and Shikhmanter [MalShi75] (see also [KiSrTr06]), where ordinary
fractional differential equations are studied in spaces of generalized functions. In this
regard, see Sects. 2 and 3 of the survey paper byKilbas and Trujillo [KilTru02]. Some
authors have constructed formal partial solutions to ordinary differential equations
with other fractional derivatives. Nishimoto [Nis84, Volume II, Chap. 6], Nishimoto
et al. [NiOwSr84], Srivatsava et al. [SrOwNi84], [SrOwNi85] and Campos [Cam90]
constructed explicit solutions of some particular fractional differential equations
with the so-called fractional derivatives of complex order (see, for example, Samko
et al. [SaKiMa93, Sect. 22.1]). A series of papers by Wiener (see, e.g. [Wie79])
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were devoted to the investigation of ordinary linear fractional differential equations
and systems of such equations involving the fractional derivatives defined in the
Hadamard finite part sense (see, for example, [KilTru02, Sect. 4]). We also note
that many authors have applied methods of fractional integro-differentiation to con-
struct solutions of ordinary and partial differential equations, to investigate integro-
differential equations, and to obtain a unified theory of special functions. Themethods
and results in these fields are presented in Samko et al. [SaKiMa93, Chap.8]) and
in Kiryakova [Kir94]. We mention here the papers by Al-Saqabi [Al-S95], by Al-
Saqabi andVuKimTuan [Al-STua96] and byKiryakova andAl-Saqabi [Al-SKir98],
[KirAl-S97a], [KirAl-S97b],where solutions in closed formwere constructed for cer-
tain integro-differential equations with the Riemann–Liouville and Erdelyi–Kober-
type fractional integrals (see also [KeScBe02a, Prus93, Sne75, Fuj90a]).

In [Hil02] the infinitesimal generator of time evolution in the standard equation
for exponential (Debye) relaxation is replaced with the infinitesimal generator of
composite fractional translations. Composite fractional translations are defined as a
combination of translation and the fractional time evolution. The fractional differen-
tial equation for composite fractional relaxation is solved. The resulting dynamical
susceptibility is used to fit broadband dielectric spectroscopy data of glycerol. The
composite fractional susceptibility function can exhibit an asymmetric relaxation
peak and an excess wing at high frequencies in the imaginary part.

The numerical methods applied are discussed in Sect. 8.5, and are based on
[Bal-et-al17, Chap. 2]. Other sources for the complete discussion can be found in the
list of references of the above book as well as in the papers mentioned in Sect. 8.5.

Lastly, we refer interested researchers to the second volume of the Handbook
of Fractional Calculus with Applications [HAND2], which is devoted to the study
of fractional differential equations. In particular, attempts to construct the general
theory of fractional partial differential equations are presented in the papers [Koc19b,
Koc19c, Koc19d] by A. Kochubei in this volume, see also [Koc12a, Koc12b].

8.7 Exercises

8.7.1 ([Dav36, p. 280]) Show that the integral equation

u(x) = μx1−α

Γ (2 − α)
− λ

Γ (1 − α)

∫ x

0

u(t)dt

(x − t)α

has a solution
u(x) = μ

λ
− μ

λ
Eβ(−λxβ), β = 1 − α.

8.7.2 ([Dav36, p. 282]) Show that the equation

u(x) +
∫ x

0

tu(t)dt

(x − t)1/2
= f (x)
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is equivalent to

u(x) − π

2

∫ x

0
t (x + t)u(t)dt = F(x),

where

F(x) = f (x) − √
πxD1/2

0+ f (x) + 1

2

√
πD3/2

0+ f (x).

8.7.3 ([Dav36, p. 282]) Show that the equation

u(x) +
∫ x

0

t2u(t)dt

(x − t)2/3
= f (x)

is equivalent to

u(x) + Γ 3(1/3)

243

∫ x

0
t2(44x4 + 40x3t + 75x2t240xt3 + 44t4)u(t)dt = F(x),

where

F(x) = f (x) + Γ (1/3)
[
x2D1/3

0+ f (x) − 2
3 xD

4/3
0+ f (x) + 4

9 xD
7/3
0+ f (x)

]

+ Γ 2(2/3)
[
x4D2/3

0+ f (x) − 2x3D5/3
0+ f (x) + 34

9 x
2D8/3

0+ f (x)

− 16
3 xD

11/3
0+ f (x) + 352

81 D14/3
0+ f (x)

]
.

8.7.4 ([PolMan08, Eq.3.1–6.44]) Solve the following integral equation

1∫

0

y(xt)√
1 − t

dt = f (x), 0 < x < 1.

Hint. Reduce to the Abel integral equation of the first kind.

8.7.5 ([PolMan08, Eq.3.1–6.46]) Solve the following integral equation

1∫

0

tμy(xt)

(1 − t)λ
dt = f (x), 0 < x < 1 (μ ∈ R, 0 < λ < 1).

Hint. Reduce to the Abel integral equation of the first kind.

8.7.6 ([GorVes91, (7.2.8)]) Find an explicit solution to the so-called test Abel inte-
gral equation of the second kind
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u(x) = 1 + λ

Γ (α)

x∫

0

u(t)dt

(x − t)1−α
dt = f (x), 0 < x < 1 (0 < α < 1).

8.7.7 ([GorVes91, p. 142]) Solve the integral equation of heat conduction in a semi-
infinite rod

ϕ(t) = 2c√
π

√
t − c√

π

t∫

0

ϕ(τ )√
t − τ

dτ , t ≥ 0.

8.7.8 ([KiSrTr06, p. 281]) Solve the following fractional differential equation using
the Laplace transform (

D1/2
0+ y

)
(x) = y

x
(x > 0).

8.7.9 ([KiSrTr06, p. 282, (5.1.20)]) Solve the Cauchy problem for the fractional
differential equation with Caputo derivative

(
CDα

0+y
)
(x) = f (x), (x > 0, m − 1 < α ≤ m; m ∈ N),

y(0) = y′(0) = . . . = y(m−1)(0) = 0.

Hint. Use the Laplace transform.

8.7.10 ([KiSrTr06, p. 282, (5.1.21)]) Solve the Cauchy problem for the fractional
differential equation with Caputo derivative

y′(x) + a
(
CDα

0+y
)
(x) = f (x), y(0) = c0 ∈ R (x > 0, 0 < α < 1).

Hint. Use the Laplace transform.

8.7.11 ([KiSrTr06, p. 282, (5.1.22)]) Solve the Cauchy problem for the fractional
differential equation with Caputo derivative

y′′(x) + a
(
CDα

0+y
)
(x) = f (x), (x > 0, 0 < α < 1)

y(0) = c0, y
′(0) = c1; c0, c1 ∈ R.

Hint. Use the Laplace transform.

8.7.12 ([KiSrTr06, p. 284, (5.2.5-6)]) Show that the family of functions

y j (x) = xα− j Eα,α+1− j (λx
α) ( j = 1, . . . , l)

forms a fundamental system of solutions of the fractional differential equation



278 8 Applications to Fractional Order Equations

(
Dα

0+y
)
(x) − λy(x) = 0 (x > 0, l − 1 < α ≤ l; l ∈ N; λ ∈ R). (8.7.1)

Hint. Use the Laplace transform.

8.7.13 ([KiSrTr06, p. 286, (5.2.30-31)]) Prove that if α − 1 + j ≥ β then the func-
tions

y j (x) = xα− j Eα−β,α+1− j (λx
α−β)

form a system of linear independent solutions of the fractional differential equations

(
Dα
0+y

)
(x) − λ

(
Dβ
0+y

)
(x) = 0 (x > 0, l − 1 < α ≤ l; l ∈ N; λ ∈ R, α > β > 0).

Hint. Use the Laplace transform.

8.7.14 ([KiSrTr06, p. 295, (5.2.83-84)]) Show that the general solution to the equa-
tion (

Dα
0+y
)
(x) − λy(x) = f (x) (x > 0,α > 0; λ ∈ R)

can be represented in the form of the Laplace convolution:

y(x) =
x∫

0

(x − t)α−1Eα,α

[
λ(x − t)α

]
f (t)dt.

8.7.15 ([KiSrTr06, p. 295, 310, (5.2.83), (5.2.172)]) Solve the Cauchy type problem

(
Dα−k

0+ y
)
(0+) = bk (bk ∈ R; k = 1, . . . , l; l − 1 < α ≤ l)

for the fractional differential equation

(
Dα

0+y
)
(x) − λy(x) = f (x) (x > 0,α > 0; λ ∈ R).

Answer.

y(x) =
x∫

0

(x − t)α−1Eα,α

[
λ(x − t)α

]
f (t)dt +

l∑
j=1

b j x
α− j Eα,α+1− j [λxα].

8.7.16 ([KiSrTr06, p. 331, (5.4.14–5.4.16–17)]) Show that the particular solution
to the inhomogeneous fractional differential equation

xα+1
(
Dα+1

0+ y
)
(x) + λxα

(
Dα

0+y
)
(x) = f (x) (α > 0,λ ∈ R; x > 0)

can be represented in the form



8.7 Exercises 279

y(x) =
1∫

0

Gα,λ
1 (t) f (xt)dt,

where

Gα,λ
1 (x) = x−α

{
Γ (1 − λ)

Γ (α + 1 − λ)
xλ−1 − 1�2

[
(1 − λ, 1)
(α,−1), (2 − λ, 1)

∣∣∣−x

]}
.

Hint. Use the Mellin transform.

8.7.17 ([GejKum17, Ex. 8, p. 12)]) Consider the following nonlinear time-fractional
gas dynamics equation

Dα
t u(x, t) + 1

2
(u2)x − u(1 − u) = 0, t > 0 (0 < α ≤ 1)

along with the initial condition

u(x, 0) = e−x .

Show that this problem has the following solution

u(x, t) = e−x Eα(tα).

Hint. Use the NIM method as described in [Gej14], [GejKum17].

8.7.18 ([GejKum17, Ex. 11, p. 14)]) Consider the following time-fractional biolog-
ical population equation

Dα
t u = (u2))xx + (u2)yy + hu, t > 0 (0 < α ≤ 1)

with the initial condition
u(x, y, 0) = √

xy.

Show that this problem has the following solution

u(x, t) = √
xyEα(htα).

Hint. Use the NIM method as described in [Gej14], [GejKum17].

8.7.19 ([GejKum17, Ex. 15, p. 16)]) Consider the two-dimensional initial-boundary
value problem

Dα
t u = 1

12

(
x2uxx + y2uyy

)+ hu, 0 < x, y < 1, t > 0 (1 < α ≤ 2)
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subject to the Neumann conditions

ux (0, y, t) = 0, ux (1, y, t) = 4Eα(t),
uy(0, y, t) = 0, uy(1, y, t) = 4t Eα,2(t),

and the initial conditions

u(x, y, 0) = x4, ut (x, y, 0) = y4.

Show that this problem has the following solution

u(x, y, t) = x4Eα(t) + y4t Eα,2(t).

Hint. Use the NIM method as described in [Gej14], [GejKum17].

8.7.20 ([GejKum17, Ex. 9, p. 13)]) Consider the following time-fractional coupled
Burgers equations

Dα
t u − uxx − 2uux + (uv)x = 0,

Dα
t u − vxx − 2vvx + (uv)x = 0,

with the initial conditions

u(x, 0) = ex , v(x, 0) = ex .

Show that this problem has the following solution

u(x, t) = ex Eα(tα), v(x, t) = ex Eα(tα).



Chapter 9
Applications to Deterministic Models

Here we present material illuminating the role of the Mittag-Leffler function and its
generalizations in the study of deterministic models. It has already been mentioned
that the Mittag-Leffler function is closely related to the Fractional Calculus (being
called ‘The Queen Function of the Fractional Calculus’). This is why we focus our
attention here on fractional (deterministic) models.We start with a technical Sect. 9.1
in which the fractional differential equations, related to the fractional relaxation and
oscillation phenomena, are discussed in full detail.

Later we present other physical models involving fractional calculus. Interest in
such models is growing rapidly nowadays, and several books on the subject have
appeared recently. It would be impossible to give a detailed discussion of fractional
models here. Instead, we have chosen some examples related to the above discussed
equations (or their simple generalizations) which demonstrate the essential role of
the Mittag-Leffler function in fractional modelling.

In the second part of the chapter (Sect. 9.2) some examples of physical and
mechanical models involving fractional derivatives are briefly outlined. The main
focus is on the problems of fractional visco-elasticity. For other deterministic frac-
tional models we derive only the corresponding fractional differential equation. This
section is intended to show how fractional models can appear and which features of
fractional objects are useful for such modelling.

9.1 Fractional Relaxation and Oscillations

We now analyze the most simple differential equations of fractional order which
have appeared in applications. For this purpose, we choose some examples which,
by means of fractional derivatives, generalize the well-known ordinary differential
equations related to relaxation and oscillation phenomena.

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
R. Gorenflo et al.,Mittag-Leffler Functions, Related Topics and Applications,
Springer Monographs in Mathematics,
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In the first subsection we treat the simplest types, which we refer to as the simple
fractional relaxation and oscillation equations. Then, in the next subsection we
consider the types, somewhat more cumbersome, which we refer to as the composite
fractional relaxation and oscillation equations.

9.1.1 Simple Fractional Relaxation and Oscillation

The classical phenomena of relaxation and oscillation in their simplest form are
known to be governed by linear ordinary differential equations, of order one and two
respectively, that hereafter we recall with the corresponding solutions. Let us denote
by u = u(t) the field variable and by q(t) a given continuous function, with t ≥ 0.
The relaxation differential equation reads as

u′(t) = −u(t) + q(t) , (9.1.1)

whose solution, under the initial condition u(0+) = c0, is

u(t) = c0 e
−t +

∫ t

0
q(t − τ ) e−τ dτ . (9.1.2)

The oscillation differential equation reads as

u′′(t) = −u(t) + q(t) , (9.1.3)

whose solution, under the initial conditions u(0+) = c0 and u′(0+) = c1, is

u(t) = c0 cos t + c1 sin t +
∫ t

0
q(t − τ ) sin τ dτ . (9.1.4)

From the point of view of the fractional calculus a natural generalization of
Eqs. (9.1.1) and (9.1.3) is obtained by replacing the ordinary derivative with a frac-
tional one of order α. In order to preserve the type of initial conditions required
in the classical phenomena, we agree to replace the first and second derivative in
(9.1.1) and (9.1.3) with a Caputo fractional derivative of order α with 0 < α < 1
and 1 < α < 2, respectively. We agree to refer to the corresponding equations as the
simple fractional relaxation equation and the simple fractional oscillation equation.

Generally speaking, we consider the following differential equation of fractional
order α > 0, (see [GorMai97])

Dα
∗ u(t) = Dα

0+

(
u(t) −

m−1∑
k=0

t k

k! u
(k)(0+)

)
= −u(t) + q(t) , t > 0 . (9.1.5)
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Here m is a positive integer uniquely defined by m − 1 < α ≤ m, which provides
the number of the prescribed initial values u(k)(0+) = ck, k = 0, 1, 2, . . . ,m − 1.
Implicit in the form of (9.1.5) is our desire to obtain solutions u(t) for which the
u(k)(t) are continuous for t ≥ 0, k = 0, 1, . . . ,m − 1. In particular, the cases of
fractional relaxation and fractional oscillation are obtained for m = 1 and m = 2,
respectively. We note that when α = m is an integer, then Eq. (9.1.5) reduces to an
ordinary differential equation whose solution can be expressed in terms ofm linearly
independent solutions of the homogeneous equation and of one particular solution
of the inhomogeneous equation. We summarize this well-known result as follows

u(t) =
m−1∑
k=0

ckuk(t) +
∫ t

0
q(t − τ ) uδ(τ ) dτ . (9.1.6)

uk(t) = J k u0(t) , u(h)
k (0+) = δk h , h, k = 0, 1, . . . ,m − 1 , (9.1.7)

uδ(t) = − u′
0(t) , (9.1.8)

where J k is a k-times repeated integral, J 1u(t) = Ju(t) =
t∫
0
u(τ )dτ . Thus, the m

functions uk(t) represent the fundamental solutions of the differential equation of
order m, namely those linearly independent solutions of the homogeneous equa-
tion which satisfy the initial conditions in (9.1.7). The function uδ(t), with which
the free term q(t) appears convoluted, represents the so-called impulse-response
solution, namely the particular solution of the inhomogeneous equation with all
ck ≡ 0, k = 0, 1, . . . ,m − 1, and with q(t) = δ(t). In the cases of ordinary relax-
ation and oscillation we recognize that u0(t) = e−t = uδ(t) and u0(t) = cos t,
u1(t) = J u0(t) = sin t = cos (t − π/2) = uδ(t), respectively.

Remark 9.1 The more general equation

Dα
0+

(
u(t) −

m−1∑
k=0

t k

k! u
(k)(0+)

)
= −ρα u(t) + q(t) , ρ > 0 , t > 0 , (9.1.9)

can be reduced to (9.1.5) by a change of scale t → t/ρ.Weprefer, for ease of notation,
to discuss the “dimensionless” form (9.1.5).

Let us now solve (9.1.5) by the method of Laplace transforms. For this purpose
we can use the Caputo formula directly or, alternatively, reduce (9.1.5) with the
prescribed initial conditions to an equivalent (fractional) integral equation and then
treat the integral equation by the Laplace transformmethod. Here we prefer to follow
the second approach. Then, applying the operator of fractional integration Iα to both
sides of (9.1.5) we obtain
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u(t) =
m−1∑
k=0

ck
tk

k! − Iα
0+ u(t) + Iα

0+ q(t) . (9.1.10)

The application of the Laplace transform yields

ũ(s) =
m−1∑
k=0

ck
sk+1

− 1

sα
ũ(s) + 1

sα
q̃(s) ,

hence

ũ(s) =
m−1∑
k=0

ck
sα−k−1

sα + 1
+ 1

sα + 1
q̃(s) . (9.1.11)

Introducing the Mittag-Leffler type functions

eα(t) ≡ eα(t; 1) := Eα(−tα) ÷ sα−1

sα + 1
, (9.1.12)

uk(t) := J keα(t) ÷ sα−k−1

sα + 1
, k = 0, 1, . . . ,m − 1 , (9.1.13)

we find, from inversion of the Laplace transforms in (9.3.10),

u(t) =
m−1∑
k=0

ck uk(t) −
∫ t

0
q(t − τ ) u′

0(τ ) dτ . (9.1.14)

To find the last term in the right-hand side of (9.1.14), we have to use the well-known
rule for the Laplace transform of the derivative, noting that u0(0+) = eα(0+) = 1,
and

1

sα + 1
= −

(
s

sα−1

sα + 1
− 1

)
÷ −u′

0(t) = −e′
α(t) . (9.1.15)

The formula (9.1.14) encompasses the solutions (9.1.2) and (9.1.4) found for α =
1, 2, respectively.Whenα is not an integer, namely form − 1 < α < m,wenote that
m − 1 represents the integer part of α (denoted by [α]) and m the number of initial
conditions necessary and sufficient to ensure the uniqueness of the solution u(t).
Thus the m functions uk(t) = J keα(t) with k = 0, 1, . . . ,m − 1 represent those
particular solutions of the homogeneous equation which satisfy the initial conditions

u(h)
k (0+) = δk h , h, k = 0, 1, . . . ,m − 1 , (9.1.16)

and therefore they represent the fundamental solutions of the fractional equation
(9.1.5), in analogy with the case α = m. Furthermore, the function uδ(t) = −e′

α(t)
represents the impulse-response solution. Hereafter, we are going to compute and
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exhibit the fundamental solutions and the impulse-response solution for the cases (a)
0 < α < 1 and (b) 1 < α < 2, pointing out the comparison with the corresponding
solutions obtained when α = 1 and α = 2.

We now infer the relevant properties of the basic functions eα(t) directly from
their representation as a Laplace inverse integral

eα(t) = 1

2πi

∫
Br
e st sα−1

sα + 1
ds , (9.1.17)

in detail for 0 < α ≤ 2, without having to make a detour into the general theory of
Mittag-Leffler functions in the complex plane. In (9.1.17) Br denotes the Bromwich
path, i.e. a line Re {s} = σ with a value σ ≥ 1, and Im {s} running from−∞ to+∞.

For reasons of transparency, we separately discuss the cases

(a) 0 < α < 1 and (b) 1 < α < 2 ,

recalling that in the limiting cases α = 1, 2, we know eα(t) as an elementary func-
tion, namely e1(t) = e−t and e2(t) = cos t. For α not an integer the power function
sα is uniquely defined as sα = |s|α ei arg s, with −π < arg s < π, that is, in the com-
plex s-plane cut along the negative real axis. The essential step consists in decom-
posing eα(t) into two parts according to eα(t) = fα(t) + gα(t), as indicated below.
In case (a) the function fα(t) and in case (b) the function− fα(t) is completely mono-
tone; in both cases fα(t) tends to zero as t tends to infinity, from above in case (a)
and from below in case (b). The other part, gα(t), is identically vanishing in case
(a), but of oscillatory character with exponentially decreasing amplitude in case (b).
In order to obtain the desired decomposition of eα we bend the Bromwich path of
integration Br into the equivalent Hankel path Ha(1+), a loop which starts from−∞
along the lower side of the negative real axis, encircles the circular disk |s| = 1 in
the positive sense and ends at−∞ along the upper side of the negative real axis. One
obtains

eα(t) = fα(t) + gα(t) , t ≥ 0 , (9.1.18)

with

fα(t) := 1

2πi

∫

Ha(ε)

e st sα−1

sα + 1
ds , (9.1.19)

where now the Hankel path Ha(ε) denotes a loop comprising a small circle |s| = ε
with ε → 0 and two sides of the cut negative real semi-axis, and

gα(t) :=
∑
h

e s ′
h t Res

[
sα−1

sα + 1

]
s ′
h

= 1

α

∑
h

e s ′
h t . (9.1.20)

Here s ′
h are the relevant poles of sα−1/(sα + 1). In fact the poles turn out to be

sh = exp [i(2h + 1)π/α] with unit modulus; they are all simple but the only relevant
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ones are those situated in themainRiemann sheet, i.e. the poles s ′
h with argument such

that −π < arg s ′
h < π. If 0 < α < 1, there are no such poles, since for all integers

h we have |arg sh | = |2h + 1| π/α > π. As a consequence,

gα(t) ≡ 0 , hence eα(t) = fα(t) , if 0 < α < 1 . (9.1.21)

If 1 < α < 2, then there exist precisely two relevant poles, namely s ′
0 = exp(iπ/α)

and s ′−1 = exp(−iπ/α) = s0
′, which are located in the left half-plane. Then one

obtains

gα(t) = 2

α
et cos (π/α) cos

[
t sin

(π

α

)]
, if 1 < α < 2 . (9.1.22)

We note that this function exhibits oscillations with circular frequency ω(α) =
sin (π/α) andwith an exponentially decaying amplitudewith rate λ(α) = | cos (π/α)|.
Remark 9.2 One easily recognizes that (9.1.22) is also valid for 2 ≤ α < 3. In the
classical case α = 2 the two poles are purely imaginary (coinciding with ±i) so that
we recover the sinusoidal behavior with unitary frequency. In the case 2 < α < 3,
however, the two poles are located in the right half-plane, so providing amplified
oscillations. This instability, which is common to the case α = 3, is the reason why
we limit ourselves to consider α in the range 0 < α ≤ 2.

In addition to the basic fundamental solutions u0(t) = eα(t) we need to compute
the impulse-response solutions uδ(t) = −D1 eα(t) for cases (a) and (b) and, only
in case (b), the second fundamental solution u1(t) = J 1 eα(t). For this purpose we
note that in general it turns out that

J k fα(t) =
∫ ∞

0
e−r t Kα,k(r) dr , (9.1.23)

with

Kα,k(r) := (−1)k r−k Kα(r) = (−1)k

π

rα−1−k sin (απ)

r2α + 2 rα cos (απ) + 1
, (9.1.24)

where Kα(r) = Kα,0(r), and

J kgα(t) = 2

α
et cos (π/α) cos

[
t sin

(π

α

)
− k

π

α

]
. (9.1.25)

This can be done in direct analogy to the computation of the functions eα(t), the
Laplace transform of J keα(t) being given by (9.1.13). For the impulse-response
solution we note that the effect of the differential operator D1 is the same as that of
the virtual operator J−1. In conclusion we can resume the solutions for the fractional
relaxation and oscillation equations as follows:

(a) 0 < α < 1,



9.1 Fractional Relaxation and Oscillations 287

u(t) = c0 u0(t) +
∫ t

0
q(t − τ ) uδ(τ ) dτ , (9.1.26)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0(t) =
∫ ∞

0
e−r t Kα,0(r) dr ,

uδ(t) = −
∫ ∞

0
e−r t Kα,−1(r) dr ,

(9.1.27)

with u0(0+) = 1, uδ(0+) = ∞;
(b) 1 < α < 2,

u(t) = c0 u0(t) + c1 u1(t) +
∫ t

0
q(t − τ ) uδ(τ ) dτ , (9.1.28)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(t) =
∫ ∞

0
e−r t Kα,0(r) dr + 2

α
et cos (π/α) cos

[
t sin

(π

α

)]
,

u1(t) =
∫ ∞

0
e−r t Kα,1(r) dr + 2

α
et cos (π/α) cos

[
t sin

(π

α

)
− π

α

]
,

uδ(t) = −
∫ ∞

0
e−r t Kα,−1(r) dr − 2

α
et cos (π/α) cos

[
t sin

(π

α

)
+ π

α

]
,

(9.1.29)
with u0(0+) = 1, u′

0(0
+) = 0, u1(0+) = 0, u′

1(0
+) = 1, uδ(0+) = 0, u′

δ(0
+)

= +∞.

InFig. 9.1we show theplots of the spectral distributions Kα(r) forα = 0.25, 0.50,
0.75, 0.9, and −Kα(r) for α = 1.25, 1.50, 1.75, 1.9.
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Fig. 9.1 Kα(r) for 0 < α < 1 (left) and −Kα(r) 1 < α < 2 (right)
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Fig. 9.2 The solution u0(t) = eα(t) for 0 < α ≤ 1 (left) and 1 < α ≤ 2 (right)

In Fig. 9.2 we show the plots of the basic fundamental solution for the following
cases: (left) α = 0.25, 0.50, 0.75, 1 and (right) α = 1.25, 1.50, 1.75, 2, obtained
from the first formula in (9.1.27) and (9.1.29), respectively.

We have verified that our present results confirm those obtained by Blank [Bla97]
by a numerical treatment and those obtained by Mainardi [Mai96a] by an analyti-
cal treatment, valid when α is a rational number. Of particular interest is the case
α = 1/2, where we recover a well-known formula from the theory of the Laplace
transform,

e1/2(t) := E1/2(−
√
t) = e t erfc(

√
t) ÷ 1

s1/2 (s1/2 + 1)
, (9.1.30)

where erfc denotes the complementary error function.
We now point out that in both cases (a) and (b) (in which α is just non-integer) i.e.

for fractional relaxation and fractional oscillation, all the fundamental and impulse-
response solutions exhibit an algebraic decay as t → ∞, as discussed below. Let us
start with the asymptotic behavior of u0(t). To this end we first derive an asymptotic
series for the function fα(t), valid for t → ∞. Using the identity

1

sα + 1
= 1 − sα + s2α − s3α + · · · + (−1)N−1 s(N−1)α + (−1)N

sNα

sα + 1
,

in formula (9.1.19) and the Hankel representation of the reciprocal Gamma function,
we (formally) obtain the asymptotic expansion (for non-integer α)

fα(t) =
N∑

n=1

(−1)n−1 t−nα

Γ (1 − nα)
+ O

(
t−(N+1)α

)
, as t → ∞ . (9.1.31)

The validity of this asymptotic expansion can be established rigorously using the
(generalized) Watson lemma, see [BleHan86]. We can also start from the spectral
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Fig. 9.3 Decay of the solution u0(t) = eα(t) for α = 1.25, 1.75

representation and expand the spectral function for small r. Then the (ordinary)
Watson lemma yields (9.1.31).We note that this asymptotic expansion coincideswith
that for u0(t) = eα(t), having assumed 0 < α < 2 (α 
= 1). In fact the contribution
of gα(t) is identically zero if 0 < α < 1 and exponentially small as t → ∞ if 1 <

α < 2. The asymptotic expansions of the solutions u1(t) and uδ(t) are obtained from
(9.1.31) by integrating or differentiating term-by-termwith respect to t. In particular,
taking the leading term in (9.1.31), we obtain the asymptotic representations

u0(t) ∼ t−α

Γ (1 − α)
, u1(t) ∼ t1−α

Γ (2 − α)
, uδ(t) ∼ − t−α−1

Γ (−α)
, as t → ∞ .

(9.1.32)
They yield the algebraic decay of the fundamental and impulse-response solutions.

In Fig. 9.3 we show some plots of the basic fundamental solution u0(t) = eα(t)
for α = 1.25, 1.75. Here the algebraic decay of the fractional oscillation can be
recognized and compared with the two contributions provided by fα (monotonic
behavior) and gα(t) (exponentially damped oscillation).

The Zeros of the Solutions of the Fractional Oscillation Equation

Nowwe carry out some investigations concerning the zeros of the basic fundamental
solution u0(t) = eα(t) in the case (b) of fractional oscillations. For the second fun-
damental solution and the impulse-response solution the analysis of the zeros can be
easily carried out analogously. Recalling the first equation in (9.1.29), the required
zeros of eα(t) are the solutions of the equation

eα(t) = fα(t) + 2

α
e t cos (π/α) cos

[
t sin

(π

α

)]
= 0 . (9.1.33)

Wefirst note that the function eα(t) exhibits anoddnumber of zeros, in that eα(0) = 1,
and, for sufficiently large t , eα(t) turns out to be permanently negative, as shown in
(9.1.32) by the sign of Γ (1 − α). The smallest zero lies in the first positivity interval
of cos [t sin (π/α)], hence in the interval 0 < t < π/[2 sin (π/α)]; all other zeros
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can only lie in the succeeding positivity intervals of cos [t sin (π/α)], in each of
these two zeros are present as long as

2

α
e t cos (π/α) ≥ | fα(t)| . (9.1.34)

When t is sufficiently large, the zeros are expected to be found approximately from
the equation

2

α
e t cos (π/α) ≈ t−α

|Γ (1 − α)| , (9.1.35)

obtained from (9.1.33) by ignoring the oscillation factor of gα(t) (see (9.1.22)) and
taking the first term in the asymptotic expansion of fα(t) (see (9.1.31)–(9.1.32)). This
approximation turns out to be useful when α → 1+ and
α → 2−. For α → 1+, only one zero is present, which is expected to be very far
from the origin in view of the large period of the function cos [t sin (π/α)]. In fact,
since there is no zero for α = 1, and by increasing α more and more zeros arise, we
are sure that only one zero exists for α sufficiently close to 1. Putting α = 1 + ε,
the asymptotic position T∗ of this zero can be found from the relation (9.1.35) in the
limit ε → 0+. Assuming in this limit a first-order approximation, we get

T∗ ∼ log

(
2

ε

)
, (9.1.36)

which shows that T∗ tends to infinity slower than 1/ε, as ε → 0.
For α → 2−, there is an increasing number of zeros up to infinity since e2(t) =

cos t has infinitely many zeros (t∗n = (n + 1/2)π , n = 0, 1, . . . ). Putting now α =
2 − δ the asymptotic position T∗ for the largest zero can be found again from (9.1.35)
in the limit δ → 0+. Assuming in this limit a first-order approximation, we get

T∗ ∼ 12

π δ
log

(
1

δ

)
. (9.1.37)

Now, for δ → 0+ the length of the positivity intervals of gα(t) tends to π and, as
long as t ≤ T∗, there are two zeros in each positivity interval. Hence, in the limit
δ → 0+, there is on average one zero per interval of length π, so we expect that
N∗ ∼ T∗/π.

For the above considerations on the zeros of the oscillatingMittag-Leffler function
we were inspired by the paper of Wiman [Wim05b], who at the beginning of the
20th century, after having treated the Mittag-Leffler function in the complex plane,
considered the position of the zeros of the function on the negative real semi-axis
(without providing any details). Our expressions for T∗ differ from those ofWiman in
numerical factors; however, the results of our numerical studies confirm and illustrate
the validity of our analysis.
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Table 9.1 N∗ = number of zeros, α = fractional order, T∗ location of the largest zero

N∗ α T∗
1 ÷ 3 1.40 ÷ 1.41 1.730 ÷ 5.726

3 ÷ 5 1.56 ÷ 1.57 8.366 ÷ 13.48

5 ÷ 7 1.64 ÷ 1.65 14.61 ÷ 20.00

7 ÷ 9 1.69 ÷ 1.70 20.80 ÷ 26.33

9 ÷ 11 1.72 ÷ 1.73 27.03 ÷ 32.83

11 ÷ 13 1.75 ÷ 1.76 33.11 ÷ 38.81

13 ÷ 15 1.78 ÷ 1.79 39.49 ÷ 45.51

15 ÷ 17 1.79 ÷ 1.80 45.51 ÷ 51.46

Here, we analyse the phenomenon of the transition of the (odd) number of zeros
as 1.4 ≤ α ≤ 1.8. For this purpose, in Table 9.1 we report the intervals of amplitude
Δα = 0.01 where these transitions occur, and the location T∗ of the largest zeros
(evaluated within a relative error of 0.1%) found at the two extreme values of the
above intervals. We recognize that the transition from 1 to 3 zeros occurs as 1.40 ≤
α ≤ 1.41, that the transition from 3 to 5 zeros occurs as 1.56 ≤ α ≤ 1.57, and so on.
The last transition in the considered range of α is from 15 to 17 zeros, and it occurs
as 1.79 ≤ α ≤ 1.80.

9.1.2 The Composite Fractional Relaxation and Oscillations

In this subsection we consider the following fractional differential equations for
t ≥ 0, equipped with suitable initial conditions,

du

dt
+ a

dαu

dtα
+ u(t) = q(t) , u(0+) = c0 , 0 < α < 1 , (9.1.38)

d2v

dt2
+ a

dαv

dtα
+ v(t) = q(t) , v(0+) = c0 , v′(0+) = c1 , 0 < α < 2 , (9.1.39)

where a is a positive constant. The unknown functions u(t) and v(t) (the field vari-
ables) are required to be sufficiently well behaved to be treated with their derivatives
u′(t) and v′(t), v′′(t) by the technique of the Laplace transform. The given function
q(t) is assumed to be continuous. In the above equations the fractional derivative
of order α is assumed to be provided by the operator Dα∗ , the Caputo derivative,
in agreement with our choice in the previous subsection. Note that in (9.1.39) we
distinguish the cases (a) 0 < α < 1, (b) 1 < α < 2 and α = 1. The Eqs. (9.1.38)
and (9.1.39) will be referred to as the composite fractional relaxation equation and
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the composite fractional oscillation equation, respectively, to be distinguished from
the corresponding simple fractional equations.

Here we also apply themethod of the Laplace transform to solve the fractional dif-
ferential equations and get some insight into their fundamental and impulse-response
solutions. However, in contrast with the previous subsection, we now find it more
convenient to apply the corresponding formula for the Laplace transformof fractional
and integer derivatives directly, instead of reducing the equations with the prescribed
initial conditions as equivalent (fractional) integral equations to be treated by the
Laplace transform.

Let us apply the Laplace transform to the composite fractional relaxation equation
(9.1.38). This leads us to the transformed algebraic equation

ũ(s) = c0
1 + a sα−1

w1(s)
+ q̃(s)

w1(s)
, 0 < α < 1 , (9.1.40)

where
w1(s) := s + a sα + 1 , (9.1.41)

and a > 0. Putting

u0(t) ÷ ũ0(s) := 1 + a sα−1

w1(s)
, uδ(t) ÷ ũδ(s) := 1

w1(s)
, (9.1.42)

and recognizing that

u0(0
+) = lim

s→∞ s ũ0(s) = 1 , ũδ(s) = − [s ũ0(s) − 1] , (9.1.43)

we conclude that

u(t) = c0 u0(t) +
∫ t

0
q(t − τ ) uδ(τ ) dτ , uδ(t) = − u′

0(t) . (9.1.44)

Thus u0(t) and uδ(t) are respectively the fundamental solution and impulse-response
solution toEq. (9.1.38). Let us first consider the problemoffindingu0(t) as the inverse
Laplace transform of ũ0(s). We easily see that the function w1(s) has no zero in the
main sheet of the Riemann surface including the sides of the cut (simply show that
Im {w1(s)} does not vanish if s is not a real positive number), so that the inversion of
the Laplace transform ũ0(s) can be carried out by deforming the original Bromwich
path into the Hankel path Ha(ε) introduced in the previous subsection, i.e. into the
loop constituted by a small circle |s| = ε with ε → 0 and by the two borders of the
cut negative real axis. As a consequence we write

u0(t) = 1

2πi

∫
Ha(ε)

e st 1 + asα−1

s + a sα + 1
ds . (9.1.45)
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It is now an exercise in complex analysis to show that the contribution from the
Hankel path Ha(ε) as ε → 0 is provided by

u0(t) =
∫ ∞

0
e−r t H (1)

α,0(r; a) dr , (9.1.46)

with

H (1)
α,0(r; a) = − 1

π
Im

{
1 + asα−1

w1(s)

∣∣∣∣
s=r eiπ

}

= 1
π

a rα−1 sin (απ)

(1 − r)2 + a2 r2α + 2 (1 − r) a rα cos (απ)
.

(9.1.47)

For a > 0 and 0 < α < 1 the function H (1)
α,0(r; a) is positive for all r > 0 since it

has the sign of the numerator; in fact in (9.1.47) the denominator is strictly positive,
being equal to |w1(s)|2 as s = r e±iπ. Hence, the fundamental solution u0(t) has
the peculiar property of being completely monotone, and H (1)

α,0(r; a) is its spectral
function. Now the determination of uδ(t) = −u′

0(t) is straightforward. We see that
the impulse-response solution uδ(t) is also completely monotone since it can be
represented by

uδ(t) =
∫ ∞

0
e−r t H (1)

α,−1(r; a) dr , (9.1.48)

with spectral function

H (1)
α,−1(r; a) = r H (1)

α,0(r; a) = 1

π

a rα−1 sin (απ)

(1 − r)2 + a2 r2α + 2 (1 − r) a rα cos (απ)
.

(9.1.49)

Both solutions u0(t) and uδ(t) turn out to be strictly decreasing from 1 towards 0 as
t runs from 0 to ∞. Their behavior as t → 0+ and t → ∞ can be found by means
of a proper asymptotic analysis. The behavior of the solutions as t → 0+ can be
determined from the behavior of their Laplace transforms as Re {s} → +∞, as is
well known from the theory of the Laplace transform, see, e.g. [Doe74]. We obtain
as Re {s} → +∞,

ũ0(s) = s−1 − s−2 + O
(
s−3+α

)
, ũδ(s) = s−1 − a s−(2−α) + O

(
s−2) , (9.1.50)

so that

u0(t) = 1 − t + O
(
t2−α

)
, uδ(t) = 1 − a

t1−α

Γ (2 − α)
+ O (t) , as t → 0+ .

(9.1.51)
The spectral representations (9.1.46) and (9.1.48) are suitable to obtain the asymp-
totic behavior of u0(t) and uδ(t) as t → +∞, by using the Watson lemma. In fact,



294 9 Applications to Deterministic Models

expanding the spectral functions for small r and taking the dominant term in the
corresponding asymptotic series, we obtain

u0(t) ∼ a
t−α

Γ (1 − α)
, uδ(t) ∼ −a

t−α−1

Γ (−α)
, as t → ∞ . (9.1.52)

We note that the limiting case α = 1 can easily be treated by extending the validity
of (9.1.40)–(9.1.44) to α = 1, as is legitimate. In this case we obtain

u0(t) = e−t/(1+a) , uδ(t) = 1

1 + a
e−t/(1+a) , α = 1 . (9.1.53)

In the case a ≡ 0 we recover the standard solutions u0(t) = uδ(t) = e−t .

Weconcludewith some considerations on the solutionswhen the orderα is a ratio-
nal number. If we take α = p/q, where p, q ∈ N are assumed (for convenience) to
be relatively prime, a factorization in (9.1.41) is possible by using the procedure indi-
cated by Miller and Ross [MilRos93]. In these cases the solutions can be expressed
in terms of a linear combination of q Mittag-Leffler functions of fractional order
1/q, which, in turn, can be expressed in terms of incomplete gamma functions.

Here we illustrate the factorization in the simplest case α = 1/2 and provide
the solutions u0(t) and uδ(t) in terms of the functions eα(t;λ) (with α = 1/2),
introduced in the previous subsection. In this case, in view of the application to the
Basset problem equation (9.1.38) deserves particular attention.1 For α = 1/2 we can
write

w1(s) = s + a s1/2 + 1 = (s1/2 − λ+) (s1/2 − λ−) , λ± = −a/2 ± (a2/4 − 1)1/2 .

(9.1.54)

Here λ± denote the two roots (real or conjugate complex) of the second degree
polynomial with positive coefficients z2 + az + 1, which, in particular, satisfy the
following binary relations

λ+ · λ− = 1 , λ+ + λ− = −a , λ+ − λ− = 2(a2/4 − 1)1/2 = (a2 − 4)1/2 .

(9.1.55)
We recognize that we must treat separately the following two cases

i) 0 < a < 2 , or a > 2 , and i i) a = 2 ,

which correspond to two distinct roots (λ+ 
= λ−), or two coincident roots (λ+ ≡
λ− = −1), respectively.

For this purpose, we write

1Basset considered in [Bas88] a model of a quiescent fluid which leads in modern language to
Eq. (9.1.38) with α = 1/2. For arbitrary 0 < α < 1 the (generalized) Basset problem is discussed
in [Mai97].
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M̃(s) := 1 + a s−1/2

s + a s−1/2 + 1
=

⎧⎪⎨
⎪⎩
i)

A−
s−1/2 (s−1/2 − λ+)

+ A+
s−1/2(s−1/2 − λ−)

,

i i) 1
(s−1/2 + 1)2

+ 2

s−1/2(s−1/2 + 1)2
,

(9.1.56)
and

Ñ (s) := 1

s + a s−1/2 + 1
=

⎧⎪⎨
⎪⎩
i)

A+
s−1/2 (s−1/2 − λ+)

+ A−
s−1/2(s−1/2 − λ−)

,

i i)
1

(s−1/2 + 1)2
,

(9.1.57)
where

A± = ± λ±
λ+ − λ−

. (9.1.58)

Using (9.1.55) we note that

A+ + A− = 1 , A+ λ− + A− λ+ = 0 , A+ λ+ + A− λ− = − a . (9.1.59)

Recalling the Laplace transform pairs we obtain

u0(t) = M(t) :=
{
i) A− E1/2 (λ+

√
t) + A+ E1/2 (λ−

√
t) ,

i i) (1 − 2t) E1/2 (−√
t) + 2

√
t/π ,

(9.1.60)

and

uδ(t) = N (t) :=
{
i) A+ E1/2(λ+

√
t) + A− E1/2(λ−

√
t) ,

i i) (1 + 2t) E1/2(−√
t) − 2

√
t/π .

(9.1.61)

In (9.1.60)–(9.1.61) the functions e1/2(t;−λ±) = E1/2(λ±
√
t) and e1/2(t) =

e1/2(t; 1) = E1/2(−√
t) are presented. In particular, the solution of the Basset prob-

lem can be easily obtained from (9.1.44) with q(t) = q0 by using (9.1.60)–(9.1.61)
and noting that

∫ t
0 N (τ ) dτ = 1 − M(t). Denoting this solution by uB(t) we get

uB(t) = q0 − (q0 − c0) M(t) . (9.1.62)

When a ≡ 0, i.e. in the absence of the term containing the fractional derivative (due
to the Basset force), we recover the classical Stokes solution, which we denote by
uS(t),

uS(t) = q0 − (q0 − c0) e
−t .

In the particular case q0 = c0, we get the steady-state solution uB(t) = uS(t) ≡ q0.
For vanishing initial condition c0 = 0, we have the creep-like solutions

uB(t) = q0 [1 − M(t)] , uS(t) = q0
[
1 − e−t

]
.
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In this case it is instructive to compare the behavior of the two solutions as t → 0+ and
t → ∞. Recalling the general asymptotic expressions of u0(t) = M(t) in (9.1.51)
and (9.1.52) with α = 1/2, we recognize that

uB(t) = q0
[
t + O

(
t3/2

)]
, uS(t) = q0

[
t + O

(
t2
)]

, as t → 0+ ,

and
uB(t) ∼ q0

[
1 − a/

√
π t

]
, uS(t) ∼ q0 [1 − EST ] , as t → ∞ ,

where EST denotes exponentially small terms. In particular, we note that the nor-
malized plot of uB(t)/q0 remains under that of uS(t)/q0 as t runs from 0 to ∞.

The reader is invited to convince himself of the following fact. In the general case
0 < α < 1 the solution u(t) has the particular property of being equal to 1 for all
t ≥ 0 if q(t) has this property and u(0+) = 1, whereas q(t) = 1 for all t ≥ 0 and
u(0+) = 0 implies that u(t) is a creep function tending to 1 as t → ∞.

Let us now apply the Laplace transform to the fractional oscillation equation
(9.1.39). This leads us to the transformed algebraic equations

(a) ṽ(s) = c0
s + a sα−1

w2(s)
+ c1

1

w2(s)
+ q̃(s)

w2(s)
, 0 < α < 1 , (9.1.63)

or

(b) ṽ(s) = c0
s + a sα−1

w2(s)
+ c1

1 + a sα−2

w2(s)
+ q̃(s)

w2(s)
, 1 < α < 2 , (9.1.64)

where
w2(s) := s2 + a sα + 1 , (9.1.65)

and a > 0. Putting

ṽ0(s) := s + a sα−1

w2(s)
, 0 < α < 2 , (9.1.66)

we have

v0(0
+) = lim

s→∞ s ṽ0(s) = 1 ,
1

w2(s)
= − [s ṽ0(s) − 1] ÷ −v′

0(t) , (9.1.67)

and
1 + a sα−2

w2(s)
= ṽ0(s)

s
÷
∫ t

0
v0(τ ) dτ . (9.1.68)

Thus we can conclude that

(a) v(t) = c0 v0(t) − c1 v′
0(t) −

∫ t

0
q(t − τ ) v′

0(τ ) dτ , 0 < α < 1 , (9.1.69)
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or

(b) v(t) = c0 v0(t) + c1

∫ t

0
v0(τ ) dτ −

∫ t

0
q(t − τ ) v′

0(τ ) dτ , 1 < α < 2 .

(9.1.70)
In both equations the term −v′

0(t) represents the impulse-response solution vδ(t) for
the composite fractional oscillation equation (9.1.39), namely the particular solution
of the inhomogeneous equation with c0 = c1 = 0 and with q(t) = δ(t). For the
fundamental solutions of (9.1.39) we have two distinct pairs of solutions according
to the case (a) and (b) which read

(a) {v0(t) , v1 a(t) = −v′
0(t)} , (b) {v0(t) , v1 b(t) =

∫ t

0
v0(τ ) dτ } . (9.1.71)

We first consider the particular case α = 1 for which the fundamental and impulse
response solutions are known in terms of elementary functions. This limiting case
can also be treated by extending the validity of (9.1.63) and (9.1.69) to α = 1, as is
legitimate. From

ṽ0(s) = s + a

s2 + a s + 1
= s + a/2

(s + a/2)2 + (1 − a2/4)
− a/2

(s + a/2)2 + (1 − a2/4)
,

(9.1.72)
we obtain the basic fundamental solution

v0(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−at/2
[
cos(ωt) + a

2ω
sin(ωt)

]
if 0 < a < 2 ,

e−t (1 − t) if a = 2 ,

e−at/2

[
cosh(χt) + a

2χ
sinh(χt)

]
if a > 2 ,

(9.1.73)

where
ω =

√
1 − a2/4 , χ =

√
a2/4 − 1 . (9.1.74)

By a differentiation of (9.1.73) we easily obtain the second fundamental solution
v1 a(t) and the impulse-response solution vδ(t) since v1 a(t) = vδ(t) = −v′

0(t). We
point out that all the solutions exhibit an exponential decay as t → ∞. Let us now
consider the problem of finding v0(t) as the inverse Laplace transform of ṽ0(s),

v0(t) = 1

2πi

∫
Br
e st s + a sα−1

w2(s)
ds , (9.1.75)

where Br denotes the usual Bromwich path. Using a result of Beyer and Kempfle
[BeyKem95]we know that the functionw2(s) (for a > 0 and 0 < α < 2, α 
= 1 ) has
exactly two simple, conjugate complex zeros on the principal branch in the open left
half-plane, cut along the negative real axis, say s+ = ρ e+iγ and s− = ρ e−iγ withρ >

0 and π/2 < γ < π. This enables us to repeat the considerations carried out for the
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simple fractional oscillation equation to decompose the basic fundamental solution
v0(t) into two parts according to v0(t) = fα(t; a) + gα(t; a). In fact, the evaluation
of theBromwich integral (9.1.75) can be achieved by adding the contribution fα(t; a)

from the Hankel path Ha(ε), as ε → 0, to the residual contribution gα(t; a) from the
two poles s±. As an exercise in complex analysis we obtain

fα(t; a) =
∫ ∞

0
e−r t H (2)

α,0(r; a) dr , (9.1.76)

with spectral function

H (2)
α,0(r; a) = − 1

π
Im

{
s + asα−1

w2(s)

∣∣∣∣
s=r eiπ

}

= 1

π

a rα−1 sin (απ)

(r2 + 1)2 + a2 r2α + 2 (r2 + 1) a rα cos (απ)
.

(9.1.77)

Since in (9.1.77) the denominator is strictly positive, being equal to |w2(s)|2 as
s = r e±iπ, the spectral function H (2)

α,0(r; a) turns out to be positive for all r > 0 for
0 < α < 1 and negative for all r > 0 for 1 < α < 2. Hence, in case (a) the function
fα(t) and in case (b) the function − fα(t) is completely monotone; in both cases
fα(t) tends to zero as t → ∞, from above in case (a) and from below in case (b),
according to the asymptotic behavior

fα(t; a) ∼ a
t−α

Γ (1 − α)
, as t → ∞ , 0 < α < 1 , 1 < α < 2 , (9.1.78)

as derived by applying the Watson lemma in (9.1.76) and considering (9.1.77). The
other part, gα(t; a), is obtained as

gα(t; a) = e s+ t Res

[
s + a sα−1

w2(s)

]
s+

+ conjugate complex

= 2Re

{
s+ + a sα−1

+
2 s+ + a α sα−1

+
e s+ t

}
.

(9.1.79)

Thus this term exhibits an oscillatory character with exponentially decreasing ampli-
tude like exp (−ρ t | cos γ|) . Then we recognize that the basic fundamental solution
v0(t) exhibits a finite number of zeros and that, for sufficiently large t, it turns out
to be permanently positive if 0 < α < 1 and permanently negative if 1 < α < 2
with an algebraic decay provided by (9.1.78). For the second fundamental solutions
v1 a(t), v1 b(t) and for the impulse-response solution vδ(t), the corresponding analy-
sis is straightforward in view of their connection with v0(t), pointed out in (9.1.70)–
(9.1.71). The algebraic decay of all the solutions as t → ∞, for 0 < α < 1 and
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1 < α < 2, is henceforth resumed in the relations

v0(t) ∼ a
t−α

Γ (1 − α)
, v1 a(t) = vδ(t) ∼ −a

t−α−1

Γ (−α)
, v1 b(t) ∼ a

t1−α

Γ (2 − α)
.

(9.1.80)
In conclusion, except in the particular case α = 1, all the present solutions of the
composite fractional oscillation equation exhibit similar characteristics as the cor-
responding solutions of the simple fractional oscillation equation, namely a finite
number of damped oscillations followed by amonotonic algebraic decay as t → ∞.

9.2 Examples of Applications of the Fractional Calculus
in Physical Models

Here we present a few physical models involving the fractional calculus. An interest
in such models is growing rapidly nowadays and several books on the subject have
recently appeared. It would be impossible to discuss general fractional models in
detail here. Instead we select some models which are related to the above discussed
equations (or their simple generalizations) and which demonstrate the essential role
of the Mittag-Leffler function in fractional modelling.

9.2.1 Linear Visco-Elasticity

Let us first introduce some notation. We denote the stress by σ = σ(x, t) and the
strain by ε = ε(x, t), where x and t are the space and time variables, respectively.
For the sake of convenience, both stress and strain are intended to be normalized, i.e.
scaled with respect to a suitable reference state {σ∗ , ε∗}.

According to the linear theory of viscoelasticity, assuming the presence of suffi-
ciently small strains, the body may be considered as a linear system with the stress
(or strain) as the excitation function (input) and the strain (or stress) as the response
function (output).

To formulate general stress-strain relations (or constitutive equations), two funda-
mental hypotheses are required: (i) invariance under time translation and (ii) causal-
ity; the former means that a time shift in the input results in an equal shift in the
output, the latter that the output for any instant t1 depends on the values of the input
only for t ≤ t1. A fundamental role is played by the step response, i.e. the response
function, expressed by the Heaviside function Θ(t):

Θ(t) =
{
0 if t < 0 ,

1 if t > 0 .
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Two magnitudes are defined in this way:

σ(t) = Θ(t) =⇒ ε(t) = J (t) , (9.2.1)

ε(t) = Θ(t) =⇒ σ(t) = G(t) . (9.2.2)

The functions J (t) and G(t) are referred to as the creep compliance and relaxation
modulus respectively, or, simply, the material functions of the viscoelastic body.

The general stress-strain relation is expressed through a linear hereditary integral
of Stieltjes type, namely

ε(t) =
∫ t

−∞
J (t − τ ) dσ(τ ) , (9.2.3)

σ(t) =
∫ t

−∞
G(t − τ ) dε(τ ) . (9.2.4)

In the classical Hook model for an elastic body we have

σ(t) = mε(t), (9.2.5)

and thus J (t) = 1/m, G(t) = m.
In the classical Newton model for an ideal fluid we have

σ(t) = b1
dε

dt
, (9.2.6)

and thus J (t) = t/b1, G(t) = b1δ(t).

9.2.2 The Use of Fractional Calculus in Linear
Viscoelasticity

Based on certain rheological experiments Scott-Blair [ScoB-Cop39, ScoB-Cop42a]
argued that material properties are determined by various states between an elastic
solid and a viscous fluid, rather than a combination of an elastic and a viscous
element as proposed by Maxwell. The conclusion was that these materials satisfy a
law intermediate between Hook’s law and Newton’s law:

σ(t) = b1
dνε

dtν
, 0 < ν < 1. (9.2.7)

This yields the power-type behavior of the creep function

J (t) = tν

b1Γ (1 + ν)
⇒ G(t) = b1

Γ (1 − ν)
t−ν . (9.2.8)
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We point out that (9.2.7) is the differential form of the Nutting equation [Nut21] (for
more details see [RogMai14]).

By using a power-type law for the creep functions one can rewrite the constitutive
relation (9.2.7) in a form involving either a fractional integral (see also the contri-
bution by Rabotnov [Rab80], who presents the constitutive relation in the form of a
more cumbersome integral equation)

ε(t) = 1

b1Γ (1 + ν)

t∫

−∞

σ(τ )dτ

(t − τ )1−ν
= 1

b1

(
−∞ I ν

t σ
)
(t), (9.2.9)

or a fractional derivative (see also the pioneering contribution byGerasimov [Ger48])

σ(t) = b1
Γ (1 − ν)

t∫

−∞

ε̇(τ )dτ

(t − τ )ν
= b1

(
−∞Dν

t ε
)
(t). (9.2.10)

Here the fractional integrals and derivatives have Liouville (or Liouville–Weyl) form,
i.e. with integration from −∞. We note that the fractional derivative in (9.2.10) is
similar to theCaputo derivative.Moreover, ifwe consider causal histories (i.e. starting
from t = 0), then in (9.2.10) the Liouville fractional derivative will be replaced by
the Caputo fractional derivative.

