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Abstract. In this paper the end-to-end security mechanisms of the
Transport Layer Security (TLS) as well as the Datagram Transport Layer
Security (DTLS) standard and the security related plugins within the
Data Distribution Service (DDS) specification are analyzed and com-
pared. The basic IT security requirements with regard to industrial ap-
plications are defined. Both, TLS/DTLS and DDS Security are evaluated
against these requirements, and features such as cryptographic keys, key
exchange mechanisms, encryption algorithms and authentication meth-
ods are compared. The results shall indicate if and why the use of a DDS-
specific security protocol is necessary instead of deploying TLS/DTLS.
Furthermore, the fundamental differences between TLS and DTLS are
discussed and the distinctive features of DDS Security are highlighted.

1 Introduction

The continuous advances of trends like Industrie 4.0 (14.0), the Internet of
Things (IoT), and Cyber-Physical Systems (CPS) reshape the basic structure
of communication systems in the industrial domain. The decentralization of
systems and applications like remote monitoring, controlling and configuration,
cloud computing, and machine-to-machine communication require remote ac-
cess to communication networks and subsequently create big challenges for the
current IT security methods. The development of components and systems by
different manufacturers and the varying requirements for industrial applications
lead to various proprietary communication protocols. The lack of interoperability
between different systems is tackled by middleware protocols and frameworks,
such as MQTT [OAS15], DDS [Objl4], OPC UA [MLDO09|, web services and
many more.

Previous work in [FSK'18] showed that there is a wide variety of middle-
ware solutions in the industrial domain. And all of these approaches have varying
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implementations of common IT security features. While features like client au-
thentication and authorization are usually realized within a middleware-specific
IT security infrastructure, most middlewares utilize the Transport Layer Se-
curity (TLS) [DRO8] or Datagram TLS (DTLS) [RM12] standards to provide
a secure channel for data exchange. In contrast, the Data Distribution Service
(DDS) protocol implements its own authentication and encryption layer [Obj18].
As industrial networks are becoming more vertically-oriented, where shop floor
operations need to stay in direct contact with manufacturing execution systems
or cloud computing that interconnects different locations, the use of multiple
middlewares for different application purposes has to be expected. Different im-
plementations of security features in each middleware requires users to main-
tain separate security infrastructures that can become unnecessarily difficult to
manage. A joint IT security infrastructure that serves all middlewares would
facilitate the setup and management of such a complex multi-middleware sys-
tem and benefit the scalability of a network. The use of an alternative security
approach within DDS contradicts this and potentially impedes compatibility to
middlewares that make use of the TLS/DTLS standard. Hence, it is required to
compare the DDS and TLS/DTLS approaches and evaluate their differences.

This paper first defines IT security requirements for industrial applications
in Section 2. In Section 3 the general DDS architecture and its security fea-
tures, as well as the TLS and DTLS standards are described. The approaches
are compared and evaluated against the defined IT security requirements in Sec-
tion 4. The main differences and intentions behind the alternative DDS security
mechanisms are discussed. The paper is concluded in Section 5.

2 IT security requirements in Industrie 4.0

Based on the security objectives defined in the ISO/IEC 27001 standard, this
section lists the main requirements for information security and puts them into
an industrial context. These shall be used to evaluate the DDS Security and
TLS/DTLS functions in the following sections.

Authenticity — of users or devices represents the main requisite to achieve
most other security objectives. Before encrypted messages are decrypted, or
checked for their integrity, it needs to be ensured that the originator is truly
who it claims to be. In an industrial environment, access to machine data or its
maintenance controls should only be granted to entities that can reliably authen-
ticate themselves. Not only to be able to track and associate any network activity
to a unique identity to provide Non-repudiation but also to apply Access Control
mechanisms. User IDs and passwords are standard procedures. More sophisti-
cated and secure approaches include certificates. They provide a description and
a digital signature of an entity’s identity. This certificate is additionally signed
by a third party that both communicating partners trust, usually referred to as
Certificate Authority (CA), to verify the certificate’s contents.