The use of fractional calculus in linear viscoelasticity, started by Scott-Blair, leads
us to generalize the classical mechanical models, in that the basic Newton element
(dashpot) is substituted by the more general Scott-Blair element (of order ν), some-
times referred to as pot. In fact, we can construct the class of these generalized
models from Hooke and Scott-Blair elements, disposed singly and in branches of
two (in series or in parallel). The material functions are obtained using the combi-
nation rule; their determination is made easy if we take into account the following
correspondence principle between the classical and fractional mechanical models,
as introduced in [CapMai71a], which is empirically justified.

Let us also present some constitutive equations and material functions which
correspond to the most popular fractional models in visco-elasticity.

fractional Newton (Scott-Blair) model: σ(t) = b1
dνε

dtν
, (9.2.11)

⎧⎪⎨
⎪⎩
J (t) = tν

b1 Γ (1 + ν)
,

G(t) = b1
t−ν

Γ (1 − ν)
;

fractional Voigt model: σ(t) = m ε(t) + b1
dνε

dtν
, (9.2.12)
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⎧⎪⎨
⎪⎩
J (t) = 1

m

{
1 − Eν

[−(t/τε)
ν
]}

,

G(t) = m + b1
t−ν

Γ (1 − ν)
,

where (τε)
ν = b1/m;

fractional Maxwell model: σ(t) + a1
dνσ

dtν
= b1

dνε

dtν
, (9.2.13)

⎧⎪⎨
⎪⎩
J (t) = a

b1
+ 1

b

tν

Γ (1 + ν)
,

G(t) = b1
a1

Eν

[−(t/τσ)ν
]
,

where (τσ)ν = a1;

fractional Zener model :

[
1 + a1

dν

dtν

]
σ(t) =

[
m + b1

dν

dtν

]
ε(t) ,

(9.2.14)

{
J (t) = Jg + J1

[
1 − Eν

[−(t/τε)
ν
]]

,

G(t) = Ge + G1 Eν

[−(t/τσ)ν
]
,

where ⎧⎪⎨
⎪⎩
Jg = a1

b1
, J1 = 1

m
− a1

b1
, τε = b1

m
,

Ge = m, G1 = b1
a1

− m, τσ = a1 ;

fractional anti-Zener model:

[
1 + a1

dν

dtν

]
σ(t) =

[
b1

dν

dtν
+ b2

d(ν+1)

dt (ν+1)

]
ε(t) ,

(9.2.15)

⎧⎪⎨
⎪⎩
J (t) = J+

tν

Γ (1 + ν)
+ J1

[
1 − Eν

[−(t/τε)
ν
]]

,

G(t) = G−
t−ν

Γ (1 − ν)
+ G1 Eν

[−(t/τσ)
ν)
]
,

where ⎧⎪⎪⎨
⎪⎪⎩
J+ = 1

b1
, J1 = a1

b1
− b2

b21
, τε = b2

b1
,

G− = b2
a1

, G1 = b1
a1

− b2
a21

, τσ = a1 .
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These models were formerly considered by Capunto and Mainardi in their 1971
review paper and more recently revisited by Mainardi and Spada, who generalized
them to include a four-parameter model known as the Burgers model.

9.2.3 The General Fractional Operator Equation

The above equations can be treated in the same way as described in Sect. 9.1.2 for
composite type fractional equations, i.e. by theLaplace transformmethod (for details,
see [Mai10]).

Assuming a general network of Hooke and Scott-Blair elements in series and in
parallel, as required for the classical networks with Hooke and Newton elements, but
requiring the same fractional derivative ν ∈ (0, 1), we conjecture that the form of
the corresponding operator equation, referred to as the fractional operator equation,
would read

[
1 +

p∑
k=1

ak
d νk

dt νk

]
σ(t) =

[
m +

q∑
k=1

bk
d νk

dt νk

]
ε(t) , (9.2.16)

with νk = k + ν − 1, and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J (t) = Jg +
∑
n

Jn
{
1 − Eν

[−(t/τε,n)
ν
]}+ J+

tν

Γ (1 + ν)
,

G(t) = Ge +
∑
n

Gn Eν

[−(t/τσ,n)
ν
]+ G−

t−ν

Γ (1 − ν)
,

(9.2.17)

where all the coefficients are non-negative. The above equations were verified for all
of the fractional models considered by Mainardi and Spada [MaiSpa11]. However a
general proof for any network of these types is not yet available when the material
functions are expressed in terms of pure exponentials (i.e. with ν = 1).

9.3 The Fractional Dielectric Models

The relaxation properties of dielectric materials can be described, in the frequency
domain, by several models which have been proposed over the years, of which
the most relevant for our applications (i.e. using Mittag-Leffler type functions in a
fractional calculus context) are Cole–Cole [ColCol41, ColCol42], Cole–Davidson
[DavCol50, DavCol51], and Havriliak–Negami [HavNeg67]. In this section, we
survey the main dielectric models and we illustrate the corresponding time-domain
functions. In particular, we focus on the completely monotone character of the relax-
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ation and response functions. We also provide a characterization of the models in
terms of differential operators of fractional order.

Under the influence of an electric field, matter experiences an electric polariza-
tion. The electric displacement effect on free and bound charges is described by the
displacement field D, which is related to the electric field E and to the polarization
P by

D = ε0E + P , (9.3.1)

where ε0 is the permittivity of the free space. For a perfect isotropic dielectric and for
harmonic fields of frequency ω, the interdependence between E and P is described
by a constitutive law

P = ε0[(εs − ε∞)(ε̂(iω) − 1)]E = ε0[(εs − ε∞)χ̂(iω)]E , (9.3.2)

where εs and ε∞ are the static and infinite dielectric constants. The normalized com-
plex permittivity ε̂(iω) and the normalized complex susceptibility χ̂(iω) are specific
characteristics of the polarized medium and are usually determined by matching
experimental data with an appropriate theoretical model.

From a physical point of view, the description of dielectrics, considered as passive
and causal linear systems, is also carried out in time by considering two causal
functions of time (i.e., vanishing for t < 0):

• the relaxation function Ψ (t),
• the response function φ(t).

The relaxation function describes the decay of polarization whereas the response
function its decay rate (the depolarization current).

Remark 9.3 Note that our notation {Ψ (t),φ(t)} for the relaxation and response
functions is in conflict with a notation frequently used in the literature, where the
relaxation function is denoted by φ(t) and the response function by −dφ(t)/dt .

As amatter of fact, the relationship between response and relaxation functions can
be better clarified by their probabilistic interpretation investigated in several papers by
Karina Weron and her team (e.g., see [Wer91, WerKla00, WerKot96]): interpreting
the relaxation function as a survival probability Ψ (t), the response function turns
out to be the probability density function corresponding to the cumulative probability
function Φ(t) = 1 − Ψ (t). Thus the two functions are interrelated as follows

φ(t) = − d

dt
Ψ (t) = d

dt
Φ(t) , t ≥ 0 , (9.3.3)

and

Ψ (t) = 1 −
∫ t

0
φ(u) du , t ≥ 0 . (9.3.4)
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In view of their probabilistic meaning, φ(t) and Ψ (t) are both non-negative and
non-increasing functions. In particular, we get the limit Ψ (0+) = 1 whereas φ(0+)

may be finite or infinite.
The response function φ(t) is obtained as the inverse Laplace transform of the

normalized complex susceptibility by setting the Laplace parameter s = iω, that is

φ(t) = L−1 (χ̃(s); t) , (9.3.5)

where we have used the superscript˜ to denote a Laplace transform, i.e. χ̃(s) =
χ̂(iω); then, for the relaxation function Ψ (t) we have

Ψ (t) = 1 − L−1

(
1

s
χ̃(s); t

)
= L−1

(
1

s
− 1

s
χ̃(s); t

)
. (9.3.6)

We can thus outline the basic Laplace transform pairs as follows

φ(t) ÷ φ̃(s) = χ̃(s) , Ψ (t) ÷ Ψ̃ (s) = 1 − φ̃(s)

s
, (9.3.7)

where we have adopted the notation ÷ to denote the juxtaposition of a function of
time f (t) with its Laplace transform f̃ (s) = ∫∞

0 e−st f (t) dt .
The standard model in the physics of dielectrics was provided by Debye [Deb12],

according to which the normalized complex susceptibility, depending on the fre-
quency of the external field, is provided, unless it is a proper multiplicative constant,
such as

χ̂(iω) = 1

1 + iωτD
, (9.3.8)

where τD is the only expected relaxation time. In this case, both relaxation and
response functions turn out to be purely exponential. In fact, recalling standard results
on Laplace transforms, we get

ΨD(t) = e−t/τD , φD(t) = 1

τD
e−t/τD . (9.3.9)

Even though theDebye relaxationmodelwas first derived on the basis of statistical
mechanics, it also finds application in complex systemswhere it ismore reasonable to
have a discrete or a continuous distribution of Debyemodels with different relaxation
times, so that the complex susceptibility reads

χ̂(iω) = ρ1

1 + iωτ1
+ ρ2

1 + iωτ2
+ . . . (9.3.10)

with ρ1, ρ2, . . . non-negative constants or, more generally,
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χ̂(iω) =
∫ ∞

0

ρ(τ )

1 + iωτ
dτ , (9.3.11)

with ρ(τ ) ≥ 0. In mathematical language the above properties are achieved by
requiring relaxation and response to be locally integrable and completely mono-
tone (LICM) functions [HanSer08]. The local integrability is requested to be Laplace
transformable in the classical sense. The complete monotonicity means that the func-
tions are non-negative with infinitely many derivatives for t > 0 alternating in sign;
we provide here its formal definition.

As discussed by Hanyga [Han05b], CM is essential to ensure the monotone decay
of the energy in isolated systems (as appears reasonable from physical considera-
tions); thus, restricting to CM functions is essential for the physical acceptability and
realizability of the dielectric models (see [AnhMcV]).

For the basic Bernstein theorem for LICM functions [Wid46], Ψ (t) and φ(t)
are represented as real Laplace transforms of non-negative spectral functions (of
frequency)

Ψ (t) =
∫ ∞

0
e−r t KΨ (r) dr , φ(t) =

∫ ∞

0
e−r t K φ(r) dr . (9.3.12)

Due to the interrelation between Ψ (t) and φ(t), the corresponding spectral func-
tions are obviously related and indeed

KΨ (r) = K φ(r)/r , K φ(r) = r KΨ (r) . (9.3.13)

As a matter of fact, the Laplace transform Ψ̃ (s) of Ψ (t) and φ̃(s) of φ(t) turn out
to be iterated Laplace transforms (that is, Stieltjes transforms) of the corresponding
frequency spectral functions KΨ (r), K φ(r). In fact, by exchanging order in the
Laplace integrals, we get

Ψ̃ (s) =
∫ ∞

0

KΨ (r)

s + r
dr , φ̃(s) =

∫ ∞

0

K φ(r)

s + r
dr . (9.3.14)

As a consequence, the frequency spectral functions can be derived from Ψ̃ (s) and
φ̃(s) as their inverse Stieltjes transforms thanks to the Titchmarsh inversion formula
[Tit86],

KΨ (r) = ∓ 1

π
Im

[
Ψ̃ (s)

∣∣
s=re±iπ

]
, K φ(r) = ∓ 1

π
Im

[
φ̃(s)

∣∣
s=re±iπ

]
. (9.3.15)

For a physical viewpoint, it may bemore interesting to deal with spectral functions
expressed in terms of relaxation times τ = 1/r rather than frequencies r . Then we
write

Ψ (t) =
∫ ∞

0
e−t/τ HΨ (τ ) dτ , φ(t) =

∫ ∞

0
e−t/τ Hφ(τ ) dτ , (9.3.16)
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so that the time spectral functions are obtained from the corresponding frequency
spectral functions by the variable change

HΨ,φ(τ ) = KΨ,φ(1/τ )

τ 2
(9.3.17)

9.3.1 The Main Models for Anomalous Dielectric Relaxation

The Debye model [Deb12] is one of the first models introduced to describe physical
properties of dielectrics and involves relaxation and response functions of exponential
type; see Eqs. (9.3.8) and (9.3.9).

As revealed by a number of experiments, a broad variety of dielectric materials
exhibit relaxation behaviors which strongly deviate from the exponential Debye law.
The observation of “anomalous” phenomena such as broadness, asymmetry and
excess in the dielectric dispersion has motivated the proposition of new empirical
laws in order to modify the Debye relaxation and match experimental data in a more
accurate way.

It is now well established that the relaxation properties of a large variety of mate-
rials fit the following models that we are going to briefly discuss

• the Cole–Cole (CC) model,
• the Davidson–Cole (DC) model,
• the Havriliak–Negami (HN) model.

Other models have been discussed in the literature, but most of them can be
obtained from one of the above models. In the remainder of this section, we illustrate
each model and we discuss their main features from a mathematical perspective.

9.3.2 The Cole–Cole Model

The Cole–Cole model, named after the brothers K.S. Cole and R.H. Cole, was intro-
duced in 1941 [ColCol41] (see also [ColCol42]). As described in [BotBor78], it
finds applications in “systems with rather small deviations from a single relaxation
time, e.g. many compounds with rigid molecules in the pure liquid state and in
solution in non-polar, non-viscous solvents”. Nowadays this model is still used to
represent impedance of biological tissues, to describe relaxation in polymers, to rep-
resent anomalous diffusion in disordered systems and so on [Kal-et-al04, Lin10,
MauElw12].

The complex susceptibility of the Cole-Cole model is derived by inserting a real
power in the original Debye model, thus to fit data presenting a broader loss peak,
and it is given by
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Fig. 9.4 The relaxation function ΨCC(t) for varying α

χ̂CC(iω) = 1

1 + (
iωτ�

)α , 0 < α ≤ 1 , (9.3.18)

where τ� denotes a reference relaxation time. In all the subsequent plots a normalized
relaxation time τ� = 1 is assumed.

By applying the Laplace inversion of (9.3.18) we get the corresponding response
and relaxation functions respectively as

φCC(t) = L−1

(
1

1 + (sτ�)α

)
= 1

τ�

(
t/τ�

)α−1
Eα,α

(−(t/τ�

)α)
, (9.3.19)

and

ΨCC(t) = L−1

(
1

s
− 1

s
(
1 + (

sτ�

)α)
)

= 1 − (t/τ�)
α Eα,α+1 (− (t/τ�)

α) = Eα,1
(−(t/τ�

)α)
.

(9.3.20)

Figure 9.4 shows the plots of the relaxation functionΨCC(t) using linear (left plot)
and logarithmic (right plot) scales.

The plots of the relaxation and response functions are also found in Mainardi’s
book [Mai10] along with their asymptotic representations. Here we just recall that
by using standard results on the asymptotic behavior of the Mittag-Leffler function
it is possible to verify that

φCC(t) ∼

⎧⎪⎪⎨
⎪⎪⎩

1

τ�Γ (α)

(
t/τ�

)α−1
, for t � τ�,

− 1

τ�Γ (−α)

(
t/τ�

)−α−1
, for t � τ�,

(9.3.21)

and
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ΨCC(t) ∼

⎧⎪⎨
⎪⎩
1 − 1

Γ (α + 1)

(
t/τ�

)α
, for t � τ�,

1

Γ (1 − α)

(
t/τ�

)−α
, for t � τ�.

(9.3.22)

Let us nowconsider the spectral functions related to theCole–Colemodel, restrict-
ing our attention to the relaxation function ΨCC(t). From (9.3.15) and (9.3.20) the
frequency spectral function for ΨCC(t) turns out to be

KΨ
CC(r) = τ�

π

(rτ�)
α−1 sin (απ)

(rτ�)2α + 2 (rτ�)α cos (απ) + 1
≥ 0 . (9.3.23)

With the change of variable τ = 1/r we get the corresponding spectral represen-
tation HΨ

CC(τ ) = τ−2KΨ
CC(1/τ ) in relaxation times, from which it is immediate to

evaluate

HΨ
CC(τ ) = 1

πτ�

(τ/τ�)
α−1 sin(απ)

(τ/τ�)2α + 2(τ/τ�)α cos(απ) + 1
(9.3.24)

and thus one easily recognizes the identity KΨ
CC(r) = HΨ

CC(τ ) between the two spec-
tral functions when the relaxation time is normalized to τ� = 1.

The coincidence between the two spectral functions is a surprising fact pointed
out for the Mittag-Leffler function Eα,1(−tα) with 0 < α < 1 by Mainardi in his
2010 book [Mai10] and his paper [Mai14]. This kind of universal/scaling property
seems therefore peculiar for the Cole–Cole relaxation function ΨCC(t).

For some values of the parameter α and with respect to the relaxation function
ΨCC(t) of the CC model, we show in Fig. 9.5 the time spectral distribution HΨ

CC(τ )

given by (9.3.24) and its logarithmic representation LΨ
CC(u) = euHΨ

CC(eu), i.e.

LΨ
CC(u) = 1

2π

sin(απ)

cosh[α(u − log τ�)] + cos(απ)
, u = log(τ ) . (9.3.25)

Of course, for α = 1 the Mittag-Leffler function in (9.3.20) reduces to the expo-
nential function exp(−t/τ�) and the corresponding spectral distributions are both
equal to the Dirac delta generalized function centered, respectively, at τ = τ� and
u = log(τ�).

Note that both spectral functionswere formerly outlined in 1947 byGross [Gro47]
and later revisited, in 1971, by Caputo and Mainardi [CapMai71b, CapMai71a].

The response and relaxation functions of the CC model satisfy some evolution
equations expressed by means of fractional differential operators. In particular, for
the response φCC(t) after applying some basic properties of the Riemann–Liouville
derivative 0Dα

t (see [Die10, Sect. 2.2]) it is straightforward to derive

0D
α
t φCC(t) = − 1

τα
�

φCC(t), lim
t→0+ 0 J

1−α
t φCC(t) = 1

τα
�

, (9.3.26)
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Fig. 9.5 Spectral distributions HΨ
CC(τ ) (left) and LΨ

CC(u) (right)

and, correspondingly, the application of the Caputo fractional derivative C
0 D

α
t leads

to

0D
α
t ΨCC(t) = − 1

τα
�

ΨCC(t), ΨCC(0) = 1 . (9.3.27)

9.3.3 The Davidson–Cole Model

A decade after the introduction of the CC model, another dielectric model, still
depending on one real parameter, was proposed to generalize the standard Debye
model. The introduction in 1950–1951 of the new model by D.W. Davidson and
R.H. Cole [DavCol50, DavCol51] was motivated by the need to fit the broader
range of dispersion observed at high frequencies in some organic compounds such
as glycerine, glycerol, propylene glycol, and n-propanol.

This asymmetry is obtained in the Davidson–Cole (DC) model by considering the
following complex susceptibility

χ̂DC(iω) = 1

(1 + iωτ�)γ
, 0 < γ ≤ 1 . (9.3.28)

By applying the Laplace transform inversion, we get the corresponding response
and relaxation functions

φDC(t) = L−1

(
1

(1 + sτ�)γ

)
= 1

τ�

(t/τ�)
γ−1 Eγ

1,γ (−t/τ�)

= 1

τ�

(t/τ�)
γ−1

Γ (γ)
exp(−t/τ�)

(9.3.29)

and
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Fig. 9.6 The relaxation function ΨDC(t) for varying γ

ΨDC(t) = L−1

(
1

s
− 1

s (1 + sτ�)
γ

)
= 1 − (t/τ�)

γ Eγ
1,γ+1 (−t/τ�)

= 1

Γ (γ)
Γ (γ, t/τ�)

(9.3.30)

where, for �(γ) > 0, Γ (a, z) = ∫∞
z ta−1e−t dt is the incomplete gamma function

and the last equality for ΨDC(t) is obtained by integration of the response function
φDC(t), namely after applying (9.3.4). The plots of the relaxation function ΨDC(t)
using linear and logarithmic scales in the normalized time τ� = 1 are shown in
Fig. 9.6.

The well-known asymptotic expansion for the incomplete gamma function (e.g.,
see [AbrSte72, Eq. 6.5.32]) with real and positive argument z

Γ (a, z) ∼ za−1e−z, z → ∞ , (9.3.31)

allows us to see that, at variance with the CC model, the characteristic functions
ΨDC(t) and φDC(t) both decay exponentially for large times, so more rapidly than
any power law, namely

φDC(t) ∼

⎧⎪⎨
⎪⎩

1

τ�Γ (γ)

(
t/τ�

)γ−1
, for t � τ�,

1

τ�Γ (γ)

(
t/τ�

)γ−1
exp

(−t/τ�

)
, for t � τ�,

(9.3.32)

and

ΨDC(t) ∼

⎧⎪⎨
⎪⎩
1 − 1

Γ (γ + 1)

(
t/τ�

)γ
, for t � τ�,

1

Γ (γ)

(
t/τ�

)γ−1
exp

(−t/τ�

)
, for t � τ�.

(9.3.33)

Furthermore, the spectral distribution functions exhibit a cut off, so they vanish
at low frequencies r < 1/τ� and indeed we get the following expressions
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Fig. 9.7 Spectral distributions HΨ
DC(τ ) (left) and LΨ

DC(u) (right)

K φ
DC(r) =

⎧⎨
⎩
0 , r < 1/τ� ,
1

π

sin(γπ)

(rτ� − 1)γ
, r > 1/τ� ,

(9.3.34)

and

KΨ
DC(r) =

⎧⎨
⎩
0 , r < 1/τ� ,
1

π

sin(γπ)

r(rτ� − 1)γ
, r > 1/τ� .

(9.3.35)

For the plots of spectral distributions, in Fig. 9.7 (as for the CC model) we have
limited ourselves to those corresponding to the relaxation function ΨDC(t), that is

HΨ
DC(τ ) =

⎧⎨
⎩
0 , τ > τ� ,
1

πτ

sin(γπ)

(τ�/τ − 1)γ
, τ < τ� ,

(9.3.36)

and LΨ
DC(u) = e−uKΨ

DC(e−u), where u = log(τ ).
By a standard derivation it is elementary to see that the response φDC(t) satisfies

the equation

Dt φDC(t) = − 1

τ�

[
1 − (γ − 1)

τ�

t

]
φDC(t) (9.3.37)

but by taking into account the composite operator it is also possible to obtain

(
Dt + τ−1

�

)γ
φDC(t) = e−t/τ�

0D
γ
t e

t/τ�φDC(t) = 1

τ�

e−t/τ�
0D

γ
t
(t/τ�)

γ−1

Γ (γ)
= 0 ,

where for the last equality we refer to [Die10, Example 2.4]; hence φDC(t) satisfies
the following equation

(
Dt + τ−1

�

)γ
φDC(t) = 0, lim

t→0+ 0 J
1−γ
t

[
et/τ�φDC(t)

] = 1

τ
γ
�

. (9.3.38)
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Observe that, as t → 0+, the contribution of the exponential et/τ� in the fractional
integral 0 J

1−γ
t is always equal to 1, i.e.

lim
t→0+ 0 J

1−γ
t

[
et/τ�φDC(t)

] = lim
t→0+ 0 J

1−γ
t φDC(t) ,

thus providing the same initial condition associated to Eq. (9.3.26) for the CCmodel.
For the relaxation function ΨDC(t) we use the operator C(Dt + λ

)γ
defined as

follows
C(Dt + λ

)γ = e−tλ
0D

γ
t e

tλ

and standard derivations allow us to compute

C(Dt + τ−1
�

)γ
ΨDC(t) = − 1

τ
γ
�

[
1 − (t/τ�)

1−γ E1−γ
1,2−γ (−t/τ�)

]
, (9.3.39)

with the usual initial conditionΨDC(0) = 1. It is worthwhile to note that when γ = 1
we have E1−γ

1,2−γ (−t/τ�) ≡ 1 and, as expected, (9.3.39) returns the standard evolution
equation for the relaxation function of the Debye model.

Alternatively, we can consider the particular case, for α = 1, of the operator
C
(
0Dα

t + τ−1
�

)γ
defined as follows

C
(
0D

α
t + λ

)γ
f (t) ≡ e−γ

α,1−αγ(t;−λ) ∗ d

dt
f (t) =

∫ t

0
e−γ
α,1−αγ(t − u;−λ) f ′(u) du.

The corresponding equation would read as

C
(
Dt + τ−1

�

)γ
ΨDC(t) = − 1

τ
γ
�

, ΨDC(0) = 1 . (9.3.40)

9.3.4 The Havriliak–Negami Model

In 1967 the American S.J. Havriliak and the Japanese-born S. Negami proposed a
new model [HavNeg67] with two real powers to take into account, at the same time,
both the asymmetry and the broadness observed in the shape of the permittivity
spectrum of some polymers.

The normalized complex susceptibility proposed in the Havriliak–Negami (HN)
model is given by

χ̂HN(iω) = 1(
1 + (

iτ�ω
)α)γ (9.3.41)

and it is immediate to verify this, since
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Fig. 9.8 Relaxation functions ΨHN(t) for α = 0.8

Fig. 9.9 Relaxation functions ΨHN(t) for γ = 0.6

χ̂HN(iω) ∼ (
iτ�ω)−αγ, τ�ω � 1,

Δχ̂HN(iω) = χHN(0) − χ̂HN(iω) ∼ γ
(
iτ�ω)α, τ�ω � 1.

(9.3.42)

The time-domain response and the time-domain relaxation of the HN model are
respectively

φHN(t) = 1

τ�

(
t/τ�

)αγ−1
Eγ

α,αγ

(−(t/τ�

)α)
(9.3.43)

and
ΨHN(t) = 1 − (

t/τ�

)αγ
Eγ

α,αγ+1

(−(t/τ�

)α)
, (9.3.44)

where Eγ
α,β(z) is the Prabhakar function.

Some plots of the relaxation function ΨHN (t) for varying γ are shown in Fig. 9.8
and for varying α in Fig. 9.9; as usual, the left plots are in normal scale, the right
plots in logarithmic scale and τ� = 1.

By considering the series definition of the Prabhakar function for small t and its
asymptotic expansion for t → ∞, it is possible to verify that the HN response has
the following short- and long-time power-law dependencies
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φHN(t) ∼

⎧⎪⎨
⎪⎩

1

τ�Γ (αγ)

(
t/τ�

)αγ−1
, for t � τ� ,

− γ

τ�Γ (−α)

(
t/τ�

)−α−1
, for t � τ� ,

(9.3.45)

which lead, respectively, to the short- and long-time power law dependencies of the
HN relaxation for 0 < α < 1:

ΨHN(t) ∼

⎧⎪⎨
⎪⎩
1 − 1

Γ (αγ + 1)

(
t/τ�

)αγ
, for t � τ� ,

γ

Γ (1 − α)

(
t/τ�

)−α
, for t � τ� .

(9.3.46)

There is a lively debate in the literature about the range of admissibility of the
parameters α and γ. Usually it is assumed that 0 < α and γ ≤ 1 but in [HavHav94],
on the basis of the observation of a large amount of experimental data, an extension
to 0 < α, αγ ≤ 1 was proposed. The complete monotonicity of the relaxation and
response functions (which is considered an essential feature for the admissibility of
the model [Han05b]) has been recently proved in [CdOMai11, MaiGar15] also for
this extended range of parameters.

For this purpose we observe that the inversion formulas (9.3.15) lead to

KΨ
HN(r) = τ�

π

(τ�r)−1 sin [γ θα(r)](
(τ�r)2α + 2(τ�r)α cos(απ) + 1

)γ/2 (9.3.47)

and

K φ
HN(r) = 1

π

sin [γ θα(r)](
(τ�r)2α + 2(τ�r)α cos(απ) + 1

)γ/2 , (9.3.48)

where

θα(r) = π

2
− arctan

[
cos(πα) + (τ�r)−α

sin(πα)

]
∈ [0,π], (9.3.49)

and since (τ�r)−α ≥ 0 the argument of the arctan function is clearly≥ 1/ tan πα and
hence θα(r) ≤ απ, from which it follows that K φ

HN(r) ≥ 0 for any r ≥ 0 and for
0 < α, αγ ≤ 1.

We can consider for the relaxation function ΨHN(t) the time spectral distribution

HΨ
HN(τ ) = 1

πτ

sin [γ θα(1/τ )](
(τ/τ�)−2α + 2(τ/τ�)−α cos(απ) + 1

)γ/2 , (9.3.50)

and its representation on the logarithmic scale u = log(τ )

LΨ
HN(u) = 1

π

sin
[
γ θα(e−u)

]
(
τ 2α
� e−2αu + 2τα

� e
−αu cos(απ) + 1

)γ/2 . (9.3.51)
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Fig. 9.10 Spectral distributions HΨ
HN(τ ) (left) and LΨ

HN(u) (right) for α = 0.8

Fig. 9.11 Spectral distributions HΨ
HN(τ ) (left) and LΨ

HN(u) (right) for γ = 0.8

A few instances of the time spectral distributions HΨ
HN(τ ) and LΨ

HN(u), for varying
γ and α respectively, are presented in Figs. 9.10 and 9.11.

To derive the evolution equations for the HN characteristic functions, we start by
recalling that the Laplace transform of the response φHN(t) is

φ̃HN(s) = 1

τ
αγ
� (sα + τ−α

� )γ
,

and it gives

L ((0Dα
t + τ−α

�

)γ
φHN(t) ; s) = 1

τ
αγ
�

− lim
t→0+

E−γ

α,1−αγ,−τ−α
� ,0+φHN(t) . (9.3.52)

Moreover, after evaluating the limit and transforming back to the time domain,
one easily obtains the equation

(
0D

α
t + τ−α

�

)γ
φHN(t) = 0, lim

t→0+
E−γ

α,1−αγ,−τ−α
� ,0+φHN(t) = 1

τ
αγ
�

. (9.3.53)
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We note that the slight difference with the model byWeron et al. [Wer-et-al05, Eq.
(24)] is due to the different way in which the operator(
0Dα

t + τ−α
�

)γ
is introduced. Indeed,we use the approach proposed in [Gar-et-al14a],

published after [Wer-et-al05].We can easily verify that, ifγ = 1, then the equivalence
E−γ

α,1−αγ,−τ−α
� ,0+ ≡ 0 J 1−α

t holds. Hence, as expected, the evolution equation (9.3.26)
for the response in the CC model is just the particular case, for γ = 1, of (9.3.53) in
light of the initial condition in (9.3.53).

In a similar way, the equation for the HN relaxation function ΨHN(t) is derived
by first recalling its Laplace transform

Ψ̃HN(s) = 1

s
− 1

τ
αγ
� s

(
sα + τ−α

�

)γ (9.3.54)

and by considering the operator C
(
0Dα

t + τ−α
�

)γ
obtained after a regularization (in

the Caputo sense) of
(
0Dα

t + τ−α
�

)γ
. We have in this case

L (C(0Dα
t + τ−α

�

)γ
ΨHN(t) ; s) = − 1

τ
αγ
� s

, (9.3.55)

from which it is an immediate task to obtain

C
(
0D

α
t + τ−α

�

)γ
ΨHN(t) = − 1

τ
αγ
�

, ΨHN(0) = 1 . (9.3.56)

It may be a bit surprising that, with γ = 1, the above equation slightly differs
from the evolution equation (9.3.27) of the CC model. This difference is due to the
fact that the operator C

(
0Dα

t + τ−α
�

)γ
is not actually the same as

(
0Dα

t + τ−α
�

)γ
, as

one might expect.

9.4 The Fractional Calculus in the Basset Problem

In the following we recall the general equation of motion for a spherical particle, in
a viscous fluid, pointing out the different force contributions due to effects of inertia,
viscous drag and buoyancy. In particular, the so-calledBasset forcewill be interpreted
in terms of a fractional derivative of order 1/2 of the particle velocity relative to
the fluid. Based on the 1995 work by Mainardi, Pironi and Tampieri [MaPiTa95a],
revisited in the CISM chapter by Mainardi in 1997 [Mai97], we shall introduce the
generalized Basset force, which is expressed in terms of a fractional derivative of
any order α ranging in the interval 0 < α < 1. This generalization, suggested by a
mathematical speculation, is expected to provide a phenomenological insight for the
experimental data.
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We consider the simplified problem, originally investigated by Basset, where the
fluid is quiescent and the particle moves under the action of gravity, starting at t = 0
with a certain vertical velocity. For the sake of generality, we prefer to consider
the problem with the generalized Basset force and will provide the solution for the
particle velocity in terms of Mittag-Leffler type functions. The most evident effect of
this generalization will be to modify the long-time behavior of the solution, changing
its algebraic decay from t−1/2 to t−α. This effect can be of some interest for a better
fit of experimental data.

9.4.1 The Equation of Motion for the Basset Problem

Let us consider a small rigid sphere of radius r0, mass mp, density ρp, initially
centered in X(t) and moving with velocity V(t) in a homogeneous fluid, of density
ρ f and kinematic viscosity ν, characterized by a flow field u(x, t). In general the
equation of motion is required to take into account effects due to inertia, viscous drag
and buoyancy, so it can be written as

mp
dV
dt

= Fi + Fd + Fg , (9.4.1)

where the forces on the R.H.S. correspond in turn to the above effects. According to
Maxey and Riley [MaxRil83] these forces read, adopting our notation,

Fi = m f
Du
Dt

∣∣∣∣
X(t)

− 1

2
m f

(
dV
dt

− Du
Dt

∣∣∣∣
X(t)

)
, (9.4.2)

Fd = − 1

μ

{
[V(t) − u(X(t), t)] +

√
τ0

π

∫ t

−∞
d [V(τ ) − u(X(τ ), τ )] /dτ√

t − τ
dτ

}
,

(9.4.3)
Fg = (mp − m f ) g , (9.4.4)

where m f = (4/3)πr30ρ f denotes the mass of the fluid displaced by the spherical
particle, and

τ0 := r20
ν

, (9.4.5)

1

μ
:= 6π r0 νρ f = 9

2
m f τ−1

0 . (9.4.6)
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The time constant τ0 represents a sort of time scale induced by viscosity, whereas
the constant μ is usually referred to as the mobility coefficient.

In (9.4.2) we note two different time derivatives, D/Dt, d/dt, which represent
the time derivatives following a fluid element and the moving sphere, respectively,
so

Du
Dt

∣∣∣∣
X(t)

=
[
∂u
∂t

+ (u · ∇)u(x, t)
]

,
d

dt
u[X(t), t] =

[
∂u
∂t

+ (V · ∇)u(x, t)
]

,

where the brackets are computed at x = X(t).
The terms on the R.H.S. of (9.4.2) correspond in turn to the effects of pressure

gradient of the undisturbed flowand of addedmass,whereas those of (9.4.3) represent
respectively the well-known viscous Stokes drag, which we shall denote by FS, and
to the augmented viscous Basset drag denoted by FB . Using the characteristic time
τ0, the Stokes and Basset forces read respectively

FS = − 9

2
m f τ0

−1 [V(t) − u(X(t), t)] , (9.4.7)

FB = − 9

2
m f τ

−1/2
0

{
1√
π

∫ t

−∞
d[V(τ ) − u(X(τ ), τ )]/dτ√

t − τ
dτ

}
. (9.4.8)

We thus recognize that the time constant τ0 provides the natural time scale for the
diffusive processes related to the fluid viscosity, and that the integral expression in
brackets on the R.H.S. of (9.4.8) just represents the Caputo fractional derivative of
order 1/2, with starting point −∞, of the particle velocity relative to the fluid.

Presumably, the first scientist to have pointed out the relationship between the
Basset force and the fractional derivative of order 1/2 was F.B. Tatom in 1988
[Tat88]. However, he limited himself to noting this fact, without treating any related
problem by the methods of fractional calculus.

We now introduce the generalized Basset force by the definition

Fα
B = − 9

2
m f τ

α−1
0

dα

dtα
[V(t) − u(X(t), t)] , 0 < α < 1 , (9.4.9)

where the fractional derivative of order α is in Caputo’s sense.
Introducing the so-called effective mass

me := mp + 1

2
m f , (9.4.10)

and allowing for the generalized Basset force in (9.4.3) we can re-write the equation
of motion (9.4.1)–(9.4.4) in the more compact and significant form,
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me
dV
dt

= 3

2
m f

Du
Dt

− 9

2
m f

[
1

τ0
+ 1

τ01−α

dα

dtα

]
(V − u) + (mp − m f ) g ,

(9.4.11)
which we refer to as the generalized equation of motion. Of course, if in (9.4.11) we
put α = 1/2,we recover the basic equation of motionwith the original Basset force.

9.4.2 The Generalized Basset Problem

Let us now assume that the fluid is quiescent, namely u(x, t) = 0, ∀ x, t, and that
the particle starts to move under the action of gravity, from a given instant t0 = 0
with a certain velocity V (0+) = V0, in the vertical direction. This was the problem
considered by Basset [Bas88], and which was first solved by Boggio [Bog07] in a
cumbersome way, in terms of Gauss and Fresnel integrals.

Introducing the non-dimensional quantities (related to the densities ρ f , ρp of the
fluid and particle),

χ := ρp

ρ f
, β := 9ρ f

2ρp + ρ f
= 9

1 + 2χ
, (9.4.12)

we find it convenient to define a new characteristic time

σe := μme = τ0/β , (9.4.13)

see (9.4.5), (9.4.10), (9.4.12) and a characteristic velocity (related to the gravity),

VS = (2/9) (χ − 1) g τ0 . (9.4.14)

Then we can eliminate the mass factors and the gravity acceleration in (9.4.11) and
obtain the equation of motion in the form

dV

dt
= − 1

σe

[
1 + τ0

α dα

dtα

]
V + 1

σe
VS . (9.4.15)

If the Basset term were absent, we would obtain the classical Stokes solution

V (t) = VS + (V0 − VS) e
−t/σe , (9.4.16)

where σe represents the characteristic time of the motion, and VS the final value
assumed by the velocity. Later we shall show that in the presence of the Basset term
the same final value is still attained by the solution V (t), but with an algebraic rate,
which is much slower than the exponential one found in (9.4.16).

In order to investigate the effect of the (generalized) Basset term, we compare
the exact solution of (9.4.15) with the Stokes solution (9.4.16); with this aim we
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find it convenient to scale times and velocities in (9.4.15) by {σe , VS}, i.e. to refer to
the non-dimensional quantities t ′ = t/σe , V ′ = V/VS , V ′

0 = V0/VS .The resulting
equation of motion reads (suppressing the indices)

[
d

dt
+ a

dα

dtα
+ 1

]
V (t) = 1 , V (0+) = V0 , a = βα > 0 , 0 < α < 1 .

(9.4.17)
This is the composite fractional relaxation equation treated in Sect. 9.1.2, precisely
Eq. (9.1.38), by using the Laplace transform method. Recalling that in an obvious
notation we have

V (t) ÷ Ṽ (s) ,
dα

dtα
V (t) ÷ sα Ṽ (s) − sα−1 V0 , 0 < α ≤ 1 , (9.4.18)

the transformed solution of (9.4.17) reads

Ṽ (s) = M̃(s) V0 + 1

s
Ñ (s) , (9.4.19)

where

M̃(s) = 1 + a sα−1

s + a sα + 1
, Ñ (s) = 1

s + a sα + 1
. (9.4.20)

Noting that

1

s
Ñ (s) = 1

s
− M̃(s) ÷

∫ t

0
N (τ ) dτ = 1 − M(t) ⇐⇒ N (t) = −M ′(t) ,

(9.4.21)
the actual solution of (9.4.17) turns out to be

V (t) = 1 + (V0 − 1) M(t) , (9.4.22)

which is “similar” to the Stokes solution (9.4.16) if we consider the replacement of
e−t with the function M(t).

We now resume the relevant results from [GorMai97] using the present notation.
The integral representation for M(t) turns out to be

M(t) =
∫ ∞

0
e−r t K (r) dr , (9.4.23)

where

K (r) = 1

π

a rα−1 sin (απ)

(1 − r)2 + a2 r2α + 2 (1 − r) a rα cos (απ)
> 0 . (9.4.24)
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Thus M(t) is a completely monotone function [with spectrum K (r)], which is
decreasing from 1 towards 0 as t runs from 0 to ∞. The behavior of M(t) as t → 0+
and t → ∞ can be inspected by means of a proper asymptotic analysis, as follows.

The behavior as t → 0+ can be determined from the behavior of the Laplace
transform M̃(s) = s−1 − s−2 + O

(
s−3+α

)
, as Re {s} → +∞. We obtain

M(t) = 1 − t + O
(
t2−α

)
, as t → 0+ . (9.4.25)

The spectral representation (9.4.23)–(9.4.24) is suitable to obtain the asymptotic
behavior of M(t) as t → +∞, by using the Watson lemma. In fact, expanding
the spectrum K (r) for small r and taking the dominant term in the corresponding
asymptotic series, we obtain

M(t) ∼ a
t−α

Γ (1 − α)
= a

sin (απ)

π

∫ ∞

0
e−r t rα−1 dr , as t → ∞ . (9.4.26)

Furthermore, we recognize that 1 > M(t) > e−t > 0 , 0 < t < ∞, namely, the
decreasing plot of M(t) remains above that of the exponential, as t runs from 0 to
∞.Although both functions tend monotonically to 0, the difference between the two
plots increases with t : at the initial point t = 0, both the curves assume the unitary
value and decreasewith the same initial rate, but as t → ∞ they exhibit very different
decays, algebraic (slow) against exponential (fast).

For the ordinary Basset problem it is convenient to report the result obtained by
the factorization method in [MaPiTa95a]. In this case we note that a = √

β, see
(9.4.17), ranges from 0 to 3 since from (9.4.12) we recognize that β runs from 0
(χ = ∞, infinitely heavy particle) to 9 (χ = 0, infinitely light particle).

The actual solution is obtained by expanding M̃(s) into partial fractions and then
inverting. Considering the two rootsλ± of the polynomial P(z) ≡ z2 + a z + 1,with
z = s1/2, we must treat separately the following two cases

i) 0 < a < 2 or 2 < a < 3 , and i i) a = 2 ,

which correspond to two distinct roots (λ+ 
= λ−), or two coincident roots (λ+ ≡
λ− = −1), respectively. We obtain

(i) a 
= 2 ⇐⇒ β 
= 4 , χ 
= 5/8,

M̃(s) = 1 + a s−1/2

s + a s1/2 + 1
= A−

s1/2 (s1/2 − λ+)
+ A+

s1/2 (s1/2 − λ−)
, (9.4.27)

with

λ± = −a ± (a2 − 4)1/2

2
= 1

λ∓
, A± = ± λ±

λ+ − λ−
; (9.4.28)
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(i i) a = 2 ⇐⇒ β = 4 , χ = 5/8 ,

M̃(s) = 1 + 2 s−1/2

s + 2 s1/2 + 1
= 1

(s1/2 + 1)2
+ 2

s1/2 (s1/2 + 1)2
. (9.4.29)

The Laplace inversion of (9.4.27)–(9.4.29) can be expressed in terms of Mittag-
Leffler functions of order 1/2, E1/2(λ

√
t) = exp(λ2t) erfc(−λ

√
t), as shown in the

Appendix of [GorMai97]. We obtain

M(t) =
{
i) A− E1/2 (λ+

√
t) + A+ E1/2 (λ−

√
t) ,

i i) (1 − 2t) E1/2 (−√
t) + 2

√
t/π .

(9.4.30)

We recall that the analytical solution to the classical Basset problem was formerly
provided by Boggio [Bog07] in 1907 by a different (cumbersome) method. One
can show that our solution (9.4.30), derived by the tools of the Laplace transform
and fractional calculus, coincides with Boggio’s solution. Boggio also arrived at the
analysis of the two roots λ± but his expression of the solution in the case of two
conjugate complex roots (χ > 5/8) given as a sum of Fresnel integrals could lead
one to forecast un-physical oscillations, in the absence of numerical tables or plots.
This disturbed Basset who, when he summarized the state of art about his problem
in a later paper of 1910 [Bas10], thought there was some physical deficiency in his
own theory. With our integral representation of the solution, see (9.4.23)–(9.4.24),
we can prove the monotone character of the solution, even if the arguments of the
exponential and error functions are complex.

In order to have some insight about the effects of the two parameters α and a on
the (generalized) Basset problem we exhibit some (normalized) plots for the particle
velocity V (t), corresponding to the solution of (9.4.17), assuming for simplicity a
vanishing initial velocity (V0 = 0 ).

We consider three cases for α, namely α = 1/2 (the ordinary Basset problem)
and α = 1/4 , 3/4 (the generalized Basset problem), corresponding to Figs. 9.12,
9.13, 9.14, respectively. For each α we consider four values of a corresponding
to χ := ρp/ρ f = 0.5, 2, 10, 100. For each couple {α , χ} we compare the Basset
solution with its asymptotic expression (dotted line) for large times and the Stokes
solution (a = 0). From these figures we can recognize the retarding effect of the
(generalized) Basset force, which is more relevant for lighter particles, in reaching
the final value of the velocity. This effect is of course due to the algebraic decay of
the function M(t), see (9.4.26), which is much slower than the exponential decay of
the Stokes solution.
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Fig. 9.12 The normalized velocity V (t) for α = 1/2 and χ = 0.5, 2, 10, 100 Basset: continuous
line; Basset asymptotic: dotted-dashed line; Stokes: dashed line

Fig. 9.13 The normalized velocity V (t) for α = 1/4 and χ = 0.5, 2, 10, 100 Basset: continuous
line; Basset asymptotic: dotted-dashed line; Stokes: dashed line
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Fig. 9.14 The normalized velocity V (t) for α = 3/4 and χ = 0.5, 2, 10, 100 Basset: continuous
line; Basset asymptotic: dotted-dashed line; Stokes: dashed line

9.5 Other Deterministic Fractional Models

Here we present a few other formulations of fractional deterministic models. Our
choice is determined by two considerations. We try to avoid heavy machinery in
order to follow the main idea of this chapter, to give readers an impression of how
the fractional models appear and what the advantages are of using the fractional
approach. Second, since the subjectwe are touching is very large and growing rapidly,
we understand that any survey text on the applications of the fractional calculus will
soon become incomplete after publication. We note also that the material presented
here is known and widely spread in the literature.

The Fractional Newton Equation

Let us consider the motion of a body in an incompressible viscous Newtonian fluid.
In the absence of external forces, the unsteady flow of such a fluid is governed by the
Navier–Stokes system of equations. Following [Uch13b, Sect. 7.3] we write down
this (simplified) system in the case of the problem of entrainment of the fluid by a
large sized plate moving in the xOz-plane along the x-axis with the given velocity
V (t)

ρ
∂v

∂t
= ν

∂2v

∂z2
, 0 < t < ∞, z ≤ 0, (9.5.1)
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where ρ is the density of the fluid, ν is its viscosity, and v = v(z, t) = vx (z, t) is the
velocity of the fluid in the x-direction at depth z. We suppose here that vy = vz = 0,
and that in the distant past and at a great depth there is no movement of the fluid.
Then applying the Fourier transform in the t-variable to (9.5.1)we obtain the ordinary
differential equation

(−iω)ρv̂(z,ω) = ν
d2v̂

dz2
(z,ω), (9.5.2)

supplied by the boundary conditions

v̂(z,ω) = V̂ (ω), v̂(−∞,ω) = 0. (9.5.3)

Its solution has the form

v̂(z,ω) = V̂ (ω)exp

{√
− iωρ

ν
z

}
. (9.5.4)

By introducing the shear stress (the viscous source per unit surface) σ(z, t) =
ν ∂v

∂z (z, t), we get
σ̂(z,ω) = (−iω)1/2

√
ρνv̂(z,ω), (9.5.5)

and thus, by applying the inverseFourier transform,weobtain the following fractional
differential equation

σ(z, t) = √
ρν
(
D1/2

0+,tv
)

(z, t), (9.5.6)

where the fractional derivative can be understood either in the Riemann–Liouville
or Caputo sense. The physical interpretation of this result is that the shear stress
observed at the moment t at the point (x, z) is a result of the contribution of the fluid
particles at the points (x ′, z), where they were located at t ′ < t . This is the simplest
mechanism of heredity, the “mechanical” memory.

The Fractional Ohm Law

Here we also follow the presentation given in [Uch13b, Sect. 11.4]. The polarization
P(t) of a dielectric, placed in an electric field, consists of two parts, P1(t) which is
proportional to the intensity of the field at time t ,

P1(t) = χ1E(t),

and the retarded part

P2(t) =
t∫

−∞
K (t − t ′)E(t ′)dt ′.
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Let us denote by χ2E the extreme value of E2 with constant E and t → ∞. In
the classical relaxation theory it is assumed that the rate of the change of P2 is
proportional to the difference between its extreme and current values:

dP2
dt

= 1

τ
(χ2E − P2) .

The simplest macroscopic way to implement a fractional derivative into the relax-
ation problem is the fractional generalization of the classical law relating the current
i(t) and voltage u(t)

i(t) = Kα

(
Dα

a+,t u
)
(t). (9.5.7)

This relation describes an element of a chain which, in a sense, possesses an inter-
mediate property between those for an ideal dielectric with capacity C = K1 and a
simple conductor with resistance R = 1/K0.

If u(t ′) varies continuously and rather rapidly approaches 0 as t ′ → −∞, then
we take a = −∞ in (9.5.7), understanding by

(
Dα−,t u

)
the Liouville form of either

the Riemann–Liouville or Caputo fractional derivative.
Taking into account the presence of the active resistance in the chain, we write

the Kirchhoff law
i(t)R + u(t) = E(t),

where E(t) is the electromotive force (EMF). Inserting relation (9.5.7) we obtain

([
KαR−∞Dα

t + 1
]
u
)
(t) = E(t). (9.5.8)

If we assume E(t) = eiωt then the solution to (9.5.8) coincides with the Cole–Cole
response function f̂α (see [ColCol41, ColCol42]):

[
(iωτ )α + 1

]
f̂α(iω) = 1, 0 < α < 1. (9.5.9)

Fractional Equations for Heat Transfer

The classical theory of heat conduction is based on Fourier’s law, relating the heat
flux q and the gradient of temperature T

q = −κ∇T (9.5.10)

with conductivity coefficientκ. There exist two fractional generalizations of Fourier’s
law (see, e.g., [Uch13b, p. 164])

(
1 + τ0 · Dα

0+,t

)
q = −κ∇T, 0 < α < 1, (9.5.11)(

1 + τ
∂

∂t

)
q = −κD1−α

0+,t∇T, 1 < α ≤ 2. (9.5.12)



328 9 Applications to Deterministic Models

The standard Fourier law leads to the following heat transfer equation (e.g. in the
one-dimensional case, when we consider the heat transfer in a long rod)

∂T

∂t
= κ

∂2T

∂x2
. (9.5.13)

This relation can be generalized, taking into account the dependence of the heat flux
on the history of the gradient of the temperature (some authors call this generalization
the Maxwell–Cattaneo–Lykov equation). The one-dimensional equation of this type
has the form:

∂T

∂t
+ τ

∂2T

∂t2
= κ

∂2T

∂x2
. (9.5.14)

In the three-dimensional case we have

∂T

∂t
+ τ

∂2T

∂t2
= κ�T . (9.5.15)

Considering two extremal possibilities for the relaxation time τ we have

∂T

∂t
+ τ

∂2T

∂t2
= κ�T ⇒

⎧⎨
⎩

∂T
∂t = κ�T, τ → 0 (diffusion equation);

τ ∂2T
∂t2 = κ�T, τ → +∞ (wave equation),

which is commonly rewritten as

τν−1 ∂νT

∂tν
= κ�T, ν = 1, 2.

Assuming again the intermediate situation ν(0, 2], we obtain the time-fractional
generalization of the heat transfer equation

τν−1
0D

ν
t T = κ�T, ν(0, 2]. (9.5.16)

The fractional Fourier law allows us to formulate a fractional generalization
of the Maxwell–Cattaneo–Lykov equation. Taking the gradient of both sides of
Eqs. (9.5.11) and (9.5.12) and applying the heat balance equation

∇ · q = −∂T

∂t
,

we get, respectively,
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∂T

∂t
+ τ0 · D1+α

0+,t T = κ�T, 0 < α < 1, (9.5.17)

∂T

∂t
+ τ

∂2T

∂t2
= κ · 0D1−α

t �T, 1 < α < 2. (9.5.18)

9.6 Historical and Bibliographical Notes

General Notes

The main part of the material of this chapter is presented in the survey papers by
Mainardi, Gorenflo and Luchko in Vols. 4 and 5 of the multivolume Handbook of
Fractional Calculus with Applications [HAND4, HAND5].

Oneof thefirst investigations of differential equations of fractional orderwasmade
by Barrett [Barr54]. He considered differential equations with a fractional derivative
of Riemann–Liouville type of arbitrary order α, Reα > 0. n boundary conditions
(n = Reα + 1) in the form of the values at the initial points of the fractional deriva-
tives of order α − k, k = 1, 2, . . . , n, are posed. It was shown that in a suitable class
of functions the solution is unique and is represented via the Mittag-Leffler function.

As former applications in physics we would like to highlight the contributions
by K.S. Cole [Col33], quoted by H.T. Davis [Dav36, p. 287] in connection with
nerve conduction, and by F.M. de Oliveira Castro [Oli39], K.S. Cole and R.H. Cole
(1941–1942) [ColCol41, ColCol42], and B. Gross (1947) [Gro47, Gro48] in con-
nection with dielectric and mechanical relaxation, respectively. Subsequently, in
1971, Caputo and Mainardi [CapMai71a] proved that the Mittag-Leffler function
is present whenever derivatives of fractional order are introduced in the constitu-
tive equations of a linear viscoelastic body. Since then, several other authors have
pointed out the relevance of the Mittag-Leffler function for fractional viscoelastic
models, see Mainardi [Mai97, Mai10]. A number of mechanical problems treated
by using the fractional approach are studied by Rossikhin and Shitikova, see, e.g.,
[RosShi10, Shi19, RosShi19b]. We also mention some other models, see [Hil02b,
Nig09, NonGlo91, MetKla02] and the references therein.

Notes on Fractional Differential Equations

The fractional differential equation in (9.1.38) with α = 1/2 corresponds to the Bas-
set problem, a classical problem in fluid dynamics concerning the unsteady motion
of a particle accelerating in a viscous fluid under the action of gravity. The frac-
tional differential equation in (9.1.39) with 0 < α < 2 models an oscillation process
with fractional damping term. It was formerly treated by Caputo, who provided a
preliminary analysis using the Laplace transform. The special cases α = 1/2 and
α = 3/2, but with the standard definition Dα for the fractional derivative, were dis-
cussed by Bagley [Bag90]. Beyer and Kempfle [BeyKem95] considered (9.1.39)
for −∞ < t < +∞, investigating the uniqueness and causality of the solutions. As
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they let t run through R, they used Fourier transforms and characterized the frac-
tional derivative Dα by its properties in frequency space, thereby requiring that for
non-integer α the principal branch of (iω)α should be taken. Under the global con-
dition that the solution is square summable, they showed that the system described
by (9.1.39) is causal iff a > 0.

Notes on the Fractional Calculus in Linear Viscoelasticity

1. The First Generation of Pioneers of Fractional Calculus in Viscoelasticity

Linear viscoelasticity is certainly the field in which the most extensive applica-
tions of fractional calculus have appeared, in view of its ability to model hereditary
phenomena with long memory. During the twentieth century a number of authors
have (implicitly or explicitly) used the fractional calculus as an empirical method of
describing the properties of viscoelastic materials.

In the first half of that century the early contributors were: Gemant in the UK
and the USA, see [Gem36, Gem38], Scott-Blair in the UK, see [ScoB44, ScoB47,
ScoB49], and Gerasimov and Rabotnov in the Soviet Union, see [Ger48, Rab48a].

In 1950 Gemant published a series of 16 articles entitled Frictional Phenomena
in the Journal of Applied Physics between 1941 and 1943, which were collected in
a book of the same title [Gem50]. In his eighth chapter-paper [Gem42, p. 220], he
referred to his previous articles [Gem36, Gem38] justifying the necessity of fractional
differential operators to compute the shape of relaxation curves for some elasto-
viscous fluids. Thus, the words fractional and frictional were coupled, presumably
for the first time, by Gemant.

Scott-Blair used the fractional calculus approach to model the observations made
in [Nut21, Nut43, Nut46] that the stress relaxation phenomenon could be described
by fractional powers of time. He noted that time derivatives of fractional order would
simultaneously model the observations of Nutting on stress relaxation and those of
Gemant on frequency dependence. It is quite instructive to quote Scott-Blair from
[Sti79]:

I was working on the assessing of firmness of various materials (e.g. cheese and clay by
experts handling them) these systems are of course both elastic and viscous but I felt sure
that judgments were made not on an addition of elastic and viscous parts but on something
in between the two so I introduced fractional differentials of strain with respect to time.

Later, in the same letter Scott-Blair added:

I gave up the work eventually, mainly because I could not find a definition of a fractional
differential that would satisfy the mathematicians.

More about Scott-Blair’s pioneering contribution can be found in the paper by
Rogosin and Mainardi [RogMai14].

Later, in (1947–1948) B. Gross [Gro47, Gro48] and, more recently, Garrappa et
al. [GarPop13, Gar15] explicitly proposed theMittag-Leffler function in mechanical
relaxation in the framework of linear viscoelasticity. This argument was revisited
in 1971 by Caputo and Mainardi [CapMai71b, CapMai71a] in order to propose
the so-called fractional Zener model, making use of the time fractional derivative
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in the Caputo sense. A function strictly related to the Mittag-Leffler function was
introduced by Rabotnov in 1948 [Rab48a] and soon afterwards numerical tables of
the Rabotnov function appeared by his collaborators. However, the first plots of the
Mittag-Leffler function appeared only in the 1971 papers by Caputo and Mainardi
[CapMai71b, CapMai71a]. Nowadays, because of the relevance of this function in
Fractional Calculus as solutions of differential equations of fractional order, a number
of computing routines are available, due to Gorenflo et al. [GoLoLu02], Seybold and
Hilfer [HilSey06], and Podlubny et al. [PodKac09].

The 1948 papers by Gerasimov and Rabotnov were published in Russian, so their
contents remained unknown to the majority of western scientists until the translation
into English of the treatises by Rabotnov, see [Rab69, Rab80]. Whereas Gerasimov
explicitly used a fractional derivative to define his model of viscoelasticity (akin to
the Scott-Blair model) (see more details in [Nov17]), Rabotnov preferred to use the
Volterra integral operators with weakly singular kernels that could be interpreted
in terms of fractional integrals and derivatives. Following the appearance of the
books by Rabotnov it has become common to speak about Rabotnov’s theory of
hereditary solid mechanics. The relation between Rabotnov’s theory and the models
of fractional viscoelasticity is briefly described in [RosShi07]. According to these
Russian authors, Rabotnov could express his models in terms of the operators of
the fractional calculus, but he considered these operators only as a mathematical
abstraction.

2. The Second Generation of Pioneers of Fractional Calculus in Viscoelasticity

In the late sixties, formerly Caputo, see [Cap66, Cap67, Cap69] then Caputo and
Mainardi, see [CapMai71a, CapMai71b], explicitly suggested that derivatives of
fractional order (of Caputo type) could be successfully used to model dissipation in
seismology and in metallurgy.

In relation to this, one of the authors (Mainardi) recalls a correspondence between
himself (as a young post-doc student) and the Russian Academician Rabotnov, con-
cerning two courses on Rheology held at CISM (International Centre forMechanical
Sciences, Udine, Italy) in 1973 and 1974, where Rabotnov was an invited speaker but
did not participate, see [Rab73, Rab74]. Rabotnov recognized the relevance of the
review paper [CapMai71b], writing in his unpublished 1974 CISM Lecture Notes:

That’s why it was of great interest for me to know the paper of Caputo and Mainardi from
the University of Bologna published in 1971. These authors have obtained similar results
independently without knowing the corresponding Russian publications...

Then he added:

The paper of Caputo andMainardi contains a lot of experimental data of different authors in
support of their theory. On the other hand a great number of experimental curves obtained
by Postnikov and his coworkers and also by foreign authors can be found in numerous papers
of Shermergor and Meshkov.

Unfortunately, the eminent Russian scientist did not cite the 1971 paper by Caputo
and Mainardi (presumably for reasons independent from his wishes) in the Russian
and English editions of his later book [Rab80].
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Nowadays, several articles (originally in Russian) by Shermergor, Meshkov and
their associated researchers have been re-printed in English in the Journal of Applied
Mechanics and Technical Physics (the English translation of Zhurnal Prikladnoi
Mekhaniki i Tekhnicheskoi Fiziki), see e.g. [She66, MePaSh66, Mes67, MesRos68,
Mes70, Zel-et-al70, GonRos73] available at the URL: http://www.springerlink.
com/. In relation to this we cite the recent review papers [Ros10, RosShi07,
RosShi19a], where the works of the Russian scientists on fractional viscoelastic-
ity are examined.

The beginning of the modern applications of fractional calculus in linear vis-
coelasticity is generally attributed to the 1979 Ph.D. thesis by Bagley (under the
supervision of Prof. Torvik), see [Bag79], followed by a number of relevant papers,
e.g., [BagTor79, BagTor83a, BagTor83b, TorBag84]. However, for the sake of com-
pleteness, we should also mention the 1970 Ph.D. thesis of Rossikhin under the
supervision of Prof. Meshkov, see [Ros70], and the 1971 Ph.D. thesis of Mainardi
under the supervision of Prof. Caputo, summarized in [CapMai71b].

To date, applications of the fractional calculus in linear and non-linear viscoelas-
ticity have been considered by a great and increasing number of authors to whom we
have tried to refer in the huge (but not exhaustive) bibliography of the book [Mai10]
(see also [GaMaMa16], where a survey of the results on modelling of anomalous
dielectric relaxation is presented, as well as the paper [GiuCol18] discussing the frac-
tional Maxwell model with Prabhakar derivatives). Several models of viscoelasticity
have been presented in [AchHan09, AdEnOl05, Bag07, Chr82, Mol75, Pip86]. His-
torical perspectives on the development of this branch of science are discussed in
[Mai12].

Finally, let us recall a few novel models related in some way to fractional vis-
coelasticity involving several special functions and non-local operators, authored by
A.Giusti and his collaborators, see e.g. [Col-et-al16, Col-et-al18, Giu17, GiuCol18].

Notes on Fractional Calculus in Dielectrics

The standard and simplest model in the physics of dielectrics was provided by Debye
in 1912 [Deb12] based on a relaxation function decaying exponentially in time with
a characteristic relaxation time.

However, simple exponential models are often not satisfactory, while advanced
non-exponential models (usually referred to as “anomalous relaxation”) are com-
monly required to better explain experimental observations of complex systems. In
particular, the relaxation response of many dielectric materials cannot be explained
by the standard Debye process and different models have been successively intro-
duced.

Anomalous relaxation and diffusion processes are now recognized in many com-
plex or disordered systems that possess variable structures and parameters and show a
time evolution different from the standard exponential pattern [Came09, FePuRy05,
Hil02c, KhNiPo14, MetKla00, UchSib13]. Biological tissues are an interesting
example of complex systems with anomalous relaxation and diffusion processes
[CoKaTi02, Mag-et-al08] and they can be considered as dielectrics with losses.

http://www.springerlink.com/
http://www.springerlink.com/
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Since the pioneeringwork of Kohlrausch in 1854 [Koh54], introducing a stretched
exponential relaxation successively rediscovered byWilliams andWatts [WilWat70],
important models were introduced by Cole and Cole [ColCol41, ColCol42], David-
son andCole [DavCol50, DavCol51], Havriliak andNegami [HavNeg67] and others.

The challenges are measuring or extrapolating the dielectric properties at high
frequencies, fitting the experimental data from various tissues and from different
samples of the same tissue, and representing the complex, nonlinear frequency-
dependence of the permittivity [FosSch89]. Cole–Cole relaxation models, for
instance, are frequently used to model propagation in dispersive biological tis-
sues (Cole–Cole media) because they represent the frequency-dependent relative
permittivity better than classical Debye models and over a wide frequency range
[MauElw12, Lin10, SaidVar09]. More generally, the universal relaxation response
specified by a fractional power-law is used for electromagnetic field propagation
[Tar08, Tar09].

Nowadays the aforementioned models, named after their proposers, are consid-
ered as the “classical” models for dielectrics, but some other interesting models have
been introduced more recently by Jurlewicz, Weron and Stanislavsky [JuTrWe10,
StWeTr10] and Hilfer [Hil02, Hil02a] to better fit the experimental data in complex
systems.

It is interesting to note that the Cole brothers were not initially interested in
expressing relaxation and response in termsofMittag-Leffler functions in [ColCol41],
but, one year later [ColCol42], they made reference to Davis’ 1936 treatise [Dav36].
Indirect references toMittag-Leffler functions in anomalous dielectric relaxation can
be found in the works by Gross [Gro37, Gro38, Gro41], but more explicitly in the
1939 papers by his student F.M. de Oliveira Castro [Oli39b, Oli39].

Consequently, the Cole brothers, even though they did not explicitly use fractional
derivatives or integrals, can be considered as “indirect” pioneers of this mathematical
branch (for a historical perspective see [VaMaKy14]).

Notes on Fractional Calculus in the Basset Problem

The dynamics of a sphere immersed in an incompressible viscous fluid represents a
classical problem,which hasmany applications in flows of geophysical and engineer-
ing interest. Usually, the low Reynolds number limit (slow motion approximation)
is assumed so that the Navier–Stokes equations describing the fluid motion may be
linearized.

The particular but relevant situation of a sphere subjected to gravity was first
considered independently by Boussinesq in 1885 [Bouss85] and by Basset in 1888
[Bas88], who introduced a special hydrodynamic force, related to the history of the
relative acceleration of the sphere, which is now referred to as Basset force. The
Basset problem refers to the discussion of the topics related to this force and we plan
to generalize this problem via fractional calculus.

The relevance of these studies was in that, up to then, only steady motions or
small oscillations of bodies in a viscous liquid had been considered, starting from
Stokes’ celebrated memoir on pendulums in 1851 [Stok51]. The subject matter was
considered in more detail in 1907 by Picciati [Picc07] and Boggio [Bog07], and
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in some notes presented by the great Italian scientist Levi-Civita. The whole was
summarized by Basset himself in a later paper of 1910 [Bas10], and, in the 1950s,
by Hughes and Gilliand [HugGill52].

Nowadays the dynamics of impurities in unsteady flows is quite relevant as shown
by several publications, whose aim is to provide more general expressions for the
hydrodynamic forces, including the Basset force, in order to fit experimental data
and numerical simulations, see e.g. the papers by Maxey and Riley [MaxRil83] and
by Lovalenti and Brady [LovBra95] and the references therein.

Concerning the present situation in the study of the fractional Basset problem we
mention the paper by Mainardi, Pironi and Tampieri [MaPiTa95a] in which a factor-
ization method is used to invertN (s) and henceforthM(s), applying the procedure
indicated byMiller and Ross [MilRos93], which is valid whenα is a rational number,
say α = p/q, where p, q ∈ N, p < q. In this way the actual solution can be finally
expressed as a linear combination of certain incomplete gamma functions. This alge-
braic method is of course convenient for the ordinary Basset problem (α = 1/2), but
becomes cumbersome for q > 2.

Following the analysis by Gorenflo and Mainardi in [GorMai97], we prefer to
adopt the general method of inversion based on the complex Bromwich formula. By
doing this, we are free from the restriction of α being a rational number and, further-
more, we are able to provide an integral representation of the solution, convenient for
numerical computation, which allows us to recognize the monotonicity properties of
the solution without need of plotting.

9.7 Exercises

9.7.1 ([DebBha07, p. 313]) Solve the initial-boundary value problem

u(x, 0) = f (x), x ∈ R,

u(x, t) → 0, as |x | → ∞, t > 0,

for the linear inhomogeneous fractional Burgers equation

∂αu

∂tα
+ c

∂u

∂x
− ν

∂2u

∂x2
= q(x, t), x ∈ R, t > 0 (0 < α ≤ 1).

Answer.

u(x, t) = 1√
2π

∞∫

−∞
f̂ (k)Eα,1(−a2tα)eikxdk
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+ 1√
2π

t∫

0

τα−1dτ

∞∫

−∞
q̂(k, t − τ )Eα,α(−a2tα)eikxdk,

where a2 = (ick + νk2).

9.7.2 ([DebBha07, p. 314]) Solve the initial-boundary value problem

u(x, 0) = f (x), x ∈ R,
∂u

∂t
(x, 0) = g(x), x ∈ R,

u(x, t) → 0, as |x | → ∞, t > 0,

for the linear inhomogeneous fractional Klein–Gordon equation

∂αu

∂tα
− c2

∂2u

∂x2
+ d2u = q(x, t), x ∈ R, t > 0 (1 < α ≤ 2, c = const, d = const).

Answer.

u(x, t) = 1√
2π

∞∫

−∞
f̂ (k)Eα,1(−a2tα)eikxdk

+ 1√
2π

∞∫

−∞
t ĝ(k)Eα,2(−a2tα)eikxdk

+ 1√
2π

t∫

0

τα−1dτ

∞∫

−∞
q̂(k, t − τ )Eα,α(−a2tα)eikxdk,

where a2 = (c2k2 + d2).

9.7.3 ([DebBha07, p. 314]) Solve the initial-boundary value problem

u(x, 0) = f (x), x ∈ R,

u(x, t) → 0 as |x | → ∞, t > 0,

for the linear inhomogeneous fractional KdV equation

∂αu

∂tα
+ c

∂u

∂x
+ b

∂3u

∂x3
= q(x, t), x ∈ R, t > 0,

with constant b, c and 0 < α ≤ 1.
Answer.
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u(x, t) = 1√
2π

+∞∫

−∞
f̂ (k)Eα,1(−a2tα)eiktdk

+ 1√
2π

t∫

0

ταdτ

+∞∫

−∞
q̂(k, t − τ )Eα,α(−a2tα)eiktdk,

where a2 = (
ick − ik3b

)
.

9.7.4 ([Uch13b, p. 96–97]) Solve in terms of an H -function the initial-boundary
value problem

u(y, 0) = 0, y > 0,

u(0, t) = 1 t > 0,

u → 0, as y → ∞,

for the Maxwell type fractional equation

∂u

∂t
+ ηα · 0Dα+1

t u = ηβ−1 · 0Dβ−1
t

(
∂2u

∂y2

)
, y ∈ R+, t > 0.

Answer.

u(y, t) = 1 +
∞∑
n=1

(−y)n

n! ηn(1+α−β)/2tn(β−α)/2−n

×H 1,1
1,3

[
− tα

ηα

∣∣∣∣ (−n/2, 0)
(0, 1) (−n/2,−1) (n − n(β − α)/2,α)

]
.

9.7.5 ([Uch08, p. 303], [Ger48]) Consider the fractional differential model describ-
ing the motion of a visco-elastic media between two parallel plates (the lower x = 0
is immovable, and the upper x = a is moving in the Oy-direction according to the
law ϕ(t), ϕ(0) = 0, ϕ̇(0) = 0). Solve the initial-boundary value problem

y(x, 0) = 0,
∂y(x, t)

∂t
|t=0 = 0,

y(0, t) = 0, y(a, t) = ϕ(t),

for such a motion described by the equation

ρ
∂2y

∂t2
= ∂σ

∂x
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assuming the visco-elastic media satisfies the fractional constitutive equation (with
α = 1/2)

σ(t) = κα · 0Dα
t ε(t).

Find the stress σ(x, t) on the upper plane x = a.
Answer.

y(x, t) = 2

π

∞∑
n=1

(−1)n

n
sin

nπx

n

t∫

0

∞∑
k=1

(
nπ

c1/2a

)2k
(−1)k(t − τ )3k/2−1

Γ (3k/2)
ϕ(τ )dτ ,

σ(a, t) = καcα

⎧⎨
⎩

t−α/2

Γ (1 − α/2)
+ 2

∞∑
k=0

∞∑
j=0

[−(2k + 2)cαa] j
j !Γ ((1 − j)(1 − α/2))

t− j (1−α/2)−α/2

⎫⎬
⎭ ,

where c2α = ρ/κ2
α.



Chapter 10
Applications to Stochastic Models

This chapter is devoted to the application of the Mittag-Leffler function and related
special functions in the study of certain stochastic processes. As this topic is so wide,
we restrict our attention to some basic ideas. For more complete presentations of the
discussed phenomena we refer to some recent books and original papers which are
mentioned in Sect. 10.6.

10.1 Introduction

The structure of the chapter and the notions and phenomena discussed in each part
of it are presented in Sect. 10.1.

We start in Sect. 10.2 with a description of an approach to generalizing the Pois-
son probability distribution due to Pillai [Pil90]. Taking into account the complete
monotonicity of theMittag-Leffler function, Pillai introduced in [Pil90] a probability
distribution which he called the Mittag-Leffler distribution.

In Sect. 10.3 we present a short introduction to renewal theory and continuous
time random walk (CTRW) since these notions (renewal processes and CTRW)
are very important for understanding the ideas behind the fractional generalization
of stochastic processes. The concept of a renewal process has been developed as
a stochastic model for describing the class of counting processes for which the
times between successive events are independent identically distributed (i.i.d.) non-
negative random variables, obeying a given probability law.

Section10.4 is devoted to a generalization of the standard Poisson process by
replacing the exponential function (as waiting time density) by a function of Mittag-
Leffler type. Thus the corresponding renewal process can be called the fractional
Poisson process or the Mittag-Leffler waiting time process. In this way we discuss
how the standard Poisson process is generalized to a fractional process and describe
the differences between them. We also discuss here the concept of thinning of a
renewal process.

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
R. Gorenflo et al.,Mittag-Leffler Functions, Related Topics and Applications,
Springer Monographs in Mathematics,
https://doi.org/10.1007/978-3-662-61550-8_10
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Section10.5 presents an introduction to the theory of fractional diffusion pro-
cesses. As a bridge between the simple renewal process and space-time diffusion
we consider first the notion of a renewal process with reward. This leads us to the
formulation of a fractional master equation which is then reduced to a space-time
fraction diffusion equation. We discuss a few properties of the latter, starting with a
presentation of the fundamental solution to the space-time fractional diffusion equa-
tion. Taking the diffusion limit of the Mittag-Leffler renewal process we derive the
space-time fractional diffusion equation. In this connection the rescaling concept is
introduced.

Another property mentioned here is the possibility of interpreting the space-
time fractional diffusion process as a subordination process. As a by-product of
the rescaling-respeeding concept we also obtain the asymptotic universality of the
Mittag-Leffler waiting time law.

The role of the Wright function in the fractional stochastic models is illuminated
in Sect. 10.6.

We conclude with Sect. 10.7 which presents some historical and bibliographical
notes focussing, as in the main text, on those works which concern applications of
the Mittag-Leffler function and related special functions. We also point out several
notions which have been given different names in recently published papers and
books. These have arisen since the discussed theory is not yet complete and has
attracted great interest and rapid development because of its applications.

10.2 The Mittag-Leffler Process According to Pillai

We sketch here the theory of a process that has been devised by Pillai [Pil90] as
an increasing Lévy process on the spatial half-line x ≥ 0 happening in natural time
t ≥ 0. Switching notation from t to x , from Φ to F , from φ to f , and from β to α,
we consider the probability distribution function

Fα(x) = 1 − Eα(−xα) , x ≥ 0 , 0 < α ≤ 1 (10.2.1)

and its density

fα(x) = − d

dx
Eα(−xα) , x ≥ 0 , 0 < α ≤ 1. (10.2.2)

Their Laplace transforms (denoting by ξ the Laplace parameter corresponding to x)
are

˜Fα(ξ) = 1

ξ
− ξα−1

1 + ξα
= 1

ξ(1 + ξα)
, ˜fα(ξ) = 1

1 + ξα
. (10.2.3)
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According to Feller [Fel71], the distribution Fα(x) is infinite divisible if its density
can be written as

˜fα(ξ) = exp (−gα(ξ)) , ξ ≥ 0

where gα(ξ) is (in a more modern terminology) a Bernstein function, meaning that
gα(ξ) is non-negative and has a completely monotone derivative. Here we have
gα(ξ) = log(1 + ξα) ≥ 0 so

g′
α(ξ) = αξα−1

1 + ξα
.

As a consequence the derivative g′
α(ξ) is a completely monotone function, being a

product of two completely monotone functions, and thus it follows that gα(ξ) is a
Bernstein function.

Now, following Pillai, we can define a stochastic process x = x(t) on the half-line
x ≥ 0 happening in time t ≥ 0 by its density fα(x, t) (density in x evolving in t)
taking

˜fα(ξ, t) = 1

(1 + ξα)t
= (1 + ξα)−t = ( ˜fα(ξ))t . (10.2.4)

For the Laplace inversion of ˜fα(ξ, t) we write for ξ > 1

˜fα(ξ, t) = ξ−αt (1 + ξ−α)−t =
∞

∑

k=0

(−t

k

)

ξ−α(t+k) . (10.2.5)

Then, using the correspondence

xα(t+k)−1

Γ (α(t + k))
÷ ξ−α(t+k) , (10.2.6)

we get

fα(x, t) =
∞

∑

k=0

(−t

k

)

xα(t+k)−1

Γ (α(t + k))
. (10.2.7)

Hence, by integration

Fα(x, t) =
∞

∑

k=0

(−t

k

)

xα(t+k)

Γ (α(t + k) + 1)
. (10.2.8)

Manipulation of binomial coefficients yields

(−t

k

)

= (−1)k
t (t + 1) . . . (t + k − 1)

k! = (−1)k
Γ (t + k)

k!Γ (t)
, (10.2.9)

so that finally we obtain
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fα(x, t) =
∞

∑

k=0

(−1)k
Γ (t + k)

k!Γ (t)Γ (α(t + k))
xα(t+k)−1 , (10.2.10)

and

Fα(x, t) =
∞

∑

k=0

(−1)k
Γ (t + k)

k!Γ (t)Γ (α(t + k) + 1)
xα(t+k) . (10.2.11)

10.3 Elements of Renewal Theory and Continuous Time
RandomWalks (CTRWs)

10.3.1 Renewal Processes

The General Renewal Process
For the reader’s convenience, we present a brief introduction to renewal theory. For
more details see, e.g., the classical treatises by Cox [Cox67], Feller [Fel71], and the
more recent book by Ross [Ros97].

By a renewal process we mean an infinite sequence 0 = t0 < t1 < t2 < · · · of
events separated by i.i.d. (independent and identically distributed) random waiting
times Tj = t j − t j−1, whose probability density φ(t) is given as a function or gen-
eralized function in the sense of Gel’fand and Shilov [GelShi64] (interpretable as a
measure) with support on the positive real axis t ≥ 0, non-negative: φ(t) ≥ 0, and

normalized:
∫ ∞

0
φ(t) dt = 1, but not having a delta peak at the origin t = 0. The

instant t0 = 0 is not counted as an event. An important global characteristic of a

renewal process is its mean waiting time 〈T 〉 =
∫ ∞

0
t φ(t) dt . It may be finite or infi-

nite. In any renewal process we can distinguish two processes, namely the counting
number process and the process inverse to it, that we call the Erlang process. The
instants t1, t2, t3, . . . are often called renewals. In fact renewal theory is relevant in
practice, where it is used to model required exchange of failed parts, e.g., light bulbs.
The Counting Number Process and Its Inverse
We are interested in the counting number process x = N = N (t)

N (t) := max {n|tn ≤ t} = n for tn ≤ t < tn+1 , n = 0, 1, 2, · · · , (10.3.1)

where in particular N (0) = 0. We ask for the counting number probabilities in n,
evolving in t ,

pn(t) := P[N (t) = n] , n = 0, 1, 2, · · · . (10.3.2)

We denote by p(x, t) the sojourn density for the counting number having the value
x . For this process the expectation is
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m(t) := 〈N (t)〉 =
∞

∑

n=0

n pn(t) =
∫ ∞

0
x p(x, t) dx , (10.3.3)

since naturally p(x, t) =
∞

∑

n=0

pn(t) δ(x − n). This provides the mean number of

events in the half-open interval (0, t], and is called the renewal function, see e.g.
[Ros97].

We will also look at the process t = t (N ), the inverse of the process N = N (t),
that we call the Erlang process. This gives the time t = tN of the N -th renewal. We
are now looking for the Erlang probability densities

qn(t) = q(t, n) , n = 0, 1, 2, . . . (10.3.4)

For every n the function qn(t) = q(t, n) is a density in the time variable having value
t in the instant of the n-th event. Clearly, this event occurs after n (original) waiting
times have passed, so that

qn(t) = φ∗n(t) with Laplace transform q̃n(s) = (˜φ(s)n) , (10.3.5)

where φ∗n(t) = [φ(t)] ∗ . . . ∗ [φ(t)] is the multiple Laplace convolution in R with n
identical terms. In other words, the function qn(t) = q(t, n) is a probability density
in the variable t ≥ 0 evolving in the discrete variable x = n = 0, 1, 2, ....

10.3.2 Continuous Time Random Walks (CTRWs)

A continuous time random walk (CTRW) is given by an infinite sequence of spatial
positions 0 = x0, x1, x2, · · · , separated by (i.i.d.) random jumps X j = x j − x j−1,
whose probability density function w(x) is given as a non-negative function or
generalized function (interpretable as a measure) with support on the real axis

−∞ < x < +∞ and normalized:
∫ ∞

0
w(x) dx = 1, this random walk being sub-

ordinated to a renewal process so that we have a random process x = x(t) on the
real axis with the property x(t) = xn for tn ≤ t < tn+1, n = 0, 1, 2, · · · .

We ask for the sojourn probability density u(x, t) of a particle wandering accord-
ing to the random process x = x(t) being at point x at instant t .
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Let us define the following cumulative probabilities related to the waiting time
density function φ(t), introduced in Sect. 10.3.1

Φ(t) =
∫ t+

0
φ(t ′) dt ′ , Ψ (t) =

∫ ∞

t+
φ(t ′) dt ′ = 1 − Φ(t) . (10.3.6)

For definiteness, we takeΦ(t) to be right-continuous andΨ (t) left-continuous.When
the non-negative random variable represents the lifetime of a technical system, it is
common to call Φ(t) := P (T ≤ t) the failure probability and Ψ (t) := P (T > t)
the survival probability, because Φ(t) and Ψ (t) are the respective probabilities that
the system does or does not fail in (0, t]. These terms, however, are commonly
adopted for any renewal process.

In the Fourier–Laplace domain we have

˜Ψ (s) = 1 − ˜φ(s)

s
, (10.3.7)

and the famous Montroll–Weiss solution formula for a CTRW, see [MonWei65,
Wei94].

̂ũ(κ, s) = 1 − ˜φ(s)

s

∞
∑

n=0

(

˜φ(s) ŵ(κ)
)n = 1 − ˜φ(s)

s

1

1 − ˜φ(s) ŵ(κ)
. (10.3.8)

In our special situation the jump density has support only on the positive semi-axis
x ≥ 0 and thus, by replacing the Fourier transform by the Laplace transform we
obtain the Laplace–Laplace solution

˜ũ(κ, s) = 1 − ˜φ(s)

s

∞
∑

n=0

(

˜φ(s) w̃(κ)
)n= 1 − ˜φ(s)

s

1

1 − ˜φ(s) w̃(κ)
. (10.3.9)

Recalling the definition of convolutions, in the physical domain we have for the
solution u(x, t) the Cox–Weiss series, see [Cox67, Wei94],

u(x, t) =
(

Ψ ∗
∞

∑

n=0

φ∗n w∗n
)

(x, t) . (10.3.10)

This formula has an intuitive meaning: Up to and including instant t , there have
occurred 0 jumps, or 1 jump, or 2 jumps, or . . . , and if the last jump has occurred at
instant t ′ < t , the wanderer is resting there for a duration t − t ′.
The Integral Equation of a CTRW
By natural probabilistic arguments we arrive at the integral equation for the proba-
bility density p(x, t) (a density with respect to the variable x) of the particle being
at point x at instant t,
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p(x, t) = δ(x) Ψ (t) +
∫ t

0
φ(t − t ′)

[∫ +∞

−∞
w(x − x ′) p(x ′, t ′) dx ′

]

dt ′ .

(10.3.11)
Here

Ψ (t) =
∫ ∞

t+
φ(t ′) dt ′ (10.3.12)

is the survival function (or survival probability). It denotes the probability that at
instant t the particle is still sitting in its starting position x = 0. Clearly, (10.3.11)
satisfies the initial condition p(x, 0+) = δ(x).

Note that the special choice

w(x) = δ(x − 1) (10.3.13)

gives the pure renewal process, with position x(t) = N (t), denoting the counting
function, and with jumps all of length 1 in the positive direction happening at the
renewal instants.

Formany purposes the integral equation (10.3.11) of aCTRWcan easily be treated
by using the Laplace and Fourier transforms. Writing these as

L { f (t); s} = ˜f (s) :=
∫ ∞

0
e−st f (t) dt ,

F {g(x);κ} = ĝ(κ) :=
∫ +∞

−∞
e+iκx g(x) dx ,

in the Laplace–Fourier domain Eq. (10.3.11) reads as

̂p̃(κ, s) = 1 − ˜φ(s)

s
+ ˜φ(s) ŵ(κ)̂p̃(κ, s) . (10.3.14)

Formally introducing in the Laplace domain the auxiliary function

˜H(s) = 1 − ˜φ(s)

s ˜φ(s)
= ˜Ψ (s)

˜φ(s)
, hence ˜φ(s) = 1

1 + s ˜H(s)
, (10.3.15)

and assuming that its Laplace inverse H(t) exists, we get, following [Mai-et-al00],
in the Laplace–Fourier domain the equation

˜H(s)
[

ŝp̃(κ, s) − 1
] = [ŵ(κ) − 1] ̂p̃(κ, s) , (10.3.16)
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and in the space-time domain the generalized Kolmogorov–Feller equation

∫ t

0
H(t − t ′)

∂

∂t ′
p(x, t ′) dt ′ = −p(x, t) +

∫ +∞

−∞
w(x − x ′) p(x ′, t) dx ′,

(10.3.17)
with p(x, 0) = δ(x).

If the Laplace inverse H(t) of the formally introduced function ˜H(s) does not
exist, we can formally set ˜K (s) = 1/ ˜H(s) and multiply (10.3.16) by ˜K (s). Then,
if K (t) exists, we get in place of (10.3.17) the alternative form of the generalized
Kolmogorov–Feller equation

∂

∂t
p(x, t) =

∫ t

0
K (t − t ′)

[

−p(x, t ′) +
∫ +∞

−∞
w(x − x ′) p(x ′, t ′) dx ′

]

dt ′ ,

(10.3.18)
with p(x, 0) = δ(x).

There are some interesting special choices of the memory function H(t). We start
the discussion with the following.

(i) H(t) = δ(t) corresponding to ˜H(s) = 1 , (10.3.19)

giving the exponential waiting time with

˜φ(s) = 1

1 + s
, φ(t) = − d

dt
e−t = e−t , Ψ (t) = e−t . (10.3.20)

In this case we obtain in the Fourier–Laplace domain

ŝp̃(κ, s) − 1 = [ŵ(κ) − 1] ̂p̃(κ, s) , (10.3.21)

and in the space-time domain the classical Kolmogorov–Feller equation

∂

∂t
p(x, t) = −p(x, t) +

∫ +∞

−∞
w(x − x ′) p(x ′, t) dx ′ , p(x, 0) = δ(x) .

(10.3.22)
The other highly relevant choice is

(ii) H(t) = t−β

Γ (1 − β)
, 0 < β < 1 corresponding to ˜H(s) = sβ−1, (10.3.23)

that we will discuss in Sect. 10.4.
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10.3.3 The Renewal Process as a Special CTRW

An essential trick in what follows is that we treat renewal processes as continuous
time random walks with waiting time density φ(t) and special jump density w(x) =
δ(x − 1) corresponding to the fact that the counting number N (t) increases by 1 at
each positive event instant tn .We then have w̃(κ) = exp(−κ) and get for the counting
number process N (t) the sojourn density in the transform domain (s ≥ 0, κ ≥ 0),

˜p̃(κ, s) = 1 − ˜φ(s)

s

∞
∑

n=0

(

˜φ(s)
)n

e−nκ = 1 − ˜φ(s)

s

1

1 − ˜φ(s) e−κ
. (10.3.24)

From this formula we can find formulas for the renewal functionm(t) and the proba-
bilities Pn(t) = P{N (t) = n}. Because N (t) assumes as values only the non-negative
integers, the sojourn density p(x, t) vanishes if x is not equal to one of these, but
has a delta peak of height Pn(t) for x = n (n = 0, 1, 2, 3, · · · ). Hence

p(x, t) =
∞

∑

n=0

Pn(t) δ(x − n) . (10.3.25)

Rewriting Eq. (10.3.24), by inverting with respect to κ, as

∞
∑

n=0

(

Ψ ∗ φ∗n) (t) δ(x − n) , (10.3.26)

we identify
Pn(t) = (

Ψ ∗ φ∗n) (t) . (10.3.27)

According to the theory of the Laplace transform we conclude from Eqs. (10.3.2)
and (10.3.25)

m(t) = − ∂

∂κ
p̃(κ, t)|κ=0 =

( ∞
∑

n=0

n Pn(t) e
−nκ

)∣

∣

∣

∣

∣

κ=0

=
∞

∑

n=0

n Pn(t) , (10.3.28)

a result naturally expected, and

m̃(s) =
∞

∑

n=0

n ˜Pn(s) = ˜Ψ (s)
∞

∑

n=0

n
(

˜φ(s)
)n =

˜φ(s)

s
(

1 − ˜φ(s)
) , (10.3.29)

thereby using the identity

∞
∑

n=0

nzn = z

(1 − z)2
, |z| < 1 .
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Thus we have found in the Laplace domain the reciprocal pair of relationships

m̃(s) =
˜φ(s)

s(1 − ˜φ(s))
, ˜φ(s) = s m̃(s)

1 + s m̃(s))
, (10.3.30)

telling us that the waiting time density and the renewal function mutually deter-
mine each other uniquely. The first formula of Eq. (10.3.30) can also be obtained
as the value at κ = 0 of the negative derivative for κ = 0 of the last expression in
Eq. (10.3.24). Equation (10.3.30) implies the reciprocal pair of relationships in the
physical domain

m(t) =
∞
∫

0
[1 + m(t − t ′)] φ(t ′) dt ′ ,

m ′(t) =
∞
∫

0
[1 + m ′(t − t ′)] φ(t ′) dt ′ .

(10.3.31)

The first of these equations is usually called the renewal equation.
Considering, formally, the counting number process N = N (t) as a CTRW (with

jumps fixed to unit jumps 1), N running increasingly through the non-negative inte-
gers x = 0, 1, 2, ..., happening in natural time t ∈ [0,∞), we note that in the Erlang
process t = t (N ), the roles of N and t are interchanged. The new “waiting time
density” is now w(x) = δ(x − 1), the new “jump density” is φ(t).

It is illuminating to look at the relationships for t ≥ 0, n = 0, 1, 2, . . ., between the
counting number probabilities Pn(t) and the Erlang densities qn(t). For Eq. (10.3.5)
we have qn(t) = φ∗n(t), and then by (10.3.27)

Pn(t) = (Ψ ∗ qn) (t) =
∫ t

0

(

qn(t
′) − qn+1(t)

)

dt ′ . (10.3.32)

We can also express the qn in another way in terms of the Pn . Introducing the

cumulative probabilities Qn(t) =
∫ t

0
qn(t

′) dt ′, we have

Qn(t) = P
(

n
∑

k=1

Tk ≤ t

)

= P (N (t) ≥ n) =
∞

∑

k=n

Pk(t) , (10.3.33)

and finally

qn(t) = d

dt
Q(t) = d

dt

∞
∑

k=n

Pk(t) . (10.3.34)

All this is true for n = 0 as well, by the empty sum convention
n

∑

k=1

Tk = 0 for n = 0.
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10.4 The Poisson Process and Its Fractional Generalization
(The Renewal Process of Mittag-Leffler Type)

10.4.1 The Mittag-Leffler Waiting Time Density

Returning to the integral equation for the probability density of a CTRW (10.3.11)
(see Sect. 10.3.2) we note that besides the classical special case (10.3.19) there exist
another one.

(ii) H(t) = t−β

Γ (1 − β)
, 0 < β < 1 , corresponding to ˜H(s) = sβ−1 , (10.4.1)

giving the Mittag-Leffler waiting time density with

˜φ(s) = 1

1 + sβ
, φ(t) = − d

dt
Eβ(−tβ) = φML(t), Ψ (t) = Eβ(−tβ) . (10.4.2)

In this case we obtain in the Fourier–Laplace domain

sβ−1 [

ŝp̃(κ, s) − 1
] = [ŵ(κ) − 1] ̂p̃(κ, s) , (10.4.3)

and in the space-time domain the time fractional Kolmogorov–Feller equation

t D
β
∗ p(x, t) = −p(x, t) +

∫ +∞

−∞
w(x − x ′) p(x ′, t) dx ′ , p(x, 0+) = δ(x) ,

(10.4.4)
where t D

β∗ denotes the fractional derivative of order β in the Caputo sense, see
Appendix A.

The time fractional Kolmogorov–Feller equation can also be expressed via the
Riemann–Liouville fractional derivative D1−β

0+,t , that is

∂

∂t
p(x, t) = D1−β

0+,t

[

−p(x, t) +
∫ +∞

−∞
w(x − x ′) p(x ′, t) dx ′

]

, (10.4.5)

with p(x, 0+) = δ(x). The equivalence of the two forms (10.4.4) and (10.4.5) is
easily proved in the Fourier–Laplace domain bymultiplying both sides of Eq. (10.4.3)
by the factor s1−β .

We note that the choice (i) may be considered as a limit of the choice (ii) as
β = 1. In fact, in this limit we find ˜H(s) ≡ 1 so H(t) = t−1/Γ (0) ≡ δ(t) (according
to a formal representation of the Dirac generalized function [GelShi64]), so that
Eqs. (10.3.16)–(10.3.17) reduce to (10.3.21)–(10.3.22), respectively. In this case the
order of the Caputo derivative reduces to 1 and that of the R-L derivative to 0, whereas
the Mittag-Leffler waiting time law reduces to the exponential.
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In the sequel we will formally unite the choices (i) and (ii) by defining what we
call the Mittag-Leffler memory function

HML(t) =
⎧

⎨

⎩

t−β

Γ (1 − β)
, if 0 < β < 1 ,

δ(t) , if β = 1 ,

(10.4.6)

whose Laplace transform is

˜HML(s) = sβ−1 , 0 < β ≤ 1 . (10.4.7)

Thus we will consider the whole range 0 < β ≤ 1 by extending the Mittag-Leffler
waiting time law in (10.4.2) to include the exponential law (10.3.20).

10.4.2 The Poisson Process

Themost celebrated renewal process is the Poisson process characterized by awaiting
time probability density function (pdf ) of exponential type,

φ(t) = λ e−λt , λ > 0 , t ≥ 0 . (10.4.8)

The process has no memory. Its moments turn out to be

〈T 〉 = 1

λ
, 〈T 2〉 = 1

λ2
, . . . , 〈T n〉 = 1

λn
, . . . , (10.4.9)

and the survival probability is

Ψ (t) := P (T > t) = e−λt , t ≥ 0 . (10.4.10)

We know that the probability that k events occur in the interval of length t is

P (N (t) = k) = (λt)k

k! e−λt , t ≥ 0 , k = 0, 1, 2, . . . . (10.4.11)

The probability distribution related to the sumof k i.i.d. exponential randomvariables
is known to be the so-called Erlang distribution (of order k). The corresponding
density (the Erlang pd f ) is thus

fk(t) = λ
(λt)k−1

(k − 1)! e
−λt , t ≥ 0 , k = 1, 2, . . . , (10.4.12)

so that the Erlang distribution function of order k turns out to be
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Fk(t) =
∫ t

0
fk(t

′) dt ′ = 1 −
k−1
∑

n=0

(λt)n

n! e−λt =
∞

∑

n=k

(λt)n

n! e−λt , t ≥ 0 .

(10.4.13)
In the limiting case k = 0 we recover f0(t) = δ(t), F0(t) ≡ 1, t ≥ 0.

The results (10.4.11)–(10.4.13) can easily be obtained by using the technique of
the Laplace transform sketched in the previous section, noting that for the Poisson
process we have:

˜φ(s) = λ

λ + s
, ˜Ψ (s) = 1

λ + s
, (10.4.14)

and for the Erlang distribution:

˜fk(s) = [˜φ(s)]k = λk

(λ + s)k
, ˜Fk(s) = [˜φ(s)]k

s
= λk

s(λ + s)k
. (10.4.15)

We also recall that the survival probability for the Poisson renewal process obeys
the ordinary differential equation (of relaxation type)

d

dt
Ψ (t) = −λΨ (t) , t ≥ 0 ; Ψ (0+) = 1 . (10.4.16)

10.4.3 The Renewal Process of Mittag-Leffler Type

A “fractional” generalization of the Poisson renewal process is simply obtained by
generalizing the differential equation (10.4.16), replacing there the first derivative
with the integro-differential operator t D

β∗ that is interpreted as the fractional deriva-
tive of order β in the Caputo sense. We write, taking for simplicity λ = 1,

t D
β
∗ Ψ (t) = −Ψ (t) , t > 0 , 0 < β ≤ 1 ; Ψ (0+) = 1 . (10.4.17)

We also allow the limiting case β = 1 where all the results of the previous section
(with λ = 1) are expected to be recovered. In fact, taking λ = 1 is simply a normal-
ized way of scaling the variable t .

We call this renewal process ofMittag-Leffler type the fractional Poisson process.
To analyze this we work in the Laplace domain where we have

˜Ψ (s) = sβ−1

1 + sβ
, ˜φ(s) = 1

1 + sβ
. (10.4.18)

If there is no danger of misunderstandingwewill not decorateΨ andφwith the index
β. The special choice β = 1 gives us the standard Poisson process with Ψ1(t) =
φ1(t) = exp(−t).
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Whereas the Poisson process has finite mean waiting time (that of its standard
version is equal to 1), the fractional Poisson process (0 < β < 1) does not have this
property. In fact,

〈T 〉 =
∫ ∞

0
t φ(t) dt = β

sβ−1

(1 + sβ)2

∣

∣

∣

∣

s=0

=
{

1 , β = 1 ,

∞ , 0 < β < 1 .
(10.4.19)

Let us calculate the renewal function m(t). Inserting ˜φ(s) = 1/(1 + sβ) into
Eq. (10.3.24) and taking w(x) = δ(x − 1) as in Sect. 10.3.3, we find for the sojourn
density of the counting function N (t) the expressions

˜p̃(κ, s) = sβ−1

1 + sβ − e−κ
= sβ−1

1 + sβ

∞
∑

n=0

e−nκ

(1 + sβ)n
, (10.4.20)

and
p̃(κ, t) = Eβ

(−(1 − e−κ)tβ
)

, (10.4.21)

and then

m(t) = − ∂

∂κ
p̃(κ, t)|κ=0 = e−κtβE ′

β

(−(1 − e−κ)tβ
)∣

∣

κ=0
. (10.4.22)

Using E ′
β(0) = 1/Γ (1 + β) now yields

m(t) =
⎧

⎨

⎩

t , β = 1 ,

tβ

Γ (1 + β)
, 0 < β < 1 .

(10.4.23)

This result can also be obtained by plugging ˜φ(s) = 1/(1 + sβ) into the first equa-
tion in (10.3.30), which yields m̃(s) = 1/sβ+1, and then by Laplace inversion
Eq. (10.4.23).

Using the general Taylor expansion

Eβ(z) =
∞

∑

n=0

E (n)

β

n! (z − b)n , (10.4.24)

in Eq. (10.4.21) with b = −tβ we get

p̃(κ, t) =
∞

∑

n=0

tnβ

n! E (n)

β (−tβ) e−nκ ,

p(x, t) =
∞

∑

n=0

tnβ

n! E (n)

β (−tβ) δ(x − n) ,

(10.4.25)
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and, by comparison with Eq. (10.3.25), the counting number probabilities

Pn(t) = P{N (t) = n} = tnβ

n! E (n)

β (−tβ) . (10.4.26)

Observing from Eq. (10.4.20) that

˜p̃(κ, s) = sβ−1

1 + sβ − e−κ
= sβ−1

1 + sβ

∞
∑

n=0

e−nκ

(1 + sβ)n
, (10.4.27)

and inverting with respect to κ,

p̃(x, s) = sβ−1

1 + sβ

∞
∑

n=0

δ(x − n)

(1 + sβ)n
, (10.4.28)

we finally identify

˜Pn(s) = sβ−1

(1 + sβ)n+1
÷ tnβ

n! E (n)

β (−tβ) = Pn(t) . (10.4.29)

En passant we have proved an often cited special case of an inversion formula due
to Podlubny (1999) [Pod99, Eq. (1.80)].

For the Poisson processwith intensityλ > 0we have awell-known infinite system
of ordinary differential equations (for t ≥ 0), see e.g. Khintchine [Khi60],

P0(t) = e−λt ,
d

dt
Pn(t) = λ (Pn−1(t) − Pn(t)) , n ≥ 1 , (10.4.30)

with initial conditions Pn(0) = 0, n = 1, 2, . . . , which is sometimes even used to
define the Poisson process. We have an analogous system of fractional differential
equations for the fractional Poisson process. In fact, from Eq. (10.4.30) we have

(1 + sβ) ˜Pn(s) = sβ−1

(1 + sβ)n
= ˜Pn−1(s) . (10.4.31)

Hence
sβ

˜Pn(s) = ˜Pn−1(s) − ˜Pn(s) , (10.4.32)
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so in the time domain

P0(t) = Eβ(−tβ) , ∗D
β
t Pn(t) = Pn−1(t) − Pn(t) , n ≥ 1 , (10.4.33)

with initial conditions Pn(0) = 0, n = 1, 2, . . . , where ∗D
β
t denotes the time-

fractional derivative of Caputo type of order β. It is also possible to introduce and
define the fractional Poisson process by this difference-differential system.

Let us note that by solving the system (10.4.33), Beghin and Orsingher in
[BegOrs09] introduce what they call the “first form of the fractional Poisson pro-
cess”, and in [MeNaVe11] Meerschaert et al. show that this process is a renewal
process with Mittag-Leffler waiting time density as in (10.4.17), hence is identical
to the fractional Poisson process.

Up to nowwe have investigated the fractional Poisson counting process N = N (t)
and found its probabilities Pn(t) in Eq. (10.4.26). To get the corresponding Erlang
probability densities qn(t) = q(t, n), densities in t , evolving in n = 0, 1, 2 . . ., we
find by Eq. (10.3.34) via telescope summation

qn(t) = β
tnβ−1

(n − 1)! E
(n)

β

(−tβ
)

, 0 < β ≤ 1 . (10.4.34)

We leave it as an exercise to the reader to show that in Eq. (10.4.25) interchange of
differentiation and summation is allowed.

Remark With β = 1 we get the corresponding well-known results for the standard
Poisson process. The counting number probabilities are

Pn(t) = tn

n! e
−t , n = 0, 1, 2, . . . t ≥ 0 , (10.4.35)

and the Erlang densities

qn(t) = tn−1

(n − 1)! e
−t , n = 1, 2, 3, . . . , t ≥ 0 . (10.4.36)

By rescaling of time we obtain

Pn(t) = (λt)n

n! e−λt , n = 0, 1, 2, . . . , t ≥ 0 , (10.4.37)

for the classical Poisson process with intensity λ and

qn(t) = λ
(λt)n−1

(n − 1)! e
−λt , n = 1, 2, 3, . . . , t ≥ 0 (10.4.38)

for the corresponding Erlang process.
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10.4.4 Thinning of a Renewal Process

We are now going to give an account of the essentials of the thinning of a renewal
process with power law waiting times, thereby leaning on the presentation of Gne-
denko and Kovalenko [GneKov68] but for reasons of transparency not decorating
the power functions by slowly varying functions. Compare also Mainardi, Gorenflo
and Scalas [MaGoSc04a] and Gorenflo and Mainardi [GorMai08].

Againwith the tn in strictly increasing order, the time instants of a renewal process,
0 = t0 < t1 < t2 < . . . , with i.i.d. waiting times Tk = tk − tk−1 (generically denoted
by T ), thinning (or rarefaction) means that for each positive index k a decision is
made: the event happening in the instant tk is deleted with probability p (where
0 < p < 1) or is maintained with probability q = 1 − p. This procedure produces
a thinned (or rarefied) renewal process, that is, one with fewer events. Of particular
interest for us is the case where q is near zero, which results in very few events in
a moderate span of time. To compensate for this loss (wanting to keep a moderate
number of events in a moderate span of time) we change the unit of time which
amounts to multiplying the (numerical value of) the waiting time by a positive factor
τ so that we get waiting times τTk and instants τ tk in the rescaled process. Loosely
speaking, it is our intention to select τ in relation to the rarefaction factor q in such
a way that for very small q in some sense the “average” number of events per unit of
time remains unchanged.Wewill make these considerations precise in an asymptotic
sense.

Denoting by F(t) = P(T ≤ t) the probability distribution function of the original
waiting time T , by f (t) its density (generally this density is a generalized function

represented by a measure) so that F(t) =
∫ t

0
f (t ′) dt ′, and analogously for the func-

tions Fk(t) and fk(t), the distribution and density, respectively, of the sum of k
waiting times, we have recursively

f1(t) = f (t) , fk(t) =
∫ t

0
fk−1(t) dF(t ′) for k ≥ 2 . (10.4.39)

Observing that after a maintained event of the original process the next one is kept
with probability q but dropped with probability p in favor of the second-next with
probability pq and, generally n − 1 events are dropped in favor of the n-th next with
probability pn−1q, we get for the waiting time density of the thinned process the
formula

gq(t) =
∞

∑

n=1

q pn−1 fn(t) . (10.4.40)

With the modified waiting time τT we have P(τT ≤ t) = P(T ≤ t/τ ) = F(t/τ ),
hence the density f (t/τ )/τ , and analogously for the density of the sum of n waiting
times fn(t/τ )/τ . The density of the waiting time of the sum of n waiting times of
the rescaled (and thinned) process now turns out as
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gq,τ (t) =
∞

∑

n=1

q pn−1 fn(t/τ )/τ . (10.4.41)

In the Laplace domain we have ˜fn(s) = ( ˜f (s))n , hence (using p = 1 − q)

g̃q(s) =
∞

∑

n=1

q pn−1 ( ˜f (s))n = q ˜f (s)

1 − (1 − q) ˜f (s)
. (10.4.42)

By rescaling we get

g̃q,τ (s) =
∞

∑

n=1

q pn−1 ( ˜f (τs))n = q ˜f (τs)

1 − (1 − q) ˜f (τs)
. (10.4.43)

Being interested in stronger and stronger thinning (infinite thinning) let us consider
a scale of processes with the parameters q of thinning and τ of rescaling tending to
zero under a scaling relation q = q(τ ) yet to be specified.

Let us consider two cases for the (original) waiting time distribution, namely,
case (A) of a finite mean waiting time and case (B) of a power law waiting time. We
assume in case (A)

λ :=
∫ ∞

0
t ′ f (t ′) dt ′ < ∞ (A), setting β = 1, (10.4.44)

or

Ψ (t) =
∫ ∞

t
f (t ′) dt ′ ∼ c

β
t−β for t → ∞ with 0 < β < 1 . (10.4.45)

In case (B) we set

λ = cπ

Γ (β + 1) sin(βπ)
.

From Lemma 10.2 in the next Sect. 10.5 we know that ˜f (s) = 1 − λsβ + o(sβ) for
0 < s → 0.

Passing now to the limit q → 0 of infinite thinning under the scaling relation

q = λτβ (10.4.46)

for fixed s the Laplace transform (10.4.43) of the rescaled density gq,τ (t) of the
thinned process tends to g̃(s) = 1/(1 + sβ) corresponding to the Mittag-Leffler den-
sity

g(t) = − d

dt
Eβ(−tβ) = φML

β (t) . (10.4.47)
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Thus, the thinned process converges weakly to the Mittag-Leffler renewal process
described in Mainardi, Gorenflo and Scalas [MaGoSc04a] (called the fractional
Poisson process in Laskin [Lai93]) which in the special case β = 1 reduces to the
Poisson process.

10.5 Fractional Diffusion and Subordination Processes

10.5.1 Renewal Process with Reward

The renewal process can be accompanied by a reward, which means that at every
renewal instant a space-like variable makes a random jump from its previous position
to a newpoint in “space”.Here “space” is used in a very general sense. In the insurance
business, for example, the renewal points are instants where the company receives a
payment or must give away money to some claim of a customer, so space is money.
In such a process occurring in time and in space, also referred to as a compound
renewal process, the probability distribution of jump widths is as relevant as that of
the waiting times.

Let us denote by Xn the jumps occurring at instants tn, n = 1, 2, 3, . . . . Let
us assume that Xn are i.i.d. (real, not necessarily positive) random variables with
probability density w(x), independent of the waiting time density φ(t). In a physical
context the Xns represent the jumps of a diffusing particle (thewalker), and the result-
ing random walk model is known as a continuous time random walk (abbreviated
CTRW) in that the waiting time is assumed to be a continuous random variable.

10.5.2 Limit of the Mittag-Leffler Renewal Process

In a CTRW we can, with positive scaling factors h and τ , replace the jumps X by
jumps Xh = h X and the waiting times T by waiting times Tτ = τ T . This leads to
the rescaled jump density wh(x) = w(x/h)/h and the rescaled waiting time density
φτ (t) = φ(t/τ )/τ and correspondingly to the transforms ŵh(κ) = ŵ(hκ), ˜φτ (s) =
˜φ(τs).

For the sojourn density uh,τ (x, t), the density in x evolving in t , we obtain from
Eq. (10.3.8) in the transform domain (the Montroll–Weiss formula)

̂ũh,τ (κ, s) = 1 − ˜φ(τs)

s

1

1 − ˜φ(τs) ŵ(hκ)
, (10.5.1)

where, ifw(x) has support on x ≥ 0, we canworkwith the Laplace transform instead
of the Fourier transform (replace thê by˜). If there exists between h and τ a scaling
relation R (to be introduced later) under which u(x, t) tends as h → 0, τ → 0 to
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a meaningful limit v(x, t) = u0,0(x, t), then we call the process x = x(t) with this
sojourn density a diffusion limit. We find it via

̂ṽ(κ, s) = lim
h,τ→0(R)

̂ũh,τ (κ, s) , (10.5.2)

and Fourier–Laplace (or Laplace–Laplace) inversion.
In recent decades power laws in physical (and also economical and other) pro-

cesses and situations have become increasingly popular for modelling slow (in con-
trast to fast, mostly exponential) decay at infinity. SeeNewman [New05] for a general
introduction to this concept. For our purpose let us assume that the distribution of
jumps is symmetric, and that the distribution of jumps, likewise that of waiting times,
either has finite second or first moment, respectively, or decays near infinity like a
power with exponent −α or −β, respectively, 0 < α < 2, 0 < β < 1. Then we can
state two lemmas. These lemmas and more general ones (e.g. with slowly vary-
ing decorations of the power laws (a) and (b)) can be distilled from the Gnedenko
theorem on the domains of attraction of stable probability laws (see Gnedenko and
Kolmogorov [GneKol54]). Forwide generalizations (to several space dimensions and
to anisotropy) seeMeerschaert and Scheffler [MeeSch04]. They can also bemodified
to cover the special case of smooth densities w(x) and φ(t) and to the case of fully
discrete random walks, see Gorenflo and Abdel-Rehim [GorAbdR05], Gorenflo and
Vivoli [GorViv03]. For proofs, see also Gorenflo and Mainardi [GorMai08].

Lemma 10.1 (for the jump distribution) Assume that W (x) is increasing,
W (−∞) = 0, W (∞) = 1, and the symmetryW (−x) + W (x) = 1 holds for all con-
tinuity points x of W (x), and assume (a) or (b) are valid:

(a) σ2 :=
∫ +∞

−∞
x2 dW (x) < ∞, labelled as α = 2;

(b)
∫ ∞

x
dW (x ′) ∼ bα−1x−α for x → ∞, 0 < α < 2, b > 0.

Then, with μ = σ2/2 in case (a) and μ = bπ/[Γ (α + 1) sin(απ/2)] in case (b)
we have the asymptotics

1 − ŵ(κ) ∼ μ|κ|α

for κ → 0.

Lemma 10.2 (for the waiting time distribution) AssumeΦ(t) is increasing,Φ(0) =
0, Φ(∞) = 1, and (A) or (B) is valid:

(A) ρ :=
∫ ∞

0
t dΦ(t) < ∞, labelled as β = 1,

(B) 1 − Φ(t) ∼ cβ−1t−β for t → ∞, 0 < β < 1, c > 0.