Confidentiality — of information is required if sensitive digital data shall only
be viewed by authorized entities. It therefore needs to be securely stored or
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transported. When data is transmitted over an unsecured channel, an attacker
that has gained access to the channel can eavesdrop and obtain all transmit-
ted messages. Communication between separated factory sites usually contains
confidential company-related information like trade secrets or personal data and
needs protection. A common method to ensure confidentiality is data encryption.
An encryption key is used to encrypt information or a message. An authorized
recipient that is in possession of the key can decrypt and view the message. Dif-
ferent encryption algorithms use different mathematical methods to obfuscate
digital information. The two main schemes are symmetrical and asymmetrical
encryption. Symmetrical encryption implies the use of a single key for encrypt-
ing and decrypting while asymmetrical encryption uses a mutually generated
key-pair which does not require a preceding key exchange. As symmetric-key
encryption is much faster, it is generally used to encrypt the actual data, while
asymmetric schemes are only used to exchange the symmetric key during initial-
ization.

Integrity — of data involves maintaining its accuracy, consistency and trust-
worthiness throughout its whole life cycle. Machine communication can be inter-
cepted and the sensor or control data can be tampered to harm or even destroy
systems. But even non-human-caused events such as electromagnetic interference
or software crashes can lead to wrong or faulty alterations in data. A common
approach to detect forged or altered data are cryptographic checksums and hash
functions that generate Message Authentication Codes (MACs).

Non-repudiation — is the assurance that the execution of previous actions
cannot be denied. In the context of communication, it provides technical proof
of the authorship of messages. A user with malicious intent cannot access and
sabotage information or certain processes within a company and repudiate his
actions afterwards. Digital signatures in messages provide indisputable proof of
its originator. Based on asymmetric cryptographic schemes, a digital signature is
calculated with a private key only the message author has access to. Recipients
can verify the signature against a corresponding unique public key.

Awailability — of resources and information ensures that authorized parties
can access it when needed. The value of information is lost if it cannot be accessed
at the right time. Services within a factory that can be accessed through the In-
ternet to enable cloud-computing or for other purposes can be a potential target
for distributed denial-of-service (DDoS) attacks. Further factors that could lead
to unavailability of information may include hardware failures, software issues,
power outages or natural disasters. Besides regular hardware maintenance and
software patching, redundant systems and high-availability clusters with fail-over
routines can provide enhanced availability in the event of failure.

Access Control — is the selective restriction of authenticated entities to ser-
vices, data and other resources. In the case of few users and few resources, access
control can be configured individually for each entity, but in large distributed
systems with many users and hierarchical levels more sophisticated approaches
are required.
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3 Fundamentals

3.1 DDS Core

Data Distribution Service is a middleware communication standard maintained
by the Object Management Group (OMG) [Obj|. In the context of distributed
systems, the term middleware refers to a software layer between the application
and the operating system. It abstracts various functions to simplify the connec-
tion of components in a system and allows developers and users to focus on the
application functionality rather than on providing mechanics for the exchange
of data. DDS is a data-centric publish-subscribe protocol that targets the data
sharing needs of highly scalable computing environments. In message-centric
middlewares, messages are just passed between applications. Data-centricity on
the other hand implies the addition of contextual information to messages so
that applications can interpret the received data more easily. This makes the
middleware aware of the data it processes and allows it to adapt its data sharing
to the needs of the application.

The DDS specification is separated in several parts and describes the pro-
vided services in the Unified Modeling Language (UML) based on a Platform
Independent Model (PIM). The PIM ensures the portability of implementations
in any programming language and on any operating system. The DDS Core spec-
ifications include the Real-Time Publish-Subscribe (RTPS) [Obj14] protocol and
the Data-Centric Publish-Subscribe (DCPS) layer [Obj15].

Data-Centric Publish-Subscribe Architecture The DDS architecture is
decentralized to provide high reliability and low-latency data connectivity for
mission-critical IoT applications. As seen in Fig. 1, data in DDS is made avail-
able within a global data space consisting of DDS Domains. Individual appli-

Domain Participant A Domain Participant B

RTPS Message

RTPS Header

=

TPS

z
2
£

RTPS SubMessage J
SubMsg Header

SubMsg Element

SubMsg Element

g
:
:

Domain Participant C ) . Domain Participant E
Fig.2. The RTPS
Fig. 1. The DDS architecture. message structure.



205

cations locally store their required data temporarily while the rest is held in
remote nodes and accessed through APIs. Based on the principles of the publish-
subscribe paradigm, data is read from or written to Topics by applications using
Data Reader or Data Writer entities also referred to as Endpoints. DDS Domains
logically divide the data space to optimize communication and addressing. Appli-
cations can host Domain Participant entities that create and hold Data Writers,
Data Readers and Topics. Furthermore, they contain security and QoS-related
configurations and are identified with Globally Unique Identifiers (GUIDs). A
Domain Participant is bound to a single Domain and cannot communicate with
Endpoints on another Domain. A discovery module in the RTPS protocol uses
preconfigured dedicated Data Readers, Data Writers and Topics to announce
and collect QoS and security policies and information about new Domain Par-
ticipants inside the domain. A newly created Domain Participant announces
itself to a list of configured target peers over multicast. Changed properties of
a Domain Participant are automatically propagated. Endpoints can also be ex-
cluded from discovery announcements if network or device resources are limited.

From the point of view of an application, it has direct access to the entire
part of the global data space, while in reality relevant data is remotely accessed
on demand. The global data space is therefore a collection of local application
stores that are available to all participants on a peer-to-peer basis. All devices
are essentially connected to a virtual bus and communicate with each other
without the need for a cloud or server broker. This decentralized architecture
enables systems to communicate in real-time while scaling across a large amount
of participants.

Real-Time Publish-Subscribe Protocol The DDS DCPS specification sets
various requirements for its underlying transport protocol, such as discovery ser-
vices for new devices, lack of single points of failure like centralized name servers
or information brokers and QoS properties to enable fault tolerance, reliability
and timeliness. However, it does not actually specify a wire protocol or the data
encoding. To ensure that different DDS implementations can interoperate, the
Real-Time Publish-Subscribe Protocol was utilized. RTPS defines a standard
wire protocol that can take advantage of the configurable QoS settings in DDS.
It was first approved as part of the Real-Time Industrial Ethernet Suite TEC-
PAS-62030 by the IEC and was tailored to comply with the requirements of
publish-subscribe data-distribution systems. As a result it forms a close synergy
with DDS and its underlying behavioral architecture. Similar to DCPS, RTPS is
specified through a PIM which defines message structures, sets of legal message
exchanges and discovery functions. Even though the original specification by
OMG only provides a Platform Specific Model (PSM) for UDP/IP, most com-
mercial implementations, like Connext DDS, CoreDX or OpenSplice, adopted a
TCP/IP binding as well.

As seen in Figure 2 the RTPS message structure consist of a RTPS Header,
followed by a variable amount of RTPS Submessages. Each Submessage con-
sists of a Submessage Header, Submessage Elements and optionally a Serialized
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Payload. The RTPS Header identifies the RTPS protocol and its vendor. Sub-
messages contain application data or different types of metadata information,
such as acknowledgements. The specific type is identified by the Submessage
Header. In the case of an acknowledgement, the Submessage Elements could be
a set of sequence numbers for missing messages and the related Data Reader
and Writer IDs for identification. A Submessage of type Data contains the value
of an application data-object in the Serialized Payload and the data type and
other relevant information in the Submessage Elements.

Quality of Service Since DDS utilizes a broker-less infrastructure, commu-
nicating entities run the risk of loosing control over the data flow and either
receive unnecessary information or do not meet the reliability requirements of
the application. QoS policies are therefore a very important property of the
DDS architecture. As indicated in Fig. 1, each DDS entity has a set of config-
urable QoS parameters that provide a large number of possibilities to regulate
the data flows. If certain Topics need to be updated periodically, the Deadline
policy establishes a contract that the publishing application has to meet. Sim-
ilarly, subscribing applications can set the TimeBasedFilter policy to prevent
receiving all published messages to a Topic and only retrieve data in fixed time
intervals. To name a few more examples, the Durability policy allows late join-
ing Data Readers to obtain historical data from Data Writers by configuring
its durability mode; the Liveliness policy helps applications to identify inactive
entities within the DDS data space. Redundancy can be achieved by publishing
data from multiple Data Writers to the same Topic. The Ownership policy allows
to configure which publisher can update the contents of the Topic and in what
order other publishers are authorized to do so if the first one fails to deliver in
time.