Then, with λ = ρ in case (A) and λ = cπ/[Γ (β + 1) sin(βπ)] in case (B) we
have the asymptotics

1 − ˜φ(s) ∼ λsβ

for 0 < s → 0.
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We will now outline the well-scaled passage to the diffusion limit by which, via
rescaling space and time in a combined way, we will arrive at the Cauchy problem
for the space-time fractional diffusion equation. Assuming the conditions of the two
lemmata are fulfilled, we carry out this passage in the Fourier–Laplace domain. For
rescaling we multiply the jumps and the waiting times by positive factors h and τ
and so obtain a random walk xn(h) = (X1 + X2 + · · · + Xn) h with jump instants
tn(h) = (T1 + T2 + · · · + Tn) τ .We study this rescaled randomwalk under the inten-
tion to send h and τ towards 0. Physically, we change the units of measurement from
1 to 1/h in space, from 1 to 1/τ in time, respectively, making intervals of moderate
size numerically small, and intervals of large size numerically of moderate size, in
this way turning from the microscopic to the macroscopic view. Noting the densities
wh(x) = w(x/h)/h and φτ (t/τ )/τ of the reduced jumps and waiting times, we get
the corresponding transforms ŵh(κ) =̂(κh), ˜φτ (s) = ˜φ(τs), and, in analogy with
the Montroll–Weiss equation, the result

̂p̃h,τ (κ, s)= 1 − ˜φτ (s)

s

1

1 − ŵh(κ) ˜φτ (s)
= 1 − ˜φ(τs)

s

1

1 − ŵ(hκ) ˜φ(τs)
.

(10.5.3)
Fixing nowκ and s, both non-zero, replacingκby hκ and s by τs in the above lemmas,
and sending h and τ to zero, we obtain by a trivial calculation the asymptotics

̂p̃h,τ (κ, s) ∼ λτβsβ−1

μ(h|κ|)α + λ(τs)β
(10.5.4)

that we can rewrite in the form

̂p̃h,τ (κ, s) ∼ sβ−1

r(h, τ )|κ|α + sβ
with r(h, τ ) = μhα

λτβ
. (10.5.5)

Choosing r(h, τ ) ≡ 1 (it suffices to choose r(h, τ ) → 1) we get

̂p̃h,τ (κ, s) → ̂p̃0,0(κ, s) = sβ−1

|κ|α + sβ
. (10.5.6)

We will call the condition below the scaling relation

μhα

λτβ
≡ 1 . (10.5.7)

Via τ = (μ/λ)hα)1/β we can eliminate the parameter τ , apply the inverse Laplace
transform to (10.5.4), fix κ and send h → 0. So, by the continuity theorem (for the
Fourier transform of a probability distribution, see Feller [Fel71]), we can identify

̂p̃0,0(κ, s) = sβ−1

|κ|α + sβ
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as the Fourier–Laplace solution̂ũ(κ, s) of the space-time fractional Cauchy problem
(for x ∈ R, t ≥ 0)

C D β
0+,t u(x, t) = D α

0+,x u(x, t) , u(x, 0) = δ(x) , (10.5.8)

0 < α ≤ 2 , 0 < β ≤ 1 . (10.5.9)

Here, for 0 < β ≤ 1, we denote by t D
β∗ the regularized fractional differential oper-

ator, see Gorenflo and Mainardi [GorMai97], according to

C D β
0+,t g(t) = D β

0+,t [g(t) − g(0)] (10.5.10)

with the Riemann–Liouville fractional differential operator

Dβ
0+,t g(t) :=

⎧

⎪

⎨

⎪

⎩

1

Γ (1 − β)

d

dt

∫ t

0

g(t ′) dτ
(t − t ′)β

, 0 < β < 1 ,

d

dt
g(t) , β = 1 .

(10.5.11)

Hence, in longhand:

t D
β
∗ g(t) =

⎧

⎪

⎨

⎪

⎩

1

Γ (1 − β)

d

dt

∫ t

0

g(t ′) dτ
(t − t ′)β

− g(0)t−β

Γ (1 − β)
, 0 < β < 1

d

dt
g(t) , β = 1 .

(10.5.12)

If g′(t) exists we can write

C D β
0+,t g(t) = 1

Γ (1 − β)

∫ t

0

g′(t ′)
(t − t ′)β

dt ′ , 0 < β < 1 ,

and the regularized fractional derivative coincides with the form introduced by
Caputo, see Caputo andMainardi [CapMai71a], Gorenflo andMainardi [GorMai97],
Podlubny [Pod99], henceforth referred to as theCaputo derivative.Observe that in the
special case β = 1 the two fractional derivatives C D β

0+,t g(t) and D β
0+,t g(t) coincide,

both then being equal to g′(t).
The Riesz operator is a pseudo-differential operator according to

D̂α
0+,x f = −|κ|α ̂f (κ) , κ ∈ R , (10.5.13)

(compare Samko, Kilbas and Marichev [SaKiMa93] and Rubin [Rub96]). It has the
Fourier symbol −|κ|α.

In the transform domain (10.5.8) means

sβ
̂ũ(κ, s) − sβ−1 = −|κ|α̂ũ(κ, s)
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hence

̂ũ(κ, s) = sβ−1

|κ|α + sβ
, (10.5.14)

and looking back we see: ̂ũ(κ, s) = ̂p̃0,0(κ, s). Thus, under the scaling relation
(10.5.7), the Fourier–Laplace solution of the CTRW integral equation converges to
the Fourier–Laplace solution of the space-time fractional Cauchy problem (10.5.8)–
(10.5.9), andwe conclude that the sojourn probability of theCTRWconvergesweakly
(or “in law”) to the solution of the Cauchy problem for the space-time fractional dif-
fusion equation for every fixed t > 0.

It is possible to present another way of passing to the diffusion limit, a way in
which by decoupling the transitions in time and in space we circumvent doubts on
the correctness of the transition.

For a comprehensive study of integral representations of the solution to the
Cauchy problem (10.5.8)–(10.5.9) we recommend the paper by Mainardi, Luchko
and Pagnini [MaLuPa01].

The Fundamental Solution to the Space-Time Fractional Diffusion Equation

Let us note that the solution u(x, t) of the Cauchy problem (10.5.8)–(10.5.9), known
as the Green function or fundamental solution of the space-time fractional diffusion
equation, is a probability density in the spatial variable x , evolving in time t . In
the case α = 2 and β = 1 we recover the standard diffusion equation for which the
fundamental solution is the Gaussian density with variance σ2 = 2t .

For completeness, let us consider the more general space-time fractional diffusion
Cauchy problem (with skewness)

C D β
0+,t u(x, t) = D α

0+,x u(x, t) , u(x, 0) = δ(x) , (10.5.15)

0 < α ≤ 2 , θ real , |θ| ≤ min(α, 2 − α) , 0 < β ≤ 1 , (10.5.16)

as comprehensively treated by Mainardi, Luchko and Pagnini [MaLuPa01]. Some-
times, to point out the parameters, we may denote the fundamental solution by

u(x, t) = Gθ
α,β(x, t) . (10.5.17)

For our purposes let us confine ourselves here to recalling the representation in the
Laplace–Fourier domain of the (fundamental) solution as it results from an appli-
cation of the Laplace and Fourier transforms to Eq. (10.5.8). Using ̂δ(κ) ≡ 1 we
have:

s β
̂ũ(κ, s) − s β − 1 = −|κ|α i θ signκ

̂ũ(κ, s) ,

hence

̂ũ(κ, s) = ̂
˜Gθ

α,β(κ, s) = s β − 1

s β + |κ|α i θ signκ
. (10.5.18)
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For explicit expressions and plots of the fundamental solution of (10.5.8)–(10.5.9)
in the space-time domain we refer the reader to [MaLuPa01]. There, starting from
the fact that the Fourier transform of the fundamental solution can be written as a
Mittag-Leffler function with complex argument,

û(κ, t) = ̂Gθ
α,β(κ, t) = Eβ

(

−|κ|α i θ signκ tβ
)

, (10.5.19)

a Mellin–Barnes integral representation of u(x, t) = Gθ
α,β(x, t) is derived, and is

used to prove the non-negativity of the solution for values of the parameters {α, θ, β}
in the range (10.5.9) and analyze the evolution in time of its moments. The represen-
tation of u(x, t) in terms of Fox H -functions can be found in Mainardi, Pagnini and
Saxena [MaPaSa05], see also Chap.6 in the recent book [MaSaHa10] by Mathai,
Saxena and Haubold.

10.5.3 Subordination in the Space-Time Fractional Diffusion
Equation

Nowwe introduce the analytical and stochastic approaches to subordination in space-
time fractional diffusion processes is the fundamental solution of the space-time
fractional diffusion equation in the Laplace–Fourier domain given by (10.5.18).

With an integration variable t∗ that will play the role of operational time, we get
the following instructive expression for (10.5.18):

̂ũ(κ, s) =
∫ ∞

0

[

exp
(

−t∗|κ|αiθ signκ
)]

[

sβ−1 exp
(−t∗sβ

)]

dt∗ . (10.5.20)

We note that the first factor in (10.5.20)

̂fα,θ(κ, t∗) := exp
(

−t∗|κ|αiθ signκ
)

(10.5.21)

is the Fourier transform of a skewed stable density in x , evolving in operational time
t∗, of a process x = y(t∗) along the real axis x happening in operational time t∗,
which we write as

fα,θ(x, t∗) = t−1/α
∗ Lθ

α

(

x/t1/α∗
)

. (10.5.22)

We can interpret the second factor in (10.5.20)

q̃β(t∗, s) := sβ−1exp(−t∗sβ) (10.5.23)

as the Laplace representation of the probability density in t∗ evolving in t of a
process t∗ = t∗(t), generating the operational time t∗ from the physical time t , that
is expressed via a fractional integral of a skewed Lévy density as
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qβ(t∗, t) = t−1/β
∗ t J

1−β L−β
β (t/t1/β∗ ) = t−β Mβ(t∗/tβ) . (10.5.24)

We apply to (10.5.23) a second Laplace transformation with respect to t∗ with
parameter s∗ to get

˜q̃β(s∗, s) = sβ−1

s∗ + sβ
, (10.5.25)

so, by inversion with respect to t

q̃β(s∗, t) =
∫ ∞

t∗=0
e−s∗t qβ(t∗, t) dt∗ = Eβ(−s∗tβ) , (10.5.26)

and setting s∗ = 0 we see that the density qβ(t∗, t) is normalized:

∫ ∞

t∗=0
qβ(t∗, t) dt∗ = Eβ(0) = 1 . (10.5.27)

Weighting the density of x = y(t∗) with the density of t∗ = t∗(t) over 0 ≤ t < ∞
yields the density u(x, t) in x evolving with time t .

In physical variables {x, t}, using Eqs. (10.5.20)–(10.5.24), we have the subordi-
nation integral formula

u(x, t) =
∫ ∞

t∗=0
fα,θ(x, t∗) qβ(t∗, t) dt∗ , (10.5.28)

where fα,θ(x, t∗) (density in x evolving in t∗) refers to the process x = y(t∗) (t∗ → x)
generating in “operational time” t∗ the spatial position x , and qβ(t∗, t) (density in t∗
evolving in t) refers to the process t∗ = t∗(t) (t → t∗) generating from physical time
t the “operational time” t∗.

Clearly fα,θ(x, t∗) characterizes a stochastic process describing a trajectory x =
y(t∗) in the (t∗, x) plane, that can be visualized as a particle travelling along space
x , as operational time t∗ is proceeding. Is there also a process t∗ = t∗(t), a particle
moving along the positive t∗ axis, happening in physical time t? Naturally we want
t∗(t) to be increasing, at least in the weak sense,

t2 > t1 =⇒ t∗(t2) ≥ t∗(t1) .

We answer this question in the affirmative by inverting the stable process t = t (t∗)
whose probability density (in t , evolving in operational time t∗) is the extremely
positively skewed stable density

rβ(t, t∗) = t−1/β
∗ L−β

β (t/t1/β∗ ) . (10.5.29)

In fact, recalling
r̃β(s, t∗) = exp(−t∗sβ) , (10.5.30)
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there exists the stable process t = t (t∗), weakly increasing, with density in t evolving
in t∗ given by (10.5.29). We call this process the leading process.

Happily, we can invert this process. Inversion of a weakly increasing trajectory
means that, in a graphical visualization, horizontal segments are converted to vertical
segments and conversely jumps (as vertical segments) are converted to horizontal
segments.

Consider a fixed sample trajectory t = t (t∗) and its fixed inversion t∗ = t∗(t). Fix
an instant T of physical time and an instant T∗ of operational time. Then, because
t = t (t∗) is increasing, we have the equivalence

t∗(T ) ≤ T∗ ⇐⇒ T ≤ t (T∗) ,

which, with the notation slightly changed by

t∗(T ) → t ′∗ , T∗ → t∗ , T → t , t (T∗) → t ′ ,

implies
∫ t∗

0
q(t ′∗, t) dt

′
∗ =

∫ ∞

t
rβ(t ′, t∗) dt ′ , (10.5.31)

for the probability density q(t∗, t) in t∗ evolving in t . It follows that

q(t∗, t) = ∂

∂t∗

∫ ∞

t
rβ(t ′, t∗) dt ′ =

∫ ∞

t

∂

∂t∗
rβ(t ′, t∗) dt ′ .

We continue in the s∗-Laplace domain assuming t > 0,

q̃(s∗, t) =
∫ ∞

t

(

s∗r̃β(t ′, s∗) − δ(t ′)
)

dt ′ .

It suffices to consider t > 0, so that we have δ(t ′) = 0 in this integral. Observing
from (10.5.30)

˜r̃β(s, s∗) = 1

s∗ + sβ
, (10.5.32)

we find
r̃β(t, s∗) = βtβ−1 E ′

β(−s∗tβ) , (10.5.33)

so that

q̃(s∗, t) =
∫ ∞

t
s∗βt ′

β−1 E ′
β(−s∗t ′

β
) dt ′ = Eβ(−s∗tβ) , (10.5.34)

and finally
q(t∗, t) = t−β Mβ(t∗/tβ) . (10.5.35)
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From (10.5.34) we also see that

˜q̃(s∗, s) = sβ−1

s∗ + sβ
= ˜q̃β(s∗, s) , (10.5.36)

implying (10.5.23), see (10.5.25),

q(t∗, t) ≡ qβ(t∗, t) , (10.5.37)

so that the process t∗ = t∗(t) is indeed the inverse to the stable process t = t (t∗) and
has density qβ(t∗, t).

Remark 10.3 Formore details on theGorenflo–Mainardi view of subordination, we
draw the reader’s attention to [GorMai11, GorMai15], and in particular to the two
complementary papers [GorMai12a, GorMai12b]. The highlight of [GorMai12a] is
an outline of the way how, by appropriate analytical manipulations from the subordi-
nation integral (10.5.28), a CTRW can be derived to produce snapshots of a particle
trajectory. In the other paper [GorMai12b], the authors show how, from a generic
power law CTRW, by a properly scaled diffusion limit, the subordination integral
can be found.

10.5.4 The Rescaling and Respeeding Concept Revisited.
Universality of the Mittag-Leffler Density

Now we use again the concept of rescaling and respeeding in order to obtain one
more property of the Mittag-Leffler waiting time density. First, we generalize the
Kolmogorov–Feller equation (10.3.22) by introducing in the Laplace domain the
auxiliary function

˜H(s) = 1 − ˜φ(s)

s ˜φ(s)
= ˜Ψ (s)

˜φ(s)
, (10.5.38)

which is equivalent to

˜H(s)
[

ŝp̃(κ, s) − 1
] = [ŵ(κ) − 1]̂p̃(κ, s) . (10.5.39)

Then in the space-time domain we get the following generalized Kolmogorov–
Feller equation

∫ t

0
H(t − t ′)

∂

∂t ′
p(x, t ′) dt ′ = −p(x, t) +

∫ +∞

−∞
w(x − x ′) p(x ′, t) dx ′ ,

(10.5.40)
with p(x, 0) = δ(x).
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Rescaling time means: with a positive scaling factor τ (intended to be small) we
replace the waiting time T by τT . This amounts to replacing the unit 1 of time by
1/τ , and if τ << 1 then in the rescaled process there will occur very many jumps in
a moderate span of time (instead of the original moderate number in a moderate span
of time). The rescaled waiting time density and its corresponding Laplace transform
are φτ (t) = φ(t/τ )/τ , ˜φτ (s) = ˜φ(τs). Furthermore:

˜Hτ (s) = 1 − ˜φτ (s)

s ˜φτ (s)
= 1 − ˜φ(τs)

s ˜φ(τs)
, hence ˜φτ (s) = 1

1 + s ˜Hτ (s)
, (10.5.41)

and (10.5.39) goes over into

˜Hτ (s)
[

ŝp̃τ (κ, s) − 1
] = [ŵ(κ) − 1] ̂p̃τ (κ, s) . (10.5.42)

Respeeding the processmeansmultiplying the left-hand side (actually
∂

∂t ′
p(x, t ′))

of Eq. (10.5.40) by a positive factor 1/a, or equivalently its right-hand side by a
positive factor a.We honor the number a by the name respeeding factor. a > 1means
acceleration and a < 1 deceleration. In the Fourier–Laplace domain the rescaled
and respeeded CTRW process then assumes the form, analogous to (10.5.39) and
(10.5.42),

˜Hτ ,a(s)
[

ŝp̃τ ,a(κ, s) − 1
] = a [ŵ(κ) − 1]̂p̃τ ,a(κ, s) , (10.5.43)

with

˜Hτ ,a(s) = ˜Hτ (s)

a
= 1 − ˜φ(τs)

a s ˜φ(τs)
.

What is the effect of such combined rescaling and respeeding? We find

˜φτ ,a(s) = 1

1 + s ˜Hτ ,a(s)
= a ˜φ(τs)

1 − (1 − a) ˜φ(τs)
, (10.5.44)

and are now in a position to address the asymptotic universality of the Mittag-Leffler
waiting time density.

Using Lemma 10.2 with τs in place of s and taking

a = λτβ , (10.5.45)

fixing s as required by the continuity theorem of probability for Laplace transforms,
the asymptotics ˜φ(τs) = 1 − λ((τs)β) + o((τs)β) for τ → 0 implies
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˜φτ ,λτβ (s)= λτβ
[

1 − λ((τs)β) + o((τs)β)
]

1 − (1 − λτβ)
[

1 − λ((τs)β) + o((τs)β)
] → 1

1 + sβ
=˜φML

β ,

(10.5.46)
corresponding to the Mittag-Leffler density

φML
β (t) = − d

dt
Eβ(−tβ) .

Observe that the parameter λ does not appear in the limit 1/(1 + sβ). We can
make it reappear by choosing the respeeding factor τβ in place of λτβ . In fact:

˜φτ ,τβ → 1

1 + λsβ
.

Formula (10.5.46) says that the general density φ(t) with power law asymptotics
as in Lemma 10.2 is gradually deformed into the Mittag-Leffler waiting time density
φML

β (t). This means that with larger and larger unit of time (by sending τ → 0) and
stronger and stronger deceleration (by a = λτβ) as described our process becomes
indistinguishable from one with Mittag-Leffler waiting time (the probability dis-
tribution of jumps remaining unchanged). Likewise a pure renewal process with
asymptotic power law density becomes indistinguishable from the one with Mittag-
Leffler waiting time (the fractional generalization of the Poisson process due to
Laskin [Las03] and Mainardi, Gorenflo and Scalas [MaGoSc04a]).

10.6 The Wright M-Functions in Probability

The classical Wright functions of the second kind play a role in probability and
stochastic processes, so in this section we present some properties of these functions,
which we refer to as auxiliary functions of the Wright type (introduced byMainardi),
see Chap. 7, Sects. 7.5.3 and 7.6.3. We have already recognized that the Wright M-
functionwith support inR

+ can be interpreted as a probability density function (pdf ).
Consequently, extending the function in a symmetric way to all of R and dividing by
two we have a symmetric pd f with support in R. In the former case the variable is
usually a time coordinate whereas in the latter the variable is the absolute value of a
space coordinate. We now provide more details on these densities in the framework
of the theory of probability. As before, we agree to denote by x and |x | the variables
in R and R

+, respectively (see on Fig. 10.1 plots of M-function for certain values of
parameters).
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Fig. 10.1 Plots of the functions Mν(|x |) for |x | ≤ 5 at t = 1; Left: for ν = 0, 1/4, 3/8, 1/2. Right:
for ν = 1/2, 5/8, 3/4, 1

10.6.1 The Absolute Moments of Order δ

The absolute moments of order δ > −1 of the Wright M-function in R
+ are finite

and turn out to be
∫ ∞

0
xδMν(x) dx = Γ (δ + 1)

Γ (νδ + 1)
, δ > −1 , 0 ≤ ν < 1 . (10.6.1)

In order to derive this fundamental result we proceed as follows, based on the integral
representation (F.1.15).

∫ ∞

0
xδ Mν(x) dx =

∫ ∞

0
xδ

[

1

2πi

∫

Ha
eσ−xσν dσ

σ1−ν

]

dx

= 1

2πi

∫

Ha
eσ

[∫ ∞

0
e−xσν

xδ dx

]

dσ

σ1−ν

= Γ (δ + 1)

2πi

∫

Ha

eσ

σνδ+1
dσ = Γ (δ + 1)

Γ (νδ + 1)
.

Above we have legitimately changed the order of two integrals and we have used the
identity

∫ ∞

0
e−xσν

xδ dx = Γ (δ + 1)

(σν)δ+1
,

derived from (A.23) along with the Hankel formula (A.19a).
In particular, for δ = n ∈ N, the above formula provides the moments of integer

order that can also be computed from the Laplace transform pair (7.6.13) as follows:

∫ +∞

0
x n Mν(x) dx = lim

s→0
(−1)n

dn

dsn
Eν(−s) = Γ (n + 1)

Γ (νn + 1)
.
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Incidentally, we note that the Laplace transform pair (7.6.13) could be obtained
using the fundamental result (10.6.1) by developing in power series the exponential
kernel of the Laplace transform and then transforming the series term-by-term.

10.6.2 The Characteristic Function

As is well known in probability theory, the Fourier transform of a density provides
the so-called characteristic function. In our case we have:

F
[

1

2
Mν(|x |)

]

:= 1

2

∫ +∞

−∞
eiκx Mν(|x |) dx

=
∫ ∞

0
cos(κx) Mν(x) dx = E2ν(−κ2) .

(10.6.2)

To prove this, it is sufficient to develop in series the cosine function and use formula
(10.6.1),

∫ ∞

0
cos(κx) Mν(x) dx =

∞
∑

n=0

(−1)n
κ2n

(2n)!
∫ ∞

0
x2n Mν(x) dx

=
∞

∑

n=0

(−1)n
κ2n

Γ (2νn + 1)
= E2ν(−κ2) .

10.6.3 Relations with Lévy Stable Distributions

We find it worthwhile to discuss the relations between the Wright M-functions and
the so-called Lévy stable distributions. The term stable has been assigned by the
French mathematician Paul Lévy, who, in the 1920s, started a systematic study in
order to generalize the celebrated Central Limit Theorem to probability distributions
with infinite variance. For stable distributions we can assume the following

Definition 10.4 If two independent real random variables with the same shape or
type of distribution are combined linearly and the distribution of the resulting random
variable has the same shape, the common distribution (or, more precisely, its type)
is said to be stable.

The restrictive condition of stability enabled Lévy (and then other authors) to
derive the canonical form for the characteristic function of the densities of these distri-
butions.Herewe follow theparametrization in [Fel52, Fel71] revisited in [GorMai98]
and in [MaLuPa01]. Denoting by Lθ

λ(x) a generic stable density in R, where λ is
the index of stability and θ the asymmetry parameter, improperly called skewness,
its characteristic function reads:
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Fig. 10.2 The
Feller–Takayasu diamond for
Lévy stable densities

Lθ
λ(x) ÷ ̂Lθ

λ(κ) = exp
[−ψθ

λ(κ)
]

, ψθ
λ(κ) = |κ|λ ei(signκ)θπ/2 , (10.6.3)

0 < λ ≤ 2 , |θ| ≤ min {λ, 2 − λ} .

For ν = 1/2, we get back the diffusion equation and the Mν(x) function becomes
the Gaussian function (known as the fundamental solution of the diffusion equation
for the Cauchy Problem) whereas, for ν → 1, we get the wave equation and the
Mν(x) function tends to two Dirac delta functions as fundamental solutions of the
Cauchy Problem, centered at x = ±1.

We note that the allowed region for the parameters λ and θ turns out to be a
diamond in the plane {λ, θ} with vertices at the points (0, 0), (1, 1), (1,−1), (2, 0),
that we call the Feller–Takayasu diamond, see Fig. 10.2. For values of θ on the border
of the diamond (that is θ = ±λ if 0 < λ < 1, and θ = ±(2 − λ) if 1 < λ < 2) we
obtain the so-called extremal stable densities.

We note the symmetry relation Lθ
λ(−x) = L−θ

λ (x), so that a stable density with
θ = 0 is symmetric.

Stable distributions have noteworthy properties which the interested reader can
find in the relevant existing literature. Below we list some of the more peculiar
properties:

• The class of stable distributions possesses its own domain of attraction, see e.g.
[Fel71].

• Any stable density is unimodal and indeed bell-shaped, i.e. its n-th derivative has
exactly n zeros in R, see [Gaw84].

• The stable distributions are self-similar and infinitely divisible.
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These properties derive from the canonical form (10.6.3) through the scaling property
of the Fourier transform.

Self-similarity means

Lθ
λ(x, t) ÷ exp

[−tψθ
λ(κ)

] ⇐⇒ Lθ
λ(x, t) = t−1/λ [Lθ

λ(x/t
1/λ)] , (10.6.4)

where t is a positive parameter. If t is time, then Lθ
λ(x, t) is a spatial density evolving

in time with self-similarity.

Infinite divisibilitymeans that for every positive integer n, the characteristic function
can be expressed as the nth power of some characteristic function, so that any stable
distribution can be expressed as the n-fold convolution of a stable distribution of the
same type. Indeed, taking in (10.6.3) θ = 0, without loss of generality, we have

e−t |κ|λ =
[

e−(t/n)|κ|λ
]n ⇐⇒ L0

λ(x, t) = [

L0
λ(x, t/n)

]∗n
, (10.6.5)

where
[

L0
λ(x, t/n)

]∗n := L0
λ(x, t/n) ∗ L0

λ(x, t/n) ∗ · · · ∗ L0
λ(x, t/n)

is the multiple Fourier convolution in R with n identical terms.
The inversion of the Fourier transform in (10.6.3) can be carried out only for a

few particular cases, using standard tables, and well-known probability distributions
are obtained.

For λ = 2 (so θ = 0), we recover theGaussian pdf, which turns out to be the only
stable density with finite variance, and more generally with finite moments of any
order δ ≥ 0. In fact

L0
2(x) = 1

2
√

π
e−x2/4 . (10.6.6)

All the other stable densities have finite absolute moments of order δ ∈ [−1,λ), as
we will later show.

For λ = 1 and |θ| < 1, we get

Lθ
1(x) = 1

π

cos(θπ/2)

[x + sin(θπ/2)]2 + [cos(θπ/2)]2 , (10.6.7)

which for θ = 0 includes the Cauchy–Lorentz pdf,

L0
1(x) = 1

π

1

1 + x2
. (10.6.8)

In the limiting cases θ = ±1 for λ = 1 we obtain the singular Dirac pdfs

L±1
1 (x) = δ(x ± 1) . (10.6.9)
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In general, we must recall the power series expansions provided in [Fel71]. We
restrict our attention to x > 0 since the evaluations for x < 0 can be obtained using
the symmetry relation. The convergent expansions of Lθ

λ(x) (x > 0) turn out to be:

for 0 < λ < 1, |θ| ≤ λ :

Lθ
λ(x) = 1

π x

∞
∑

n=1

(−x−λ)n
Γ (1 + nλ)

n! sin
[nπ

2
(θ − λ)

]

; (10.6.10)

for 1 < λ ≤ 2, |θ| ≤ 2 − λ :

Lθ
λ(x) = 1

π x

∞
∑

n=1

(−x)n
Γ (1 + n/λ)

n! sin
[nπ

2α
(θ − α)

]

. (10.6.11)

From the series in (10.6.10) and the symmetry relation we note that the extremal
stable densities for 0 < α < 1 are unilateral, more precisely they vanish for x > 0
if θ = α, and for x < 0 if θ = −α. In particular, the unilateral extremal densities
L−α

α (x) with 0 < α < 1 have support in R
+ and Laplace transform exp(−sα). For

α = 1/2 we obtain the so-called Lévy–Smirnov pdf:

L−1/2
1/2 (x) = x−3/2

2
√

π
e−1/(4x) , x ≥ 0 . (10.6.12)

As a consequence of the convergence of the series in (10.6.10)–(10.6.11) and of
the symmetry relation we recognize that the stable pdfs with 1 < α ≤ 2 are entire
functions, whereas with 0 < α < 1 have the form

Lθ
α(x) =

{

(1/x)Φ1(x−α) for x > 0 ,

(1/|x |)Φ2(|x |−α) for x < 0 ,
(10.6.13)

whereΦ1(z) andΦ2(z) are distinct entire functions. The caseα = 1 (|θ| < 1)must be
considered in the limit for α → 1 of (10.6.10)–(10.6.11), because the corresponding
series reduce to power series akin with geometric series in 1/x and x , respectively,
with a finite radius of convergence. The corresponding stable pdfs are no longer rep-
resented by entire functions, as can be noted directly from their explicit expressions
(10.6.7)–(10.6.8).

We do not provide the asymptotic representations of the stable densities, instead
referring the interested reader to [MaLuPa01]. However, based on asymptotic repre-
sentations, we can state the following: for 0 < α < 2 the stable pdfs exhibit fat tails
in such a way that their absolute moment of order δ is finite only if −1 < δ < α.
More precisely, one can show that for non-Gaussian, non-extremal, stable densities
the asymptotic decay of the tails is

Lθ
α(x) = O

(|x |−(α+1)) , x → ±∞ . (10.6.14)
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For the extremal densities with α �= 1 this is valid only for one tail (as |x | → ∞), the
other (as |x | → ∞) being of exponential order. For 1 < α < 2 the extremal pdfs are
two-sided and exhibit an exponential left tail (as x → −∞) if θ = +(2 − α), or an
exponential right tail (as x → +∞) if θ = −(2 − α). Consequently, the Gaussian
pd f is the unique stable density with finite variance. Furthermore, when 0 < α ≤ 1,
the first absolute moment is infinite so we should use the median instead of the
non-existent expected value in order to characterize the corresponding pd f .

Let us also recall a relevant identity between stable densities with index α and
1/α (a sort of reciprocity relation) pointed out in [Fel71], that is, assuming x > 0,

1

xα+1
Lθ
1/α(x−α) = Lθ∗

α (x) , 1/2 ≤ α ≤ 1 , θ∗ = α(θ + 1) − 1 . (10.6.15)

The condition 1/2 ≤ α ≤ 1 implies 1 ≤ 1/α ≤ 2. A check shows that θ∗ falls within
the prescribed range |θ∗| ≤ α if |θ| ≤ 2 − 1/α. We leave as an exercise for the
interested reader the verification of this reciprocity relation in the limiting cases
α = 1/2 and α = 1.

From a comparison between the series expansions in (10.6.10)–(10.6.11) and in
(7.5.6)–(7.5.7), we recognize that for x > 0 our auxiliary functions of the Wright
type are related to the extremal stable densities as follows, see [MaiTom97],

L−α
α (x) = 1

x
Fα(x−α) = α

xα+1
Mα(x−α) , 0 < α < 1 , (10.6.16)

Lα−2
α (x) = 1

x
F1/α(x) = 1

α
M1/α(x) , 1 < α ≤ 2 . (10.6.17)

In Eqs. (10.6.16)–(10.6.17), for α = 1, the skewness parameter turns out to be θ =
−1, so we get the singular limit

L−1
1 (x) = M1(x) = δ(x − 1) . (10.6.18)

More generally, all (regular) stable densities, given in Eqs. (10.6.10)–(10.6.11),
were recognized to belong to the class of Fox H -functions, as formerly shown by
[Sch86], see also [GorMai03]. This general class of high transcendental functions is
outside the scope of this book.

10.6.4 The Wright M-Function in Two Variables

In view of time-fractional diffusion processes related to time-fractional diffusion
equations it is worthwhile to introduce the function in two variables

Mν(x, t) := t−ν Mν(xt
−ν) , 0 < ν < 1 , x, t ∈ R

+ , (10.6.19)
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which defines a spatial probability density in x evolving in time t with self-similarity
exponent H = ν. Of course for x ∈ R we have to consider the symmetric version
obtained from (10.6.19) by multiplying by 1/2 and replacing x by |x |.

Hereafter we provide a list of the main properties of this function, which can
be derived from the Laplace and Fourier transforms for the corresponding Wright
M-function in one variable.

From Eq. (7.6.17) we derive the Laplace transform of Mν(x, t) with respect to
t ∈ R

+,
L {Mν(x, t); t → s} = sν−1 e−xsν

. (10.6.20)

From Eq. (7.6.13) we derive the Laplace transform of Mν(x, t) with respect to x ∈
R

+,
L {Mν(x, t); x → s} = Eν (−stν) . (10.6.21)

FromEq. (10.6.2)wederive theFourier transformofMν(|x |, t)with respect to x ∈ R,

F {Mν(|x |, t); x → κ} = 2E2ν
(−κ2tν

)

. (10.6.22)

Using the Mellin transform [MaPaGo03] derived the following integral formula,

Mν(x, t) =
∫ ∞

0
Mλ(x, τ ) Mμ(τ , t) dτ , ν = λμ . (10.6.23)

Special cases of the Wright M-function are easily derived for ν = 1/2 and ν =
1/3 from the corresponding ones in the complex domain, see e.g. [Mai10, App. F,
formulas (F.16)–(F.17)].We devote particular attention to the case ν = 1/2 for which
we get from [Mai10, App. F, formula (F.16)] the Gaussian density in R,

M1/2(|x |, t) = 1

2
√

πt1/2
e−x2/(4t) . (10.6.24)

For the limiting case ν = 1 we obtain

M1(|x |, t) = 1

2
[δ(x − t) + δ(x + t)] . (10.6.25)

10.7 Historical and Bibliographical Notes

A fractional generalization of the Poisson probability distribution was presented by
Pillai in 1990 in his pioneering work [Pil90]. He introduced the probability distribu-
tion (whichhe called theMittag-Leffler distribution) using the completemonotonicity
of the Mittag-Leffler function. As has already been mentioned, the complete mono-
tonicity of this function was proved by Pollard in 1948, see [Poll48, Fel49], as well
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as in more recent works by Schneider [Sch96], and Miller and Samko [MilSam97].
Nowadays the concept of complete monotonicity is widely investigated in the frame-
work of the Bernstein functions (non-negative functions with a complete monotone
first derivative), see the recent book by Schilling et al. [SchSoVo12].

The concept of a geometrically infinitely divisible distribution was introduced in
1984 in [KlMaMe84]. Later in 1995 Pillai introduced [PilJay95] (see also [JayPil93,
JayPil96, Jay03]) a discrete analogue of such a distribution (the discrete Mittag-
Leffler distribution). In [CahWoy18], formal estimation procedures for the parame-
ters of the generalized, heavy-tailed three-parameter Linnik and Mittag-Leffler dis-
tributions are proposed. The estimators are derived from the moments of the log-
transformed random variables and are shown to be asymptotically unbiased. These
distributions are used for modeling processes in finance.

Another possible generalization of the Poisson distribution is that introduced by
Lamperti in 1958 [Lam58] whose density has the expression

fXα
(y) = sin πα

π

yα−1

y2α + 2yα cosπα + 1
,

see also [Jam10]. We recognize in it the spectral distribution of the Mittag-Leffler
function Eα(−tα) formerly derived in 1947 by Gross for linear viscoelasticity
[Gro47] and then used by Caputo andMainardi [CapMai71a, CapMai71b]. Lamperti
considered a random variable equal to the ratio of two variables Xα = Sα/Sα,0, 0 <

α < 1, where Sα is a positive stable random variable, with density fα, and having
Laplace transform

E
(

e−sSα
) = e−sα

,

and Sα is a variable independent of Sα,θ, θ > −α,whose laws follow a polynomially
tilted stable distribution having density proportional to t−θ fα(t).

The concept of a renewal process has been developed as a stochastic model for
describing the class of counting processes for which the times between successive
events are independent identically distributed (i.i.d.) non-negative random variables,
obeying a given probability law. These times are referred to as waiting times or
inter-arrival times. The process of accumulation of waiting times is inverse to the
counting number process, and is called the Erlang process in honor of the Danish
mathematician and telecommunication engineer A.K. Erlang (see [BrHaJe48]).

For more details see, for example, the classical treatises by Khintchine [Khi37,
Khi60], Cox [Cox67], Gnedenko and Kovalenko [GneKov68], Feller [Fel71], and
the book by Ross [Ros97], as well as the recent survey paper [MaiRog06] and the
book [RogMai11] by Rogosin and Mainardi (see also [RogMai17]).

The Mittag-Leffler function also appears in the solution of the fractional master
equation. This equation characterizes the renewal processes with reward modelled
by the random walk model known as continuous time random walks (abbreviated
CTRWs). In this the waiting time is assumed to be a continuous random variable. The
nameCTRWbecame popular in physics in the 1960s afterMontroll,Weiss and Scher
(just to cite the pioneers) published a celebrated series of papers on random walks to
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model diffusion processes on lattices, see e.g. [Wei94] and the references therein. The
basic role of the Mittag-Leffler waiting time probability density in time fractional
continuous time random walks has become well-known via the fundamental paper
of Hilfer and Anton [HilAnt95] (see also [BalR07, Hil03]). Earlier in the theory
of thinning (rarefaction) of a renewal process under power law assumptions (see
Gnedenko andKovalenko’s book [GneKov68]), this density had been found as a limit
density by a combination of thinning followed by rescaling the time and imposing
a proper relation between the rescaling factor and the thinning parameter. In 1985
Balakrishnan [BalV85] defined a special class of anomalous randomwalks where the
anomaly appears by growth of the second moment of the sojourn probability density
like a power of time with exponent between 0 and 1. This paper appeared a few years
before the fundamental paper by Schneider andWyss [SchWys89], but did not attract
much attention (probably because of its style of presentation). However, it should be
mentioned that, by a well-scaled passage to the limit, from a CTRW the space-time
fractional diffusion equation in the formof an equivalent integro-differential equation
was obtained in [BalV85]. Remarkably, Gnedenko and Kovalenko [GneKov68] and
Balakrishnan [BalV85] ended their analysis by giving the solution only as a Laplace
transform without inverting it.

CTRWs are rather good and general phenomenological models for diffusion,
including anomalous diffusion, provided that the resting time of the walker is
much greater than the time it takes to make a jump. In fact, in the formalism,
jumps are instantaneous. In more recent times, CTRWs have been applied to eco-
nomics and finance by Hilfer [Hil84], by Gorenflo–Mainardi–Scalas and their co-
workers [ScGoMa00, Mai-et-al00, Gor-et-al01, RaScMa02, Sca-et-al03], and, later,
by Weiss and co-workers [MaMoWe03]. It should be noted, however, that the idea
of combining a stochastic process for waiting times between two consecutive events
and another stochastic process which associates a reward or a claim to each event
dates back at least to the first half of the twentieth century with the so-called Cramér–
Lundberg model for insurance risk, see for a review [EmKlMi01]. In a probabilistic
framework, we now find it more appropriate to refer to all these processes as com-
pound renewal processes.

Serious studies of the fractional generalization of the Poisson process—replacing
the exponential waiting time distribution by a distribution given via a Mittag-Leffler
function with modified argument—began around the turn of the millennium, and
since then many papers on its various aspects have appeared. There are in the
literature many papers on this generalization where the authors have outlined a
number of aspects and definitions, see e.g. Repin and Saichev [RepSai00], Wang
et al. [AldWai70, WanWen03, WaWeZh06], Laskin [Las03, Las09], Mainardi et
al. [MaGoSc04a], Uchaikin et al. [UcCaSi08], Beghin and Orsingher [OrsBeg04,
BegOrs09], Cahoy et al. [CaUcWo10], Meerschaert et al. [MeNaVe11, BaeMee01],
Politi et al. [PoKaSc11], Kochubei [Koc11], so it would be impossible to list them all
exhaustively. However, in effect this generalization had already been used in 1995:
Hilfer and Anton [HilAnt95] showed (using different terminology) that the frac-
tional Kolmogorov–Feller equation (replacing the first-order time derivative by a
fractional derivative of order between 0 and 1) requires the underlying random walk
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to be subordinated to a renewal process with Mittag-Leffler waiting time. Goren-
flo and Mainardi [GorMai08, Gor10] mention the asymptotic universality of the
Mittag-Leffler waiting time density for the family of power law renewal processes.

An alternative renewal process called the Wright process was investigated by
Mainardi et al. [Mai-et-al00, MaGoVi05, MaGoVi07] as a process arising by dis-
cretization of the stable subordinator (see the survey of recent results in [Baz18]).
This approach is based on the concept of the extremal Lévy stable density (Lévy sta-
ble processes are widely discussed in several books on probability theory, see, e.g.,
[Fel71, Sat99]). For the study of the Wright processes an essential role is played
by the so-called M-Wright function (see, e.g., [Mai10]). A scaled version of this
process has been used by Barkai [Bark02] to approximate the time-fractional dif-
fusion process directly by a random walk subordinated to it (executing this scaled
version in natural time), and he has found rather poor convergence in refinement. In
Gorenflo et al. [GoMaVi07] the way of using this discretized stable subordinator has
been modified. By appropriate discretization of the relevant spatial stable process
we have then obtained a simulation method equivalent to the solution of a pair of
Langevin equations, see Fogedby [Fog94] and Kleinhans and Friedrich [KleFri07].
For simulation of space-time fractional diffusion one then obtains a sequence of pre-
cise snapshots of a true particle trajectory, see for details Gorenflo et al. [GoMaVi07],
and also Gorenflo and Mainardi [GorMai12a, GorMai12b]. Other interesting results
in this area can be found in [ChGoSo02, MaPaGo03, MaiPir96].

There are several ways to generalize the classical diffusion equation by introduc-
ing space and/or time derivatives of fractional order. We mention here the seminal
paper by Schneider and Wyss [SchWys89] for the time fractional diffusion equation
and the influential paper by Saichev and Zaslavsky [SaiZas97] for diffusion in time
as well as in space. In the recent literature several authors have stressed the view-
point of subordination, and special attention is being paid to diffusion equations with
distributed order of fractional temporal or/and spatial differentiation. The transition
from CTRW to such generalized types of diffusion has been investigated by different
methods, not only for its purely mathematical interest but also due to its applica-
tions in Physics, Chemistry, and other Applied Sciences, including Economics and
Finance. As good reference texts on these topics, containing extended lists of relevant
works, we refer to the review papers by Metzler and Klafter [MetKla00, MetKla04]
(see also [EvaLen18, BouGeo90, MaMuPa10]).

In [Mag-et-al19] a review of the mechanical models for ultraslow diffusion is
presented from both a macroscopic and a microscopic perspective, which have been
developed in recent decades to depict time evolution of ultraslow diffusion in het-
erogeneous media.

Lastly, we mention the connection of the above processes to classes of Lévy
processes [Bert96] and stable processes, see, e.g. [Khi38, KhiLev36, Levy37] and
more recent results in [Fuj90b, GorMai98a, Non90b, SteVH04].

Concerning the Mainardi auxiliary function of the Wright type it should be noted
that in the book by Prüss [Prus93] we find a figure quite similar to our figure showing
the M-Wright function in the linear scale, namely the Wright function of the second
kind in the transition from diffusion to wave. It was derived by Prüss by inverting the
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Fourier transform expressed in terms of the Mittag-Leffler function, following the
approach by Fujita [Fuj90a] for the fundamental solution of the Cauchy problem for
the diffusion-wave equation, fractional in time. However, our plot must be consid-
ered independent of that of Prüss because Mainardi used the Laplace transform in
his former paper presented at the WASCOM conference in Bologna, October 1993
[Mai94a] (and published later in a number of papers and in his 2010 book) so he was
aware of the book by Prüss only later.

10.8 Exercises

10.8.1 Arandomvariable X is said to be gammadistributed (or havegammadensity)
with parameters (α,β), α > 0,β > 0, if its density of probability has the form

f (x) = xα−1

βαΓ (α)
e− x

β , for x ≥ 0, and f (x) ≡ 0, x < 0.

Let X1, X2 be independently distributed gamma variables with parameters (α, 1)
and (α + 1

2 , 1), respectively.
Let U = X1X2. Show that the density f (u) of this distribution is given by

f (u) = 22α−1

Γ (2α)
uα−1e−2u

1
2
, u ≥ 0; and f (x) ≡ 0, x < 0.

10.8.2 Let X1, X2, X3 be independently distributed gamma variables with parame-
ters (α, 1), (α + 1

3 , 1), and (α + 2
3 , 1), respectively.

Let U = X1X2X3. Show that the density f (u) of this distribution can be repre-
sented via an H -function in the form

f (u) = 27

Γ (3α)
H 1,0

0,1

[

27u

∣

∣

∣

∣ (3α − 3, 3)

]

, u ≥ 0; and f (x) ≡ 0, x < 0.

10.8.3 ([Pil90, p. 190]) Let us consider the stochastic process x = x(t), t ≥ 0,with
x ≥ 0 (called in some sources the Mittag-Leffler process) having the density

fα(x, t) =
∞

∑

k=0

(−1)k
Γ (t + k)

k!Γ (t)Γ (α(t + k) + 1)
xα(t+k).

Show that this process obeys the following subordination formula

fα(x, t) =
∞

∫

0

rα(x, t∗)γ(t∗, t)dt∗,
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where rα(x, t) is the distribution of the stable process with the Laplace transform
equal to exp (−tξα) and

γ(t∗, t) = 1

Γ (t)
t t−1
∗ e−t∗ .

10.8.4 Consider the stochastic process x = x(t), t ≥ 0,with x ≥ 0 having the den-
sity γ(t∗, t) with Laplace transform (a so-called γ-process)

γ̃(s∗, t) = (1 + s∗)−t = e−t log (1+s∗).

Find the density β(t, t∗) of the inverse process t = t (t∗) happening in t ≥ 0,
running along t∗ ≥ 0.

Answer.

β(t, t∗) = d

dt∗
L−1
s∗

{

s∗(1 + s∗)−t

log (1 + s∗)

}

.

10.8.5 ([GorMai12a]) Represent the fundamental solution G∗
β(x, t) of the rightward

time fractional drift equation

(

t D
β
∗ u

)

(x, t) = −∂u

∂x
(x, t), −∞ < x < +∞, t ≥ 0,

in terms of the M-Wright function

Mν(z) := W−ν,1−ν(−z) =
∞

∑

n=0

(−z)n

n!Γ [−νn + (1 − ν)] , 0 < ν < 1.

Answer.

G∗
β(x, t) =

{

t−βMβ

(

x
tβ

)

, x > 0,
0, x < 0.

10.8.6 Rescaling and respeeding.

Show that the Mittag-Leffler waiting time density

φML
β (t) = − d

dt
Eβ(−tβ), 0 < β ≤ 1,

is invariant under combined rescaling and respeeding if a = τβ .



Appendix A
The Eulerian Functions

Here we consider the so-called Eulerian functions, namely the well-known Gamma
function and Beta function together with some special functions that turn out to be
related to them, such as the Psi function and the incomplete gamma functions. We
recall not only the main properties and representations of these functions, but we also
briefly consider their applications in the evaluation of certain expressions relevant
for the fractional calculus.

A.1 The Gamma Function

The Gamma function �(z) is the most widely used of all the special functions:
it is usually discussed first because it appears in almost every integral or series
representation of other advanced mathematical functions. We take as its definition
the integral formula

�(z) :=
∫ ∞

0
uz−1 e−u du , Re z > 0 . (A.1)

This integral representation is the most common for �, even if it is valid only in the
right half-plane of C.

The analytic continuation to the left half-plane can be done in different ways. As
will be shown later, the domain of analyticity D� of � is

D� = C \ {0,−1,−2, . . . , } . (A.2)

Using integration by parts, (A.1) shows that, at least for Re z > 0, � satisfies the
simple difference equation

�(z + 1) = z �(z) , (A.3)
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which can be iterated to yield

�(z + n) = z (z + 1) . . . (z + n − 1) �(z) , n ∈ N . (A.4)

The recurrence formulas (A.3 − 4) can be extended to any z ∈ D� . In particular,
since �(1) = 1, we get for non-negative integer values

�(n + 1) = n! , n = 0, 1, 2, . . . . (A.5)

As a consequence � can be used to define the Complex Factorial Function

z! := �(z + 1) . (A.6)

By the substitution u = v2 in (A.1) we get the Gaussian Integral Representation

�(z) = 2
∫ ∞

0
e−v2 v2z−1dv , Re (z) > 0 , (A.7)

which can be used to obtain � when z assumes positive semi-integer values. Starting
from

�

(
1

2

)
=
∫ +∞

−∞
e−v2 dv = √

π ≈ 1.77245 , (A.8)

we obtain for n ∈ N,1

�

(
n + 1

2

)
=
∫ +∞

−∞
e−v2 vn dv=�

(
1

2

)
(2n − 1)!!

2n
=√

π
(2n)!
22n n! . (A.9)

A.1.1 Analytic Continuation

A common way to derive the domain of analyticity (A.2) is to carry out the analytic
continuation by the mixed representation due to Mittag-Leffler:

�(z) =
∞∑
n=0

(−1)n

n!(z + n)
+
∫ ∞

1
e−u uz−1 du , z ∈ D� . (A.10)

This representation canbeobtained from the so-calledPrym’s decomposition, namely
by splitting the integral in (A.1) into two integrals, one over the interval 0 ≤ u ≤ 1
which is then developed as a series, the other over the interval 1 ≤ u ≤ ∞, which,
being uniformly convergent inside C, provides an entire function. The terms of the
series (uniformly convergent inside D�) provide the principal parts of � at the cor-

1The double factorial m!! means m!! = 1 · 3 · . . .m if m is odd, and m!! = 2 · 4 · . . .m if m is even.
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responding poles zn = −n . So we recognize that � is analytic in the entire complex
plane except at the points zn = −n (n = 0, 1, . . . ), which turn out to be simple poles
with residues Rn = (−1)n/n!. The point at infinity, being an accumulation point of
poles, is an essential non-isolated singularity. Thus � is a transcendental meromor-
phic function.

A formal way to obtain the domain of analyticity D� is to carry out the required
analytical continuation via the Recurrence Formula

�(z) = �(z + n)

(z + n − 1) (z + n − 2) . . . (z + 1) z
, (A.11)

which is equivalent to (A.4). In this way we can enter the left half-plane step by
step. The numerator on the R.H.S. of (A.11) is analytic for Re z > −n; hence, the
L.H.S. is analytic for Re z > −n except for simple poles at z = 0,−1, . . . , (−n +
2), (−n + 1) . Since n can be arbitrarily large, we deduce the properties discussed
above.

Another way to interpret the analytic continuation of the Gamma function is
provided by the Cauchy–Saalschütz representation, which is obtained by iterated
integration by parts in the basic representation (A.1). If n ≥ 0 denotes any non-
negative integer, we have

�(z)=
∫ ∞

0
uz−1

[
e−u − 1 + u − 1

2!u
2 + · · · + (−1)n+1 1

n!u
n

]
du (A.12)

in the strip −(n + 1) < Re z < −n.
To prove this representation the starting point is provided by the integral

∫ ∞

0
uz−1 [e−u − 1

]
du , −1 < Rez < 0 .

Integration by parts gives (the integrated terms vanish at both limits)

∫ ∞

0
uz−1

[
e−u − 1

]
du = 1

z

∫ ∞

0
uze−u du = 1

z
�(z + 1) = �(z) .

So, by iteration, we get (A.12).

A.1.2 The Graph of the Gamma Function on the Real Axis

Plots of �(x) (continuous line) and 1/�(x) (dashed line) for−4 < x ≤ 4 are shown
in Fig. A.1 and for 0 < x ≤ 3 in Fig. A.2.
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Fig. A.1 Plots of �(x) (continuous line) and 1/�(x) (dashed line)

Hereafter we provide some analytical arguments that support the plots on the real
axis. In fact, one can get an idea of the graph of the Gamma function on the real axis
using the formulas

�(x + 1) = x�(x) , �(x − 1) = �(x)

x − 1
,

to be iterated starting from the interval 0 < x ≤ 1,where�(x) → + ∞ as x → 0+
and �(1) = 1.

For x > 0 the integral representation (A.1) yields �(x) > 0 and �′′(x) > 0 since

�(x) =
∫ ∞

0
e−u ux−1 du , �′′(x) =

∫ ∞

0
e−u ux−1 (log u)2 du .

As a consequence, on the positive real axis �(x) turns out to be positive and convex
so that it first decreases and then increases, exhibiting a minimum value. Since
�(1) = �(2) = 1, we must have a minimum at some x0, 1 < x0 < 2. It turns out
that x0 = 1.4616 . . . and �(x0) = 0.8856 . . .; hence x0 is quite close to the point
x = 1.5 where � attains the value

√
π/2 = 0.8862 . . ..

On the negative real axis �(x) exhibits vertical asymptotes at x = −n (n =
0, 1, 2, . . .); it turns out to be positive for −2 < x < −1, −4 < x < −3, . . . , and
negative for −1 < x < 0, −3 < x < −2, . . . .
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Fig. A.2 Plots of �(x) (continuous line) and 1/�(x) (dashed line)

A.1.3 The Reflection or Complementary Formula

�(z) �(1 − z) = π

sin πz
. (A.13)

This formula, which shows the relationship between the � function and the trigono-
metric sin function, is of great importance togetherwith the recurrence formula (A.3).
It can be proved in several ways; the simplest proof consists in proving (A.13) for
0 < Rez < 1 and extending the result by analytic continuation to C except at the
points 0,±1,±2, . . .

The reflection formula shows that � has no zeros. In fact, the zeros cannot be in
z = 0,±1,±2, . . . and, if � vanished at a non-integer z, then because of (A.13), this
zero would be a pole of �(1 − z), which cannot be true. This fact implies that 1/�

is an entire function. Loosely speaking, 1
�(1−z) collects the positive zeros of sin (πz),

while 1
�(z) collects the non-positive zeros.

A.1.4 The Multiplication Formulas

Gauss proved the following Multiplication Formula
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�(nz) = (2π)(1−n)/2 nnz−1/2
n−1∏
k=0

�(z + k

n
) , n = 2, 3, . . . , (A.14)

which reduces, for n = 2, to Legendre’s Duplication Formula

�(2z) = 1√
2π

22z−1/2 �(z) �(z + 1

2
) , (A.15)

and, for n = 3, to the Triplication Formula

�(3z) = 1

2π
33z−1/2 �(z) �(z + 1

3
) �(z + 2

3
) . (A.16)

A.1.5 Pochhammer’s Symbols

Pochhammer’s symbols (z)n are defined for any non-negative integer n as

(z)n := z (z + 1) (z + 2) . . . (z + n − 1) , n ∈ N . (A.17)

with (z)0 = 1. If z ∈ C \ {0,−1,−2, . . .}, then (z)n = �(z+n)

�(z) . In particular, for z =
1/2 , we obtain from (A.9)

(
1

2

)
n

:= �(n + 1/2)

�(1/2)
= (2n − 1)!!

2n
.

We extend the above notation to negative integers, defining

(z)−n := z (z − 1) (z − 2) . . . (z − n + 1) , n ∈ N . (A.18)

If z ∈ C \ {−1,−2, . . .}, then (z)−n = �(z+1)
�(z−n+1) .