3.2 DDS Security

Information assurance in DDS is realized within the DDS Domains, where the
read and write access between Topics and Domain Participants is controlled.
Application-defined security policies that affect a DDS Domain, its Topics and
participants are enforced by DDS Security.

The DDS Security Model specifies five service interfaces that allow the imple-
mentation of plugins. Each of these Service Plugin Interfaces (SPIs) implement
certain security functions. Combined together they provide information assur-
ance to DDS systems. This modular approach allows for flexible deployment and
makes it possible to complement existing DDS implementations without having
to adapt them. DDS provides built-in plugins, namely DDS:Auth:PKI-DH for
authentication, DDS:Access:Permissions for access control and DDS:Crypto:-
AES-GCM-GMAC for message encryption and authentication. They can be used
as is or can be replaced with customized implementations. In this paper how-
ever, only the built-in standardized service plugins are evaluated. The additional
Logging Service Plugin provides means to log security events for a Domain Par-
ticipant. The Data Tagging Service Plugin allows the addition of security labels
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or data tags to messages for additional access control and message prioritization.
Since they are not mandatory conformance points with DDS Security, they will
not be further discussed in this paper.

Authentication Service Plugin DDS:Auth:PKI-DH facilitates the authenti-
cation of Domain Participants invoking operations in DDS Domains. Depending
on the configuration, a Domain Participant might need to be authenticated in
order to communicate in a DDS Domain. Authentication is based on a trusted
Identity CA that mutually authenticates Domain Participants, either by using
Rivest-Shamir-Adleman (RSA) [MKJ*16] or Elliptic Curve Digital Signature Al-
gorithms (ECDSA) [ANSO05]. Depending on the used algorithm, the public and
private key-pairs of the CA and the Domain Participant shall either be 2048-bit
RSA keys or 256-bit EC keys for the NIST P-256 curve [Natl3]. To calculate a
shared secret, ephemeral variants of either 2048-bit Diffie-Hellman (DHE) key
or 256-bit Elliptic Curve Diffie-Hellman (ECDHE) key agreement methods are
used [Res99]. X.509 v3 certificates [Int16] are used for identification. They are
validated with a Certificate Revocation List (CRL) [CSFT08| or/and the On-
line Certificate Status Protocol (OCSP) [SMAT13|. A shared Identity CA signs
the identity certificates of Domain Participants. The same or a separate shared
CA signs the permissions and domain governance documents which specify the
access rights of a Domain Participant and the Domain’s security policies respec-
tively (Section 3.2). Regardless of the choice, the CAs will be labeled separately
as Identity CA and Permissions CA throughout this paper. Before a Domain
Participant is enabled it therefore needs to be configured with:

— A X.509 v3 CA certificate that defines the Identity CA.
— A X.509 v3 identity certificate that defines the Domain Participant by binding
its GUID to its public key and chains up to the Identity CA.

Used for later access control (Section 3.2):
— A X.509 v3 CA certificate that defines the Permissions CA.
— A Domain governance document, signed by the Permissions CA.
— A Domain permission document, signed by the Permissions CA.

Authentication is started by a 3-message handshake protocol. If for example
a Data Reader of Domain Participant A wants to read from a Topic hosted by
Domain Participant B, the Domain Participant with the lowest GUID sends a
handshake request.

1. If Domain Participant B initiates the protocol, the request will contain its
generated DH public key (B.dh), its identity certificate (B.cert) signed by
the Identity CA, the Domain permissions document signed by the Permis-
sions CA and a random 256-bit nonce (B.rand) used for challenge-response
authentication and key derivation.
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2. Domain Participant A validates the identity certificate B.cert against the
Identity CA and sends a reply with its own generated DH public key (A.dh),
its own CA-signed identity certificate (A.cert), its CA-signed Domain per-
missions document, the received 256-bit nonce (B.rand), a newly generated
256-bit nonce of its own (A.rand) and a generated digital signature (A.sig)
on A.rand and B.rand.