A.1.6 Hankel Integral Representations

In 1864 Hankel provided a complex integral representation of the function 1/�(z)
valid for unrestricted z; it reads:

1

�(z)
= 1

2πi

∫
Ha−

et

t z
dt , z ∈ C , (A.19a)

where Ha− denotes theHankel path defined as a contour that begins at t = −∞ − ia
(a > 0), encircles the branch cut that lies along the negative real axis, and ends up
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Fig. A.3 The left Hankel contour Ha− and the right Hankel contour Ha+

at t = −∞ + ib (b > 0). Of course, the branch cut is present when z is non-integer
because t−z is a multivalued function; in this case the contour can be chosen as in
Fig. A.3 left, where

arg (t) =
{+π , above the cut,

−π , below the cut.

When z is an integer, the contour can be taken to be simply a circle around the origin,
described in the counterclockwise direction.

An alternative representation is obtained assuming the branch cut along the pos-
itive real axis; in this case we get

1

�(z)
= − 1

2πi

∫
Ha+

e−t

(−t)z
dt , z ∈ C , (A.19b)

where Ha+ denotes the Hankel path defined as a contour that begins at t = +∞ + ib
(b > 0), encircles the branch cut that lies along the positive real axis, and ends up at
t = +∞ − ia (a > 0). When z is non-integer the contour can be chosen as in Fig.
A.3 left, where

arg (t) =
{
0 , above the cut,
2π , below the cut.

When z is an integer, the contour can be taken to be simply a circle around the origin,
described in the counterclockwise direction.

We note that

Ha− → Ha+ if t → t e−iπ , and Ha+ → Ha− if t → t e+iπ .

The advantage of the Hankel representations (A.19a) and (A.19b) compared with the
integral representation (A.1) is that they converge for all complex z and not just for
Rez > 0. As a consequence 1/� is a transcendental entire function (of maximum
exponential type); the point at infinity is an essential isolated singularity, which is an
accumulation point of zeros (zn = −n , n = 0, 1, . . . ). Since 1/� is entire, � does
not vanish in C.
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The formulas (A.19a) and (A.19b) are very useful for deriving integral represen-
tations in the complex plane for several special functions. Furthermore, using the
reflection formula (A.13), we can get the integral representations of � itself in terms
of the Hankel paths (referred to asHankel integral representations for �), which turn
out to be valid in the whole domain of analyticity D� .

The required Hankel integral representations that provide the analytical continu-
ation of � turn out to be:

(a) using the path Ha−

�(z) = 1

2i sin πz

∫
Ha−
et t z−1 dt , z ∈ D� ; (A.20a)

(b) using the path Ha+

�(z) = − 1

2i sin πz

∫
Ha+
e−t (−t)z−1 dt , z ∈ D� . (A.20b)

A.1.7 Notable Integrals via the Gamma Function

∫ ∞

0
e−st tα dt = �(α + 1)

sα+1
, Re(s) > 0 , Re(α) > −1 . (A.21)

This formula provides the Laplace transform of the power function tα.

∫ ∞

0
e−atβ dt = �(1 + 1/β)

a1/β
, Re(a) > 0 , β > 0 . (A.22)

This integral for fixed a > 0 and β = 2 attains the well-known value
√

π/a related
to theGauss integral. For fixed a > 0, the L.H.S. of (A.22) may be referred to as the
generalized Gauss integral.

The function I (β) := �(1 + 1/β) strongly decreases from infinity at β = 0 to
a positive minimum (less than the unity) attained around β = 2 and then slowly
increases to the asymptotic value 1 as β → ∞. The minimum value is attained at
β0 = 2.16638 . . . and I (β0) = 0.8856 . . .

A more general formula is

∫ ∞

0
e−ztμ tν−1 dt = 1

μ

�(ν/μ)

zν/μ
= 1

ν

�(1 + ν/μ)

zν/μ
, (A.23)

where Rez > 0, μ > 0, Re(ν) > 0. This formula includes (A.21)–(A.22); it reduces
to (A.21) for z = s, μ = 1 and ν = α + 1, and to (A.22) for z = a, μ = β and ν = 1.
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A.1.8 Asymptotic Formulas

�(z) 
 √
2 π e−z zz−1/2

[
1 + 1

12 z
+ 1

288 z2
+ . . .

]
; (A.24)

as z → ∞ with |argz| < π. This asymptotic expression is usually referred to as
Stirling’s formula, originally given forn! .Theaccuracyof this formula is surprisingly
good on the positive real axis and also for moderate values of z = x > 0 , as can be
noted from the following exact formula,

x ! = √
2 π e (−x+ θ

12x ) xx+1/2 ; x > 0 , (A.25)

where θ is a suitable number in (0, 1).
The two following asymptotic expressions provide a generalization of the Stirling

formula.
If a, b denote two positive constants, we have

�(az + b) 
 √
2 π e−az (az)az+b−1/2 , (A.26)

as z → ∞ with |argz| < π, and

�(z + a)

�(z + b)

 za−b

[
1 + (a − b) (a + b − 1)

2z
+ . . .

]
, (A.27)

as z → ∞ along any curve joining z = 0 and z = ∞ provided z �= −a,−a − 1, . . . ,

and z �= −b,−b − 1, . . . .

A.1.9 Infinite Products

An alternative approach to the Gamma function is via infinite products, described by
Euler in 1729 and Weierstrass in 1856. Let us start with the original formula given
by Euler,

�(z) := 1

z

∞∏
n=1

(
1 + 1

n

)z
(
1 + z

n

) = lim
n→∞

n! nz
z(z + 1) . . . (z + n)

. (A.28)

The above limits exist for all z ∈ D� ⊂ C .

From Euler’s formula (A.28) it is possible to derive Weierstrass’ formula

1

�(z)
= z eCz

∞∏
n=1

[(
1 + z

n

)
e−z/n

]
, (A.29)



390 Appendix A: The Eulerian Functions

where C , called the Euler–Mascheroni constant, is given by

C = 0.5772157 . . . =
⎧⎨
⎩
limn→∞

(∑n
k=1

1
k − log n

)
,

−�′(1) = − ∫∞
0 e−u log u du .

(A.30)

A.2 The Beta Function

A.2.1 Euler’s Integral Representation

The standard representation of the Beta function is

B(p, q) =
∫ 1

0
u p−1 (1 − u) q−1 du ,

{
Re(p) > 0 ,

Re(q) > 0 .
(A.31)

Note that, from a historical viewpoint, this representation is referred to as the Euler
integral of the first kind, while the integral representation (A.1) for � is referred to
as the Euler integral of the second kind.

The Beta function is a complex function of two complex variables whose analytic-
ity properties will be deduced later, as soon as the relation with the Gamma function
has been established.

A.2.2 Symmetry

B(p, q) = B(q, p) . (A.32)

This property is a simple consequence of the definition (A.31).

A.2.3 Trigonometric Integral Representation

B(p, q)=2
∫ π/2

0
(cos ϑ)2p−1 (sin ϑ)2q−1 dϑ,

{
Re(p) > 0 ,

Re(q) > 0 .
(A.33)

This noteworthy representation follows from (A.31) by setting u = (cos ϑ)2 .
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A.2.4 Relation to the Gamma Function

B(p, q) = �(p) �(q)

�(p + q)
. (A.34)

This relation is of fundamental importance. Furthermore, it allows us to obtain
the analytical continuation of the Beta function.

The proof of (A.34) can easily be obtained by writing the product �(p) �(q)

as a double integral that is to be evaluated introducing polar coordinates. In this
respect we must use the Gaussian representation (A.7) for the Gamma function and
the trigonometric representation (A.33) for the Beta function. In fact,

�(p) �(q) = 4
∫ ∞

0

∫ ∞

0
e−(u2+v2) u2p−1 v2q−1 du dv

= 4
∫ ∞

0
e−ρ2 ρ2(p+q)−1 dρ

∫ π/2

0
(cos ϑ)2p−1 (sin ϑ)2q−1 dϑ

= �(p + q)B(p, q) .

Henceforth, we shall exhibit other integral representations for B(p, q), all valid for
Rep > 0 ,Req > 0 .

A.2.5 Other Integral Representations

Integral representations on [0,∞) are

B(p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

0

x p−1

(1 + x)p+q
dx ,

∫ ∞

0

xq−1

(1 + x)p+q
dx ,

1

2

∫ ∞

0

x p−1 + xq−1

(1 + x)p+q
dx .

(A.35)

The first representation follows from (A.31) by setting u = x

1 + x
; the other two are

easily obtained by using the symmetry property of B(p, q) .

A further integral representation on [0, 1] is

B(p, q) =
∫ 1

0

y p−1 + yq−1

(1 + y)p+q
dy . (A.36)
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This representation is obtained from the first integral in (A.35) as a sum of the two
contributions [0, 1] and [1,∞).

A.2.6 Notable Integrals via the Beta Function

The Beta function plays a fundamental role in the Laplace convolution of power
functions. We recall that the Laplace convolution is the convolution between causal
functions (i.e. vanishing for t < 0),

f (t) ∗ g(t) =
∫ +∞

−∞
f (τ ) g(t − τ ) dτ =

∫ t

0
f (τ ) g(t − τ ) dτ .

The convolution satisfies both the commutative and associative properties:

f (t) ∗ g(t) = g(t) ∗ f (t) , f (t) ∗ [g(t) ∗ h(t)] = [ f (t) ∗ g(t)] ∗ h(t) .

It is straightforward to prove the following identity, by setting in (A.31) u = τ/t ,

t p−1 ∗ tq−1 =
∫ t

0
τ p−1 (t − τ )q−1 dτ = t p+q−1 B(p, q) . (A.37)

Introducing the causal Gel’fand–Shilov function

Φλ(t) := tλ−1
+

�(λ)
, λ ∈ C ,

(where the suffix + just denotes the causality property of vanishing for t < 0), we
can write the previous result in the following interesting form:

Φp(t) ∗ Φq(t) = Φp+q(t) . (A.38)

In fact, dividing the L.H.S. of (A.37) by �(p) �(q), and using (A.34), we obtain
(A.38). As a consequence of (A.38) we get the semigroup property of the Riemann–
Liouville fractional integral operator.

In the following we describe other relevant applications of the Beta function.
The results (A.37)–(A.38) show that the convolution integral between two (causal)
functions, which are absolutely integrable in any interval [0, t] and bounded in every
finite interval that does not include the origin, is not necessarily continuous at t = 0,
even if a theorem ensures that this integral turns out to be continuous for any t > 0,
see e.g. [Doe74, pp. 47–48]. In fact, considering two arbitrary real numbers α,β
greater than −1, we have

Iα,β(t) := tα ∗ tβ = B(α + 1,β + 1) tα+β+1 , (A.39)
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so that

lim
t→0+

Iα,β(t) =
⎧⎨
⎩

+∞ if − 2 < α + β < −1 ,

c(α) if α + β = −1 ,

0 if α + β > −1 ,

(A.40)

where c(α) = B(α + 1,−α) = �(α + 1) �(−α) = π/ sin(−απ).

We note that in the case α + β = −1 the convolution integral attains for any
t > 0 the constant value c(α) ≥ π . In particular, for α = β = −1/2 , we obtain the
minimum value for c(α), i.e.

∫ t

0

dτ√
τ

√
t − τ

= π . (A.41)

The Beta function is also used to prove some basic identities for the Gamma
function, like the complementary formula (A.13) and the duplication formula (A.15).
For the complementary formula it is sufficient to prove it for a real argument in the
interval (0, 1), namely

�(α) �(1 − α) = π

sin πα
, 0 < α < 1 .

We note from (A.34)–(A.35) that

�(α) �(1 − α) = B(α, 1 − α) =
∫ ∞

0

xα−1

1 + x
dx .

Then it remains to use well-known formula

∫ ∞

0

xα−1

1 + x
dx = π

sin πα
.

To prove the duplication formula we note that it is equivalent to

�(1/2) �(2z) = 22z−1 �(z) �(z + 1/2) ,

and hence, after simple manipulations, to

B(z, 1/2) = 22z−1 B(z, z) . (A.42)

This identity is easily verified for Re(z) > 0 , using the trigonometric representation
(A.33) for the Beta function and noting that

∫ π/2

0
(cos ϑ)α dϑ =

∫ π/2

0
(sin ϑ)α dϑ = 2α

∫ π/2

0
(cos ϑ)α (sin ϑ)α dϑ ,

with Re(α) > −1, since sin 2ϑ = 2 sin ϑ cosϑ .
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A.3 Historical and Bibliographical Notes

For the historical development of the Gamma function we refer the reader to the
notable article [Dav59]. It is surprising that the notation � and the name Gamma
function were first used by Legendre in 1814 whereas in 1729 Euler had represented
his function via an infinite product, see Eq. (A.28). As a matter of fact Legendre
introduced the representation (A.1) as a generalization of Euler’s integral expression
for n!,

n! =
∫ 1

0
(− log t)n dt .

Indeed, changing the variable t → u = − log t , we get

n! =
∫ ∞

0
e−u un du = �(n + 1) .

Lastly, we mention the well-known Bohr–Mollerup theorem which states that the
�-function is the only function which satisfies the relation f (z + 1) = z f (z) where
log f (z) is convex and f (1) = 1. The proof of this fact is presented, e.g., in the book
by Artin [Art64].

A.4 Exercises

A.4.1. (see, e.g. [Tem96, p. 72]) The Pochhammer symbol is defined as follows

(a)n := a(a + 1) . . . (a + n − 1) = �(a + n)

�(a)
.

Verify that for all a ∈ C, m, n = 0, 1, . . . the following identities hold

(a) (−m)n =
⎧⎨
⎩
0, if n > m,

(−1)n m!
(m−n)! , if n ≤ m;

(b) (−a)n = (−1)n(a − n + 1)n;

(c) (−a)2n = 22n
(
a
2

)
n

(
a+1
2

)
n
;

(d) (−a)2n+1 = 22n+1
(
a
2

)
n+1

(
a+1
2

)
n
.

Prove the following formulas for suitable values of parameters:
A.4.2. ([Rai71, p. 103])
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�(1 + a/2)

�(1 + a)
= cos πa

2 �(1 − a)

�(1 − a/2)
.

A.4.3. ([Rai71, p. 103])

�(1 + a − b)

�(1 + a/2 − b)
= sin π(b − a/2)�(b − a/2)

sin π(b − a)�(b − a)
.

A.4.4. ([Tem96, p. 72]) Prove the formula

∫ ∞

0
t z−1e−αt xdt = 1

x
�
( z
x

)
α−z/x , Reα > 0,Re x > 0,Re z > 0.

A.4.5. Verify the formulas ([Tem96, p. 73])

(a) �
(−n + 1

2

) = (−1)n
√

π22n n!
(2n)! , n = 0, 1, 2, . . . .

(b) �
(
n + 1

2

) = (−1)n
√

π2−2n (2n)!
n! , n = 0, 1, 2, . . . .

A.4.6. Verify the alternative reflection formula for the Gamma function ([Tem96,
p. 74])

�

(
1

2
− z

)
�

(
1

2
+ z

)
= π

cos πz
, z − 1

2
/∈ Z,

in particular

�

(
1

2
− iy

)
�

(
1

2
+ iy

)
= π

cosh πy
, y ∈ R.

A.4.7. Verify the generalized reflection formula for the Gamma function ([Tem96,
p. 74])

�(z − n) = (−1)n
�(z)�(1 − z)

�(n + 1 − z)
= (−1)nπ

sin πz�(n + 1 − z)
, z /∈ Z, n = 0, 1, 2, . . . .

A.4.8. By using the reflection formula show that

|�(iy)| ∼
√
2π

|y|e
−π|y|, as y → ±∞.

Calculate the following integrals:
A.4.9. ([Tem96, p. 74])

∫ π
2

0
(cos t)x cos t y dt, Re x > −1.
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Answer.
π

2x+1

�(x + 1)

�
[ x+y

2 + 1
]
�
[ x−y

2 + 1
] .

A.4.10. ([Tem96, pp. 76–77])

∫ ∞

0
t z−1 log |1 − t | dt, −1 < Re z < 0.

Answer.
π cot πz

z
.

A.4.11. ([Tem96, pp. 76–77], [Sne56])

(a)
∫∞
0 t z−1 cos t dt, Re z > 1.

Answer. �(z) cos
πz

2
.

(b)
∫∞
0 t z−1 sin t dt, Re z > 1.

Answer. �(z) sin
πz

2
.

A.4.12 ∗. ([WhiWat52, p. 300])
Show that for a < 0, a = −ν + α, ν ∈ N,α > 0,

�(x)�(a)

�(x + a)
=

∞∑
n=1

{
Rn

x + n
+ Gn(x)

}
,

where

Rn + (−1)n(a − 1)(a − 2) . . . (a − n)

n! G(−n),

G(x) =
(
1 + x

a − 1

)(
1 + x

a − 2

)
. . .

(
1 + x

a − ν

)
,

Gn(x) = G(x) − G(−n)

x + n
.



Appendix B
The Basics of Entire Functions

B.1 Definition and Series Representations

A complex-valued function F : C → C is called an entire function (or integral func-
tion) if it is analytic (C-differentiable) everywhere on the complex plane, i.e. if at
each point z0 ∈ C the following limit exists

lim
z→z0

F(z) − F(z0)

z − z0
∈ C.

Typical examples of entire functions are the polynomials, the exponential functions
and also sums, products and compositions of these functions, thus trigonometric
and hyperbolic functions. Among the special functions we point out the following
entire functions: Airy functions Ai(z),Bi(z), Bessel functions of the first and second
kind Jν(z),Yν(z), Fox H -functions Hm,n

p,q (z) for certain values of parameters, the
reciprocal Gamma function 1

Γ (z) , the generalized hypergeometric function pFq(z),
Meijer’s G-functions Gm,n

p,q (z), the Mittag-Leffler function Eα(z) and its different
generalizations, and the Wright function φ(z; ρ,β).

According to Liouville’s theorem an entire function either has a singularity at
infinity or it is a constant. Such a singularity can be either a pole (as is the case for a
polynomial), or an essential singularity. In the latter case we speak of transcendental
entire functions. All of the above-mentioned special functions are transcendental.

Every entire function can be represented in the form of a power series

F(z) =
∞∑
k=0

ckz
k, (B.1)

converging everywhere on C. Thus, according to the Cauchy–Hadamard formula,
the coefficients of the series (B.1) satisfy the following condition (the necessary and
sufficient condition for the sum of a power series to represent an entire function):
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Springer Monographs in Mathematics,
https://doi.org/10.1007/978-3-662-61550-8
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lim
k→∞

|ck | 1
k = 0. (B.2)

The absolute value of the coefficients of an entire function necessarily decreases to
zero (although not monotonically, in general). One can classify the corresponding
function in terms of the speed of this decrease (see below in Sect.B.2.). Thus |ck | → 0
for z → ∞ is a necessary but not sufficient condition for convergence of a power
series.

B.2 Growth of Entire Functions. Order, Type and Indicator
Function

The global behavior of entire functions of finite order is characterized by their order
and type. Recall (see e.g. [Lev56]) that the order ρ of an entire function F(z) is
defined as an infimum of those k for which we have the inequality

MF (r) := max|z|=r |F(z)| < er
k
, ∀r > r(k).

Equivalently

ρ := ρF = lim supr→∞
log logMF (r)

log r
. (B.3)

A more delicate characteristic of an entire function is its type. Recall (see e.g.
[Lev56]) that the type σ of an entire function F(z) of finite order ρ is defined as
the infimum of those A > 0 for which the inequality

MF (r) < eAr
ρ

, ∀r > r(k),

holds. Equivalently

σ := σF = lim supr→∞
logMF (r)

rρ
. (B.4)

For an entire function F(z) represented in the form of the series

F(z) =
∞∑
k=0

ckz
k

its order and type can by found by the following formulae

ρ = lim supk→∞
klog k

log 1
|ck |

, (B.5)
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(σeρ)
1
ρ = lim supk→∞

(
k

1
ρ k
√|ck |

)
. (B.6)

The asymptotic behavior of an entire function is usually studied via its restriction
to rays starting at the origin. In order to describe this we introduce the so-called
indicator function of an entire function of order ρ:

h(θ) = lim supr→∞
log |F(reiθ)|

rρ
. (B.7)

For instance, the exponential function ez = expz has order ρ = 1, type σ = 1 and
indicator function h(θ) = cos θ, −π ≤ θ ≤ π.

B.3 Weierstrass Canonical Representation. Distribution of
Zeros

The Weierstrass canonical representation generalizes the representation of complex
polynomials in the form of a product of prime factors. By the fundamental theorem of
algebra any complex polynomial of order n can be split into exactly n linear factors

Pn(z) = a
n∏

k=1

(z − ak) with a �= 0. (B.8)

Entire functions can have infinitely many zeroes. In this case the finite product in
(B.8) has to be replaced by an infinite product. Then the main question is to take an
infinite product in such form that it can represent an entire function (so, is convergent
on the whole complex plane). Another problem is that there are some entire functions
which have very few zeros (or have no zeros at all, such as the exponential function).
These two ideas were taken into account by Weierstrass.

He took prime factors (orWeierstrass elementary factors) in the form

En(z) =

⎧⎪⎨
⎪⎩

(1 − z), if n = 0;

(1 − z)exp
{
z
1 + z2

2 + . . . + zn

n

}
, otherwise.

(B.9)

Using such factors he proved

Theorem B.1 (Weierstrass) Let
(
z j
)
j∈N0

be a sequence of complex numbers (0 =
|z0| < |z1| ≤ |z2| ≤ . . .), satisfying the following conditions:

(i) z j → ∞ as j → ∞;
(ii) there exists a sequence of positive integers

(
p j
)
j∈N such that
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∞∑
j=1

∣∣∣∣ zz j
∣∣∣∣
1+p j

< ∞.

Then there exists an entire function which has zeroes only at the points
(
z j
)
j∈N0

, in
particular, the following one

F(z) = zk
∞∏
j=1

Epj

(
z

z j

)
. (B.9a)

The following theorem is in a sense the converse of the above.

Theorem B.2 (Weierstrass) Let F(z) be an entire function and let
(
z j
)
j∈N0

be the

zeros of F(z), then there exists a sequence
(
p j
)
j∈N and an entire function g(z) such

that the following representation holds

F(z) = Czkeg(z)
∞∏
j=1

Epj

(
z

z j

)
, (B.10)

where C is a constant and k ∈ N0 is the multiplicity of the zero of F at the origin.

For entire functions of finite order ρ the Weierstrass theorems have a more exact
form.

Theorem B.3 (Hadamard) Let F(z) be an entire function of finite order ρ and let(
z j
)
j∈N0

be the zeros of F(z), listed with multiplicity, then the rank p of F(z) is
defined as the least positive integer such that

∞∑
j=1

∣∣∣∣ 1z j
∣∣∣∣
1+p

< ∞. (B.11)

Then the canonical Weierstrass product is given by

F(z) = Czkeg(z)
∞∏
j=1

Ep

(
z

z j

)
, (B.12)

where g(z) is a polynomial of degree q ≤ ρ. The genus μ of F(z), defined as
max {p, q}, is then also finite and

μ ≤ ρ. (B.13)
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B.4 Entire Functions of Completely Regular Growth

Recall (see, e.g., [GoLeOs91, Lev56, Ron92]) that a ray arg z = θ is a ray of com-
pletely regular growth (CRG) for an entire function F of order ρ if the following
weak limit exists

∗
lim
r→∞

log |F(reiθ)|
rρ

, (B.14)

where the term “weak limit” (lim∗ in (B.14)) means that r tends to infinity, omitting
the values of a set Eθ ⊂ R+ which satisfies the condition

lim
r→∞

meas Eθ ∩ (0, r)

r
= 0,

i.e. is relatively small. If all rays θ ∈ [0, 2π) are rays of CRG for an entire function F
(with the same exceptional set E = Eθ, ∀θ), then such a function is called an entire
function of completely regular growth. The main characterization of entire functions
of completely regular growth is the following:

An entire function F(z) of order ρ is a function of completely regular growth if
and only if its set of zeros

(
z j
)
j∈N0

has

(a) in the case of a non-integer ρ – an angular density:

� (φ, θ) := lim
r→∞

n(r,φ, θ)

rρ
; (B.14a)

(b) in the case of an integer ρ – an angular density and a finite angular symmetry:

aρ := lim
r→∞

⎧⎨
⎩qρ + 1

ρ

∑
0<|z j |<r

1

zρ
j

⎫⎬
⎭ , (B.14b)

where n(r,φ, θ) is the number of zeros of the function F in the sector {z =
seiα ∈ C : 0 < s < r, φ < α < θ}, and qρ is the coefficient at the ρ-th power in
the exponential factor of the Weierstrass product representation (B.12) for F .
The function �(θ0, θ) with an arbitrary but fixed θ0 ∈ [0, 2π] is then called the
angular density and the number aρ is called the coefficient of angular symmetry.

B.5 Historical and Bibliographical Notes

The period from 1850 to 1950 was the “golden century of the theory of entire func-
tions”. This theory was one of the central subjects of complex analysis, it was rapidly
developed in connection with several deep problems in mathematics as well as due
to the usefulness of the analytic machinery for the solution of a wide range of applied



402 Appendix B: The Basics of Entire Functions

problems. Here wemention only a few results of that time which have great influence
on contemporary mathematics and which are related in some way to the subject of
our book.

Many of these results were influenced by Weierstrass (see, e.g., [Wei66], and the
modern description ofWeierstrass’s results in [AblFok97, Rud74, Kra04]). He intro-
duced the notion of single-valued analytic functions (eindeutig analytische Funktio-
nen), established the method of uniform convergence for families of complex func-
tions which he successfully applied to the proof of his celebrated factorization the-
orem, introduced and applied the notion of (single-valued) analytic elements which
became the core of the analytic continuation method, and developed the theory of
elliptic functions illustrated by a special collection of these function now bearing his
name and used by him and his successors to create and develop the analytic theory
of complex differential equations.

Mittag-Leffler was influenced by the genius of Weierstrass during his stay in
Berlin (see Chap.2 of this book). Among Mittag-Leffler’s results we point out the
Mittag-Leffler factorization theorem for meromorphic functions which he obtained
by developing the ideas of Weierstrass. The final form of this theorem was published
in 1884 (see [Mit84]). The evolution of the hypotheses of the Mittag-Leffler theorem
is worth studying; there were several varying publications of the theorem between
1876 and 1884, the majority of which were by Mittag-Leffler himself, and there is
a noticeable evolution of the ideas which is marked by changes in notation from the
original Weierstrassian style and the simplification of proofs. In particular, the later
versions of Mittag-Leffler’s theorem differ markedly from those of his initial papers.
Specifically, in 1882we see a rather abrupt appearance ofCantor’s recently developed
theory of transfinite sets in statements and proofs ofMittag-Leffler’s theorem, despite
the generally negative reception of Cantor’s work by prominent mathematicians of
that period.

Mittag-Leffler was interested in the solution of the analytic continuation prob-
lem as applied to the study of the convergence of divergent series (we discuss the
corresponding results in detail in Chap.2). For this purpose he introduced a new
entire function (now called the Mittag-Leffler function) which serves as the simplest
generalization of the exponential function and also helped him to get a criterion for
analytic continuation generalizing Borel’s result.

As for the general theory of entire functions, we point out several results which
constitute special directions in mathematics (see, e.g., [Boa54, Rud74]). First of all,
from the results of Borel–Picard appeared the modern theory of value distributions
for entire functions (see, e.g., [Lev56]) andNevanlinna’s theory of value distributions
for meromorphic functions (see, [Nev25, Nev36]).

Levin and Pfluger discovered that the asymptotics of the distribution of zeros of
entire functions and the growth of these functions at infinity are closely related for a
large class of entire functions, namely the functions of completely regular growth.The
theory of entire functions of completely regular growth of one variable, developed in
the late 1930s independently by Levin and Pfluger, soon found applications in both
mathematics and physics. Later, the theory was extended to functions in the half-
plane, subharmonic functions in space, and entire functions of several variables.
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The monograph [Ron92] describes this theory and presents recent developments
based on the concept of weak convergence. This enables a unified approach and
provides a comparatively simple presentation of the classical Levin–Pfluger theory
(see [GoLeOs91, Lev56]). This theory has also been generalized to analytic functions
in angle domains (see [Gov94]).

Rolf Nevanlinna’s most important mathematical achievement is the value distri-
bution theory of meromorphic functions. The roots of the theory go back to the result
of Picard in 1879, showing that a non-constant complex-valued function which is
analytic in the entire complex plane assumes all complex values except at most one.
In the early 1920s Rolf Nevanlinna, partly in collaboration with his brother Frithiof,
extended the theory to cover meromorphic functions, i.e. functions analytic in the
plane except for isolated points in which the Laurent series of the function has a
finite number of terms with a negative power of the variable. Nevanlinna’s value
distribution theory, or Nevanlinna theory, is crystallized in its two Main Theorems.
Qualitatively, the first one states that if a value is assumed less frequently than aver-
age, then the function comes close to that value more often than average. The Second
Main Theorem, more difficult than the first one, says that there are relatively few
values which the function assumes less often than average.

Onemore classical topic related to the subject of this book is the theory of complex
differential equations. Many of the considered special functions (the Mittag-Leffler
function and its generalizations are among them) satisfy certain complex differential
equations. Thus, for the study of the properties of some functions it is natural to
construct the corresponding differential equation and apply the general results of the
theory. From another perspective, the Mittag-Leffler function and its generalizations
serve as solutions of a new type of equation (in particular integral and differential
equations of fractional order). The theory of the latter can be compared with the
theory of classical complex differential equations. Among the results on complex
differential equations we mention their relations to Nevanlinna Theory (see, e.g.,
[Lai93]) and those results which are related to the Riemann–Hilbert problem (see,
[AnoBol94, Bol90, Bol09]).

In this appendix we collect a number of notions and results on entire functions
since for certain values of parameters the Mittag-Leffler function and its general-
ization are entire functions. Thus we use in the main text approaches describing the
asymptotics of entire functions, distribution of zeros, series and integral representa-
tions and other analytic properties.

B.6 Exercises
Series.
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B.6.1. Represent the following functions in the form of Taylor series [Vol70, p.
65].

a) cosh z, b) sinh z,
c) sin2 z, d) cosh2 z

Answers:

a)
∞∑
n=0

z2n

(2n)! ; b)
∞∑
n=0

z2n+1

(2n + 1)! ;

c)
∞∑
n=0

(−1)n+1 2
2n−1z2n

(2n)! ; d)
1

2
+

∞∑
n=1

22n−1z2n

(2n)! .

B.6.2. Prove the following formulas [Evg69, p. 134]

(a)

cos(λ arcsin z) = 1 −
∞∑
n=0

λ2(λ2 − 22) · · · (λ2 − 4n2)

(2n + 2)! (−1)nz2n+2;

(b)

sin(λ arcsin z) = λz −
∞∑
n=1

λ(λ2 − 12) · · · (λ2 − (2n − 1)2)

(2n + 1)! (−1)nz2n+1;

(c)

(arcsin z)2 =
∞∑
n=1

22n−1((n − 1)!)2
(2n)! z2n;

(d)
ln(z + √

1 + z2√
1 + z2

=
∞∑
n=0

(−1)n
22n((n)!)2
(2n + 1)! z

2n+1.

Infinite Products

B.6.3. Construct an infinite product (Weierstrass product) for a function having the
following collection of zeros [Mark66, p. 253]

(a) zk = k of multiplicity k, k ∈ N;
(b) zk = k of multiplicity | k |, k ∈ Z.

B.6.4. Prove the following formulas [LavSha65, p. 433]

(a)

sin z = z
∞∏
n=1

(
1 − z2

n2π2

)
;
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(b)

expz − 1 = zexp
z

2

∞∏
n=1

(
1 + 4z2

4n2π2

)
;

(c)

cos z =
∞∏
n=1

(
1 − 4z2

(2n − 1)2π2

)
.

B.6.5. Prove the following formulas [Evg69, pp. 266–267]

(a)

cos
πz

2
=

∞∏
n=1

(
1 − z2

(2n + 1)2

)
;

(b)

sin(z − a) = sin aexp−z cot a
∞∏
n=1

(
1 − z

a + nπ

)
exp

z

a + nπ
;

(c)

cosπz − cosπa = −π2

2
(z2 − a2)

∞∏
n=1

[
1 − (

z + a

2n
)2
] [

1 − (
z − a

2n
)2
]

;

(d)

expz − expa = exp
z + a

2
(z − a)

∞∏
n=1

[
1 + (

z − a

2πn
)2
]

;

(e)

cosh z − cos z = z2
∞∏
n=1

(
1 + z4

4π4n4

)
;

(f)

sin z − z cos z = z2

3

∞∏
n=1

(
1 − z2

λ2
n

)
; tan λn = λn > 0;

(g)
sin πz

πz(1 − z)
=

∞∏
n=1

(
1 + z − z2

n + n2

)
;
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(h)
1

Γ (z)
= zexpCz

∞∏
n=1

(
1 + z

n

)
exp− z

n
,

where C is Euler’s constant;

B.6.6. Prove the following formulas [GunKuz58, pp. 200–202]

(a)

sinh z = z
∞∏
n=1

(
1 + z2

n2π2

)
;

(b)

expaz − expbz = (a − b)zexp1/2(a + b)z
∞∏
n=1

(
1 + (a − b)2z2

4n2π2

)
;

(c)

sin(z − a) + sin a = z(π + 2a − z)

π + 2a

∏
n �=0

(
1 + z(π + 2a − z)

2πn(π(2n − 1) − 2a)

)
;

(d)

expz2 + exp(2z − 1) = 2exp1/2(z2 + 2z − 1)
∞∏
n=1

(
1 + (z − 1)4

π2(2n − 1)2

)
.

B.6.7. Calculate the values of the following infinite products [Vol70, p. 115]

a)
∞∏
n=2

(
1 − 1

n2

)
= 1/2, b)

∏∞
n=3

(
n2−4
n2−1

)
= 1/4,

c)
∞∏
n=2

(
n3 − 1

n3 + 1

)
= 2/3, d)

∏∞
n=1

(
1 + 1

n(n+2)

)
= 2,

e)
∞∏
n=2

(
1 − 2

n(n + 1)

)
= 1/3, f)

∏∞
n=1

(
1 + (−1)n+1

n

)
= 1,

g)
2√
2

2√
2 + √

2

2√
2 +

√
2 + √

2
· · · = π

2
, h)

∏∞
n=1

(
2n

2n−1
2n

2n+1

)
= π

2 .

B.6.8. Find domains of convergence for the following infinite products [Vol70, pp.
116–117]
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a)
∞∏
n=1

(
1 − zn

)
, b)

∏∞
n=1

(
1 + zn

2n

)
, c)

∞∏
n=1

(
1 − z2

n2

)
,

d)
∞∏
n=1

(
1 − (1 − 1

n
)−nz−n

)
, e)

∏∞
n=1

(
1 + (1 + 1

n )n
2
zn
)

, f)
∞∏
n=1

(
1 + z

n

)
e(−z/n).

Answers:

a) | z |< 1, b) | z |< 1, c) | z |< ∞,

d) | z |> 1, e) | z |< 1/e, f) | z |< ∞.

Characteristics of Entire Functions
B.6.9. Find the order and type of the following entire functions [Vol70, p. 122]

a) expazn, a > 0, n ∈ N; b) znexp3z; c) z2exp2z − exp3z;
d) exp5z − 3exp2z3; e) exp(2 − i)z2; f) sin z;
g) cosh z; h) expz cos z; i) cos

√
z

Answers:

a) ρ = n,σ = a b) ρ = 1,σ = 3 c) ρ = 1,σ = 3

d) ρ = 3,σ = 2 e) ρ = 2,σ = √
5 f) ρ = 1,σ = 1

g) ρ = 1,σ = 1 h) ρ = 1,σ = √
2 i) ρ = 1/2,σ = 1.

B.6.10. Calculate the order and type of the following entire functions, represented
in the form of series [Vol70, p. 124]

a) f (z) =∑∞
n=1

( z
n

)n , b) f (z) =∑∞
n=1

( ln n
n

)n/a
zn, a > 0,

c) f (z) =∑∞
n=2

( 1
n ln n

)n/a
zn, a > 0, d) f (z) =∑∞

n=0 e
−n2 zn ,

e) f (z) =∑∞
n=1

zn

nn1+a , a > 0 f) f (z) =∑∞
n=1

cosh
√
n

n! zn ,

g) z−ν Jν(z) =
∞∑
n=0

(−1)nz2n

n!Γ (n + ν + 1)
, (ν > −1) where Jν is the Bessel function.

Answers:

a) ρ = 1,σ = 1/e b) ρ = a,σ = ∞ c) ρ = 0,σ = 0
d) ρ = 0, e) ρ = 0, f) ρ = 1,σ = 1
g) ρ = 1,σ = 2
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B.6.11. Find the order and indicator function of the following entire functions
[Vol70, p. 125]

a) expz, b) exp(z) + z2, c) sin z
d) cos z, e) cosh z, f) exp(zn),

g) sin
√
z√

z

Answers:

a) ρ = 1, h(φ) = cosφ b) ρ = 1, h(φ) =
{
cosφ, −π/2 ≤ φ < π/2
0, π/2 ≤ φ < 3π/2,

c) ρ = 1, h(φ) =| sin φ |, d) ρ = 1, h(φ) =| sin φ |,
e) ρ = 1, h(φ) =| cosφ |, f) ρ = n, h(φ) = cos nφ,
g) ρ = 1/2, | sin φ/2 |

Zeros of Entire Functions
B.6.12. Find all zeros and their multiplicities for the following entire functions

[Vol70, p. 70]

a) (1 − expz)(z2 − 4)3, b) 1 − cos z, c) (z2−π2)2 sin z
z

d) sin3 z, e) sin3 z
z , f) sin (z3),

g) cos3 z, h) cos z3

Answers:
a) z = ±2,− 3rd order; z = 2kπi(k = 0,±1, · · · ) − simple;
b) z = 2kπ(k = 0,±1, · · · ) − 2nd order;
c) z = ±π,− 3rd order; z = kπ(k = ±2,±3, · · · ) − simple;
d) z = kπ(k = 0,±1, · · · ) − 3rd order;
e) z = 0, 2nd order, z = kπ(k = ±1,±2, · · · ) − 3rd order;
f) z = 3

√
kπ, z = 1/2 3

√
kπ(1 ± i

√
3), (k = ±1,±2, · · · ) simple;

g) z = (2k + 1) π
2 , (k = 0,±1, · · · ) − 3rd order;

h) z = 3
√

(2k + 1)π/2, z = 1/2 3
√

(2k + 1)π/2(1 ± i
√
3),

(k = 0,±1,±2, · · · ) simple.
B.6.13. Find the solutions of the following equations [Evg69, p. 74]

a) sin z = 4i
3 , b) sin z = 5

3 , c) cos z = 3i
4 ,

d) cos z = 3+i
4 , e) sinh z = i

2 , f) cosh z = 1
2

Answers:
a) z = i(−1)k ln 3 + kπ, k = 0,±1, · · · ,

b) z = ±i ln 3 + π/2 + 2kπ, k = 0,±1, · · · ,

c) z = ±(−i ln 2 + π/4) + 2kπ, k = 0,±1, · · · ,

d) z = ±(−i/2ln 2 + π/4) + 2kπ, k = 0,±1, · · · ,

e) z = (−1)k iπ6 + kπ, k = 0,±1, · · · ,

f) z = ± iπ
3 + 2kπ, k = 0,±1, · · · .



Appendix C
Integral Transforms

In this appendix we give an outline of the properties of some integral transforms. The
main focus is on the properties which are often useful in treating applied problems. It
is not our intention to present a complete theory of these transforms. In applications,
however, it is advantageous to have at our disposal an arsenal of formalmanipulations
that should be usedwith a critical mind. Among the thousands of books on the subject
we refer to a few in which the theory is developed with different degrees of rigour.

C.1 Fourier Type Transforms

The most general definition of the Fourier transform is

(F f )(κ) = F(κ) = A

+∞∫

−∞
ei Bκt f (t)dt, A, B ∈ R, A �= 0, B �= 0.

In this book we use the following definition, which is commonly used in Probability
Theory and Stochastic Modelling.

Definition The Fourier transform of a function f : R → R(C) is denoted byF f =
F(κ), κ ∈ R, and defined by the integral

(F f )(κ) = F(κ) =
+∞∫

−∞
eiκt f (t)dt, (C.1.1)
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where F is called the Fourier transform operator or the Fourier transformation.2

The Fourier image F f = F(κ) is also denoted by f̂ (κ).
From the theory of harmonic oscillations comes the following terminology: the

pre-image (original) of the Fourier transform is usually called the signal or amplitude
function depending on the time-variable t , while the Fourier image is called the
spectral function depending on the frequency variable κ.

The simplest class of functions for which the Fourier integral transform exists
is the so-called class of rapidly decreasing functions, i.e. real- or complex-valued
functions defined for all x ∈ R and infinitely differentiable everywhere, such that
each derivative tends to zero as |x | → +∞ faster that any positive power of x :

lim|x |→+∞ |x |N f (n)(x) = 0 (C.1.2)

for each positive integer N and n.
A more general sufficient condition for a function f to have a Fourier transform

is that f is absolutely integrable on R (see, e.g., [Doe74, p. 154]), i.e. belongs to
L1(R)3

L1(R) :=
⎧⎨
⎩ f : R → R(C) :

+∞∫

−∞
| f (x)|dx < +∞

⎫⎬
⎭ .

Theorem C.1 Let the function f be absolutely integrable, i.e.

+∞∫

−∞
| f (t)|dt < ∞. (C.1.3)

Then at every point t0, where f is of bounded variation in some (arbitrarily small)
neighborhood of t0, the following inversion formula for the Fourier transform holds:

f (t0 + 0) + f (t0 − 0)

2
= 1

2π

+∞∫

−∞
e−iκt f̂ (κ)dκ, (C.1.4)

2Among other definitions of the Fourier transform we mention the symmetric form of the

Fourier transform (F f )(κ) = 1√
2π

+∞∫
−∞

e−iκt f (t)dt used in Functional Analysis, and (Fϕ)( f ) =
+∞∫
−∞

e−i(2π f )tϕ(t)dt which is commonly used in Signal Processing. In the last definition the variable

t is time and f is the frequency of a signal. The function F f is called the spectrum of the signal
f (t).
3More precisely the space L1(R) consists of equivalence classes with respect to the equivalence

relation: f ∼ g ⇐⇒
+∞∫
−∞

| f (x) − g(x)|dx = 0.
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where the integral is understood in the sense of the Cauchy principal value.
If t0 is a point of continuity for f , then the value of the right-hand side of (C.1.4)

coincides with the value f (t0).

Moreover, if f ∈ L1(R) then its Fourier transform F f = F(κ) is a (uniformly)
continuous and bounded function in κ ∈ R, and lim|κ|→+∞ F(κ) = 0.

Theorem C.1 determines the inverse Fourier operator

(F−1F
)
(t) = 1

2π

+∞∫

−∞
e−iκt f̂ (κ)dκ. (C.1.5)

In particular, if a function is locally integrable and has a compact support (i.e.
vanishes outside some interval), then its Fourier transform exists. In this case, the
Fourier transform F(κ) possesses an analytic continuation into the whole complex
plane κ ∈ C.

In order to understand the meaning of the Fourier transform let us recall the
Dirichlet condition. A real- or complex-valued function defined on the whole real
line R is said to satisfy the Dirichlet condition on R if:

(a) f (t) has in R no more than a finite number of finite discontinuity points (jump
points) and has no infinite discontinuity points;

(b) f (t) has in R no more than a finite number of maximum and minimum points.

If f (t) satisfies the Dirichlet condition in R and is absolutely integrable, then the
following Fourier integral formula holds:

f (t + 0) + f (t − 0)

2
= 1

2π

+∞∫

−∞
e−iκtdκ

+∞∫

−∞
f (ξ)eiκξdξ (C.1.6)

at any finite discontinuity point t ∈ (−∞,+∞). This result is also known as the
Fourier integral theorem.

In particular, if f is continuous at t , then the Fourier integral formula can be
written as

f (t) = 1

2π

+∞∫

−∞
e−iκtdκ

+∞∫

−∞
f (ξ)eiκξdξ. (C.1.7)

Let us recall some basic properties of the Fourier transform (for more detailed
information we refer to the treatise by Titchmarsh (see [Tit86]).

(F f
)
(κ) = f̂ (−κ). (C.1.8)
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If f (t) = f (−t), then (F f ) (κ) = 2

∞∫

0

f (t) cos κt dt. (C.1.9)

If f (t) = − f (−t), then (F f ) (κ) = −2i

∞∫

0

f (t) sin κt dt. (C.1.10)

(F f (a−1t + b)
)
(κ) = aeiabκ f̂ (aκ), a > 0, (C.1.11)

(Feibt f (at)
)
(κ) = 1

a
f̂

(
κ − b

a

)
, a > 0, (C.1.12)

(F tn f (t)
)
(κ) = i n

dn f̂ (κ)

dκn
, n ∈ N, (C.1.13)

(F f (n)(t)
)
(κ) = i nκn f̂ (κ), n ∈ N, (C.1.14)

(F( f ∗ g)(t)) (κ) = f̂ (κ) · ĝ(κ), (C.1.15)

provided that all Fourier images on the left- and right-hand sides exist, where ( f ∗
g)(t) is the Fourier convolution, i.e.

( f ∗ g)(t) =
+∞∫

−∞
f (t − τ )g(τ )dτ . (C.1.16)

Sufficient conditions for the fulfillment of equality (C.1.15) read that this equality
holds if both functions f and g are integrable and square integrable on the real line:

f, g ∈ L1(R)
⋂

L2(R). (C.1.17)

These conditions coincide with the conditions which guarantee the fulfillment of the
Cauchy–Schwarz inequality:

+∞∫

−∞
| f (t) · g(t)|dt ≤

+∞∫

−∞
| f (t)|2dt ·

+∞∫

−∞
|g(t)|2dt. (C.1.18)

Analogous conditions give us the so-called Parseval identity for the Fourier trans-
form.

Theorem C.2 Let f be integrable and square integrable on the real line, i.e.
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f ∈ L1(R)
⋂

L2(R).

Then for all real x the following formula holds:

+∞∫

−∞
f (t) f (t − x)dt = 1

2π

+∞∫

−∞
e−iκx f̂ (κ) f̂ (κ)dκ. (C.1.19)

Moreover for x = 0 this yields the Parseval formula

+∞∫

−∞
| f (t)|2dt = 1

2π

+∞∫

−∞
| f̂ (κ)|2dκ. (C.1.20)

The Mittag-Leffler function is one of the most important special functions related
to the Fractional Calculus. Thus we recall two composition formulas for the Fourier
transform and fractional integrals/derivatives.

(F Iα
±ϕ
)
(κ) = ϕ̂(κ)

(∓iκ)α
, 0 < Reα < 1, (C.1.21)

where Iα± are fractional integrals of the Liouville type:

(
Iα
+ϕ
)
(x) = 1

Γ (α)

x∫

−∞

ϕ(t)dt

(x − t)1−α
,
(
Iα
−ϕ
)
(x) = 1

Γ (α)

+∞∫

x

ϕ(t)dt

(t − x)1−α
.

Formulas (C.1.21) are valid for any function ϕ ∈ L1(−∞,+∞).
Corresponding formulas for fractional derivatives of the Liouville type

(Dα
+ϕ
)
(x) = 1

Γ (n − α)

dn

dxn

x∫

−∞

ϕ(t)dt

(x − t)α−n+1
,

(Dα
−ϕ
)
(x) = (−1)n

Γ (n − α)

dn

dxn

+∞∫

x

ϕ(t)dt

(t − x)1−α
, n = [Reα] + 1,

have the form (FDα
±ϕ
)
(κ) = (∓iκ)αϕ̂(κ), Reα > 0. (C.1.22)

Formulas (C.1.22) are valid, in particular, for all functions having derivatives up to the
order n = [Reα] + 1, and rapidly decreasing at infinity together with all derivatives
(see, e.g. [SaKiMa93]).
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In (C.1.21)–(C.1.22) the values of the function (∓iκ)α are calculated according
to the formula

(∓i x)α = eα log |x |∓ απi
2 sgn x .

Wemention two formulas for cosine- and sine-integral transformsof theRiemann–
Liouville fractional integral (see, e.g., [SaKiMa93, p. 140])

(Fc I
α
0+ϕ

)
(κ) = κ−α

[
cos

πα

2
(Fcϕ) (κ) − sin

πα

2
(Fsϕ) (κ)

]
, κ > 0, (C.1.23)

(Fs I
α
0+ϕ

)
(κ) = κ−α

[
sin

πα

2
(Fcϕ) (κ) + cos

πα

2
(Fsϕ) (κ)

]
, κ > 0. (C.1.24)

Here the cosine- and sine-integral transforms are defined as follows

(Fs( f )) (ν) =
+∞∫

−∞
f (t) sin(2πνt)dt, (Fc( f )) (ν) =

+∞∫

−∞
f (t) cos(2πνt)dt.

The above results are considered in the classical case and in the distributional
sense (see, e.g., [Bre65]). We use them in the text only in the first sense.

C.2 The Laplace Transform

The classical Laplace transform is defined by the following integral formula

(L f ) (s) =
∞∫

0

e−st f (t)dt, (C.2.1)

provided that the function f (the Laplace original) is absolutely integrable on the
semi-axis (0,+∞). In this case the image of the Laplace transform (also called the
Laplace image), i.e. the function

F(s) = (L f ) (s) (C.2.2)

(sometimes denoted F(s) = f̃ (s)) is defined and analytic in the half-plane Re s > 0.
It may happen that the Laplace image can be analytically continued to the left of

the imaginary axes Re s = 0 in a bigger domain, i.e. there exist a non-positive real
number σs (called the Laplace abscissa of convergence) such that F(s) = f̃ (s) is
analytic in the half-plane Re s ≥ σs . Then the following inverse Laplace transform
can be introduced
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(L−1F
)
(t) = 1

2πi

∫

Lic

est F(s)ds, (C.2.3)

where Lic = (c − i∞, c + i∞), c > σs , and the integral is usually understood in
the sense of the Cauchy principal value, i.e.

∫

Lic

est F(s)ds = lim
T→+∞

c+iT∫

c−iT

est F(s)ds. (C.2.4)

If the integral (C.2.2) converges absolutely on the lineRe s = c, then at any continuity
point t0 of the original f the integral (C.2.3) gives the value of f at this point, i.e.

1

2πi

∫

Lic

est0 f̃ (s)ds = f (t0). (C.2.5)

Thus under these conditions operators L and L−1 constitute an inverse pair of oper-
ators. Correspondingly, the functions f and F = f̃ constitute a Laplace transform
pair. To indicate this fact the following notation is used

f (t) ÷ f̃ (s) =
∫ ∞

0
e−st f (t) dt , Re s > σc , (C.2.6)

where σc is the abscissa of the convergence. Here the sign ÷ denotes the juxtaposi-
tion of a function (depending on t ∈ R

+) with its Laplace transform (depending on
s ∈ C). In the following the conjugate variables {t, s}may be different, e.g., {r, s} and
the abscissa of the convergence may sometimes be omitted. Furthermore, through-
out our analysis, we assume that the Laplace transforms obtained by our formal
manipulations are invertible by using the standard Bromwich formula:

f (t) = (L−1 f̃ (s)
)
(t) = 1

2πi
lim

T→+∞

γ+iT∫

γ−iT

est f̃ (s)ds.

Among the rules for the Laplace transform pairs we recall the following one,
which turns out to be useful for our purposes,

1√
π t

∫ ∞

0
e−r2/(4t) f (r) dr ÷ f̃ (s1/2)

s1/2
. (C.2.7)

Since an examination of convergence conditions is not always possible (see, e.g.,
[Wid46]) sometimes the terminology “Laplace transform pair” is used for pairs f, f̃
not necessarily satisfying the equality (C.2.5) at certain points.
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There are several properties of the Laplace transform which make it very useful
in the study of a wide class of differential and integral equations. Let us recall a few
main properties of the Laplace transform (in the form of Laplace transform pairs)
(more information can be found, e.g., [BatErd54a, Wid46, Doe74]).

e−at f (t) ÷ f̃ (s + a), a > 0; (C.2.8)

tn f (t) ÷ (−1)n
dn f̃

dtn
(s), n ∈ N; (C.2.9)

t−n f (t) ÷
∞∫

s

dsn

∞∫

sn

dsn−1 . . .

∞∫

s2

f̃ (s1)ds1, n ∈ N; (C.2.10)

f (n)(t) ÷ sn f̃ (s) − sn−1 f (0) − sn−2 f ′(0) − . . . − f (n−1)(0), n ∈ N; (C.2.11)

t∫

0

dtn

tn∫

0

dtn−1 . . .

t2∫

0

f (t1)dt1 ÷ s−n f̃ (s), n ∈ N; (C.2.12)

(
t
d

dt

)n

f (t) ÷
(

− d

ds
s

)n

f̃ (s), n ∈ N; (C.2.13)

(
d

dt
t

)n

f (t) ÷
(

−s
d

ds

)n

f̃ (s), n ∈ N; (C.2.14)

( f1 ∗ f2) (t) ÷ f̃1(s) · f̃2(s), (C.2.15)

where

( f1 ∗ f2) (t) =
t∫

0

f1(τ ) f2(t − τ )dτ (C.2.16)

is the so-called Laplace convolution.
Among the simple sufficient existence conditions for the Laplace transform we

point out the following:
The Laplace Transform Exists in the Half-Plane Re s > a (a > 0) provided that

the original f is locally integrable onR+ = (0,+∞) and has an exponential growth
of order a at infinity, i.e. there exists a positive constant K > 0 and positive t0 > 0
such that

| f (t)| < K eat , ∀t ≥ t0.

From the formula (C.2.15) follows immediately the Laplace transform of the
Riemann–Liouville fractional integral



Appendix C: Integral Transforms 417

(LIα
0+ϕ

)
(s) = s−α (Lϕ) (s), Reα > 0. (C.2.17)

The Laplace transform of the Riemann–Liouville fractional derivative is given by
the formula (see, e.g., [OldSpa74, p. 134])

(LDα
0+ϕ

)
(s) = sα (Lϕ) (s) −

n∑
k=1

sα−k
(
Dα

0+ϕ
)
(t)
∣∣∣
t=0

, n − 1 < Re ≤ n,

(C.2.18)
and the Laplace transform of the Caputo fractional derivative, by the formula

(L CDα
0+ϕ

)
(s) = sα (Lϕ) (s) −

n−1∑
k=0

sα−k−1ϕ(0+), n − 1 < Re ≤ n. (C.2.19)

Formula (C.2.19) is simplified in the case of the Marchaud fractional derivative Dα+
and Grünwald–Letnikov fractional derivative (see Appendix E) GLDα

0+:
(L Dα

+ϕ
)
(s) = sα (Lϕ) (s),

(L GLD
α
0+ϕ

)
(s) = sα (Lϕ) (s). (C.2.20)

C.3 The Mellin Transform

Let

M { f (r); s} = f ∗(s) =
∫ +∞

0
f (r) r s−1 dr, γ1 < Re (s) < γ2 (C.3.1)

be the Mellin transform of a sufficiently well-behaved function f (r) , and let

M−1 { f ∗(s); r} = f (r) = 1

2πi

∫ γ+i∞

γ−i∞
f ∗(s) r−s ds (C.3.2)

be the inverse Mellin transform, where r > 0 , γ = Re (s) , γ1 < γ < γ2 .

For the existence of the Mellin transform and the validity of the inversion formula
we need to recall the following theorems, adapted fromMarichev’s treatise [Mari83],
see Theorems 11, 12, on page 39.

Theorem C.3 Let f (r) ∈ Lc(ε, E) , 0 < ε < E < ∞ , be continuous in the inter-
vals (0, ε] , [E,∞) , and let | f (r)| ≤ M r−γ1 for 0 < r < ε , | f (r)| ≤ M r−γ2 for
r > E , where M is a constant. Then for the existence of a strip in the s-plane in
which f (r) r s−1 belongs to Lc(0,∞) it is sufficient that γ1 < γ2 . When this con-
dition holds, the Mellin transform f ∗(s) exists and is analytic in the vertical strip
γ1 < γ = Re(s) < γ2 .
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Theorem C.4 If f (t) is piecewise differentiable, and f (r) rγ−1 ∈ Lc(0,∞) , then
the formula (C.3.2) holds true at all points where f (r) is continuous and the (com-
plex) integral in it must be understood in the sense of the Cauchy principal value.