3. Domain Participant B validates A.cert, verifies A.sig and sends its own sig-
nature (B.sig) on A.rand and B.rand.

4. Domain Participant A finalizes the handshake after verifying B.sig.

Both Domain Participants use each others DH public keys (A.dh, B.dh) to
compute a shared secret and proceed to hash it with the 256-bit Secure Hash
Algorithm (SHA256) [EH11]. Domain Participant B generates a master salt,
a random session ID and a random Initialization Vector (IV) suffix. Based on
HMAC-Based Key Derivation (HKDF) [KE10], Domain Participant B creates a
master sender key using the shared secret, the master salt, A.rand and B.rand
in the extraction phase. The master sender key and the salt are sent to Domain
Participant A using a built-in secure Data Writer and Data Reader. The sent
key material is encrypted using the shared secret. As the second step of the
HKDF, both Participants expand the master sender key, master salt, session ID,
A.rand and B.rand into a session key. HMAC-SHA256 serves as the extraction
function and as the underlying pseudorandom function (PRF) [EH11]| for the
expansion. The IV is formed by the IV suffix and the session ID. The session
key and the IV are used to create the actual ciphertext and MACs. A crypto
header precedes every encrypted message, containing the session ID and the IV
suffix. For each subsequent MAC or encrypt operation under the same session
key, the IV is incremented. When reestablishing a connection, the session ID is
incremented and a new session key is derived from the new session ID and the
old key material.

Access Control Service Plugin DDS:Access:Permissions implements access
control mechanisms within DDS systems. As described in 3.2, a Domain Partic-
ipant needs to be configured with a Domain governance and permission docu-
ment, signed by the Permissions CA. The document’s purposes are specified as
follows:

— The Domain governance document specifies the security policies of a do-
main. It configures various aspects applying to the whole domain, such as the
protection mode for RTPS messages (Section 3.2), whether discovered but
unauthenticated Domain Participants should be able to access unprotected
Topics, whether read or write access to Topics should be restricted to Domain
Participants that have the proper permissions, whether only the Serialized
Payload, the Submessage or the whole RTPS message (Section 3.1) sent on
specific Topics should be protected and with which kind (see protection levels
in Section 3.2) etc.
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— The permissions document contains the identity of the Domain Participant to
which the permissions apply, matching the contents of its identity certificate.
Furthermore, the valid time dates for the permissions are stated. A set of
rules define the permissions of the Domain Participant. Any DDS operation
like joining a Domain or publishing/subscribing to certain Topics is either
allowed or denied. Referring to the example in Section 3.2, after successful
authentication and granted that the governance document requires Partici-
pants to have proper permissions to access any Topic, Domain Participant B
would first check the permissions document of Domain Participant A whether
it is allowed to access the requested Topic or not.

Cryptographic Service Plugin DDS:Crypto:AES-GCM-GMAC provides var-
ious levels of message encryption and authentication. It utilizes the Advanced
Encryption Standard (AES) in Galois Counter Mode (AES-GCM) [Nat07] and
supports 128-bit and 256-bit key sizes with a 96-bit nonce as IV. MACs are pro-
vided using Galois MAC (AES-GMAC) [Nat07]. GCM is an operation mode for
symmetric key cryptographic block ciphers. It enables authenticated encryption
at high throughput with low cost and latency. Because the block ciphers are gen-
erated with counters, they can be encrypted and decrypted in arbitrary order.
This is important for DDS, as Data Readers might not receive all data sam-
ples written by a Data Writer when content filtering QoS policies are applied.
Furthermore, this allows parallel processing and pipelining of block encryption
and decryption operations, optimizing it for the real-time communication re-
quirements of DDS. Each AES-GCM transformation produces a ciphertext and
a MAC using the same secret key. AES-GMAC is essentially an authentication-
only variant of AES-GCM which only generates a MAC if no plaintext is selected
for encryption.

The Domain governance document (3.2) specifies the protection mode of
RTPS messages within a Domain. Depending on the security requirements of the
network environment and the available computational resources, RTPS messages
can be secured as a whole, on Submessage or even only on Payload level (Section
3.1). For that, different protection modes are provided:

None — indicates no cryptographic transformation.

Sign — indicates the cryptographic transformation shall only be a message
authentication code (MAC) without encryption.