We refer to specialized treatises and/or handbooks, see, e.g. [BatErd54a, Mari83,
PrBrMa-V3], for more details and tables on the Mellin transform. Here, for our
convenience we recall the main rules that are useful when adapting the formulae
from the handbooks and which are also relevant in the following.

Denoting by
M↔ the juxtaposition of a function f (r) with its Mellin transform

f ∗(s) , the main rules are:

f (ar)
M↔ a−s f ∗(s) , a > 0 , (C.3.3)

ra f (r)
M↔ f ∗(s + a) , (C.3.4)

f (r p)
M↔ 1

|p| f ∗(s/p) , p �= 0 , (C.3.5)

h(r) =
∞∫

0

1

ρ
f (ρ) g(r/ρ) dρ

M↔ h∗(s) = f ∗(s) g∗(s) . (C.3.6)

The Mellin convolution formula (C.3.6) is useful in treating integrals of Fourier
type for x = |x | > 0 :

Ic(x) = 1

π

∫ ∞

0
f (κ) cos (κ x) dκ , (C.3.7)

Is(x) = 1

π

∫ ∞

0
f (κ) sin (κ x) dκ , (C.3.8)

when the Mellin transform f ∗(s) of f (κ) is known. In fact we recognize that the
integrals Ic(x) and Is(x) can be interpreted as Mellin convolutions (C.3.6) between
f (κ) and the functions gc(κ) , gs(κ) , respectively, with r = 1/|x | , ρ = κ , where

gc(κ) := 1

π |x | κ cos

(
1

κ

)
M↔ Γ (1 − s)

π |x | sin
(πs

2

)
:= g∗

c (s), 0 < Re(s) < 1 ,

(C.3.9)

gs(κ) := 1

π |x | κ sin

(
1

κ

)
M↔ Γ (1 − s)

π |x | cos
(πs

2

)
:= g∗

s (s), 0 < Re(s) < 2 .

(C.3.10)
The Mellin transform pairs (C.3.9)–(C.3.10) have been adapted from the tables in
[Mari83] by using (C.3.3)–(C.3.5) and the duplication and reflection formulae for
the Gamma function. Finally, the inverse Mellin transform representation (C.3.2)
provides the required integrals as
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Ic(x) = 1

π x

1

2πi

∫ γ+i∞

γ−i∞
f ∗(s) Γ (1 − s) sin

(π s

2

)
xs ds , x > 0 , 0 < γ < 1 ,

(C.3.11)

Is(x) = 1

π x

1

2πi

∫ γ+i∞

γ−i∞
f ∗(s) Γ (1 − s) cos

(π s

2

)
xs ds , x > 0 , 0 < γ < 2 .

(C.3.12)
First, we present some known properties of theMellin integral transform.

Theorem C.5 Let xk− 1
2 f (x) ∈ L2(0, +∞). Then the following four statements

hold:

1. The functions

M(s; a) =
∫ a

1/a
f (x)xs−1dx, Re s = k, (C.3.13)

converge in the mean when a → +∞ on the line (k − i∞, k + i∞), that is,
there exists a function M(s) ∈ L2(k − i∞, k + i∞) such that

lim
a→+∞

∫ k+i∞

k−i∞
|M(s) − M(s; a)|2 |ds| = 0. (C.3.14)

2. The functions

f (x, a) = 1

2πi

∫ k+ia

k−ia
M(s)x−sds, 0 < x < +∞ (C.3.15)

converge in the mean on the semi-axis with the weight function x2k−1 to the
function f (x) when a → +∞, that is,

lim
a→+∞

∫ +∞

0
| f (x) − f (x, a)|2x2k−1 dx = 0, (C.3.16)

moreover, almost everywhere on the semi-axis (0, +∞) we have

f (x) = 1

2πi

d

dx

∫ k+i∞

k−i∞
M(s)

x1−s

1 − s
ds. (C.3.17)

3. The Parseval identity

∫ +∞

0
| f (x)|2x2k−1dx = 1

2π

∫ +∞

−∞
|M(k + i t)|2 dt (C.3.18)

is valid.
4. Conversely, for any functionM(s) ∈ L2(k − i∞, k + i∞) the functions (C.3.15)

converge in the mean when a → +∞ in the sense of (C.3.16) to some function
f (x) ∈ L(0, +∞) which can be represented in the form (C.3.17). The functions
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(C.3.13) converge in the mean in the sense of (C.3.14) to the functionM(s) when
a → +∞ and, moreover, the Parseval identity (C.3.18) holds.

We present a number of important formulas for the Mellin transform.

(M xα f (x)) (p) = f ∗(p + α), (C.3.19)

(
M (1 − x)α−1H(1 − x)

Γ (α)

)
(p) = Γ (p)

Γ (p + α)
, (C.3.20)

where H(x) is the Heaviside function

H(x) =
{
1, 0 ≤ x < +∞,

0, −∞ < x < 0,

(MW−α f (x)
)
(p) = Γ (p)

Γ (p + α)
f ∗(p + α), (C.3.21)

where W−α is the Weyl fractional integral

W−α f (x) = 1

Γ (α)

∞∫

x

(t − x)α−1 f (t)dt, 0 < Reα < 1, x > 0. (C.3.22)

TheMellin transform of the Riemann–Liouville fractional integral is given by the
formula

(M Iα
0+ f (x)

)
(p) = Γ (1 − α − p)

Γ (1 − p)
f ∗(p + α), Re (α + p) < 1. (C.3.23)

The Mellin transform of the Riemann–Liouville fractional derivative is represented
in the form (M Dα

0+ f (x)
)
(p) = Γ (1 + α − p)

Γ (1 − p)
f ∗(p − α)

+
n−1∑
k=0

Γ (1 + k − p)

Γ (1 − p)

[(
Dα−k−1

0+ f
)
(x)x p−k−1

]x=∞
x=0 , (C.3.24)

and the formula for the Mellin transform of the Caputo derivative has the form

(M CDα
0+ f (x)

)
(p) = Γ (1 + α − p)

Γ (1 − p)
f ∗(p − α). (C.3.25)
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C.4 Simple Examples and Tables of Transforms of Basic
Elementary and Special Functions

Below the selected values of integral transforms are given (see TablesC.1, C.2 and
C.3).

Table C.1 Table of selected values of the Fourier integral transform

n/n f(t) (F f )(κ) = F(κ) = f̂ (κ) =
+∞∫
−∞

eiκt f (t)dt

Conditions

1. exp(−a|t |) 2a
(a2+κ2)

a > 0

2. texp(−a|t |) 4ai
(a2+κ2)2

a > 0

3. exp(−at2)
√

π
a exp

(
− κ2

4a

)
a > 0

4. 1
t2+a2

π
a exp(−a|κ|) a > 0

5. t
t2+a2

−πκi
2a exp(−a|κ|) a > 0

6.

{
c, a ≤ t ≤ b,

0, otherwise
− ic

κ

{
eibκ − eiaκ

}
a ≥ 0

7. sin at
t 2 H (a − |κ|) a > 0

8. |t |α 2Γ (α + 1)
cos ( π

2 (α+1))
|κ|1+α

α ∈ C,α �= 0,

α �= −1 − 2k, k ∈ N0

9. |t |αsgn t 2iΓ (α + 1)
cos ( πα

2 )

|κ|1+α sgn κ α �= −2k, k ∈ N

10. exp{−t (a −
iω)}H(t)

i
ω+κ+ia a > 0

11. H(a−|t |)√
a2−t2

2πJ0(−aκ) a > 0

12. exp(−at)H(t) a+iκ
a2+κ2

a > 0

13. 1
tn πi

[
(iκ)n−1

(n−1)!
]
sign κ n ∈ N

14. Eα(|t |) 2πδ(κ) − 2
κ2 2Ψ1

[
(2, 2), (1, 1)

(α + 1, 2α)

∣∣∣− 1
κ2

]
α > 1

15. Eα,β(|t |) 2πδ(κ)
Γ (β)

− 2
κ2 2Ψ1

[
(2, 2), (1, 1)

(α + β, 2α)

∣∣∣− 1
κ2

]
α > 1,β ∈ C
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Table C.2 Table of selected values of the Laplace integral transform

n/n f (t) (L f )(s) = F(s) = f̃ (s) =
+∞∫
0

e−st f (t)dt

Conditions

1. ta Γ (a+1)
sa+1 a > −1

2. eat cos bt s−a
(s−a)2+b2

Eα(atα) sα−1

sα−a Reα > 0, s > |a| 1
Reα

3. eat sin bt b
(s−a)2+b2

4. t cos bt s2−b2

(s2+b2)2

5. t sin bt 2bs
(s2+b2)2

6. 1√
t
exp

(− a
t

) √
π
s exp

(−2
√
as
)

7. tα−1
2F1(a, b; c; t) Γ (α)

sα 3F1(α, a, b; c; 1
s )

a, b ∈ C, c ∈ C \ Z−
0 ,

Reα > 0;Re s > 0

8. tα−1Φ(a; c; t) Γ (α)
sα 2F1(α, a; b; 1

s )
a ∈ C, c ∈ C \ Z−

0 ,

Reα > 0;Re s > 0

9. tα−1Ψ (a; c; t)
Γ (α)Γ (α−c−1)
Γ (a−c+α+1) ×

2F1(α,α − c + 1;
a − c + α + 1; 1 − 1

s )

a ∈ C, c ∈ C \ Z−
0 ,

Reα > 0;Re c < 1 + Reα;
|1 − s| < 1

10. exp
(
a2t
)
erf
(
a
√
t
) a√

s(s−a2)

11. exp
(
a2t
)
erfc

(
a
√
t
) a√

s(
√
s+a)

12. Eα(atα) sα−1

sα−a Reα > 0, s > |a| 1
Reα

13. Eα(atα) sα−1

sα−a Reα > 0, s > |a| 1
Reα

14. tβ−1Eα,β(atα) sα−β

sα−a

Reα > 0,Re β > 0,

s > |a| 1
Reα

15. tmα+β−1E (m)
α,β(at) m!sα−β

(sα−a)m+1

Reα > 0,Re β > 0,

m ∈ N, s > |a| 1
Reα

16. tρ−1Eα,β(atγ) 1
sρ 2Ψ1

[
a
sα

∣∣∣ (1, 1), (ρ, γ)

(β,α)

] Reα > 0,Re β > 0,

Re γ > 0,Re ρ > 0,

s > |a| 1
Reα

17. tβ−1Eγ
α,β(atα) s−β

(
1 − as−α

)−γ
Reα > 0,Re β > 0,

Re γ > 0,

s > |a| 1
Reα

18. Eδ
β,γ(t) 1

s 2Ψ1

[
1
s

∣∣∣ (δ, 1), (1, 1)
(β, γ)

] Reα > 0,Re β > 0,

Re γ > 0,Re δ > 0,

Re ρ > 0, s > |a| 1
Reα

19. Eρ((α j ,β j )1,m; t) 1
s 2Ψm

[
1
s

∣∣∣ (ρ, 1), (1, 1)

(α j ,β j )1,m

]
Reα j > 0,Re β j > 0,

Re ρ > 0, s > |a| 1
Reα
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Table C.3 Table of selected values of the Mellin integral transform

n/n f (t) (M f )(p) = F(p) =
f ∗(p) =

+∞∫
0

f (t)t p−1dt

Conditions

1. e−λt Γ (p)
λ
p Re λ > 0, Re p > 0

2. e−λt2 Γ (p/2)

2λp/2 Re λ > 0, Re p > 0

3. (t + 1)−σ Γ (p)Γ (σ−p)
Γ (σ)

0 < Re p < Re σ

4. (tα + 1)−σ Γ (p/α)Γ (σ−p/α)
αΓ (σ)

0 < Re p
a < Re σ

5. ta

(1+t)b
Γ (a+p)Γ (b−a−p)

Γ (ν− p
2 +1)(b)

6. cos at
Γ (p) cos π p

2
a p 0 < Re p < 1

7. sin at
Γ (p) sin π p

2
a p 0 < Re p < 1

8. 2F1(a, b; c; −t) Γ (p)Γ (a−p)Γ (b−p)Γ (c)
Γ (c−p)Γ (a)Γ (b)

a, b, c ∈ C, c /∈ Z0

0 < Re p < min{Re a,Re b}
9. Φ(a; c; −t) Γ (p)Γ (a−p)Γ (c)

Γ (c−p)Γ (a)

a, c ∈ C, c /∈ Z0

0 < Re p < Re a

10. t1/2 Jν(t)
2p−1/2Γ

(
1
2

(
p+ν+ 1

2

))

Γ
(
1
2

(
ν−p+ 3

2

))

11. t−ν Jν(at)
2p−ν−1aν−pΓ ( p

2 )
Γ (ν− p

2 +1)

12. erfc(t)
Γ
(

p+1
2

)
p
√

π

13. Eα(t) Γ (p)Γ (1−p)
Γ (1−αp) 0 < Re p < 1

14. Eα,β(t) Γ (p)Γ (1−p)
Γ (β−αp) 0 < Re p < 1

15. Eγ
α,β(t) Γ (p)Γ (γ−p)

Γ (γ)Γ (β−αp) 0 < Re p < Re γ

16. Eρ((α j ,β j )1,m; −t) Γ (p)Γ (ρ−p)

Γ (ρ)
m∏
j=1

Γ (β j−α j p)
0 < Re p < Re ρ

C.5 Historical and Bibliographical Notes

Here we present a few historical remarks on the early development of the integral
transform method. For an extended historical exposition we refer to [DebBha15,
Chap.1].

The Fourier integral theorem was originally stated in J. Fourier’s famous treatise
entitled La Théorie Analytique da la Chaleur (1822), and its deep significance was



424 Appendix C: Integral Transforms

recognized by mathematicians and mathematical physicists. This theorem is one of
the most monumental results of modern mathematical analysis and has widespread
physical and engineering applications. Fourier’s treatise provided the modern math-
ematical theory of heat conduction, Fourier series, and Fourier integrals with appli-
cations. He gave a series of examples before stating that an arbitrary function defined
on a finite interval can be expanded in terms of a trigonometric series which is now
universally known as the Fourier series. In an attempt to extend his new ideas to
functions defined on an infinite interval, Fourier discovered an integral transform
and its inversion formula, which are now well-known as the Fourier transform and
the inverse Fourier transform. However, this celebrated idea of Fourier was known
to P.S. Laplace and A.L. Cauchy as some of their earlier work involved this trans-
formation. On the other hand, S.D. Poisson also independently used the method of
transform in his research on the propagation of water waves.

It was the work of Cauchy that contained the exponential form of the Fourier
Integral Theorem. Cauchy also introduced the functions of the operator D:

φ(D) f (x) = 1

2π

+∞∫

−∞

+∞∫

−∞
φ(iκ)eiκ(x−y) f (y)dydκ,

which led to the modern form of operator theory.
The birth of the operational method in its popularization as a powerful method for

solving differential equations is probably due to O. Heaviside (see, e.g., [Hea93]).
He developed this technique as a purely algebraic one, using and developing the
classical ideas of Fourier, Laplace and Cauchy. An extended use of the machinery
of complex analytic functions in this theory was proposed by T.J. Bromwich (see,
e.g., [Bro09, Bro26]). In this direction several types of integral transform appeared.
In particular, elaborating the ideas of B. Riemann, Mellin introduced a new type of
integral transform which was later given his name. It turned out that (see [Sla66,
Mari83]) the Mellin transform is highly suitable for the study of properties of a wide
class of special functions, namely G- and H -functions [MaSaHa10]. In [Mari83], a
calculation method for integrals with a ratio of products of Gamma functions was
developed. This method is based on the properties of the Mellin transform. Based
on this, the handbook of Mellin transforms [BrMaSa19] was established, containing
the most recent results for this type of integral transform. Applications of the Mellin
transform technique are described in [LucKir19].

Many results were obtained by different authors due to a combination of the
complex analytic approach and results from the theory of special functions which
rapidly developed in the first part of the 20th century. These results led to the theory
of operational calculus in its modern form. We mention here several treaties on
integral transform theory [Dav02, DebBha07, DebBha15, DitPru65, Doe74, Mik59,
Sne74, Tit86, Wid46]. Applications of the integral transform method are presented
in many books on integral and differential equations (see, e.g., [AnKoVa93, Boa83,
PolMan08]), in particular those related to the fractional calculus [Die10, KiSrTr06,
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SaKiMa93]. Tables of integral transforms (see [BatErd54a, GraRyz00, Mari83,
Obe74]) constitute a very useful source for applications.

C.6 Exercises

C.6.1. ([DebBha07, p. 119]) Evaluate the Fourier transform of the functions

a) f (t) = texp
{
− at2

2

}
, a > 0 b) f (t) = t2exp

{
− t2

2

}
.

C.6.2. ([DebBha07, p. 121]) Solve the following integral equations with respect to
the unknown function y(t)

a)

+∞∫

−∞
φ(x − t)y(t)dt = g(x),

b)

+∞∫

−∞
exp

(−at2
)
y(x − t)dt = exp

(−ax2
)
, a > b > 0.

Hint. Use the Fourier transform.
C.6.3. ([DebBha07, p. 128]) Use the Fourier transform to solve the boundary value

problem

uxx + uyy = xexp
(−x2

)
, −∞ < x < +∞, 0 < y < +∞,

u(x, 0) = 0, −∞ < x < +∞,

in the class of continuously differentiable functions such that

lim
y→+∞ u(x, y) = 0, ∀x, −∞ < x < +∞.

Answer.

u(x, y) = √
2

+∞∫

0

[
1 − exp (−t y)

] sin t x

t
exp

(
− t2

4

)
dt.

C.6.4. ([DebBha07, p. 173]) Find the Laplace transform of the functions:

a) 2t + a sin at, a > 0, b) (1 − 2t)exp {−2t} ,

c) H(t − a)exp {t − a} , a > 0, d) (t − a)k H(t − a), a > 0, k ∈ N.
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C.6.5. ([DebBha07, p. 174]) Evaluate the inverse Laplace transform of the func-
tions

a) 1
(s−a)(s−b)2 , a, b > 0; b) 1

s2(s−a)2
, a > 0;

c) 1
s2(s2+a2) , a > 0; d) s

(s2+a2)(s2+b2) , a, b > 0.

C.6.6. ([DebBha07, p. 179]) Using the change of variables, s = c + iω, show that
the inverse Laplace transformation is a Fourier transformation, that is,

f (t) = (L−1 f̃ (s)
)
(t) = ect

2π

+∞∫

−∞
f̃ (c + iω)eiωtdω.

C.6.7. ([DebBha07, p. 365]) Calculate the Mellin transform of the functions

a) f (t) = H(a − t), a > 0; b) f (t) = tαe−βt , α,β > 0;

c) f (t) = 1
1+t2 ; d) f (t) = J 2

0 (t).

C.6.8. ([DebBha07, p. 365]) Prove that

(
M 1

(1 + at)n

)
(p) = Γ (p)Γ (n − p)

a pΓ (n)
, a > 0;

(Mt−n Jn(at)
)
(p) = 1

2

(a
2

)n−p Γ
( p
2

)
Γ
(
n − p

2 + 1
) , a > 0, n > −1

2
.

C.6.9. ([DebBha07, p. 370]) Prove the following relations of the Mellin transform
to the Laplace and the Fourier transforms:

(M f (t)) (p) = (L f (e−t )
)
(p);

(M f (t)) (a + iω) = (F f (e−t )e−at
)
(ω).

C.6.10. ([KiSrTr06, p. 36, (1.7.34)]) Calculate the Laplace transform of the Bessel
function of the first kind Jν(t) for Re ν > −1, where

Jν(z) =
∞∑
k=0

(−1)k(z/2)2k+ν

k!Γ (ν + k + 1)
(z ∈ C \ (−∞, 0]; ν ∈ C).

Answer.
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(L Jν(t)) (s) = 1
√
s2 + 1

[
s + √

s2 + 1
]ν (Re s > 0).

C.6.11. ([KiSrTr06, p. 36, (1.7.35)]) Calculate the Laplace transform of the Bessel
function of the second kind Yν(t) for |Re ν| < 1, ν �= 0, where

Yν(z) = cos (νπ)Jν(z) − J−ν(z)

sin νπ
(ν ∈ C \ Z).

Answer.

(LYν(t)) (s) =
cot (νπ) − csc (νπ)

[
s + √

s2 + 1
]2ν

√
s2 + 1

[
s + √

s2 + 1
]ν (Re s > 0).

C.6.12. ([KiSrTr06, p. 50, (1.10.10)]) Prove the following relation (α,β,λ ∈ C,

Reα > 0)

(
L
[
tαn+β−1

(
∂

∂λ

)n

Eα,β(λtα)

])
(s) = n!sα−β

(sα − λ)n+1
(

∣∣∣∣ λ

sα

∣∣∣∣ < 1).

C.6.13. ([KiSrTr06, p. 52, (1.10.27)]) Let eλz
α = zα−1Eα,α(λzα) (z ∈ C;Reα >

0;λ ∈ C) be the so-calledα-Exponential function. Prove the following rela-
tion for it:
(
L
[(

∂

∂λ

)n

eλt
α

])
(s) = n!

(sα − λ)n+1
(n ∈ N; Re s > 0;

∣∣∣∣ λ

sα

∣∣∣∣ < 1).

C.6.14. ([MaSaHa10, p. 52, (2.29)]) Calculate the Laplace transform of the Meyer
G-function

tρ−1Gm,n
p,q

[
atσ
∣∣∣a1, . . . , ap

b1, . . . , bq

]

ρ ∈ C, σ > 0, Re ρ + σ min
1≤ j≤m

Re b j > 0,

|arg a| <
πc∗

2
, c∗ = m + n − p + q

2
> 0; Re s > 0.

C.6.15. ([MaSaHa10, p. 50, (2.19)]) Calculate for all s ∈ C, Re s > 0, the Laplace
transform of the Fox H -function

tρ−1Hm,n
p,q

[
atσ
∣∣∣ (a1,α1), . . . , (ap,αp)

(b1,β1), . . . , (bq ,βq)

]

ρ, a ∈ C, σ > 0,
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α > 0, |arg a| <
απ

2
or α = 0 and Re δ < −1

Re ρ + σ min
1≤ j≤m

Re b j

β j
> 0, for α > 0 or α = 0,μ ≥ 0,

and

Re ρ + σ min
1≤ j≤m

[
Re b j

β j
+ Re δ + 1/2

μ

]
> 0, for α = 0,μ < 0,

where

α =
n∑
j=1

α j −
p∑

j=n+1

α j +
m∑
j=1

β j −
q∑

j=m+1

β j ;

δ =
q∑
j=1

b j −
p∑

j=1

a j + p − q

2
; μ =

q∑
j=1

β j −
p∑

j=1

α j .

C.6.16. ([KiSrTr06, p. 55, (1.11.6-7)]) Calculate the Laplace and Mellin transforms
of the classical Wright function φ(α,β; t), where

φ(α,β; z) =
∞∑
k=0

zk

k!Γ (αk + β)
.

Answers.

(Lφ(α,β; t)) (s) = 1

s
Eα,β

(
1

s

)
(α > −1; β ∈ C; Re s > 0);

(Mφ(α,β; t)) (s) = Γ (s)

Γ (β − αs)
(α > −1; β ∈ C; Re s > 0).

C.6.17. ([MaSaHa10, p. 46, Exercise 2.1]) Find the Mellin transform of the Gauss
hypergeometric function 2F1(a, b; c;−t) (a, b, c ∈ C).
Answer.

(M 2F1(a, b; c;−t)) (s) = Γ (s)Γ (a − s)Γ (b − s)Γ (c)

Γ (c − s)Γ (a)Γ (b)

(min {Re a,Re b} > Re s > 0).

C.6.18. ([MaSaHa10, p. 48, (2.9)]) Calculate the Mellin transform of the Meyer
G-function

Gm,n
p,q

[
at
∣∣∣a1, . . . , ap

b1, . . . , bq

]
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a ∈ C, |arg a|πc
∗

2
, c∗ = m + n − p + q

2
> 0;

s ∈ C, − min
1≤ j≤m

Re b j < Re s < 1 − max
1≤ j≤n

Re a j .



Appendix D
The Mellin–Barnes Integral

D.1 Definition. Contour of Integration

In the modern theory of special functions it has become customary to call to an
integral of the type (see, e.g., [ParKam01])

I (z) = 1

2πi

∫

L

f (s)z−sds (D.1)

a Mellin–Barnes integral. Here the density function f (s) is usually a solution to a
certain ordinary differential equation with polynomial coefficients. Thus this integral
is similar to the Mellin transform applied to special types of originals (see, e.g.,
[Mari83]). The most crucial part of this definition is the choice of the contour of
integration. The contour L is usually either a loop in the complex s plane, a vertical
line indented to avoid certain poles of the integrand, or a curvemidway between these
two, in the sense of avoiding certain poles of the integrand and tending to infinity in
certain fixed directions (see, e.g., [ParKam01]). A short introduction to the theory of
Mellin–Barnes integrals is given in [ErdBat-1, pp. 49–50].

In order to be more precise we consider a density function f (s) of the type

f (s) = A(s)B(s)

C(s)D(s)
, (D.2)

where A, B,C, D are products of Gamma functions depending on parameters. Such
integrals appear, in particular, in the representation of the solution to the hypergeo-
metric equation

z(1 − z)
d2u

dz2
+ [c − (b + a − 1)z]du

dz
− abu = 0, (D.3)

i.e. in the representation of the Gauss hypergeometric function
© Springer-Verlag GmbH Germany, part of Springer Nature 2020
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F(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn,

and in the representation of the solution to a more general equation, namely, the
generalized hypergeometric equation

⎡
⎣z

p∏
j=0

(
z
d

dz
+ a j

)
− z

d

dz

q∏
k=0

(
z
d

dz
+ bk − 1

)⎤
⎦ u(z) = 0, (D.4)

i.e. in the representation of the generalized hypergeometric function

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑
n=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n
zn.

In [Mei36] more general classes of transcendental functions were introduced via a
generalization of the Gauss hypergeometric function presented in the form of a series
(commonly known now as Meijer G-functions). Later this definition was replaced
by the Mellin–Barnes representation of the G-function

Gm,n
p,q

[
z

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
= 1

2πi

∫

L

Gm,n
p,q (s)zsds, (D.5)

where L is a suitably chosen path, z �= 0, zs := exp[s(ln |z| + iarg z)] with a single
valued branch of arg z, and the integrand is defined as

Gm,n
p,q (s) =

∏m
k=1 Γ (bk − s)

∏n
j=1 Γ (1 − a j + s)∏q

k=m+1 Γ (1 − bk + s)
∏p

j=n+1 Γ (a j − s)
. (D.6)

In (D.6) the empty product is assumed to be equal to 1 (the empty product convention),
the parametersm, n, p, q satisfy the relation 0 ≤ n ≤ q, 0 ≤ n ≤ p, and the complex
numbers a j , bk are such that no pole of Γ (bk − s), k = 1, . . . ,m, coincides with a
pole of Γ (1 − a j + s), j = 1, . . . , n.

Let

δ = m + n − 1

2
(p + q), ν =

q∑
k=1

bk −
p∑

j=1

a j .

The contour of integration L in (D.5) can be of the following three types (see
[Mari83], [Kir94, p. 313]):

(i) L = Liγ∞, which starts at −iγ∞ and terminates at +iγ∞, leaving to the
right all poles of Γ -functions Γ (bk − s), k = 1, . . . ,m, and leaving to the
left all poles of Γ -functions Γ (1 − a j + s), j = 1, . . . , n. Integral (D.5) con-
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verges for δ > 0, |arg z| < πδ. If |arg z| = πδ, δ ≥ 0, then the integral con-
verges absolutely when p = q, Reν < −1, and when p �= q if (q − p)Res >

Reν + 1 − 1
2 (q − p) as Ims → ±∞.

(ii) L = L+∞, which starts atϕ1 + i∞, terminates atϕ2 + i∞,−∞ < ϕ1 < ϕ2 <

+∞, encircles once in the negative direction all poles of the Γ -functions
Γ (bk − s), k = 1, . . . ,m, but no pole of the Γ -functions Γ (1 − a j + s), j =
1, . . . , n. Integral (D5) converges if q ≥ 1 and either p < q or p = q and
|z| < 1.

(iii) L = L−∞ , which starts at ϕ1 − i∞, terminates at ϕ2 − i∞, −∞ < ϕ1 <

ϕ2 < +∞, encircles once in the positive direction all poles of the Γ -functions
Γ (1 − a j + s), j = 1, . . . , n, but no pole of the Γ -functions Γ (bk − s), k =
1, . . . ,m. Integral (D.5) converges if p ≥ 1 and either p > q or p = q and
|z| > 1.

Since the generalized hypergeometric function pFq(a1, . . . ,
ap; b1, . . . , bq; z) can be considered as a special case of the Meijer G-functions, the
function pFq(a1, . . . , ap; b1, . . . , bq; z) also possesses a representation via aMellin–
Barnes integral

p Fq (a1, . . . , ap; b1, . . . , bq ; z) =

q∏
k=1

Γ (bk)

p∏
j=1

Γ (a j )

G1,p
p,q+1

[
−z

∣∣∣∣ (1 − a1), . . . , (1 − ap)
0, (1 − b1), . . . , (1 − bq )

]
, (D.7)

where

G1,p
p,q+1

[
−z

∣∣∣∣ (1 − a1), . . . , (1 − ap)

0, (1 − b1), . . . , (1 − bq)

]

= 1

2πi

+i∞∫

−i∞

Γ (a1 + s) . . . Γ (ap + s)Γ (−s)

Γ (b1 + s) . . . Γ (bq + s)
(−z)sds, (D.8)

a j �= 0,−1, . . . ; j = 1, . . . , p; |arg (1 − i z)| < π.

Although theMeijerG-functions are quite general in nature, there still exist exam-
ples of special functions, such as the Mittag-Leffler and the Wright functions, which
do not form particular cases of them. A more general class which includes those
functions can be obtained by introducing the Fox H -functions [Fox61], whose rep-
resentation in terms of theMellin–Barnes integral is a straightforward generalization
of that for theG-functions. To introduce it one needs to add to the sets of the complex
parameters a j and bk the new sets of positive numbers α j and βk with j = 1, . . . , p,
k = 1, . . . , q, and to replace in the integral of (D.5) the kernel G p,q

m,n(s) by the new
one

Hm,n
p,q (s) =

∏m
k=1 Γ (bk − βks)

∏n
j=1 Γ (1 − a j + α j s)∏q

k=m+1 Γ (1 − bk + βks)
∏p

j=n+1 Γ (a j − α j s)
. (D.9)



434 Appendix D: The Mellin–Barnes Integral

The Fox H -functions are then defined in the form

H p,q
m,n (z) = H p,q

m,n (z)

[
z

∣∣∣∣ (a j ,α j )
p
j=1

(bk,βk)
q
k=1

]
= 1

2πi

∫

L

Hm,n
p,q (s)zsds. (D.10)

A representation of the type (D.10) is usually called a Mellin–Barnes integral repre-
sentation. The convergence questions for these integrals are completely discussed in
[ParKam01, Sect. 2.4]. For further information we refer the reader to the treatises on
Fox H -functions by Mathai, Saxena and Haubold [MaSaHa10], Srivastava, Gupta
and Goyal [SrGuGo82], Kilbas and Saigo [KilSai04] and the references therein.

D.2 Asymptotic Methods for the Mellin–Barnes Integral

The asymptotics of the Mellin–Barnes integral is based on the following two gen-
eral lemmas on the expansion of quotients of Gamma functions as inverse factorial
expansions (see [Wri40b, Wri40c, Bra62]).

Let us consider the quotient of products of Gamma functions

P(s) =

p∏
j=1

Γ (α j s + a j )

q∏
k=1

Γ (βks + bk)
. (D.11)

Define the parameters

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

h =
p∏

j=1
α j

α j

q∏
k=1

βk
−βk ,

ϑ =
p∑

j=1
a j −

q∑
k=1

bk + 1
2 (q − p + 1), ϑ′ = 1 − ϑ,

κ =
q∑

k=1
βk −

p∑
j=1

α j .

(D.12)

The following lemma presents the inverse factorial expansions for the functions
P(s) (see [Wri40c, Bra62]).

Lemma D.1 ([ParKam01, p. 39]) Let M be a positive integer and suppose κ > 0.
Then there exist numbers Ar (0 ≤ r ≤ M − 1), independent of s and M, such that
the function P(s) in (D.11) possesses the inverse factorial expansion given by

P(s) = (hκκ)s

{
M−1∑
r=1

Ar

Γ (κs + ϑ′ + r)
+ σM(s)

Γ (κs + ϑ′ + M)

}
, (D.13)
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where the parameters h,κ and ϑ′ are defined in (D.12).
In particular, the coefficient A0 has the value

A0 = (2π)1/2(p−q+1)κ1/2−ϑ

p∏
j=1

α j
a j−1/2

q∏
k=1

βk
1/2−bk . (D.14)

The remainder function σM(s) is analytic in s except at the points s = −(a j +
t)/α j , t = 0, 1, 2, . . . (1 ≤ j ≤ p), where P(s) has poles, and is such that

σM(s) = O(1)

for |s| → ∞ uniformly in |args| ≤ π − ε, ε > 0.

Let now Q(s) be another type of quotient of products of Gamma functions:

Q(s) =

q∏
k=1

Γ (1 − bk + βks)

p∏
j=1

Γ (1 − a j + α j s)
. (D.15)

Let the parameters h,ϑ,ϑ′,κ be defined in the same manner as in (D.12).
The following lemma presents the corresponding inverse factorial expansions for

the functions Q(s) (see [Wri40c, Bra62]).

Lemma D.2 ([ParKam01, p. 39]) Let M be a positive integer and suppose κ > 0.
Then there exist numbers Ar (0 ≤ r ≤ M − 1), independent of s and M, such that
the function Q(s) in (D.15) possesses the inverse factorial expansion given by

Q(s) = (hκκ)−s

(2π)p−q+1

{
M−1∑
r=1

(−1)r ArΓ (κs + ϑ − r) + ρM(s)Γ (κs + ϑ − M)

}
,

(D.16)
where the parameters h,κ and ϑ′ are defined in (D.12).

The remainder function ρM(s) is analytic in s except at the points s = (bk − 1 −
t)/βk , t = 0, 1, 2, . . . (1 ≤ k ≤ q), where Q(s) has poles, and is such that

ρM(s) = O(1)

for |s| → ∞ uniformly in |args| ≤ π − ε, ε > 0.

An algebraic method for determining the coefficients Ar in (D.13) and (D.16) is
presented in [ParKam01, pp. 46–49].
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D.3 Historical and Bibliographical Notes

As a historical note, we point out that “Mellin–Barnes integrals” are named after the
two authors (namely Hj. Mellin and E.W. Barnes) who in the early 1910s developed
the theory of these integrals, using them for a complete integration of the hyperge-
ometric differential equation. However, these integrals were first used in 1888 by
Pincherle, see, e.g., [MaiPag03]. Recent treatises on Mellin–Barnes integrals are
[Mari83, ParKam01].

In Vol. 1, p. 49, of Higher Transcendental Functions of the Bateman Project
[ErdBat-1] we read “Of all integrals which contain Gamma functions in their inte-
grands, the most important ones are the so-called Mellin–Barnes integrals. Such
integrals were first introduced by S. Pincherle, in 1888 [Pin88]; their theory has been
developed in 1910 by H. Mellin (where there are references to earlier work) [Mel10]
and they were used for a complete integration of the hypergeometric differential
equation by E.W. Barnes [Barn08].”

In the classical treatise on Bessel functions by Watson [Wat66, p. 190], we read
“By using integrals of a type introduced by Pincherle andMellin, Barnes has obtained
representations of Bessel functions ...”.

Salvatore Pincherle (1853–1936) was Professor of Mathematics at the Univer-
sity of Bologna from 1880 to 1928. He retired from the University just after the
International Congress of Mathematicians which he had organized in Bologna, fol-
lowing the invitation received at the previous Congress held in Toronto in 1924.
He wrote several treatises and lecture notes on Algebra, Geometry, and Real and
Complex Analysis. His main book related to his scientific activity is entitled “Le
Operazioni Distributive e loro Applicazioni all’Analisi”; it was written in collabo-
ration with his assistant, Dr. Ugo Amaldi, and was published in 1901 by Zanichelli,
Bologna. Pincherle can be considered one of the most prominent founders of Func-
tional Analysis, and was described as such by J. Hadamard in his review lecture “Le
développement et le rôle scientifique du Calcul fonctionnel”, given at the Congress
of Bologna (1928). A description of Pincherle’s scientific works requested from him
by Mittag-Leffler, who was the Editor of the prestigious journal Acta Mathematica,
appeared (in French) in 1925 [Pin25]. A collection of selected papers (38 from 247
notes plus 24 treatises) was edited by Unione Matematica Italiana (UMI) on the
occasion of the centenary of his birth, and published by Cremonese, Roma 1954. S.
Pincherle was the first President of UMI, from 1922 to 1936.

Here we point out that S. Pincherle’s 1888 paper (in Italian) on the Generalized
Hypergeometric Functions led him to introduce what was later called the Mellin–
Barnes integral to represent the solution of a generalized hypergeometric differential
equation investigated by Goursat in 1883. Pincherle’s priority was explicitly recog-
nized by Mellin and Barnes themselves, as reported below.

In 1907 Barnes, see p. 63 in [Barn07b], wrote: “The idea of employing contour
integrals involving gamma functions of the variable in the subject of integration
appears to be due to Pincherle, whose suggestive paper was the starting point of
the investigations of Mellin (1895) though the type of contour and its use can be
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traced back to Riemann.” In 1910 Mellin, see p. 326ff in [Mel10], devoted a section
(Sect. 10: Proof of Theorems of Pincherle) to revisit the original work of Pincherle;
in particular, he wrote “Before we prove this theorem, which is a special case of a
more general theorem of Mr. Pincherle, we want to describe more closely the lines
L over which the integration is preferably to be carried out.” [free translation from
German].

The Mellin–Barnes integrals are the essential tools for treating the two classes of
higher transcendental functions known as G-and H -functions, introduced by Meijer
(1946) [Mei46] and Fox (1961) [Fox61] respectively, so Pincherle can be considered
their precursor. For an exhaustive treatment of the Mellin–Barnes integrals we refer
to the recent monograph by Paris and Kaminski [ParKam01].

D.4 Exercises

D.4.1. ([ParKam01, p. 67]) The exponential function can be represented in terms of
the Mellin–Barnes integral

e−z = 1

2πi

c+i∞∫

c−i∞
Γ (s)z−sds (c > 0).

Find the domain of convergence of the integral in the right-hand side of this
representation.

D.4.2. ([ParKam01, p. 68]) Prove the following Mellin–Barnes integral representa-
tion of the hypergeometric function

Γ (a)Γ (b)

Γ (c)
2F1(a, b; c; z) = 1

2πi

∫

Liγ∞

Γ (−s)
Γ (s + a)Γ (s + b)

Γ (s + c)
(−z)sds,

where the contour of integration Liγ∞ is a vertical line, which starts at
−iγ∞ ends at +iγ∞ and separates the poles of the Gamma function
Γ (−s) from those of the Gamma functions Γ (s + a), Γ (s + b) for a and
b �= 0,−1,−2, . . ..
Find the domain of convergence of the integral in the above representation.
If the vertical line Li∞ is replaced by the contour L−∞, then show that the
domain of convergence coincides with an open unit disk.

D.4.3. ([ParKam01, p. 68]) Find the domain of convergence of the followingMellin–
Barnes integral:

1

2πi

∫

L+∞

Γ (a − s/2)Γ (λs + b)Γ (c + s/4)

Γ (d + s/4)Γ (s + 1)
(z)sds,
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where the parameters a, b, c and λ and the contour of integration L+∞ are
such that the poles of Γ (a − s/2) are separated from those of Γ (λs + b) and
Γ (c + s/4).

D.4.4. ([ParKam01, p. 109]) Prove that the following Mellin–Barnes integral repre-
sentation

Γ (a)

Γ (b)
1F1(a; b; c; z) = 1

2πi

c+i∞∫

c−i∞

Γ (−s)Γ (s + a)

Γ (s + b)
(−z)sds

is valid for all finite values of c provided that the contour of integration can
be deformed to separate the poles of Γ (−s) and Γ (s + a) (which is always
possible when a is not a negative integer or zero). Here 1F1(a; b; c; z) is the
confluent hypergeometric function

1F1(a; b; c; z) =
∞∑
n=

(a)n

(b)n

zn

n! , (|z| < ∞).

D.4.5. ([ParKam01, p. 113]) For the incomplete gamma function

γ(a, z) =
z∫

0

ta−1e−tdt (Re a > 0)

prove the representation

γ(a, z) = Γ (a) + 1

2πi

c+i∞∫

c−i∞

Γ (−s)

s + a
zs+ads

where c < min{0,−Re a}.
D.4.6. ([ParKam01, p. 113]) For the second incomplete gamma function

Γ (a, z) =
∞∫

z

ta−1e−tdt

prove the representation

Γ (a, z) = 1

2πi

c+i∞∫

c−i∞

Γ (s + a)

s
z−sds

for all z, |arg z|π/2.



Appendix E
Elements of Fractional Calculus

An interest in fractional generalizations of the usual integral and derivatives goes back
to the discussion of such a possibility between G. Leibniz and G. L’Hôpital (see, e.g.
[TeKiMa11]). Several attempts were made to provide the technical realization of
such an approach. Here we mention a few of them.

First of all, based on Leibniz’s formula for fractional derivatives of the exponential
function, we have

dαemx

dxα
= mαemx , α > 0. (E.1)

Using this formula Liouville later introduced the fractional derivative of functions
represented in the form of a convergent Dirichlet-type series

y(x) =
∞∑
k=1

Ake
mkx . (E.2)

Another approach is due to Euler, who introduced the fractional derivative of the
power function

dαxm

dxα
= Γ (m + 1)

Γ (m − α + 1)
xm−α, α /∈ N. (E.3)

The above mentioned Liouville construction has an evident restriction to a particular
class of functions. To overcome this difficulty Liouville used a formula similar to
Euler’s

dα 1
xm

dxα
= (−1)αΓ (m + α)

Γ (m)xm+α
, α > 0,m + α > 0, (E.4)

which follows from the definition of Euler’s Gamma function

1

xm
= 1

Γ (m)

∞∫

0

e−zx zm−1dz. (E.5)
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Since at that time theLegendre–Gauss definition of theGamma function of a complex
argumentwas not known, Liouville assumed that the fractional derivative of a general
power-exponential function is defined only up to an additional function, and showed
that such a functionmust be a polynomial of finite degree.Only in the 1860s and1870s
was it shown by Grünwald and Letnikov that a fractional derivative can be defined
on the above mentioned class without any additional functions (see [RogDub18]).

One more approach is due to J. Fourier [Fou22], who noted that his formula for
the derivative of the Fourier integral

dα f (x)

dxα
= 1

2π

+∞∫

−∞
f (z)dz

+∞∫

−∞
cos
(
px − pz + πα

2

)
dp (E.6)

is valid not only for integer α, but also for all non-integer α.
Fractional integrals are usually defined (see, e.g., [SaKiMa93]) as a generalization

of the repeated integral formula

J n f (t) =
t∫

0

dt1

t1∫

0

dt2 . . .

tn∫

0

f (tn)dtn = 1

(n − 1)!
t∫

0

(t − τ )n−1 f (τ )dτ , (E.7)

namely

Jα f (t) = 1

Γ (α)

t∫

0

(t − τ )α−1 f (τ )dτ ,α > 0. (E.8)

Other motivations as well as a number of known definitions of fractional deriva-
tives and integrals are presented in [ST-TM-CO19].

E.1 The Riemann–Liouville Fractional Calculus

Riemann–Liouville (R–L) fractional integrals and derivatives are one of the most
popular fractional constructions. For a function defined on a finite interval (a, b) the
R–L left-sided fractional integral is given by the formula

(
Jα
a+ f

)
(t) := 1

Γ (α)

t∫

a

f (τ )

(t − τ )1−α
dτ , α > 0. (E − RL .1)

and the R–L right-sided fractional integral is given by the formula

(
Jα
b− f

)
(t) := 1

Γ (α)

b∫

t

f (τ )

(τ − t)1−α
dτ , α > 0. (E − RL .2)
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The fractional integrals (E − RL .1) and (E − RL .2) are defined for functions f ∈
L1(a, b) existing almost everywhere.

If a function f is Hölder continuous ( f ∈ Hm,λ[a, b], i.e. f (m) ∈ Hλ[a, b], 0 <

λ < 1), then its left-sided fractional integral has the following representation

Jα
a+ f (t) =

m∑
k=0

f (k)(a)

Γ (α + k + 1)
(t − a)α+k + ψ(t), (E − RL .3)

where ψ ∈ Hm+[λ+α],{λ+α}[a, b] in the case of non-integer λ + α, and [·], {·} are
the integer and fractional parts of a positive number, respectively. In the case of
integer λ + α the behavior of Jα

a+ f (t) is more specific (cf. for details [SaKiMa93,
Chap.1]). Similar formulas are valid for the right-sided fractional integrals of Hölder
continuous functions.

If 0 < α < 1 and 1 < p < 1
α
the operator Jα

a+ is bounded from L p(a, b) into
Lq(a, b), q = p

1−αp . For bigger p the behavior is even better, namely, if α > 0 and

p > 1
α
(but α − 1/p is non-integer), then the operator Jα

a+ is bounded from L p(a, b)
into H [α−1/p],{α−1/p}[a, b]. Other relations between α and p are carefully discussed
in [SaKiMa93, Chap.1].

One of the most important properties of the fractional integrals is the semigroup
relation (

Jα
a+ J β

a+ f
)

(t) =
(
Jα+β
a+ f

)
(t), (E − RL .4)

as well as the composition relation

(
Jα
a+ J β

a+ f
)

(t) =
(
J β
a+ Jα

a+ f
)

(t), (E − RL .5)

which are valid for all functions f for which the integrals exist and all α > 0,β > 0.
Another relation important for applications is the integration by parts formula

b∫

a

g(t)
(
Jα
a+ f

)
(t)dt =

b∫

a

f (t)
(
Jα
b−g
)
(t)dt, (E − RL .6)

whichholds true, e.g., for f ∈ L p(a, b), g ∈ Lq(a, b), p ≥ 1, q ≥ 1, 1/p + 1/qleq1 +
α (and p �= 1, q �= 1, whenever 1/p + 1/q = 1 + α).

A number of calculations of the fractional integral for elementary and special
functions are presented below.

(
Jα
a+(τ − a)β−1

)
(t) = Γ (β)

Γ (α + β)
(t − a)α+β−1, β > 0, (E − RL .7)

(
Jα
b−(b − τ )β−1

)
(t) = Γ (β)

Γ (α + β)
(b − t)α+β−1, β > 0, (E − RL .8)
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(
Jα
a+(τ − a)β−1(b − τ )γ−1

)
(t) (E − RL .9)

= Γ (β)

Γ (α + β)

(t − a)α+β−1

(b − a)1−γ 2F1(1 − γ,β,α + β; t − a

b − a
), β > 0, γ ∈ R,

where

2F1(a, b, c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

is the Gauss hypergeometric function, and (d)k = d(d + 1) . . . (d + k − 1) is the
Pochhammer symbol.

(
Jα
a+(τ − a)β−1 ln(τ − a)

)
(t) (E − RL .10)

= Γ (β)

Γ (α + β)
(t − a)α+β−1(ψ(β) − ψ(α + β) + ln(t − a)), β > 0,

where

ψ(z) = Γ ′(z)
Γ (z)

is the Euler psi function (the logarithmic derivative of the Euler Gamma function).

λ
(
Jα
a+Eα(λτα)

)
(t) = Eα(λtα) − 1, λ ∈ C, (E − RL .11)

where

Eα(z) =
∞∑
k=0

zk

Γ (αk + 1)

is the classical Mittag-Leffler function.
TheRiemann–Liouville fractional derivative is introduced as the left-inverse oper-

ator for the corresponding fractional integrals. To be more precise we assume that
the function f satisfies the condition

(
J n−α
a+ f

)
(t) ∈ ACn[a, b] with n ∈ N, n − 1 <

α ≤ n, and ACn[a, b] := {g ∈ Cn−1[a, b] : g(n−1) ∈ AC[a, b]}, AC denotes a class
of absolutely continuous functions. Assuming this condition, the left- and right-sided
Riemann–Liouville fractional derivatives are defined by the relations

(
RLDα

a+ f
)
(t) := dn

dtn
(
J n−α
a+ f

)
(t), t ∈ (a, b), (E − RL .12)

(
RLDα

b− f
)
(t) := (−1)n

dn

dtn
(
J n−α
a+ f

)
(t), t ∈ (a, b). (E − RL .13)

Note that the condition
(
J n−α
a+ f

)
(t) ∈ ACn[a, b] follows from f ∈ ACn[a, b]. In

this case the Riemann–Liouville fractional derivative exists almost everywhere on
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the interval (a, b) and the following equality holds

(
RLDα

a+ f
)
(t) =

n−1∑
k=0

f (k)(a)(t − a)k−α

Γ (1 + k − α)
+ 1

Γ (n − α)

t∫

a

f (k)(τ )dτ

(t − τ )α−n+1
.

(E − RL .14)
As was already mentioned, the Riemann–Liouville fractional derivative is the

left-inverse to the corresponding Riemann–Liouville fractional integral, that is, the
following relation (

RLDα
a+ Jα

a+ f
)
(t) = f (t) (E − RL .15)

holds for any function f ∈ L1(a, b). The opposite is not true, i.e. the Riemann–
Liouville fractional derivative is not the right-inverse to the Riemann–Liouville frac-
tional integral. Instead, for all f ∈ L1(a, b) such that

(
J n−α
a+ f

)
(t) ∈ ACn[a, b] we

have the following relation

(
Jα
a+

RLDα
a+ f

)
(t) = f (t) −

n−1∑
k=0

(t − a)α−k−1

Γ (α − k)

(
dn−k−1

dtn−k−1
J n−α
a+ f

)
(a).

(E − RL .16)
The sum in (E − RL .16) converges if the function f can be represented as a value
of the fractional integral, i.e. there exists a function g ∈ L1(a, b) such that f (t) =(
Jα
a+g
)
(t).

If α ∈ R,β < 1, and f is an analytic function, then the semigroup relation

(
RLDα

a+
RLDβ

a+ f
)

(t) =
(
RLDα+β

a+ f
)

(t) (E − RL .17)

holds true (note that this relation is not valid in general, see, e.g., [SaKiMa93]).
The Leibniz rule for the Riemann–Liouville fractional derivative can be written

in different forms, e.g.

(
RLDα

a+ f · g
)
(t) =

+∞∑
k=0

(
α
k

) (
RLDα−k

a+ f
)
(t)g(k)(t), α ∈ R, (E − RL .18)

(
RLDα

a+ f · g
)
(t) =

+∞∑
k=−∞

(
α

k + β

)(
RLDα−β−k

a+ f
)

(t)
(
RLDβ+k

a+ g
)

(t),

(E − RL .19)
α,β ∈ R (α �= −1,−2, . . . , if β ∈ Z).

In the case of functions defined on the whole real line, analogs of the fractional
integrals and derivatives (sometimes called the Liouville fractional integrals and
derivatives, respectively) are given by the following formulas



444 Appendix E: Elements of Fractional Calculus

(
Jα
+ f
)
(t) = 1

Γ (α)

t∫

−∞

f (τ )dτ

(t − τ )1−α
, t ∈ R, (E − RL .20)

(
Jα
− f
)
(t) = 1

Γ (α)

+∞∫

t

f (τ )dτ

(τ − t)1−α
, t ∈ R, (E − RL .21)

(
LDα

+ f
)
(t) = dn

dtn
(
J n−α
+ f

)
(t), t ∈ R. (E − RL .22)

(
LDα

− f
)
(t) = (−1)n

dn

dtn
(
J n−α
− f

)
(t), t ∈ R. (E − RL .23)

For applications it is important to know the values of the Fourier, Laplace and
Mellin integral transforms of the fractional operators introduced in this section. Let
us present some of the most well-known results.

The Fourier transform of the fractional integral of a function f ∈ L1(a, b) is given
in the case 0 < Reα < 1 by the formula

{F (Jα
± f
)
(t)
}
(κ) = 1

(∓iκ)α
{F f (t)} (κ). (E − RL .24)

Note that if Reα ≥ 1, then formula (E − RL .24) cannot be understood in the usual
sense (see, e.g., [HAND1]).

A result similar to (E − RL .24) is valid under suitable conditions on the class of
functions and on the parameter of the fractional derivative (see, e.g. [SaKiMa93]):

{F (LDα
± f
)
(t)
}
(κ) = (∓iκ)α {F f (t)} (κ). (E − RL .25)

The Riemann–Liouville fractional integral can be interpreted as the Laplace con-
volution of a function and a truncated power monomial:

(
Jα
0+ f

)
(t) =

(
f ∗ τα−1

+
Γ (α)

)
(t), Reα > 0, t+ =

{
t, t ≥ 0,
0, t < 0.

(E − RL .26)

It follows that for any function f ∈ L1(0, b),∀b > 0, with sub-exponential growth
(i.e. | f (t)| ≤ Aep0t , p0 ≥ 0), theLaplace transformof the fractional integral satisfies
the following formula, valid for all Re p > p0

{L (Jα
0+ f

)
(t)
}
(p) = p−α {L f (t)} (p), Reα > 0. (E − RL .27)

Analogously, if f ∈ ACn[a, b], f (k)(0) = 0, k = 0, 1, . . . , n − 1, then

{L (RLDα
0+ f

)
(t)
}
(p) = pα {L f (t)} (p), Reα > 0. (E − RL .28)
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If not all derivatives vanish at 0 the formula (E − RL .28)becomesmore cumbersome

{L (RLDα
0+ f

)
(·)} (p) = pα {L f (·)} (p) −

n−1∑
k=0

lim
t→+0

dk

dt k
(
J n−α
0+ f

)
(t)pn−k−1.

(E − RL .29)
Similar results are known for the Mellin transform of the Riemann–Liouville

fractional derivative.

{M (
RLDα

0+ f
)
(·)} (s) = Γ (1 + α − s)

Γ (1 − s)
{M f (·)} (s − α) (E − RL .30)

+
n−1∑
k=0

Γ (1 + k − s)

Γ (1 − s)

[
t s−k−1

(
J n−α
0+ f

)
(t)
]+∞
t=0 ,

{M (
LDα

− f
)
(·)} (s) = Γ (s)

Γ (s − α)
{M f (·)} (s − α) (E − RL .31)

+
n−1∑
k=0

(−1)n−k Γ (s)

Γ (s − k)

[
t s−k−1 (J n−α

− f
)
(t)
]+∞
t=0 .

E.2 The Caputo Fractional Calculus

It should be noted that in Fractional Calculus, the Riemann–Liouville construction
of the fractional integral is common inmany approaches. This is not the case for frac-
tional derivatives. One of the most attractive and popular approaches is the so-called
Caputo fractional derivative (known also as the Caputo–Dzherbashian or Caputo–
Gerasimov fractional derivative). It is simply a regularization of the Riemann–
Liouville fractional derivative, namely, if n − 1 < α ≤ n, n ∈ N, and f ∈ ACn[a, b]
then the Caputo fractional derivatives are defined by the following formulas

(
CDα

a+ f
)
(t) =

(
RLDα

a+

[
f (τ ) −

n−1∑
k=0

f (k)(a)

k! (τ − a)k

])
(t), (E − C.1)

(
CDα

b− f
)
(t) =

(
RLDα

b−

[
f (τ ) −

n−1∑
k=0

f (k)(b)

k! (b − τ )k

])
(t). (E − C.2)

If α /∈ N0, then interchanging of the order of integration and differentiation gives
another form of the Caputo fractional derivative
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(
CDα

a+ f
)
(t) = 1

Γ (n − α)

t∫

a

f (n)(τ )dτ

(t − τ )α−n+1
=: (J n−α

a+ f (n)
)
(t), (E − C.3)

(
CDα

b− f
)
(t) = (−1)n

Γ (n − α)

b∫

t

f (n)(τ )dτ

(τ − t)α−n+1
=: (−1)n

(
J n−α
b− f (n)

)
(t). (E − C.4)

Note that relation (E − RL .14) gives the relation between theRiemann–Liouville
and the Caputo derivatives, provided that all components in this formula are well-
defined.

Similar to the Riemann–Liouville derivatives we have for all β > n − 1

(
CDα

a+(τ − a)β
)
(t) = Γ (β + 1)

Γ (β − α + 1)
(t − a)β−α, (E − C.5)

(
CDα

b−(b − τ )β
)
(t) = Γ (β + 1)

Γ (β − α + 1)
(b − t)β−α, (E − C.6)

but the Caputo derivative vanishes on the integer power monomials (which is not the
case for the Riemann–Liouville derivative), i.e. for all k = 0, 1, . . . , n − 1 we have

(
CDα

a+(τ − a)k
)
(t) = 0 and

(
CDα

b−(b − τ )β
)
(t) = 0. (E − C.7)

In particular, (
CDα

a+1
)
(t) = 0 and

(
CDα

b−1
)
(t) = 0. (E − C.8)

We also have to mention other formulas for the values of the Caputo fractional
derivatives

(
CDα

+e
λτ
)
(t) = λαeλt and

(
CDα

−e
−λτ
)
(t) = λαe−λt , (E − C.9)

(
CDα

a+Eα[λ(τ − a)α]) (t) = λEα[λ(t − a)α], (E − C.10)

(
CDα

−τα−1Eα[λτ−α]) (t) = 1

t
Eα,1−α[λt−α]. (E − C.11)

The Caputo fractional derivative is left inverse to the fractional integral

(
CDα

a+ Jα
a+ f

)
(t) = f (t), (E − C.12)

but not the right inverse, that is, for all f ∈ ACn[a, b] the following relation holds
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(
Jα
a+

CDα
a+ f

)
(t) = f (t) −

n−1∑
k=0

f (k)(a)

k! (t − a)k . (E − C.13)

The Laplace transform of the Caputo fractional derivative is similar to the Laplace
transform formula for integer order derivatives

{L (CDα
0+ f

)
(t)
}
(p) = pα {L f (t)} (p) −

n−1∑
k=0

f (k)(0)pα−k−1. (E − C.14)

The formulas forMellin transformare similar (existence is discussed, for example,
in [KiSrTr06]).

{M (
CDα

0+ f
)
(·)} (s) = Γ (1 + α − s)

Γ (1 − s)
{M f (·)} (s − α) (E − C.15)

+
n−1∑
k=0

Γ (1 + k + α − n − s)

Γ (1 − s)

[
t s+n−α−k−1 f (n−k−1)(t)

]+∞
t=0 ,

{M (
CDα

− f
)
(·)} (s) = Γ (s)

Γ (s − α)
{M f (·)} (s − α) (E − C.16)

+
n−1∑
k=0

(−1)n−k Γ (s)

Γ (s + n − α − k)

[
t s+n−α−k−1 f (n−k−1)(t)

]+∞
t=0 .

E.3 The Marchaud Fractional Calculus

Marchaud’s idea is simple and straightforward (for details, see [RogDub18]). He
started from the Riemann–Liouville fractional integral

Iα
a+ = 1

Γ (α)

x∫

a

f (τ )dτ

(x − τ )1−α
= 1

Γ (α)

x−a∫

0

tα−1 f (x − t)dt

and replaced the positive parameter α by a negative one −α. He then arrived at the
divergent integral

1

Γ (−α)

x−a∫

0

t−α−1 f (x − t)dt. (E − M.1)
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In order to regularize this definition, Marchaud made some transformations to the
Riemann–Liouville fractional integral.

For arbitrary values of α, Reα > 0, the definition of the Marchaud fractional
derivative reads [SaKiMa93, Sect. 5.6]

D
α
± f (x) = − 1

Γ (−α)Al(α)

∞∫

0

(Δl±t f )(x)

t1+α
dt, l > Reα > 0, (E − M.2)

where

Al(α) =
∞∑
k=0

(−1)k−1

(
l
k

)
kα, (Δl

±t f )(x) =
∞∑
k=0

(−1)k
(
l
k

)
f (x ∓ kt).

If 0 < α < 1, then the left- and right-hand sides are defined, respectively by (see,
e.g., [SaKiMa93, Sect. 5.4])

D
α
+ f (x) = α

Γ (1 − α)

∞∫

0

f (t) − f (x − t)

t1+α
dt, (E − M.3)

D
α
− f (x) = α

Γ (1 − α)

∞∫

0

f (t) − f (x + t)

t1+α
dt. (E − M.4)

Since the integral in (E − M.2) is in general divergent, the Marchaud derivative
can be defined via the limit of the truncated derivative (if it exists)

D
α
± f (x) = lim

ε→+0
D

α
±,ε f (x) = lim

ε→+0
− 1

Γ (−α)Al(α)

∞∫

ε

(Δl±t f )(x)

t1+α
dt. (E − M.4)

The definition of the Marchaud fractional derivative on a finite interval is more
tricky. Since the integral in (E − M.1) is divergent, this definition needs some trans-
formation. For a function defined on an interval (a, a1) it was proposed to extend it
by zero on (−∞, a] and to denote the corresponding fractional integral by f(α) and
the fractional derivative by f (α).

In order to find a proper transformation Marchaud started by regularizing the
fractional integral. In the following formula (valid, for example, for the exponential
function)

f(α)(x)

∞∫

0

tα−1e−tdt =
∞∫

0

tα−1 f (x − t)dt
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he replaced t by k j t ( j = 0, 1, . . . , p) and formed a linear combination of the
obtained equalities with unknown coefficients C j , j = 0, 1, . . . , p. This leads to
the following formula

f(α)(x)

∞∫

0

tα−1ψ(t)dt =
∞∫

0

tα−1ϕ(x, t)dt, (E − M.5)

where

ψ(t) =
p∑

j=0

C je
−k j t , ϕ(x, t) =

p∑
j=0

C j f (x − k j t). (E − M.6)

Then replacing α by −α we arrive at the following formal relation, which needs
some extra conditions for its validity

f (α)(x)

∞∫

0

t−α−1ψ(t)dt =
∞∫

0

t−α−1ϕ(x, t)dt. (E − M.7)

If the integral

γ(α) =
∞∫

0

t−α−1ψ(t)dt

is defined for some α = α0 then γα is defined and continuous for all α ≤ α0.
Denoting [α] by r , one can see that γ(α) is well-defined whenever ψ(t) has order

of infinitesimality equal to r + 1. It is required that

p∑
j=0

ksjC j = 0, s = 0, 1, . . . , r.

r -times integration by parts gives

γ(α) = Γ (−α)

p∑
j=0

kα
j C j (α �= r); (E − M.8)

γ(r) = lim
α→r

γ(α) = (−1)r+1

r !
p∑

j=0

krjC j log k j .

The simplest function ψ(t) which has order of infinitesimality equal to p is the
following one



450 Appendix E: Elements of Fractional Calculus

ψ(t) = e−t
(
1 − e−t

)p = e−t −
(
p
1

)
e−2t +

(
p
2

)
e−3t + . . . . (E − M.9)

In this case

ϕ(x, t) = f (x − t) −
(
p
1

)
f (x − 2t) +

(
p
2

)
f (x − 3t) + . . . . (E − M.10)

The simple properties of the Marchaud derivatives are similar to those of the
Liouville derivative, e.g. permutability with the operators of reflection, translation
and scaling (see [SaKiMa93, Sect. 2.5]), composition formulas with the singular
integral operator S and the relation between D

α− and D
α+:

(
D

α
− f
) = cosαπ

(
D

α
+ f
)− sinαπ

(
SDα

+ f
)
.

Among the characteristic properties we point out the vanishing of the Marchaud
derivative on the constant function:

D
α
±const ≡ 0.

For all α > 0 the Marchaud derivative Dα± is defined on all bounded functions f ∈
C[α](R1) satisfying the following condition:

| f ([α])(x + h) − f ([α])(x)| ≤ A(x)|h|λ.

The Marchaud derivative appeared due to a formal replacement of the positive
parameter α for negative one−α in the definition of the Liouville fractional integral.
The new object is not well-defined. In order to give a sense to the integral in (E −
M.2), one can use Hadamard’s finite part (p.f.) (see [SaKiMa93, Lemma 5.2]):

(
D

α
± f
)
(x) = p. f.

(
I (−α)
± f

)
(x).

An application of this approach gives, in particular, the following result (see
[SaKiMa93, Lemma 5.3]): let f ∈ Cm,λ

loc (R), 0 ≤ λ < 1, m = [α], α > 0, α �=
1, 2, . . .. Then, the following representation holds:

p. f.

∞∫

0

f (x − t)dt

t1+α
=

∞∫

0

f (x − t) −
m∑

k=0

(−1)k f (k)(x)
k!

t1+α
dt.

Finally we note that the Marchaud derivative is a suitable object for the represen-
tation of fractional powers of operators.
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E.4 The Erdélyi–Kober Fractional Calculus

In this section we present the main definitions of the Erdélyi–Kober fractional inte-
grals and derivatives (more details can be found in [SaKiMa93, Kir94]).

Let (a, b) be a finite or infinite interval of the real positive semi-axis
(0 ≤ a < b ≤ +∞). We fix parameters α,σ, η such that Reα > 0,σ > 0, η ∈ C.
Left- and right-sided Erdélyi–Kober fractional integrals depending on these param-
eters are defined as follows

(
Iα
a+;σ,η f

)
(t) := σt−σ(α+η)

Γ (α)

t∫

a

τση+σ−1 f (τ )dτ

(tσ − τσ)1−α
, (E − EK .1)

(
Iα
b−;σ,η f

)
(t) := σtση

Γ (α)

b∫

t

τσ(1−α−η)−1 f (τ )dτ

(tσ − τσ)1−α
. (E − EK .2)

There exist relationships between Erdélyi–Kober and Riemann–Liouville frac-
tional integrals

(
Iα
a+;σ,η f

)
(t) = (NσM−α−η J

α
aσ+MηN1/σ f

)
(t), (E − EK .3)

(
Iα
b−;σ,η f

)
(t) = (NσMη J

α
bσ−M−α−ηN1/σ f

)
(t), (E − EK .4)

where

(Mcϕ) (t) = t cϕ(t), t ∈ R, c ∈ C,

(Ncϕ) (t) = ϕ(t c), t ∈ R, c ∈ R \ {0}.

Thus, under suitable conditions on function one can prove properties similar to
those for the Riemann–Liouville integral, namely, acting properties, the semi-group
property, the Leibniz rule, etc.

The corresponding Erdélyi–Kober fractional derivatives are defined by the fol-
lowing formulas (Reα ≥ 0, α �= 0, n − 1 < Reα ≤ n, σ > 0, η ∈ C)

(
Dα

a+;σ,η f
)
(t) := t−ση

(
1

σtσ−1

d

dt

)n

tσ(n+η)
(
I n−α
a+;σ,η+α f

)
(t), (E − EK .5)

(
Dα

b−;σ,η f
)
(t) := tσ(η+α)

(
− 1

σtσ−1

d

dt

)n

tσ(n−η−α)
(
I n−α
b−;σ,η+α−n f

)
(t).

(E − EK .6)
The fractional differential operators (E − EK .5), (E − EK .6) are left inverses for
the fractional integral operators (E − EK .3), (E − EK .4), respectively.
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In applications, the Mellin transform of the Erdélyi–Kober fractional integrals
plays an important role. The corresponding results are the following. Let Reα >

0, σ > 0, η ∈ C and f ∈ L p(R
+).

If Re (η − s/σ) > −1, then

{M (
Iα
0+;σ,η f (t)

)}
(s) = Γ (1 + η − s/σ)

Γ (1 + η + α − s/σ)
{M f } (s). (E − EK .7)

If Re (η + s/σ) > 0, then

{M (
Iα
−;σ,η f (t)

)}
(s) = Γ (η + s/σ)

Γ (η + α + s/σ)
{M f } (s). (E − EK .8)

E.5 The Hadamard Fractional Calculus

The Hadamard fractional integrals are defined as follows

(
HJ α

a+ f
)
(t) := 1

Γ (α)

t∫

a

(
log

t

τ

)α−1 f (τ )dτ

τ
, a < t < b, (E − H.1)

(
HJ α

b− f
)
(t) := 1

Γ (α)

b∫

t

(
log

τ

t

)α−1 f (τ )dτ

τ
, a < t < b. (E − H.2)

Let n − 1 < α ≤ n, then the Hadamard fractional derivatives are defined by the
following formulas

(
HDα

a+ f
)
(t) :=

(
t
dt

dt

)n (
HJ n−α

a+ f
)
(t), (E − H.3)

(
HDα

b− f
)
(t) :=

(
−t

dt

dt

)n (
HJ n−α

b− f
)
(t). (E − H.4)

These fractional integrals and derivatives are suitable to apply to logarithmic type
functions, e.g. for all α,β, Re β > Reα > 0

(
HJ α

a+
(
log

τ

a

)β−1
)

(t) = Γ (β)

Γ (β + α)

(
log

t

a

)β+α−1

,

(
HDα

a+
(
log

τ

a

)β−1
)

(t) = Γ (β)

Γ (β − α)

(
log

t

a

)β−α−1

.



Appendix E: Elements of Fractional Calculus 453

In particular, the Hadamard fractional derivatives of the constant are not equal to
zero. Indeed, for all α, 0 < Reα < 1

(
HDα

a+1
)
(t) =

(
log t

a

)−α

Γ (1 − α)
,
(
HDα

b−1
)
(t) =

(
log b

t

)−α

Γ (1 − α)
, (E − H.5)

but on the other hand, for all j = 1, 2, . . . , n = [Reα] + 1

(
HDα

a+
(
log

τ

a

)α− j
)

(t) = 0. (E − H.6)

More general forms of fractional integrals and derivatives (called Hadamard-type
fractional integrals and derivatives) were introduced in [Kil01] and studied in detail
in [BuKiTr02a].

(J α
a+,μ f

)
(t) := 1

Γ (α)

t∫

a

(τ

t

)μ
(
log

t

τ

)α−1 f (τ )dτ

τ
, a < t < b, (E − H.7)

(J α
b− f

)
(t) := 1

Γ (α)

b∫

t

(
t

τ

)μ (
log

τ

t

)α−1 f (τ )dτ

τ
, a < t < b. (E − H.8)

(Dα
a+,μ f

)
(t) = t−μδntμ (J n−α

a+, μ f )(t), (E − H.9)

(Dα
b−,μ f

)
(t) = t−μ(−δ)ntμ (J n−α

b−, μ f )(t), (E − H.10)

δ = t
d

dt
, (α > 0; n = [α] + 1, μ ∈ R).

Whenμ = 0, theHadamard-type constructions coincidewith the standardHadamard
integrals and derivatives.

The properties of the operators J α
a+,μ and Dα

a+,μ with a > 0 were investigated
in the space X p

c (a, b) (c ∈ R, 1 ≤ p ≤ ∞) of Lebesgue measurable functions h,
defined on a finite interval [a, b] of the real axis R, for which ‖h‖X p

c
< ∞, where

‖h‖X p
c

=
(∫ b

a
|t c h(t)|p dt

t

)1/p

(c ∈ R, 1 ≤ p < ∞),

‖h‖X∞
c

= esssupa≤t≤b[t c |h(t)|] (c ∈ R).

If α > 0, 1 ≤ p ≤ ∞, 0 < a < b < ∞ and μ ≥ c, then the following formula
holds for functions g ∈ X p

c (a, b):
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(Dα
a+,μJ α

a+,μ g)(t) = g(t),

i.e. the Hadamard-type fractional derivative is left-inverse to the Hadamard-type
fractional integral. The opposite is not true, namely, if α > 0, n = −[−α], μ ∈ R,
0 < a < b < ∞, and (J n−α

a+,μg)(t) is the Hadamard-type fractional integral, then for
all g ∈ X1

μ(a, b) and (J n−α
a+,μg)(t) ∈ ACn

δ;μ[a, b], the following holds

(J α
a+,μDα

a+,μ g)(t) = g(t) − t−μ
n∑

k=1

gn−k
n−α(a)

Γ (α − k + 1)

(
ln

t

a

)α−k

, (E − H.11)

where

gkn−α(t) = δk tμ(J n−α
a+,μ g)(t), δ = t

d

dt
(k = 0, . . . , n − 1).

Note that the Hadamard-type fractional derivative of order α, 0 < α < 1, can be
represented in the Marchaud form (see [KilTit07])

(
Dα

0+,μ f
)
(t) = α

Γ (1 − α)

+∞∫

0

e−μτ f (t) − f (te−τ )

τ 1+α
dτ + μα f (t), (E − H.12)

which coincides with
(Dα

a+,μ f
)
(t) for all f ∈ X p

c (R+).

E.6 The Grünwald–Letnikov Fractional Calculus

Let us briefly describe some results which preceded the work of Letnikov. Although
the idea of fractional derivatives goes back to the end of the 19th century, the real
results in the area were made by Liouville [Lio32a, Lio32b].

Liouville applied his construction to functions represented in the form of the
following (convergent!) series

y(x) =
∞∑
k=1

Ake
mkx . (E − GL .1)

For such functions he used Leibniz’s idea of an arbitrary order differentiation of the
exponential function:

dp y

dx p
:=

∞∑
k=1

Akm
p
k e

mkx . (E − GL .2)

Liouville considered definition (E − GL .2) as the only possible, stressing (see
[LetChe11, p. 14]): “...it is impossible to get an exact and complete understanding of
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the nature of the arbitrary order derivative without taken certain series representation
of the function”.

Letnikov noted that Liouville’s construction has an essential drawback. It fol-
lows from the definition (E − GL .2) that it can be used only for functions whose
derivatives (of all positive integer orders) vanish at infinity. Liouville himself met
this first difficulty when trying to apply his definition to power functions with a pos-
itive exponent xm,m > 0, which do not satisfy the above condition. To overcome
this difficulty he started with the function y(x) = 1

xm , m > 0. It follows from the
definition of the Γ -function that the following holds

1

xm
= 1

Γ (m)

∞∫

0

e−zx zm−1dz.

The right-hand side of this formula can be considered as an expansion of the type
(E − GL .1), namely,

∑
Ane−nx with An being sufficiently small as x → ∞. Thus,

formula (E − GL .2) applied in this case leads to the following result

dp 1
xm

dx p
= 1

Γ (m)

∞∫

0

e−zx (−z)pzm−1dz (E − GL .3)

= (−1)p

Γ (m)xm+p

∞∫

0

e−t t p+m−1dz = (−1)pΓ (m + p)

Γ (m)xm+p
,

which coincides with the celebrated Euler formula for the arbitrary order derivative
of the power function.

Note that Liouville considered only the case when m > 0 and m + p > 0.4 For
the remaining cases he used the notion of so-called additional functions in order to
correct the above definition. These are the functions whose derivative of order (−p)
is equal to zero. Liouville gave a proof that additional functions should have the form

A0 + A1x + . . . + Anx
n

for a certain finite power n and arbitrary constant coefficients A j .5

During the next 30 years several attempts were made to correct Liouville’s con-
struction (see [RogDub18] and the references therein). It was only in 1867–1868
that A.K. Grünwald [Gru67] and A.V. Letnikov [Let68a] proposed a truly general
definition of the fractional derivative. Both constructions (which differ only in a
few details) are based on the following formula for representing the derivative of an
arbitrary positive integer order via finite differences:

4This predates the Legendre–Gauss definition of the Γ function of a complex argument.
5This proof was not considered satisfactory by many mathematicians, even in Liouville’s time.
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dp f (x)

dx p
= lim

h→+0

f (x) −
(
p
1

)
f (x − h) + . . . + (−1)n

(
p
n

)
f (x − nh)

h p
,

(E − GL .4)
where n is an arbitrary positive number, n ≥ p.

Letnikov also considered an expression

f −p)(x) := lim
h→0

h p

[
f (x) +

(
p
1

)
f (x − h) + . . . +

(
p
n

)
f (x − nh)

]
.

If p is a positive integer in the last formula, then f −p)(x) is vanishing whenever n is
finite. Hence it is interesting to consider the case when n tends to infinity as h → 0.
Assuming h = (x − x0)/n Letnikov defined the following object6

[
D−p f (x)

]x
x0

:= lim
h→0

f −p)(x). (E − GL .5)

It was shown that if p is a positive integer, then the following relation holds whenever
the integral in the right-hand side exists

[
D−p f (x)

]x
x0

= lim
h→0

n∑
r=0

h p

(
p
r

)
f (x − rh) = 1

(p − 1)!
x∫

x0

(x − τ )p−1 f (τ )dτ .

(E − GL .6)
It follows from (E − GL .6) that if this formula is valid for a positive integer p, then
it is valid for p + 1 too. Moreover, the above introduced object

[
D−p f (x)

]x
x0
is a

function whose p-th derivative coincides with f (x):

dp

dx p

[
D−p f (x)

]x
x0

= f (x),

and
d j

dx j

[
D−p f (x)

]x
x0 |x=x0

= 0, ∀ j = 0, 1, . . . , p − 1.

The above definition and its properties constitute the basis for further generaliza-
tions. Thus, by using the properties of binomial coefficients, Letnikov proved that
for any function f continuous on [x0, x] there exist the following limits

lim
n→∞

n∑
r=0

(−1)r
(
p
r

)
f (x − rh)

h p
, lim

n→∞

n∑
r=0

h p

(
p
r

)
f (x − rh),

6Called by him a derivative of negative order in finite limits.
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where h = (x − x0)/n and p ∈ C, Re p > 0. The values of these limits, denoted by
him [Dp f (x)]xx0 and

[
D−p f (x)

]x
x0
, respectively, are formally equal in this case to

[
Dp f (x)

]x
x0

= 1

Γ (−p)

x∫

x0

f (τ )dτ

(x − τ )p+1
, (E − GL .7)

[
D−p f (x)

]x
x0

= 1

Γ (p)

x∫

x0

f (τ )dτ

(x − τ )1−p
. (E − GL .8)

Formula (E − GL .7) gives the derivative of arbitrary order p ∈ C, Re p > 0, and
formula (E − GL .8) gives the integral of arbitrary order p ∈ C, Re p > 0. As has
already beenmentioned, the integral in (E − GL .8) exists whenever f is continuous,
but this is not the case for the integral in (E − GL .7). To overcome this difficulty,
Letnikov transformed the right-hand side of (E-GL.7) to the form

[
Dp f (x)

]x
x0

=
m∑

k=0

f (k)(x0)(x − x0)−p+k

Γ (−p + k + 1)
+ 1

Γ (−p + m + 1)

x∫

x0

f (m+1)(τ )dτ

(x − τ )p−m
.

(E − GL .9)
The assumption of existence and continuity of all derivatives up to order m + 1 is
sufficient for this representation. It is suitable here to take m = [Re p].

Integration by parts in (E − GL .8) leads to an analogous formula for[
D−p f (x)

]x
x0
, which is valid under the same conditions for any integer positive

m:

[
D−p f (x)

]x
x0

=
m∑

k=0

f (k)(x0)(x − x0)p+k

Γ (p + k + 1)
+ 1

Γ (p + m + 1)

x∫

x0

f (m+1)(τ )dτ

(x − τ )p−1+m
.

(E − GL .10)
We can also consider the special case when x0 → +∞. It follows from (E −

GL .8) that

[
D−p f (x)

]x
+∞ = (−1)p

Γ (p)

+∞∫

0

τ p−1 f (x + τ )dτ , (E − GL .11)

and from (E − GL .9),

[
Dp f (x)

]x
+∞ = (−1)m+1−p

Γ (−p + m + 1)

+∞∫

0

τm−p f (m+1)(x + τ )dτ . (E − GL .12)
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Letnikov noted that the integrals in the right-hand side of (E − GL .12) and (E −
GL .11) converge in particular if lim

x0→+∞ f (k)(x0) = 0, k = 0, . . . ,m. This is exactly

the class of functions considered by Liouville and formulas
(E − GL .12) and (E − GL .11) coincidewith the corresponding formulas presented
in [Lio32a, Lio32b]. Further developments of the Grünwald–Letnikov construction
are described in [LetChe11] (see also [RogDub18]).

E.7 The Riesz Fractional Calculus

The fractional calculus in multi-dimensional spaces is due to M. Riesz (see [Rie49],
cf. [SaKiMa93]). The corresponding fractional integral and derivative are defined by
using the multi-dimensional Fourier transform. Formally, such objects are given by
the following formulas

(−Δ)−α/2 f = F−1|x|−αF f =
{
Iα f, Reα > 0,
D−α f, Reα < 0,

(E − R.1)

where x = (x1, x2, . . . , xm) ∈ R
m , |x| =

√
x21 + x22 + . . . + x2m .

The operators Iα,D−α, defined in (E − R.1), are called the Riesz fractional inte-
gral and the Riesz fractional derivative, respectively.

The Riesz fractional integral Iα, Reα > 0, is known to be represented in the form
of a so-called Riesz potential

(Iα f ) (x) =
∫

Rm

kα(x − t) f (t)dt, (E − R.2)

where the Riesz kernel kα is given by the following formulas:

kα(x) = 1

γm(α)

{ |x|α−m, α − m �= 0, 2, 4, . . . ,
|x|α−m log 1

|x| , α − m = 0, 2, 4, . . . , (E − R.3)

with the constant γm(α) of the form

γm(α) =
{
2απ

m
2

Γ ( α
2 )

Γ ( m−α
2 )

, α − m �= 0, 2, 4, . . . ,

(−1)
m−α
2 2α−1π

m
2 Γ
(
1 + α−m

2

)
Γ
(

α
2

)
, α − m = 0, 2, 4, . . . .

(E − R.4)
In other words, for all α, Reα > 0, α − m �= 0, 2, 4, . . . the Riesz potential takes

the form

(Iα f ) (x) = 1

γm(α)

∫

Rm

f (t)dt
|x − t|m−α

. (E − R.5)
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Note that if 0 < α < m and 1 < p < m
α
, then the Riesz potential (Iα f ) (x) is well

defined in the space L p(R
m). Moreover, the operator Iα is bounded from L p(R

m)

into Lq(R
m) if, and only if,

0 < α < m, 1 < p <
m

α
, and

1

q
= 1

p
− α

m
.

Other properties are related to composition of the Riesz potential and certain
operators, in particular, the Fourier transform

(FIα f ) (x) = 1

|x|α (F f ) (x), (E − R.6)

and the Laplace operator

(ΔIα f ) (x) = − (Iα−2 f
)
(x), Reα > 2. (E − R.7)

A detailed discussion of these and some other properties of the Riesz potential can
be found in [SaKiMa93, Sect. 25, 26].

The Riesz fractional derivative is realized in the form of the hypersingular integral
and is defined by the following relation

(Dα f ) (x) := 1

dm(l,α)

∫
αRm

(
Δl

t f
)
(x)

|t|α dt, (l > α), (E − R.8)

where
(
Δl

t f
)
(x) :=

l∑
k=0

(−1)k
(
l
k

)
f (x − kt), (E − R.9)

and the constant dm(l,α) is defined by the following formula

dm(l,α) := 2−απ1+m/2

Γ
(
1 + α

2

)
Γ
(
m+α
2

) Al(α)

sin απ
2

, (E − R.10)

Al(α) =
l∑

k=0

(−1)k−1

(
l
k

)
kα.

Among the properties of this form (Dα f ) of the Riesz fractional derivative we point
out its Fourier transform

(FDα f ) (x) = |x|α (F f ) (x), (E − R.11)

and the composition with the Riesz fractional integral
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(DαIα f ) (x) = f (x). (E − R.12)

The corresponding conditions under which formulas (E − R.11) and (E − R.12)
hold true are discussed in detail in [SaKiMa93, Sect. 26]. An extended study of the
properties of the hypersingular operators is presented in [Sam02].

E.8 Historical and Bibliographical Notes

Fractional calculus is the field of mathematical analysis which deals with the inves-
tigation and application of integrals and derivatives of arbitrary order. The term
fractional is a misnomer, but it has been retained following the prevailing use.

The fractional calculus may be considered an old and yet novel topic. It is an
old topic since, starting from some speculations of G.W. Leibniz (1695, 1697) and
L. Euler (1730), it has been developed up to the present day. In fact the idea of
generalizing the notion of derivative to non-integer order, in particular to the order
1/2, is contained in the correspondence of Leibniz with Bernoulli, L’Hôpital and
Wallis. Euler took the first step by observing that the result of the evaluation of the
derivative of the power function has a meaning for non-integer order thanks to his
Gamma function.

A list of mathematicians who have provided important contributions up to the
middle of the 20th century includes P.S. Laplace (1812), J.B.J. Fourier (1822),
N.H. Abel (1823–1826), J. Liouville (1832–1837), B. Riemann (1847), H. Holm-
gren (1865–67), A.K. Grünwald (1867–1872), A.V. Letnikov (1868–1872), N.Ya.
Sonine (1872–1884), H. Laurent (1884), P.A. Nekrassov (1888), A. Krug (1890), J.
Hadamard (1892), O. Heaviside (1892–1912), S. Pincherle (1902), G.H. Hardy and
J.E. Littlewood (1917–1928), H. Weyl (1917), P. Lévy (1923), A. Marchaud (1927),
H.T. Davis (1924–1936), A. Zygmund (1935–1945), E.R. Love (1938–1996), A.
Erdélyi (1939–1965), H. Kober (1940), D.V. Widder (1941), M. Riesz (1949), and
W. Feller (1952).

In [LetChe11] A.V. Letnikov’s main results on fractional calculus are presented,
including his dissertations and a long discussion between A.V. Letnikov and N.Ya.
Sonine on the foundations of fractional calculus. The modern development of the
ideas by Letnikov is given and their applications to underground dynamics and pop-
ulation dynamics are presented.

However, it may be considered a novel topic as well, since it has only been the
subject of specialized conferences and treatises in the last 30 years. The merit is
due to B. Ross for organizing the First Conference on Fractional Calculus and its
Applications at theUniversity ofNewHaven in June 1974 and editing the proceedings
[Ros75] (see also [Ros77]). For the first monograph the merit is ascribed to K.B.
Oldham and J. Spanier [OldSpa74], who, after a joint collaboration starting in 1968,
published a book devoted to fractional calculus in 1974.

To our knowledge, the current list of texts in book form with a title explicitly
devoted to fractional calculus (and its applications) includes around ten titles, namely
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Oldham and Spanier (1974) [OldSpa74], McBride (1979) [McB79], Samko, Kilbas
and Marichev (1987–1993) [SaKiMa93], Nishimoto(1984–1996) [Nis84], Miller
and Ross (1993) [MilRos93], Kiryakova (1994) [Kir94], Rubin (1996) [Rub96],
Podlubny (1999) [Pod99], West, Bologna and Grigolini (2003) [WeBoGr03], Kil-
bas, Strivastava and Trujillo (2006) [KiSrTr06], Magin (2006) [Mag06], Mainardi
(2010) [Mai10], Diethelm (2010) [Die10], Uchaikin (2008-2013) [Uch08, Uch13a,
Uch13b], Atanackovic, Pilipovic, Stankovic and Zorica [Ata-et-al14], Baleanu,
Diethelm, Scalas and Trujillo (2017) [Bal-et-al17], Evangelista and Lenzi (2018)
[EvaLen18],Hermann [Her18],Mathai andHaubold [MatHau17, MatHau18]Sandev
and Tomovski (2019) [SanTom19] Capelas (2019) [Cap19].

Furthermore, we draw the reader’s attention to the treatises by Davis (1936)
[Dav36], Erdélyi (1953–1954) [ErdBat-1, ErdBat-2, ErdBat-3], Gel’fand and Shilov
(1959–1964) [GelShi64], Djrbashian (or Dzherbashian) [Dzh66], Caputo [Cap69],
Babenko [Bab86], Gorenflo and Vessella [GorVes91], Zaslavsky (2005) [Zas05],
which contain a detailed analysis of some mathematical aspects and/or physical
applications of fractional calculus, without referring to fractional calculus in the
title. See also [Levy23c, BuKiTr03, Sne75].

For more details on the historical development of the fractional calculus we refer
the interested reader to Ross’ bibliography in [OldSpa74] and to the historical notes
generally available in the above quoted texts. In particular, we mention the two
posters edited by Machado, Kiryakova and Mainardi on the old and recent (up to
2010) history of Fractional Calculus that are available on Research Gate and at the
website of Fractional Calculus and Applied Analysis (FCAA) http://www.math.bas.
bg/∼fcaa/. The latter includes free access to full length papers from 2004–2010.

In recent years considerable interest in fractional calculus has been stimulated
by the applications that it finds in different fields of science, including numerical
analysis, economics andfinance, engineering, physics, biology, etc., aswell as several
contributions to the fractional theory [Hil19, Koc19a, KocLuc19] and its applications
[Die19, GorMai19, Tar19] in the recent series, edited by Machado (published by
De Gruyter), of 8 Handbooks on Fractional Calculus with applications, [HAND1,
HAND2, HAND3, HAND4, HAND5, HAND6, HAND7, HAND8]. See also the
special issue of Mathematics (MDPI) edited by Mainardi [Mai-spec18].

For economics and finance we quote the collection of articles on the topic of
Fractional Differencing and Long Memory Processes, edited by Baillie and King
(1996), which appeared as a special issue in the Journal of Econometrics [BaiKin96].
For engineering and physics we mention the book edited by Carpinteri and Mainardi
(1997) [CarMai97], entitledFractals andFractionalCalculus inContinuumMechan-
ics, which contains lecture notes of a CISM Course devoted to some applications
of related techniques in mechanics, and the book edited by Hilfer (2000) [Hil00],
entitled Applications of Fractional Calculus in Physics, which provides an intro-
duction to fractional calculus for physicists, and collects review articles written by
some of the leading experts. In the above books we recommend the introductory
surveys on fractional calculus by Gorenflo and Mainardi [GorMai97] and by Butzer
and Westphal [ButWes00], respectively.

http://www.math.bas.bg/
http://www.math.bas.bg/
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In addition to somebooks containing proceedings of international conferences and
workshops on related topics, see e.g. [McBRoa85, Nis90, RuDiKi94, RuDiKi96],
we mention regular journals devoted to fractional calculus, i.e. Journal of Fractional
Calculus (Descartes Press, Tokyo), started in 1992, with Editor-in-Chief Prof. Nishi-
moto and Fractional Calculus and Applied Analysis from 1998, with Editor-in-Chief
Prof. Kiryakova (De Gruyter, Berlin). For information on this journal, please visit
the WEB site

https://www.degruyter.com/view/j/fca
Furthermore, websites devoted to fractional calculus have also appeared, of whichwe
call attention to www.fracalmo.org, whose name comes from FRActional CALculus
MOdelling, and the related links.

https://www.degruyter.com/view/j/fca
www.fracalmo.org


Appendix F
Higher Transcendental Functions

F.1 Hypergeometric Functions

F.1.1 Classical Gauss Hypergeometric Functions

The hypergeometric function F(a; b; c; z) = F

(
a, b
c

; z
)

= 2F1(a; b; c; z) is

defined by the Gauss series

F(a; b; c; z) =
∞∑
n=0

(a)n(b)n
(c)nn! zn = 1 + ab

c
z + a(a + 1)b(b + 1)

c(c + 1)2! z2 + . . .

= Γ (c)

Γ (a)Γ (b)

∞∑
n=0

Γ (a + n)Γ (b + n)

Γ (c + n)n! zn
(F.1.1)

on the disk |z| < 1, and by analytic continuation elsewhere. In general, F(a; b; c; z)
does not exist when c = 0,−1,−2, . . .. The branch obtained by introducing a cut
from 1 to +∞ on the real z-axis and by fixing the value F(0) = 1 is the principal
branch (or principal value) of F(a; b; c; z).

For all values of c another type of classical hypergeometric function is defined as

F(a; b; c; z) =
∞∑
n=0

(a)n(b)n
Γ (c + n)n! z

n = 1

Γ (c)
F(a; b; c; z), |z| < 1, (F.1.2)

again with analytic continuation for other values of z, and with the principal branch
defined in a similar way. In (F.1.2) it is supposed by definition that if for an index
n we have c + n as a non-positive integer, then the corresponding term in the series
is identically equal to zero (e.g. if c = −1, then we omit the term with n = 0 and
n = 1). This agreement is natural, because 1/Γ (−m) = 0 for m = 0,−1,−2, . . ..

On the circle |z| = 1, the Gauss series:
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(a) converges absolutely when Re (c − a − b) > 0;
(b) converges conditionally when−1 < Re (c − a − b) ≤ 0, and z = 1 is excluded;
(c) diverges when Re(c − a − b) ≤ −1.

The principal branch of F(a; b; c; z0) is an entire function of parameters a, b, and
c for any fixed values z0, |z0| < 1 (see [ErdBat-1, p. 68]). The same is true of other
branches, since the series in (F.1.2) converges for a fixed z0, |z0| < 1, in any bounded
domain of the complex a, b, c-space. As a multi-valued function of z, F(a; b; c; z)
is analytic everywhere except for possible branch points at z = 1, and +∞. The
same properties hold for F(a; b; c; z), except that as a function of c, F(a; b; c; z)
in general has poles at c = 0,−1,−2, . . .. Because of the analytic properties with
respect to a, b, and c, it is usually legitimate to take limits in formulas involving
functions that are undefined for certain values of the parameters.

For special values of parameters the hypergeometric function coincides with ele-
mentary functions

(a) F(1; 1; 2; z) = − ln(1 − z)

z
,

(b) F(1/2; 1; 3/2; z2) = 1

2z
ln

(
1 + z

1 − z

)
,

(c) F(1/2; 1; 3/2;−z2) = arctan z

z
,

(d) F(1/2; 1/2; 3/2; z2) = arcsin z

z
,

(e) F(1/2; 1/2; 3/2;−z2) =
ln
(
z + √

1 + z2
)

z
,

( f ) F(a; b; b; z) = (1 − z)−a,

(g) F(a; 1/2 + a; 1/2; z2) = 1

2

(
(1 + z)−2a + (1 − z)−2a)

(see also the additional formulas below in Sect. F.5, cf. [NIST]).
We have the following asymptotic formulas for the hypergeometric function near

the branch point z = 1:

(i) lim
z→1−0

− F(a; b; a + b; z)
ln (1 − z)

= Γ (a + b)

Γ (a)Γ (b)
;

(i i) lim
z→1−0

(1 − z)a+b−c

(
F(a; b; c; z) − Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)

)
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= Γ (c)Γ (a + b − c)

Γ (a)Γ (b)
, where Re (c − a − b) = 0, c �= a + b;

(i i i) lim
z→1−0

(1 − z)a+b−cF(a; b; c; z)

= Γ (c)Γ (a + b − c)

Γ (a)Γ (b)
, where Re (c − a − b) < 0.

All these formulas can be immediately verified, they follow from the definition
(F.1.1).

F.1.2 Euler Integral Representation. Mellin–Barnes Integral
Representation

If Re c > Re b > 0, the hypergeometric function satisfies the Euler integral repre-
sentation (cf., [ErdBat-1, p. 59])

F(a; b; c; z) = Γ (c)

Γ (b)Γ (c − b)

1∫

0

tb−1(1 − t)c−b−1

(1 − zt)a
dt. (F.1.3)

Here the right-hand side is a single-valued analytic function of z in the domain
|arg (1 − z)| < π. Therefore, this formula determines an analytic continuation of the
hypergeometric function F(a; b; c; z) into this domain too.

In order to prove (F.1.3) in the unit disk |z| < 1 it is sufficient to expand the
function (1 − zt)−a into a binomial series and calculate the series term-by-term by
using standard formulas for the Beta function.

The Euler integral representation can be rewritten as

F(a; b; c; z) = iΓ (c)eiπ(b−c)

Γ (b)Γ (c − b)2 sin π(c − b)

(1+)∫

0

tb−1(1 − t)c−b−1

(1 − zt)a
dt,

Re b > 0, |arg (1 − z)| < π, c − b �= 1, 2, . . . ;

F(a; b; c; z) = −iΓ (c)e−iπb

Γ (b)Γ (c − b)2 sin πb

1∫

(0+)

tb−1(1 − t)c−b−1

(1 − zt)a
dt,

Re c > Re b > 0, |arg (−z)| < π, b �= 1, 2, . . . ;

F(a; b; c; z) = −iΓ (c)e−iπc

Γ (b)Γ (c − b)4 sin πb sin π(c − b)

∫

(1+,0+,1−,0−)

tb−1(1 − t)c−b−1

(1 − zt)a
dt,
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|arg (−z)| < π; b, 1 − c, b − c �= 1, 2, . . . .

In each case we suppose that the path of integration starts and ends at corresponding
points on the Riemann surface of the function

tb−1(1 − t)c−b−1(1 − zt)−a

with real t , 0 ≤ t ≤ 1, where tb, (1 − t)c−b mean the principal branches of these
functions and (1 − zt)−a is defined in such a way that (1 − zt)−a → 1 whenever
z → 0.

The second type of integral representation is the so-called Mellin–Barnes repre-
sentation (see Appendix D)

Γ (a)Γ (b)

Γ (c)
F(a; b; c; z) = 1

2πi

+i∞∫

−i∞

Γ (a + s)Γ (b + s)Γ (−s)

Γ (c + s)
(−z)sds, (F.1.4)

where |arg (−z)| < π and the integration contour separates the poles of the functions
Γ (a + s) and Γ (b + s) from those of the function Γ (−s), and (−z)s assumes its
principal values.

F.1.3 Basic Properties of Hypergeometric Functions

In the domain of definition the hypergeometric function satisfies some differential
relations

d
dz F(a; b; c; z) = ab

c F(a + 1; b + 1; c + 1; z),
dn

dzn F(a; b; c; z) = (a)n(b)n
(c)n

F(a + n; b + n; c + n; z),

dn

dzn

(
zc−1

(1−z)c−a−b F(a; b; c; z)
)

= (c−n)n zc−n−1

(1−z)c+n−a−b F(a − n; b − n; c − n; z),
(
z d
dz z
)n (

za−1F(a; b; c; z)) = (a)nza+n−1F(a + n; b; c; z).

(F.1.5)

Here the operator
(
z d
dz z
)n
is defined by the operator identity

(
z d
dz z
)n

(·) = zn dn

dzn z
n(·),

n = 1, 2, . . ..
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F.1.4 The Hypergeometric Differential Equation

If the second-order homogeneous differential equation has at most three singular
points, we can assume that these are the points 0, 1,∞. If all these points are regular
(see [Bol90]), then the equation can be reduced to the form

z(z − 1)
d2w

dz2
+ [c − (a + b + 1)z]

dw

dz
− abw = 0. (F.1.6)

This is the hypergeometric differential equation. It has regular singularities at
z = 0, 1,∞, with corresponding exponent pairs {0, 1 − c}, {0, c − a − b}, {a, b},
respectively.

Here we use the standard terminology for the complex ordinary differential equa-
tion (see, e.g., [NIST, Sect. 2.7(i)])

d2w

dz2
+ f (z)

dw

dz
+ g(z)w = 0.

A point z0 is an ordinary point for this equation if the coefficients f and g are
analytic in a neighborhood of z0. In this case all solutions of the equation are analytic
in a neighborhood of z0. All other points z0 are called singular points (or simply,
singularities) for the differential equation. If both (z − z0) f (z) and (z − z0)2 g(z)
are analytic in a neighborhood of z0, then this point is a regular singularity. All other
singularities are called irregular. An irregular singularity z0 is of rank l − 1 if l is the
least integer such that (z − z0)l f (z) and (z − z0)2lg(z) are analytic in a neighborhood
of z0. The most common type of irregular singularity for special functions has rank 1
and is located at infinity. In this case the coefficients f , g have series representations

f (z) =
∞∑
s=0

fs
zs

, g(z) =
∞∑
s=0

gs

zs
,

where at least one of f0, g0, g1 is non-zero.
Regular singularities are characterized by a pair of exponents (or indices) that are

roots α1,α2 of the indicial equation

Q(α) ≡ α(α − 1) + f0α + g0 = 0,

where f0 = limz→z0(z − z0) f (z) and g0 = limz→z0(z − z0)2 g(z). Provided that
(α1 − α2) /∈ Z the differential equation has two linear independent solutions

w j = (z − z0)
α j

∞∑
s=0

as, j (z − z0)
s, j = 1, 2.
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In the case of the hypergeometric differential equation, when none of c, c − a −
b, a − b is an integer, we have the pair f1(z), f2(z) of fundamental solutions. They
are also numerically satisfactory ([NIST, Sect. 2.7(iv)]) in a neighborhood of the
corresponding singularity.

F.1.5 Kummer’s and Tricomi’s Confluent Hypergeometric
Functions

Kummer’s differential equation

z
d2w

dz2
+ (c − z)

dw

dz
− aw = 0 (F.1.7)

has a regular singularity at the origin with indices 0 and 1 − b, and an irregular
singularity at infinity of rank one. It can be regarded as the limiting form of the
hypergeometric differential equation (F.1.6) that is obtained on replacing z by z/b,
letting b → ∞, and subsequently replacing the symbol c by b. In effect, the regular
singularities of the hypergeometric differential equation at b and ∞ coalesce into an
irregular singularity at ∞. Equation (F.1.7) is called the confluent hypergeometric
equation, and its solutions are called confluent hypergeometric functions.

Two standard solutions to equation (F.1.7) are the following:

M(a; c; z) =
∞∑
n=0

(a)n

(c)nn! z
n = 1 + a

c
z + a(a + 1)

c(c + 1)2! z
2 + . . . (F.1.8)

and

M(a; c; z) =
∞∑
n=0

(a)n

Γ (c + n)n! z
n = 1

Γ (c)
+ a

Γ (c + 1)
z + a(a + 1)

Γ (c + 2)2! z
2 + . . . .

(F.1.9)
The first of these functions M(a; c; z) does not exist if c is a non-positive integer.
For all other values of parameters the following identity holds:

M(a; c; z) = Γ (c)M(a; c; z).

The series (F.1.8) and (F.1.9) converge for all z ∈ C. M(a; c; z) is an entire func-
tion in z and a, and is meromorphic in c.M(a; c; z) is an entire function in z, a, and
c.

The function M(a; c; z) is known as the Kummer confluent hypergeometric func-
tion. Sometimes the notation

M(a; c; z) = 1F1(a; c; z)
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is used, which is also Humbert’s symbol [ErdBat-1, p. 248]

M(a; c; z) = Φ(a; c; z).

Another standard solution to the confluent hypergeometric equation (F.1.7) is the
function U (a; c; z) which is determined uniquely by the property

U (a; c; z) ∼ z−a, z → ∞, |arg z| < π − δ. (F.1.10)

Here δ is an arbitrary small positive constant. In general,U (a; c; z) has a branch point
at z = 0. The principal branch corresponds to the principal value of z−a in (F.9),
and has a cut in the z-plane along the interval (−∞; 0]. The function U (a; c; z)
was introduced by Tricomi (see, e.g., [ErdBat-1, p. 257]). Sometimes it is called
the Tricomi confluent hypergeometric function. It is related to the Erdélyi function
2F0(a; c; z)

2F0(a; c;−1/z) = zaU (a; a − c + 1; z)

and the Kummer confluent hypergeometric function

U (a; c; z) = Γ (1 − c)

Γ (a − c + 1)
M(a; c; z) + Γ (c − 1)

Γ (a)
z1−aM(a − c + 1; 2 − c; z).

The following notation (Humbert’s symbol) is used too (see, e.g., [ErdBat-1, p. 255]):

U (a; c; z) = Ψ (a; c; z).

Integral Representations
Two main types of integral representations for confluent hypergeometric functions
can be mentioned here. First of all these are representations analogous to the Euler
integral representation of the classical hypergeometric function.

The integral representation of Kummer’s confluent hypergeometric function

M(a; c; z) = Γ (c)

Γ (a)Γ (c − a)

1∫

0

et z ta−1(1 − t)c−a−1dt, Re c > Re a > 0,

(F.1.11)
can be immediately verified by expanding the exponential function et z .

The formula

1

Γ (a)

∞∫

0

e−t z ta−1(1 + t)c−a−1dt, Re a > 0, (F.1.12)

gives the solution of the differential equation (F.1.7) in the right half-plane Re z > 0
and coincides in this domain with U (a; c; z). The analytic continuation of (F.1.12)
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yields the integral representation of Tricomi’s confluent hypergeometric function
U (a; c; z).

Another type of integral representation uses Mellin–Barnes integrals. For conflu-
ent hypergeometric functions this type of integral representation has the form

M(a; c; z) = 1

2πi

Γ (c)

Γ (a)

γ+i∞∫

γ−i∞

Γ (−s)Γ (a + s)

Γ (c + s)
(−z)sds, (F.1.13)

|arg (−z)| < π/2, −Re a < γ < 0, c �= 0, 1, 2, . . . ;

U (a; c; z) = 1

2πi

γ+i∞∫

γ−i∞

Γ (−s)Γ (a + s)Γ (1 − c − s)

Γ (c + s)Γ (a − c + 1)
(z)sds, (F.1.14)

|arg (z)| < 3π/2, −Re a < γ < min {0, 1 − Re c}.

The conditions on the parameters in (F.1.13) and in (F.1.14) can be relaxed by suitable
deformation of the contour of integration. Thus, (F.1.13) is valid with any γ whenever
a is not a non-negative integer, provided that the contour of integration separates the
poles of Γ (−s) from the poles of Γ (a + s). Similarly, (F.1.14) is valid with any γ
whenever neither a nor a − c + 1 is a non-negative integer, provided that the contour
of integration separates the poles of Γ (−s)Γ (1 − c − s from the poles of Γ (a + s).
The conditions on arg z cannot be relaxed.

Asymptotics
As z → ∞ then (see, e.g., [NIST, p. 328])

M(a; c; z) ∼ ez za−c

Γ (a)

∞∑
n=0

(1 − a)n(c − a)n

n! z−n

+ e±πia z−a

Γ (c − a)

∞∑
n=0

(a)n(a − c + 1)n
n! (−z)−n, (F.1.15)

−π/2 + δ < ±arg z < 3π/2 − δ, a �= 0,−1,−2, . . . ; c − a �= 0,−1,−2, . . . ;

U (a; c; z) ∼ z−a
∞∑
n=0

(a)n(a − c + 1)n
n! (−z)−n, (F.1.16)

|arg z| < 3π/2 − δ, with δ being sufficiently small positive.

Other asymptotic formulas with respect to large values of the variable z and/or with
respect to large values of the parameters a and c can be found in [NIST, pp. 330–331].
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Relation to Elementary and Other Special Functions
In the following special cases the confluent hypergeometric functions coincide with
elementary functions:

M(a; a; z) = ez;

M(1; 2; 2z) = ez

z
sinh z;

M(0; c; z) = U (0; c; z) = 1;

U (a; a + 1; z) = z−a;

with incomplete gamma function γ(a, z) (in the case when a − c is an integer or a
is a positive integer):

M(a; a + 1;−z) = e−zM(1; a + 1; z) = az−aγ(a, z);

with the error functions erf and erfc:

M(1/2; 3/2;−z2) =
√

π

2z
erf(z);

U (1/2; 1/2; z2) = √
π ez

2
erfc(z);

with the orthogonal polynomials:

– the Hermite polynomials Hν(z):

M(−n; 1/2; z2) = (−1)n
n!

(2n)!H2n(z);

M(−n; 3/2; z2) = (−1)n
n!

(2n + 1)!2z H2n+1(z);

U (1/2 − n/2; 3/2; z2) = 2−n

z
Hn(z);

– the Laguerre polynomials L(α)
ν (z):

U (−n;α + 1; z) = (−1)n(α + 1)nM(−n;α + 1; z) = (−1)nn!LL(α)
n (z);

with the modified Bessel functions Iν, Kν (in the case when c = 2b):

M(ν + 1/2; 2ν + 1; z) = Γ (ν + 1)ez(z/2)−ν Iν(z);
U (ν + 1/2; 2ν + 1; z) = 1√

π
ez(2z)−νKν(z).
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F.1.6 Generalized Hypergeometric Functions and their
Properties

Generalized hypergeometric functions pFq (or pFq

(
a
b

; z
)

= pFq (a,b; z) = pFq

(a1, . . . , ap; b1, . . . , bq; z)) are defined by the following series (where none of the
parameters b j is a non-positive integer):

pFq

(
a1, a2, . . . ap

b1, b2, . . . bq
; z
)

=
∞∑
n=0

(a1)n(a2)n . . . (ap)n

(b1)n(b2)n . . . (bq)n

zn

n! . (F.1.17)

This series converges for all z whenever p < q and thus represents an entire function
of z.

If p = q + 1, then under the assumption that none of the a j is a non-positive
integer the radius of convergence of the series (F.1.17) is equal to 1, and outside
the open disk |z| < 1 the generalized hypergeometric function is defined by analytic
continuation with respect to z. The branch obtained by introducing a cut from 1 to
+∞ on the real axis, that is, the branch in the sector |arg (1 − z)| < π, is the principal
branch (or principal value) of q+1Fq(a;b; z). Elsewhere the generalized hypergeo-
metric function is a multi-valued function that is analytic except for possible branch
points at z = 0; 1,∞. On the circle |z| = 1 the series (F.1.17) is absolutely conver-
gent if Re γq > 0, convergent except at z = 1 if −1 < Re γq ≤ 0, and divergent if
Re γq < −1, where γq = (b1 + . . . + bq) − (a1 + . . . + aq+1).

In general the series (F.1.17) diverges for all non-zero values of z whenever p >

q + 1. However, when one or more of the top parameters a j is a non-positive integer
the series terminates and the generalized hypergeometric function is a polynomial
in z. Note that if m = max{−a1, . . . ,−aq} is a positive integer, then the following
identity holds:

p+1Fq

(−m, a
b

; z
)

= (a)m(−z)m

(b)m
q+1Fp

(−m, 1 − m − b
1 − m − a

; (−1)p+q+1

z

)
,

which can be used to interchange a and b.
If p ≤ q = 1 and z is not a branch point of the generalized hypergeometric func-

tion pFq , then the function

pFq

(
a
b

; z
)

= 1

Γ (b1) . . . Γ (bq)
pFq

(
a
b

; z
)

=
∞∑
n=0

(a1)n . . . (ap)n

Γ (b1 + n) . . . Γ (bq + n)

zn

n!

is an entire function of each parameter a1, . . . , ap, b1, . . . , bq .
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F.2 Wright Functions

F.2.1 The Classical Wright Function

The simplest Wright function φ(α,β; z) is defined for z,α,β ∈ C by the series

φ(α,β; z) = 0Ψ1

⎡
⎣

(β,α)

∣∣∣∣ z
⎤
⎦ :=

∞∑
k=0

1

Γ (αk + β)

zk

k! . (F.2.1)

If α > −1, this series is absolutely convergent for all z ∈ C, while for α = −1 it is
absolutely convergent for |z| < 1 and for |z| = 1 and Re(β) > −1; see [KiSrTr06,
Sect. 1.11].Moreover, forα > −1,φ(α,β; z) is an entire function of z. Using formu-
las for the order (B.5) and the type (B.6) of an entire function andStirling’s asymptotic
formula for the Gamma function (A.24) one can deduce that for α > −1 the Wright

function φ(α,β; z) has order ρ = 1

α + 1
and type σ = (α + 1)α

1

(α + 1) = 1

ρ
αρ.

The classical Wright function is closely related to the multiparametric Mittag-
Leffler function. It is discussed in detail in Chap.7 in this book.

F.2.2 The Bessel–Wright Function. Generalized Wright
Functions and Fox–Wright Functions

When α = μ, β = ν + 1, and z is replaced by−z, the function φ(α,β; z) is denoted
by Jμ

ν (z):

Jμ
ν (z) := ψ(μ, ν + 1;−z) =

∞∑
k=0

1

Γ (μk + ν + 1)

(−z)k

k! , (F.2.2)

and this function is known as the Bessel–Wright function, or theWright generalized
Bessel function,7 see [PrBrMa-V2] and [Kir94, p. 352]. When μ = 1, the Bessel
function of the first kind is connected with (F.2.2) by

Jν(z) =
( z
2

)ν

J 1
ν

(
z2

4

)
. (F.2.3)

If μ = p
q is a rational number then [Kir94, p. 352] the Bessel–Wright function

satisfies the following differential equation of order (p + q)

7Also misnamed the Bessel–Maitland function after E.M. Wright’s second name: Maitland.
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⎡
⎣ (−z)q

qq pp
−
∏
j=1

p + q

(
1

q
z
d

dz
− d j

)⎤
⎦ Jμ

ν (z) = 0, (F.2.4)

where

d j =
{

j
q , 1 ≤ j ≤ q − 1,

1 − j+ν+1−q
q , q ≤ j ≤ q + p.

The original differential equation for Jμ
ν (z), equivalent to (F.2.4), was formulated

by Wright [Wri33]:

(−1)q zν/μ Jμ
ν (z) =

(
μz1−1/μ d

dz

)p

z
ν+p

μ

(
d

dz

)q

Jμ
ν (z).

There exists a further generalization of the Bessel–Wright function (the so-called
generalized Bessel–Wright function) given in [Pat66, Pat67]:

Jμ
ν,λ(z) =

( z
2

)ν+2λ ∞∑
k=0

(−1)k
(
z
2

)2k
Γ (ν + kμ + λ + 1)Γ (λ + k + 1)

, μ > 0. (F.2.5)

This function generates the Lommel function, and is a special case of the four-
parametric Mittag-Leffler function.

The more general function pΨq(z) is defined for z ∈ C, complex al , b j ∈ C, and
real αl , β j ∈ R (l = 1, · · · , p; j = 1, · · · , q) by the series

pΨq(z) = pΨq

⎡
⎣ (al ,αl)1,p

(bl ,βl)1,q

∣∣∣∣ z
⎤
⎦ :=

∞∑
k=0

∏p
l=1 Γ (al + αl k)∏q
j=1 Γ (b j + β j k)

zk

k! (F.2.6)

(z, al , b j ∈ C; αl ,β j ∈ R; l = 1, · · · , p; j = 1, · · · , q).

This general (Wright or, more appropriately, Fox–Wright) function was investigated
byFox [Fox28] andWright [Wri35b, Wri40b, Wri40c],who presented its asymptotic
expansion for large values of the argument z under the condition

q∑
j=1

β j −
p∑

l=1

αl > −1. (F.2.7)

If these conditions are satisfied, the series in (F.2.6) is convergent for any z ∈ C. This
result follows from the assertion [KiSrTr06, Theorem 1.]:

Theorem F.1 Let al , b j ∈ C and αl , β j ∈ R (l = 1, · · · p; j = 1, · · · , q) and let



Appendix F: Higher Transcendental Functions 475

Δ =
q∑
j=1

β j −
p∑

l=1

αl , (F.2.8)

δ =
p∏

l=1

|αl |−αl

q∏
j=1

|β j |β j , (F.2.9)

and

μ =
q∑
j=1

b j −
p∑

l=1

al + p − q

2
. (F.2.10)

(a) If Δ > −1, then the series in (F.2.6) is absolutely convergent for all z ∈ C.
(b) If Δ = −1, then the series in (F.2.6) is absolutely convergent for |z| < δ and for

|z| = δ and Re(μ) > 1/2.

Whenαl ,β j ∈ R (l = 1, · · · , p; j = 1, · · · , q), the generalizedWright function
pΨq(z) has the following integral representation as aMellin–Barnes contour integral:

pΨq

⎡
⎣ (al ,αl)1,p

(bl ,βl)1,q

∣∣∣∣ z
⎤
⎦ = 1

2πi

∫
C

Γ (s)
∏p

l=1 Γ (al − αl s)∏q
j=1 Γ (b j − β j s)

(−z)−sds, (F.2.11)

where the path of integration C separates all the poles at s = −k (k ∈ N0) to the left
and all the poles s = (al + nl)/αl (l = 1, · · · , p; nl ∈ N to the right. If C = (γ −
i∞, γ + i∞) (γ ∈ R), then representation (F.2.11) is valid if either of the following
conditions holds:

Δ < 1, |arg(−z)| <
(1 − Δ)π

2
, z �= 0 (F.2.12)

or

Δ = 1, (Δ + 1)γ + 1

2
< Re(μ), arg(−z) = 0, z �= 0. (F.2.13)

Conditions for the representation (F.2.11)were also given for the casewhenC = L−∞
(L∞) is a loop situated in a horizontal strip starting at the point−∞ + iϕ1 (∞ + iϕ1)

and terminating at the point −∞ + iϕ2 (∞ + iϕ2) with −∞ < ϕ1 < ϕ2 < ∞.
If we put αl = 1, 1 ≤ l ≤ p and βl = 1, 1 ≤ l ≤ q in representation (F.2.6) then

we get the following relation of the generalized Wright function pΨq with the gen-
eralized hypergeometric function pFq :

pΨq

⎡
⎣ (al, 1)1,p

(bl , 1)1,q

∣∣∣∣ z
⎤
⎦ =

∏p
l=1 Γ (al)∏q
l=1 Γ (bl

pFq(a1, . . . , ap; b1, . . . , bq; z). (F.2.14)
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F.3 Meijer G-Functions

F.3.1 Definition via Integrals. Existence

In [Mei36] more general classes of transcendental functions were introduced via
generalization of the Gauss hypergeometric functions presented in the form of series
(commonly known now as Meijer G-functions):

Gm,n
p,q

[
z

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
. (F.3.1)

This definition is due to the relation between the generalized hypergeometric function
and the Meijer G-functions (see, e.g., [Sla66, p. 42]):

Gm,n
p,q

[
−z

∣∣∣∣ 1 − a1, . . . , 1 − ap

0, 1 − b1, . . . , 1 − bq

]
= Γ (a1) . . . Γ (ap)

Γ (b1) . . . Γ (bq)
pFq(a;b; z). (F.3.2)

Later this definition was replaced by the Mellin–Barnes representation of the
G-function

Gm,n
p,q

[
z

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
= 1

2πi

∫

L

Gm,n
p,q (s)zsds, (F.3.3)

where L is a suitably chosen path, z �= 0, zs := exp[s(ln |z| + iargz)] with a single
valued branch of arg z, and the integrand is defined as

Gm,n
p,q (s) =

∏m
k=1 Γ (bk − s)

∏n
j=1 Γ (1 − a j + s)∏q

k=m+1 Γ (1 − bk + s)
∏p

j=n+1 Γ (a j − s)
. (F.3.4)

In (F.3.4) the empty product is assumed to be equal to 1, parametersm, n, p, q satisfy
the relation 0 ≤ n ≤ q, 0 ≤ n ≤ p, and the complex numbers a j , bk are such that
no pole of Γ (bk − s), k = 1, . . . ,m, coincides with a pole of Γ (1 − a j + s), j =
1, . . . , n.

F.3.2 Basic Properties of the Meijer G-Functions

1. Symmetry
The G-functions are symmetric with respect to their parameters in the follow-
ing sense: if the value of a parameter from the group (a1, . . . , an) (respectively,
from the group (an+1, . . . , ap)) is equal to the value of a parameter from the
group (bm+1, . . . , bq) (respectively, to the value of a parameter from the group
(b1, . . . , bm)), then these parameters can be excluded from the definition of the G-
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function, i.e. the “order” of the G-function decreases. For instance, if a1 = bq , then

Gm,n
p,q

[
z

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
= Gm,n−1

p−1,q−1

[
z

∣∣∣∣a2, . . . , ap

b1, . . . , bq−1

]
. (F.3.5)

2. Shift of Parameters
The two properties below indicate how to “shift” parameters. They follow from the
change of variable in the definition of the G-functions (F.3.3).

zσGm,n
p,q

[
z

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
= Gm,n

p,q

[
z

∣∣∣∣a1 + σ, . . . , ap + σ
b1 + σ, . . . , bq + σ

]
; (F.3.6)

Gm,n
p,q

[
z

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
= Gm,n

p,q

[
1

z

∣∣∣∣ 1 − b1, . . . , 1 − bq
1 − a1, . . . , 1 − ap

]
. (F.3.7)

3. Multiplication Formula
For any natural number r ∈ N the following formula holds:

Gm,n
p,q

[
z

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
=

(2π)urvGmr,nr
pr,qr

[
zr

rr(q−p)

∣∣∣∣ c1,1, . . . , c1,r , . . . , cp,1, . . . , cp,rd1,1, . . . , d1,r , . . . , dq,1, . . . , dq,r

]
, (F.3.8)

where

c j,l = a j + l − 1

r
, (l = 1, . . . , r); dk,l = bk + l − 1

r
, (l = 1, . . . , r).

F.3.3 Special Cases

The basic elementary functions can be represented as G-function with special val-
ues of parameters. They mostly follow from the relation between the generalized
hypergeometric function pFq and the Meijer G-function (F.3.2).

Let us recall some of these representations.

exp z = G0,1
1,0 [z |0 ] ; (F.3.9)

sin z = √
πG1,0

0,2

[
z2

4

∣∣∣∣12 , 0

]
; (F.3.10)

cos z = √
πG1,0

0,2

[
z2

4

∣∣∣∣0, 12
]

; (F.3.11)
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log (1 + z) = G1,2
2,2

[
z

∣∣∣∣ 1, 11, 0

]
(|z| < 1); (F.3.12)

arcsin z = 1

2
√

π
G1,2

2,2

[
−z2

∣∣∣∣ 1, 11
2 , 0

]
(|z| < 1); (F.3.13)

arctan z = 1

2
G1,2

2,2

[
z2
∣∣∣∣ 1,

1
2

1
2 , 0

]
(|z| < 1); (F.3.14)

zγ = G1,0
1,1

[
z

∣∣∣∣γ + 1
γ

]
(|z| < 1); (F.3.15)

(1 ± z)−α = 1

Γ (α)
G1,1

1,1

[
∓z

∣∣∣∣ 1 − α
0

]
(|z| < 1,Reα > 0); (F.3.16)

(1 ± z)−α = Γ (1 − α)G1,0
1,1

[
∓z

∣∣∣∣ 1 − α
0

]
(|z| < 1,Reα < −1). (F.3.17)

F.3.4 Relations to Fractional Calculus

Let us consider the Riemann–Liouville fractional integral (see (E-RL.1))

Jα
a+ φ(x) := 1

Γ (α)

∫ x

a
(x − ξ)α−1 φ(ξ) dξ , a < x < b , α > 0 .

It is well-known (see, e.g. [SaKiMa93, Chap.4]) that this integral can be extended
into the complex domain. For this we fix a point z ∈ C and introduce themulti-valued
function

(z − ζ)α−1.

By fixing an arbitrary single-valued branch of this function in the complex plane
cut along the line L starting at ζ = a and ending at ζ = ∞ and containing the point
ζ = z we define the Riemann–Liouville fractional integral in the complex domain

Jα
a+ f (z) = 1

Γ (α)

z∫

a

(z − ζ)α−1 f (ζ) dζ, (F.3.18)

where the integration is performed along a part of the above-described contour (cut)
L starting at ζ = a and ending at ζ = z. Analogously, the so-called “right-sided”
Riemann–Liouville fractional integral (or Weyl type fractional integral) in the com-
plex domain is defined by
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Jα
− f (z) = 1

Γ (α)

∞∫

z

(z − ζ)α−1 f (ζ) dζ. (F.3.19)

The density f in both formulas (F.3.18) and (F.3.19) is assumed to be defined in a
neighborhood of the contour L . If this function is analytic in the whole plane, then by
the Cauchy Integral Theorem one can replace the contour L by the straight interval
[a, z] and by the ray [z,∞), respectively.

Let us present the formulas which show that the Riemann–Liouville fractional
integration of the Meijer G-function yields the Meijer G-function with other values
of parameters (see, e.g. [Kir94, p. 318], [PrBrMa-V3]).

Jα
a+ Gm,n

p,q (ηz) = 1

Γ (α)

z∫

a

(z − ζ)α−1 Gm,n
p,q

[
ηζ

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
dζ

= zα

1∫

0

(1 − σ)α−1

Γ (α)
Gm,n

p,q

[
ηzσ

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
dσ

= zαGm,n+1
p+1,q+1

[
ηζ

∣∣∣∣ 0, a1, . . . , ap

b1, . . . , bq ,−α

]
. (F.3.20)

This formula is valid when Re bk > −1, k = 1, . . . ,m, and p ≤ q. If p = q, then it
is valid for |ηz| < 1. For p + q < 2(m + n) we require additionally that |arg ηz| <(
m + n − p+q

2

)
π.

Jα
− Gm,n

p,q (ηz) = 1

Γ (α)

∞∫

z

(z − ζ)α−1 Gm,n
p,q

[
ηζ

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
dζ

= zα

∞∫

1

(σ − 1)α−1

Γ (α)
Gm,n

p,q

[
ηzσ

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
dσ

= zαGm+1,n
p+1,q+1

[
ηζ

∣∣∣∣a1, . . . , ap, 0
−α, b1, . . . , bq

]
. (F.3.21)

This formula is valid when 0 < Reα < 1 − Re a j , j = 1, . . . , n, and p ≥ q. If p =
q, then it is valid for |ηz| > 1. For p + q < 2(m + n) we require additionally that
|arg ηz| <

(
m + n − p+q

2

)
π.
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F.3.5 Integral Transforms of G-Functions

The structure of the Meijer G-function is very similar to that of the Mellin integral
transform. Hence, the Mellin transform of the Meijer G-function is up to a power
factor equal to the ratio of the products of Γ -functions (see, e.g., [BatErd54b, p.
301], [Kir94, p. 318]).

M (
Gm,n

p,q (ηt)
)
(s) =

∞∫

0

t s−1Gm,n
p,q

[
ηt

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
dt

= ηsGm,n
p,q (−s) = ηs

m∏
k=1

Γ (bk + s)
n∏
j=1

Γ (1 − a j − s)

q∏
k=m+1

Γ (1 − bk − s)
p∏

j=n+1
Γ (a j + s)

, (F.3.22)

where, e.g., p + q < 2(m + n), |arg η| <
(
m + n − 1

2 (p + q)
)
π,− min

1≤k≤m
Re bk <

Re η < 1 − max
1≤ j≤n

Re a j . Other conditions under which formula (F.3.22) is valid can

be found in [Luk1, pp. 157–159] and [BatErd54b, pp. 300–301]. We also mention
several formulas for the Mellin integral transform presented in [BatErd54a, pp. 295–
296].

TheLaplace transformof theMeijerG-function can be determined by the relation:

L (Gm,n
p,q (ηx)

)
(t) =

∞∫

0

e−t xGm,n
p,q

[
ηx

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
dx

= t−1Gm,n+1
p+1,q

[
η

t

∣∣∣∣ 0, a1, . . . , ap

b1, . . . , bq

]
, (F.3.23)

where, e.g., p + q < 2(m + n), |arg η| <
(
m + n − 1

2 (p + q)
)
π, |arg t | < π/2, Re

bk − 1, k = 1, . . . ,m.
More general formulas for the Laplace transform of the Meijer G-function with

different weights can also be found in [Luk1, pp. 166–169] and [BatErd54b, p. 302].
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F.4 Fox H-Functions

F.4.1 Definition via Integrals. Existence

A straightforward generalization of the Meijer G-functions are the so-called Fox
H -functions, introduced and studied by Fox in [Fox61]. According to a standard
notation the Fox H -functions are defined by

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣ (a1,α1), . . . , (ap,αp)

(b1,β1), . . . , (bq ,βq)

]
= 1

2πi

∫
L
Hm,n

p,q (s) zs ds , (F.4.1)

where L is a suitable path in the complex plane C to be found later on, zs =
exp{s(log |z| + i argz)}, and

Hm,n
p,q (s) = A(s) B(s)

C(s) D(s)
, (F.4.2)

A(s) =
m∏
j=1

Γ (b j − β j s) , B(s) =
n∏
j=1

Γ (1 − a j + α j s) , (F.4.3)

C(s) =
q∏

j=m+1

Γ (1 − b j + β j s) , D(s) =
p∏

j=n+1

Γ (a j − α j s) , (F.4.4)

with 0 ≤ n ≤ p , 1 ≤ m ≤ q , {a j , b j } ∈ C , {α j ,β j } ∈ R
+ . As usual, an empty

product, when it occurs, is taken to be equal to 1. Hence

n = 0 ⇔ B(s) = 1 , m = q ⇔ C(s) = 1 , n = p ⇔ D(s) = 1 .

Due to the occurrence of the factor zs in the integrand of (D.1), the H -function is,
in general, multi-valued, but it can be made one-valued on the Riemann surface of
log z by choosing a proper branch. We also note that when the αs and βs are equal
to 1, we obtain the Meijer G-functions Gm,n

p,q (z), thus the Meijer G-functions can be
considered as special cases of the Fox H -functions:

Hm,n
p,q

[
z

∣∣∣∣ (a1, 1), . . . , (ap, 1)
(b1, 1), . . . , (bq , 1)

]
= Gm,n

p,q

[
z

∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
.

The above integral representation of H -functions in terms of products and ratios
of Gamma functions is known to be of Mellin–Barnes integral type. A compact
notation is usually adopted for (F.4.1):

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣ (a j ,α j ) j=1,...,p

(b j ,β j ) j=1,...,q

]
. (F.4.5)
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The singular points of the kernelH are the poles of theGamma functions appearing
in the expressions of A(s) and B(s), that we assume do not coincide. Denoting by
P(A) andP(B) the sets of these poles, we writeP(A) ∩ P(B) = ∅ . The conditions
for the existence of the H -functions can be determined by inspecting the convergence
of the integral (2.1), which can depend on the selection of the contourL and on certain
relations between the parameters {ai ,αi } (i = 1, . . . , p) and {b j ,β j } ( j = 1, . . . , q).
For the analysis of the general case we refer to the specialized treatises on H -
functions, e.g., [MatSax73, MaSaHa10, SrGuGo82] and, in particular to the paper
by Braaksma [Bra62], where an exhaustive discussion on the asymptotic expansions
and analytical continuation of these functions can be found, see also [KilSai99] and
the book [KilSai04].

In the following we limit ourselves to recalling the essential properties of the
H -functions, preferring to analyze later in detail those functions related to fractional
diffusion. As will be shown later, this phenomenon depends on one real independent
variable and three parameters; in this case we shall have z = x ∈ R and m ≤ 2,
n ≤ 2, p ≤ 3, q ≤ 3.

The contour L in (F.4.1) can be chosen as follows:

(i) L = Liγ∞ chosen to go from −iγ∞ to +iγ∞ leaving to the right all the poles
of P(A), namely the poles s j,k = (b j + k)/β j ; j = 1, 2, . . . ,m; k = 0, 1, . . .
of the functions Γ appearing in A(s), and to left all the poles of P(B), namely
the poles s j,l = (a j − 1 − l)/β j ; j = 1, 2, . . . , n; l = 0, 1, . . . of the functions
Γ appearing in B(s).

(ii) L = L+∞ is a loop beginning and ending at +∞ and encircling once in the
negative direction all the poles of P(A), but none of the poles of P(B).

(iii) L = L−∞ is a loop beginning and ending at −∞ and encircling once in the
positive direction all the poles of P(B), but none of the poles of P(A).

Braaksma has shown that, independently of the choice of L, the Mellin–Barnes
integral makes sense and defines an analytic function of z in the following two cases

μ > 0 , 0 < |z| < ∞, where μ =
q∑
j=1

β j −
p∑

j=1

α j , (F.4.6)

μ = 0 , 0 < |z| < δ, where δ =
p∏

j=1

α
−α j

j

q∏
j=1

β
β j

j . (F.4.7)

Via the following useful and important formula for the H -function

Hm,n
p,q

[
z

∣∣∣∣ (a j ,α j )1,p

(b j ,β j )1,q

]
= Hn,m

q,p

[
1

z

∣∣∣∣ (1 − b j ,β j )1,q

(1 − a j ,α j )1,p

]
(F.4.8)

we can transform the H -function with μ < 0 and argument z to one with μ > 0 and
argument 1/z. This property is useful when comparing the results of the theory of
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H -functions based on (F.4.1) using zs with the theory that uses z−s , which is often
found in the literature.

More detailed information on the existence of the H -function is presented, e.g.,
in [KilSai04] (see also [PrBrMa-V3]). In order to formulate this result we introduce
a set of auxiliary parameters.

Let m, n, p, q,α j , a j ,βk, bk ( j = 1, . . . , p, k = 1, . . . , q). Define

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a∗ =
n∑
j=1

α j −
p∑

j=n+1
α j +

m∑
k=1

βk −
q∑

k=m+1
βk;

a∗
1 =

m∑
k=1

βk −
p∑

j=n+1
α j ;

a∗
2 =

n∑
j=1

α j −
q∑

k=m+1
βk;

Δ =
q∑

k=1
βk −

p∑
j=1

α j ;

δ =
p∏

j=1
α j

−α j

q∏
k=1

βk
βk ;

μ =
q∑

k=1
bk −

p∑
j=1

a j + 1
2 (p − q);

ξ =
m∑

k=1
bk −

q∑
k=m+1

bk +
n∑
j=1

a j −
p∑

j=n+1
a j ;

c∗ = m + n − 1
2 (p + q).

(F.4.9)

Theorem F.2 ([KilSai04, pp. 4–5]) Let the parameters a∗,Δ, δ,μ be defined as in
(F.4.9). Then the Fox H-function Hm,n

p,q (z) (as defined in (F.4.1)–(F.4.4)) exists in the
following cases:

If L = L−∞,Δ > 0, then Hm,n
p,q (z) exists for all z : z �= 0. (F.4.10)

If L = L−∞,Δ = 0, then Hm,n
p,q (z) exists for all z : 0 < |z| < δ. (F.4.11)

If L = L−∞,Δ = 0,Reμ < −1, then Hm,n
p,q (z) exists for z : |z| = δ. (F.4.12)

If L = L+∞,Δ < 0, then Hm,n
p,q (z) exists for all z : z �= 0. (F.4.13)

If L = L+∞,Δ = 0, then Hm,n
p,q (z) exists for all z : |z| > δ. (F.4.14)

If L = L+∞,Δ = 0,Reμ < −1, then Hm,n
p,q (z) exists for z : |z| = δ. (F.4.15)

If L = Liγ∞, a∗ > 0, then Hm,n
p,q (z) exists for all z : |arg z| <

a∗π
2

, z �= 0.

(F.4.16)
If L = Liγ∞, a∗ = 0,Δγ + Reμ < −1, then Hm,n

p,q (z) exists for all z : arg z = 0, z �= 0.
(F.4.17)
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Other important properties of the Fox H -functions, that can easily be derived
from their definition, are included in the list below.

(i) The H -function is symmetric in the set of pairs
(a1,α1), . . . , (an,αn), (an+1,αn+1), . . . , (ap,αp) and
(b1,β1), . . . , (bm,βm), (bm+1,βm+1), . . . , (bq ,βq).

(ii) If one of the (a j ,α j ), j = 1, . . . , n , is equal to one of the (bk,βk), k = m +
1, . . . , q ; [or one of the pairs (a j ,α j ), j = n + 1, . . . , p, is equal to one of
the (bk,βk), k = 1, . . . ,m], then the H -function reduces to one of the lower
order, that is, p, q and n [or m] decrease by unity. Provided n ≥ 1 and q > m ,

we have

Hm,n
p,q

[
z

∣∣∣∣ (a j ,α j )1,p

(bk,βk)1,q−1 (a1,α1)

]
= Hm,n−1

p−1,q−1

[
z

∣∣∣∣ (a j ,α j )2,p

(bk,βk)1,q−1

]
, (F.4.18)

Hm,n
p,q

[
z

∣∣∣∣ (a j ,α j )1,p−1 (b1,β1)

(b1,β1) (bk,βk)2,q

]
= Hm−1,n

p−1,q−1

[
z

∣∣∣∣ (a j ,α j )1,p−1

(bk,βk)2,q

]
. (F.4.19)

(iii)

zσHm,n
p,q

[
z

∣∣∣∣ (a j ,α j )1,p

(bk,βk)1,q

]
= Hm,n

p,q

[
z

∣∣∣∣ (a j + σα j ,α j )1,p

(bk + σβk,βk)1,q

]
. (F.4.20)

(iv)

1

c
Hm,n

p,q

[
z

∣∣∣∣ (a j ,α j )1,p

(bk,βk)1,q

]
= Hm,n

p,q

[
zc
∣∣∣∣ (a j , cα j )1,p

(bk, cβk)1,q

]
, c > 0 . (F.4.21)

The convergent and asymptotic expansions (for z → 0 or z → ∞) are mostly
obtained by applying the residue theorem in the poles (assumed to be simple) of the
Gamma functions appearing in A(s) or B(s) that are found inside the specially chosen
path. In some cases (in particular if n = 0 ⇔ B(s) = 1) we find an exponential
asymptotic behavior.

In the presence of a multiple pole s0 of order N the treatment becomes more
cumbersome because we need to expand in a power series at the pole the product
of the involved functions, including zs , and take the first N terms up to (s − s0)N−1

inclusive. Then the coefficient of (s − s0)N−1 is the required residue.
Let us consider the case N = 2 (double pole) of interest for the fractional diffusion.

Then the expansions for the Gamma functions are of the form

Γ (s) = Γ (s0)
[
1 + ψ(s0)(s − s0) + O

(
(s − s0)

2)] , s → s0 , s0 �= 0,−1,−2, . . .

Γ (s) = (−1)k

Γ (k + 1)(s + k)]
[
1 + ψ(k + 1)(s + k) + O

(
(s + k)2

)]
, s → −k ,

where k = 0, 1, 2, . . . andψ(z) denotes the logarithmic derivative of the Γ function,
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ψ(z) = d

dz
logΓ (z) = Γ ′(z)

Γ (z)
,

whereas the expansion of zs yields the logarithmic term

zs = zs0
[
1 + log z (s − s0) + O((s − s0)

2
]
, s → s0 .

F.4.2 Series Representations and Asymptotics. Recurrence
Relations

Series representations of the Fox H -functions can be found by applying the Residue
Theory to calculate the corresponding Mellin–Barnes integral. These calculations
critically depend on the choice of the contour of integration L in (F.4.1) and the
distribution of poles of the integrand there.

For simplicity, let us suppose that the poles of the Gamma functions
Γ (bk + βks) and the poles of the Gamma functions Γ (1 − a j − α j s) do not coin-
cide, i.e.

α j (bk + r) �= βk(ai − t − 1), j = 1, . . . , n, k = 1, . . . ,m, r, t = 0, 1, 2, . . . .
(F.4.22)

This assumption allows us to choose one of the above described contours of inte-
gration L = L−∞, or L = L+∞, or L = Liγ∞. The series representations of Fox
H -functions are based on the following theorem:

Theorem F.3 ([KilSai04, p. 5]) Let the conditions (F.4.22) be satisfied. Then the
following assertions hold true.

(i) In the cases (F.4.10) and (F.4.11) the H-function (F.4.1) is analytic in z and
can be calculated via the formula

Hm,n
p,q (z) =

m∑
k=1

∞∑
r=0

Ress=bkr

[Hm,n
p,q (s)z−s

]
, (F.4.23)

where the sum is calculated with respect to all poles bkr of the Gamma functions
Γ (bk + βks).

(ii) In the cases (F.4.13) and (F.4.14) the H-function (F.4.1) is analytic in z and
can be calculated via the formula

Hm,n
p,q (z) = −

m∑
k=1

∞∑
r=0

Ress=a jt

[Hm,n
p,q (s)z−s

]
, (F.4.24)

where the sum is calculated with respect to all poles a jt of the Gamma functions
Γ (1 − a j − α j s).
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(iii) In the case (F.4.16) the H-function (F.4.1) is analytic in z in the sector |arg z| <
a∗π
2 .

Theorem F.4 ([KilSai04, p. 6]) Suppose the poles of the Gamma functions Γ (bk +
βks) and the poles of the Gamma functions Γ (1 − a j − α j s) do not coincide.

(i) If all the poles of the Gamma functions Γ (bk + βks) are simple, and either
Δ > 0, z �= 0, or Δ = 0, 0 < |z| < δ, then the Fox H-function Hm,n

p,q (z) has
the power series expansion

Hm,n
p,q (z) =

m∑
k=1

∞∑
r=0

h∗
kr z

(bk+r)/βk , (F.4.25)

where
h∗
kr = lim

s→bkr

[
(s − bkr )Hm,n

p,q (z)
]

= (−1)r

r !βk

m∏
i=1,i �=k

Γ
(
bi − [bk + r ] βi

βk

) n∏
i=1

Γ
(
1 − ai + [bk + r ]αi

βk

)

p∏
i=n+1

Γ
(
ai − [bk + r ]αi

βk

) q∏
i=m+1

Γ
(
1 − bi + [bk + r ] βi

βk

) .

(F.4.26)
(ii) If all the poles of the Gamma functions Γ (1 − a j − α j s) are simple, and either

Δ < 0, z �= 0, or Δ = 0, |z| > δ, then the Fox H-function Hm,n
p,q (z) has the

power series expansion

Hm,n
p,q (z) =

m∑
k=1

∞∑
r=0

h jt z
(a j−1−t)/α j , (F.4.27)

where
h jt = lim

s→a jt

[−(s − a jt )Hm,n
p,q (z)

]

= (−1)t

t !α j

m∏
i=1

Γ
(
bi + [1 − a j + t] βi

α j

) n∏
i=1,i �= j

Γ
(
1 − ai + [1 − a j + t] αi

α j

)

p∏
i=n+1

Γ
(
ai + [1 − a j + t] αi

α j

) q∏
i=m+1

Γ
(
1 − bi − [1 − a j + t] βi

α j

) .

(F.4.28)

Theorem F.5 ([KilSai04, p. 9]) Suppose the poles of the Gamma functions Γ (bk +
βks) and the poles of the Gamma functions Γ (1 − a j − α j s) do not coincide. Let
either Δ < 0, z �= 0 or Δ = 0, |z| > δ.

Then the Fox H-function Hm,n
p,q (z) has the following power-logarithmic series

expansion
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Hm,n
p,q (z) =

∑
j,t

′
h jt z

(a j−1−t)/α j +
∑
j,t

′′ N jt−1∑
l=0

Hjtl z
(a j−1−t)/α j

[
log z

]l
, (F.4.29)

where the summation in
∑′ is performed over all j, t, j = 1, . . . , n, t = 0, 1, 2, . . .,

for which the poles of Γ (1 − a j − α j s) are simple, and the summation in
∑′′ is

performed over all values of parameters j, t for which the poles of Γ (1 − a j − α j s)
have order N jt , the constants h jt are given by the formulas (F.4.28), and the constants
Hjtl can be explicitly calculated (see [KilSai04, p. 8]).

From Theorems F.3, F.4 and F.5 follow corresponding asymptotic power- and
power-logarithmic type expansions at infinity of the Fox H -functions Hm,n

p,q (z) (see,
e.g., [KilSai04]). Exponential asymptotic expansions in the case Δ > 0, a∗ = 0 and
in the case n = 0 are presented, for example, in [KilSai04, Sect. 1.6, 1.7] (see also
[Bra62, MaSaHa10, SrGuGo82]).

More detailed information on the asymptotics of the Fox H -functions at infinity
can be found in [KilSai04, Chap. 1]. The asymptotic behavior of the Fox H -functions
at zero is also discussed there.

The following two three-term recurrence formulas are linear combinations of the
H -function with the same values of parameters m, n, p, q in which some a j and
bk are replaced by a j ± 1 and by bk ± 1, respectively. Such formulas are called
contiguous relations in [SrGuGo82].

Let m ≥ 1 and 1 ≤ n ≤ p − 1, then the following recurrence relation holds:

(b1αp − apβ1 + β1)H
m,n
p,q

[
zσ

∣∣∣∣ (a j ,α j ) j=1,...,,p

(b j ,β j ) j=1,...,q

]

= αpH
m,n
p,q

[
zσ

∣∣∣∣ (a j ,α j ) j=1,...,p

(b1 + 1,β1), (b j ,β j ) j=2,...,q

]

− β1H
m,n
p,q

[
zσ

∣∣∣∣ (a j ,α j ) j=1,...,p−1, (ap−1,αp)

(b j ,β j ) j=1,...,q

]
. (F.4.30)

Let n ≥ 1 and 1 ≤ m ≤ q − 1, then the following recurrence relation holds:

(bqα1 − a1βq + βq)H
m,n
p,q

[
zσ

∣∣∣∣ (a j ,α j ) j=1,...,,p

(b j ,β j ) j=1,...,q

]

= βpH
m,n
p,q

[
zσ

∣∣∣∣ (a1 − 1,α1), (a j ,α j ) j=2,...,,p

(b j ,β j ) j=1,...,q

]

− α1H
m,n
p,q

[
zσ

∣∣∣∣ (a j ,α j ) j=1,...,p

(b j ,β j ) j=1,...,q−1, (bq + 1,βq)

]
. (F.4.31)

A complete list of contiguous relations for H -functions can be found in [Bus72].
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F.4.3 Special Cases

Most elementary functions can be represented as special cases of the Fox H -function.
Let us present a list of such representations.

H 1,0
0,1

[
z

∣∣∣∣ −−
(b,β)

]
= 1

β
zb/βexp

(
−z

1
β

)
; (F.4.32)

H 1,1
1,1

[
z

∣∣∣∣ (1 − a, 1)

(0, 1)

]
= Γ (a)(1 + z)a = Γ (a)1F0(a;−z); (F.4.33)

H 1,0
1,1

[
z

∣∣∣∣ (α + β + 1, 1)

(α, 1)

]
= zα(1 − z)β; (F.4.34)

H 1,0
0,2

[
z2

4

∣∣∣∣ − − −−(
1
2 , 1
)
, (0, 1)

]
= 1√

π
sin z; (F.4.35)

H 1,0
0,2

[
z2

4

∣∣∣∣ − − −−
(0, 1),

(
1
2 , 1
)
]

= 1√
π
cos z; (F.4.36)

H 1,0
0,2

[
− z2

4

∣∣∣∣ − − −−(
1
2 , 1
)
, (0, 1)

]
= i√

π
sinh z; (F.4.37)

H 1,0
0,2

[
− z2

4

∣∣∣∣ − − −−
(0, 1),

(
1
2 , 1
)
]

= i√
π
cosh z; (F.4.38)

± H 1,0
2,2

[
z

∣∣∣∣ (1, 1), (1, 1)(1, 1), (0, 1)

]
= log (1 ± z); (F.4.39)

H 1,2
2,2

[
−z2

∣∣∣∣∣
(
1
2 , 1
)
,
(
1
2 , 1
)

(0, 1),
(− 1

2 , 1
)
]

= 2 arcsin z; (F.4.40)

H 1,2
2,2

[
z2
∣∣∣∣∣
(
1
2 , 1
)
, (1, 1)(

1
2 , 1
)
, (0, 1)

]
= 2 arctan z. (F.4.41)

A number of representation formulas relating some special functions to the Fox
H -function is presented in [KilSai04, Sect. 2. 9]. Twoof these formulas appear below.

H 1,1
1,2

[
−z

∣∣∣∣ (0, 1)(0, 1), (1 − β,α)

]
= Eα,β(z), (F.4.42)

where Eα,β is the Mittag-Leffler function
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Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)
.

1

Γ (γ)
H 1,1

1,2

[
−z

∣∣∣∣ (1 − γ, 1)

(0, 1), (1 − β,α)

]
= Eγ

α,β(z), Re γ > 0, (F.4.43)

where Eγ
α,β is the three-parametric (Prabhakar) Mittag-Leffler function

Eγ
α,β(z) =

∞∑
k=0

(γ)k zk

Γ (αk + β)
.

H 1,0
0,2

[
−z

∣∣∣∣− − −−
(0, 1), (−ν,μ)

]
= Jμ

ν (z), (F.4.44)

where Jμ
ν is the Bessel–Maitland (or the Bessel–Wright) function

Jμ
ν (z) =

∞∑
k=0

(−z)k

Γ (ν + kμ + 1)k! .

H 1,1
1,3

[
z2

4

∣∣∣∣ (λ + ν
2 , 1)

(λ + ν
2 , 1), (

ν
2 , 1), (μ(λ + ν

2 ) − λ − ν,μ)

]
= Jμ

ν,λ(z), (F.4.45)

where Jμ
ν,λ is the generalized Bessel–Maitland (or the generalized Bessel–Wright)

function

Jμ
ν,λ(z) =

∞∑
k=0

(−1)k
(
z
2

)ν+2λ+2k

Γ (ν + kμ + λ + 1)Γ (k + λ + 1)
.

H 1,p
p,q+1

[
z

∣∣∣∣ (1 − a1,α1), . . . , (1 − ap,αp)

(0, 1) , (1 − b1,β1), . . . , (1 − bq ,βq)

]
= pΨq

⎡
⎣ (al ,αl)1,p

(bl ,βl)1,q

∣∣∣∣ z
⎤
⎦ ,

(F.4.46)
where pΨq is the generalized Wright function

pΨq

⎡
⎣ (al ,αl)1,p

(bl ,βl)1,q

∣∣∣∣ z
⎤
⎦ =

∞∑
k=0

∏p
l=1 Γ (al + αl k)∏q
j=1 Γ (b j + β j k)

zk

k! .
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F.4.4 Relations to Fractional Calculus

Following [KilSai04, Sect. 2.7] we present here two theorems describing the rela-
tionship of the Fox H -function to fractional calculus.

Theorem F.6 ([KilSai04, pp. 52–53]) Let α ∈ C (Reα > 0), ω ∈ C, and σ > 0.
Let us assume that either a∗ > 0 or a∗ = 0 and Reμ < −1. Then the following
statements hold:

(i) If

σ min
1≤k≤m

[
Re bk
βk

]
+ Reω > −1, (F.4.47)

for a∗ > 0 or a∗ = 0 and Δ ≥ 0, while

σ min
1≤k≤m

[
Re bk
βk

,
Reμ + 1/2

Δ

]
+ Reω > −1, (F.4.48)

for a∗ = 0 andΔ < 0, then the Riemann–Liouville fractional integral Iα
0+ of the

Fox H-function exists and the following relation holds:

(
Iα
0+t

ωHm,n
p,q

[
tσ
∣∣∣∣ (a1,α1), . . . , (ap,αp)

(0, 1) , (b1,β1), . . . , (bq ,βq)

])
(x)

= xω+αHm,n+1
p+1,q+1

[
xσ

∣∣∣∣ (−ω,σ), (a1,α1), . . . , (ap,αp)

(b1,β1), . . . , (bq ,βq), (−ω − α,σ)

]
. (F.4.49)

(ii) If

σ min
1≤ j≤n

[
Re a j − 1

αk

]
+ Reω + Reα < 0, (F.4.50)

for a∗ > 0 or a∗ = 0 and Δ ≤ 0, while

σ min
1≤k≤m

[
Re a j − 1

α j
,
Reμ + 1/2

Δ

]
+ Reω + Reα < 0, (F.4.51)

for a∗ = 0 and Δ > 0, then the Riemann–Liouville fractional integral Iα− of the
Fox H-function exists and the following relation holds:

(
Iα
−t

ωHm,n
p,q

[
tσ
∣∣∣∣ (a1,α1), . . . , (ap,αp)

(0, 1) , (b1,β1), . . . , (bq ,βq)

])
(x)

= xω+αHm+1,n
p+1,q+1

[
xσ

∣∣∣∣ (a1,α1), . . . , (ap,αp), (−ω,σ)

(−ω − α,σ), (b1,β1), . . . , (bq ,βq)

]
. (F.4.52)
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Theorem F.7 ([KilSai04, p. 55]) Let α ∈ C (Reα > 0), ω ∈ C, and σ > 0. Let us
assume that either a∗ > 0 or a∗ = 0 and Reμ < −1. Then the following statements
hold:

(i) If either the condition in (F.4.44) is satisfied for a∗ > 0 or a∗ = 0 andΔ ≥ 0, or
the condition in (F.4.45) is satisfied for a∗ = 0 and Δ < 0, then the Riemann–
Liouville fractional derivative Dα

0+ of theFox H-function exists and the following
relation holds:

(
Dα

0+t
ωHm,n

p,q

[
tσ
∣∣∣∣ (a1,α1), . . . , (ap,αp)

(0, 1) , (b1,β1), . . . , (bq ,βq)

])
(x)

= xω−αHm,n+1
p+1,q+1

[
xσ

∣∣∣∣ (−ω,σ), (a1,α1), . . . , (ap,αp)

(b1,β1), . . . , (bq ,βq), (−ω + α,σ)

]
. (F.4.53)

(ii) If

σ min
1≤ j≤n

[
Re a j − 1

αk

]
+ Reω + 1 − {Reα} < 0, (F.4.54)

for a∗ > 0 or a∗ = 0 and Δ ≤ 0, while

σ min
1≤k≤m

[
Re a j − 1

α j
,
Reμ + 1/2

Δ

]
+ Reω + 1 − {Reα} < 0, (F.4.55)

for a∗ = 0 and Δ > 0, where {Reα} denotes the fractional part of the number
Reα, then theRiemann–Liouville fractional derivative Dα− of theFox H-function
exists and the following relation holds:

(
Dα

−t
ωHm,n

p,q

[
tσ
∣∣∣∣ (a1,α1), . . . , (ap,αp)

(0, 1) , (b1,β1), . . . , (bq ,βq)

])
(x)

= xω−αHm+1,n
p+1,q+1

[
xσ

∣∣∣∣ (a1,α1), . . . , (ap,αp), (−ω,σ)

(−ω + α,σ), (b1,β1), . . . , (bq ,βq)

]
. (F.4.56)

F.4.5 Integral Transforms of H-Functions

Here we consider the Fox H -function where, in the definition (F.4.1)–(F.4.4), the
poles of the Gamma functions Γ (bk + βks) and the poles of the Gamma functions
Γ (1 − a j − α j s) do not coincide. The notation introduced in (F.4.9) will be useful
for us in this subsection too.

The first result is related to the Mellin transform of the Fox H -function. This
follows from Theorem F.2. and the Mellin inversion theorem (see, e.g., [Tit86, Sect.
1.5]).



492 Appendix F: Higher Transcendental Functions

Theorem F.8 ([KilSai04, p. 43]) Let a∗ ≥ 0, and s ∈ C be such that

− min
1≤k≤m

[
Re bk
βk

]
< Re s < min

1≤ j≤n

[
1 − Re a j

α j

]
(F.4.57)

when a∗ > 0, and, additionally

ΔRe s + Reμ < −1,

when a∗ = 0.
Then the Mellin transform of the Fox H-function exists and the following relation

holds:
(
MHm,n

p,q

[
x

∣∣∣∣ (a j ,α j )1,p

(b j ,β j )1,q

])
(s) = Hm,n

p,q

[
(a j ,α j )1,p

(b j ,β j )1,q

∣∣∣∣ s
]

, (F.4.58)

where Hm,n
p,q is the kernel in the Mellin–Barnes integral representation of the H-

function.

A number of more general formulas for the Mellin transforms of the Fox H -
function are presented in [KilSai04, p. 44], [MaSaHa10, pp. 39–40].

The next theorem gives the formula for the Laplace transform of the Fox H -
function.

Theorem F.9 ([KilSai04, p. 45]) Let either a∗ > 0, or a∗ = 0,Reμ < −1 be such
that

min
1≤k≤m

[
Re bk
βk

]
> −1, (F.4.59)

when a∗ > 0, or a∗ = 0, Δ ≥ 0, and

min
1≤k≤m

[
Re bk
βk

,
Reμ + 1

2

Δ

]
> −1, (F.4.60)

when a∗ = 0, Δ < 0.
Then the Laplace transformof the Fox H-function exists and the following relation

holds for all t ∈ C, Re t > 0:

(
LHm,n

p,q

[
x

∣∣∣∣ (a j ,α j )1,p

(b j ,β j )1,q

])
(t) = 1

t
Hm,n+1

p+1,q

[
1

t

∣∣∣∣ (0, 1), (a j ,α j )1,p

(b j ,β j )1,q

]
. (F.4.61)

A number of more general formulas for the Laplace transform of the Fox H -
function are presented in [KilSai04, pp. 46–48].
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F.5 Historical and Bibliographical Notes

The (classical) hypergeometric function 2F1 is commonly defined by the following
Gauss series representation (see, e.g., [NIST, p. 384])

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)kk! zk = Γ (c)

Γ (a)Γ (b)

∞∑
k=0

Γ (a + k)Γ (b + k)

Γ (c + k)k! zk .

The term hypergeometric series was proposed by J. Wallis in his book Arithmetica
Infinitorum (1655). Hypergeometric series were studied by L. Euler, and a systematic
analysis of their properties was presented in C.-F. Gauss’s 1812 paper (see the reprint
in the collection of Gauss’s works [Gauss, pp. 123–162]). Studies in the nineteenth
century included those of E.Kummer [Kum36], and the fundamental characterization
by Bernhard Riemann of the hypergeometric function by means of the differential
equation it satisfies. Riemann showed that the second-order differential equation for
2F1, examined in the complex plane, could be characterized (on the Riemann sphere)
by its three regular singularities.

Historically, confluent hypergeometric functions were introduced as solutions of
a degenerate form of the hypergeometric differential equation. Kummer’s confluent
hypergeometric function M(a; b; z) (known also as the Φ-function, see [ErdBat-1])
was introduced by Kummer in 1837 ([Kum37]) as a solution to (Kummer’s) differ-
ential equation

z
d2w

dz2
+ (b − z)

dw

dz
+ aw = 0.

The function M(a, b; z) can be represented in the form of a series too

M(a, b; z) =
∞∑
k=0

(a)k

(b)kk! z
k = 1F1(a; b; z).

Another (linearly independent) solution toKummer’s differential equationU (a; b; z)
(known also as the Ψ -function, see [ErdBat-1]) was found by Tricomi in 1947
([Tri47]).

The function φ(α,β; z), called the Wright function, was introduced by Wright in
1933 (see [Wri33]) in relation to the asymptotic theory of partitions. An extended
discussion of its properties and applications is given in [GoLuMa99]. Special atten-
tion is given to the key role of the Wright function in the theory of fractional partial
differential equations.

The generalized hypergeometric functions introduced by Pochhammer [Poc70]
and Goursat [Gou83a, Gou83b] are solutions of linear differential equations of order
n with polynomial coefficients. These functions were considered later by Pincherle.
Thus, Pincherle’s paper [Pin88] is based on what he called the “duality principle”,
which relates linear differential equations with rational coefficients to linear dif-
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ference equations with rational coefficients. Let us recall that the phrase “rational
coefficients” means that the coefficients are in general rational functions (i.e. a ratio
of two polynomials) of the independent variable and, in particular, polynomials (for
more details see [MaiPag03]).

These integrals were used by Meijer in 1946 to introduce the G-function into
mathematical analysis [Mei46]. From 1956 to 1970 a lot of work was done on this
function, which can be seen from the bibliography of the book byMathai and Saxena
[MatSax73].

The H -functions, introduced by Fox [Fox61] in 1961 as symmetrical Fourier
kernels, can be regarded as the extreme generalization of the generalized hypergeo-
metric functions pFq beyond the Meijer G functions (see, e.g. [Sax09]). The impor-
tance of this function is appreciated by scientists, engineers and statisticians due to
its vast potential of applications in diverse fields. These functions include, among
others, the functions considered by Boersma [Boe62], Mittag-Leffler [ML1, ML2,
ML3, ML4], the generalized Bessel function due to Wright [Wri35a], the general-
ization of the hypergeometric functions studied by Fox (1928), andWright [Wri35b,
Wri40c], the Krätzel function [Kra79], the generalized Mittag-Leffler function due
to Dzherbashyan [Dzh60], the generalized Mittag-Leffler function due to Prabhakar
[Pra71] and to Kilbas and Saigo [KilSai95a], the multi-index Mittag-Leffler func-
tion due to Kiryakova [Kir99, Kir00], and Luchko [Luc99] (see also [KilSai96]), etc.
Except for the functions of Boersma [Boe62], the aforementioned functions cannot
be obtained as special cases of the G-function of Meijer [Mei46], hence a study
of the H -function will cover a wider range than the G-function and gives general,
deeper, and useful results directly applicable in various problems of a physical, bio-
logical, engineering and earth sciences nature, such as fluid flow, rheology, diffusion
in porousmedia, kinematics in viscoelastic media, relaxation and diffusion processes
in complex systems, propagation of seismic waves, anomalous diffusion and turbu-
lence, etc. See, Caputo [Cap69], Glöckle and Nonnenmacher [GloNon93], Mainardi
et al. [MaLuPa01], Saichev and Zaslavsky [SaiZas97], Hilfer [Hil00], Metzler and
Klafter [MetKla00], Podlubny [Pod99], Schneider [Sch86] and Schneider and Wyss
[SchWys89] and others.

A major contribution of Fox involves a systematic investigation of the asymptotic
expansion of the generalized hypergeometric function (now calledWright functions,
or generalized Wright functions, or Fox–Wright functions):

pFq((a1,α1), . . . , (ap,αp); (b1,β1), . . . , (bq ,βq); z) =
∞∑
l=0

p∏
j=1

Γ (a j + α j l)

q∏
k=1

Γ (bk + βkl)

zl

l! ,

where z ∈ C,a j , bk ∈ C,α j ,βk ∈ R, j = 1, . . . , p; k = 1, . . . , q;
q∑

k=1
βk −

p∑
j=1

α j ≥
−1. His method is an improvement of the approach by Barnes (see, e.g., [Barn07b])
who found an asymptotic expansion of the ordinary generalized hypergeometric
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function pFq(z). In 1961 Fox introduced [Fox61] the H -function in the theory of
special functions, which generalized the MacRobert’s E-function (see [Mac-R38],
[Sla66, p. 42]), the generalized Wright hypergeometric function, and the Meijer G-
function. In the mentioned paper he investigated the far-most generalized Fourier (or
Mellin) kernel associated with the H -function and established many properties and
special cases of this kernel.

Like the Meijer G-functions, the Fox H -functions turn out to be related to the
Mellin–Barnes integrals and to the Mellin transforms, but in a more general way.
After Fox, the H -functions were carefully investigated by Braaksma [Bra62], who
provided their convergent and asymptotic expansions in the complex plane, based
on their Mellin–Barnes integral representation.

More recently, the H -functions, being related to the Mellin transforms (see
[Mari83]), have been recognized to play a fundamental role in probability theory and
statistics (see e.g. [MaSaHa10, Sch86, SaxNon04, UchZol99, Uch03]), in fractional
calculus [KilSai99, KiSrTr06, Kir94], and its applications [AnhLeo01, AnhLeo03,
AnLeSa03, Hil00, MatSax73], including phenomena of non-standard (anomalous)
relaxation and diffusion [GorMai98, Koc90]. Several books specially devoted to
H -functions and their applications have been published recently. Among them are
the books by Kilbas and Saigo [KilSai04] and by Mathai, Saxena and Haubold
[MaSaHa10].

In [MaPaSa05] the fundamental solutions of the Cauchy problem for the space-
time fractional diffusion equation are expressed in terms of proper Fox H -functions,
based on their Mellin–Barnes integral representations.

The asymptotic properties of special functions are one of the most important
questions to be solved. Several technical approaches are described in [Olv74] and in
some chapters of [NIST] (see also [Evg78], where asymptotic analysis is developed
in the framework of the theory of general entire functions, and the survey paper
[Par19]).

Different properties of special functions are discussed in [Mat93, Mik59a,
WongZh99a, WongZh99b]

F.6 Exercises

F.6.1. ([NIST, p. 386]) Prove that the following equalities hold for all z, |z| < π/4:

(i) F(a; 1/2 + a; 1/2;− tan2 z) = (cos z)2a cos (2az);

(ii) F(a; 1/2 + a; 3/2;− tan2 z) = (cos z)2a
sin ((1 − 2a)z)

(1 − 2a) sin z
.

F.6.2. ([NIST, p. 386]) Prove that the following equalities hold for all z, |z| < π/2:

(i) F(−a; a; 1/2; sin2 z) = cos (2az);

(ii) F(a; 1 − a; 1/2; sin2 z) = cos ((2a − 1)z)

cos z
;
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(iii) F(a; 1 − a; 3/2; sin2 z) = sin ((2a − 1)z)

(2a − 1) sin z
.

F.6.3. ([KilSai04, p. 63]) Prove the following representations of the Kummer con-
fluent hypergeometric function 1F1 and the Gauss hypergeometric function
2F1 in terms of the Fox H -function:

(i) H 1,1
1,2

[
z

∣∣∣∣ (1 − a, 1)

(0, 1), (1 − c, 1)

]
= Γ (a)

Γ (c)
1F1(a; c;−z);

(i i) H 1,2
2,2

[
z

∣∣∣∣ (1 − a, 1), (1 − b, 1)

(0, 1), (1 − c, 1)

]
= Γ (a)Γ (b)

Γ (c)
2F1(a; b; c;−z).

F.6.4. ([Kir94, p. 334]) Prove the following relations for the incomplete gamma-
and Beta-functions:

(i) γ(α, z) :=
z∫

0

e−t tα−1dt = 1F1(α;α + 1;−z);

(i i) Bz(p, q) :=
z∫

0

t p−1(1 − t)q−1dt = 2F1(p, 1 − q; p + 1; z).

F.6.5. ([Kir94, p. 334]) Prove the following representation of the error function in
terms of confluent hypergeometric function:

erf(z) := 2√
π

z∫

0

e−t2dt = 2z√
π

1F1(
1

2
; z
2
;−z2).

F.6.6. Prove the following representation of the classical polynomials in terms of
special cases of the hypergeometric functions pFq :

(i) Laguerre polynomials ([MaSaHa10, p. 29])

L(α)
n (z) := ez

zαn!
dn

dzn
{
e−z zn+α

} = (1 + α)n

n! 1F1(−n;α + 1; z);

(ii) Jacobi polynomials ([MaSaHa10, p. 28])

P (α,β)
n (z) := (−1)n

2nn! (1 − z)−α(1 + z)−β dn

dzn
{
(z2 − 1)n

}

= (α + 1)n
n! 2F1

(
−n, n + α + β + 1;β + 1; 1 − z

2

)
;
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(iii) Legendre polynomials ([Kir94, p. 333]) (for |z| < 1)

Pn(z) : = 1

2nn!
dn

dzn
{
(1 − z)α+n(1 + z)β+n

}

= (−1)n2F1

(
−n, n + 1; 1; 1 − z

2

)
, |z| < 1;

(iv) Tchebyshev polynomials ([Kir94, p. 333])

Tn(z) := cos(arccos z) = n!√π

Γ (n + 1
2 )

P
(− 1

2 ,− 1
2 )

n (z) = 2F1

(
−n, n; 1

2
; 1 − z

2

)
;

(v) Bessel polynomials ([Kir94, p. 333])

Yn(z, a, b) :=
n∑

k=0

(−n)k(a + n − 1)k
k!

(
− z

b

)k = 2F0
(
−n,−a + n − 1; −; − z

b

)
;

(vi) Hermite polynomials ([NIST, p. 443])

Hn(z) := n!
∑
k=0

[n/2] (−1)k(2z)n−2k

k!(n − 2k)! = (2z)n2F0

(
−n

2
,−n

2
+ 1

2
; −; − 1

z2

)
.

F.6.7. ([Kir94, pp. 331–332]) Prove the following representations of some elemen-
tary functions in terms of the Meijer G-function:

(i)
zγ

1 + azα
= a− γ

α G1,1
1,1

[
azα

∣∣∣∣
γ
α
γ
α

]
;

(i i) zβe−ηzα = η− β
α G1,0

0,1

[
ηzα

∣∣∣∣βα
]

;

(i i i) log

(
1 + z

1 − z

)
= G1,2

1,1

[
−z2

∣∣∣∣1,
1
2

1
2 , 0

]
, |z| < 1;

(iv)

[
1

2
(1 + √

1 − z)

]1−2a

= 2a − 1√
π22−2a

G1,2
2,2

[
−z

∣∣∣∣ 1 − a, 3
2 − a

0, 1 − 2a

]
.

F.6.8. ([Bra62, p. 279]) Prove the following series representation for the Fox H -
function:

β1z
−b1H 1,n

p,q

[
zβ1

∣∣∣∣ (a1,α1), . . . , (ap,αp)

(b1,β1), . . . , (bq ,βq)

]
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=
∞∑
ν

(−z)ν

ν!

n∏
j=1

Γ
(
1 − a j + α j

(
b1+ν
β1

))

q∏
k=2

Γ
(
1 − bk + βk

(
b1+ν
β1

)) p∏
j=n+1

Γ
(
a j − α j

(
b1+ν
β1

)) .
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