Encrypt — indicates the cryptographic transformation shall include encryption
followed by a MAC that is computed on the ciphertext.
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3.3 TLS and DTLS

The Transport Layer Security protocol (TLS) and the Datagram Transport Layer
Security protocol (DTLS) are applied over TCP and UDP respectively, in order
to provide confidentiality, integrity and authenticity. In this work the focus lies
on the security features of TLS version 1.2 [DR08] and DTLS version 1.2 [RM12].

Transport Layer Security The Transport Layer Security protocol is used
to apply security for communication between client/server applications over a
reliable transport protocol and operates independently of application layer pro-
tocols. TLS utilizes two layers for establishing the secure connection, namely the
TLS handshake protocol and TLS record protocol. The TLS handshake protocol
ensures authentication of a peer’s identity, negotiation of the protocol version,
cryptographic algorithms and computation of a shared secret. It utilizes X.509
v3 certificates and trusted CAs that authenticate servers and optionally clients.
The TLS record protocol uses the keys generated from the handshake, to en-
sure data confidentiality and integrity. The record protocol uses symmetric-key
cryptography for data encryption and ensures integrity through MACs. TLS
supports a variety of cipher suites listed in [DR08,SCMO08|. They determine the
algorithms used for key exchange, authentication and symmetric-key encryption.

If a client wants to establish a mutually authenticated and secure communica-
tion channel to a TLS-enabled server, the client will initiate the TLS handshake
protocol as shown below. For the purpose of comparing the security features of
DDS and TLS/DTLS, the used cipher suite shall be TLS DHE RSA WITH
_AES 128 GCM_SHA256 [SCMO08|, so that it is configured similarly to the
specified authentication and cryptographic plugins of DDS.

1. The client sends a ClientHello message to the server containing the requested
TLS protocol version, cipher suite and a 256-bit nonce (C.rand) for challenge-
response authentication and key derivation.

2. The server sends a ServerHello message which contains the chosen TLS pro-
tocol version, the cipher suite, the session ID and the server’s nonce (S.rand).
It proceeds to send its CA-signed certificate (S.cert). As an ephemeral DH
key-exchange was negotiated, the server additionally sends its DH public key
(S.dh) and appends a generated digital signature (S.sig) on S.dh, S.rand and
C.rand. Tt concludes the response with a ServerHelloDone message.

3. The client validates S.cert and verifies S.sig. It then sends its own CA-signed
certificate (C.cert) and his DH public key (C.dh) to the server as well as
a generated signature C.sig on all previous handshake messages including
S.rand and C.rand.

4. The server completes the handshake after validating C.cert and verifying
C.sig.
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In case of TLS version 1.2, the hash algorithm specified in the cipher suite is
the base for the PRF involved in the key derivation. Server and client compute
a premaster secret using each others DH public keys (C.dh and S.dh). A master
secret is generated from the premaster secret, C.rand and S.rand using HMAC-
SHA256. Further key material is computed from the master secret, C.rand and
S.rand using a PRF similar to the one used in the expansion phase of the HKDF.
The key material includes the session keys that are used by the record layer
protocol to create MACs and the ciphertext for both directions individually.
The IV consists of an implicit and explicit nonce. The implicit nonce is created
as part of the key material. The explicit nonce is generated by the sender and
is carried by each TLS record. For every invocation of the GCM encryption
function under the same session key, the explicit nonce shall be incremented.
A TLS session can be resumed by exchanging a new set of C.rand, S.rand and
generating new key material.

Datagram Transport Layer Security The Datagram Transport Layer Secu-
rity protocol adapts the TLS protocol to unreliable transports like UDP. Similar
to TLS, it also utilizes the handshake and the record protocol with additional
features to ensure the reliable delivery of handshake messages during session ne-
gotiation. These include the introduction of message and record sequence num-
bers to handle re-ordering and losses during the handshake or record message
exchange respectively. Furthermore, message loss is handled with retransmis-
sion timers. The cipher suites used in DTLS are adapted from TLS as stated in
[RM12].

4 Evaluation

In this section DDS and TLS/DTLS are compared with regard to the IT security
requirements defined in Section 2.

Authenticity: Both DDS and TLS/DTLS make use of a PKI, where commu-
nicating parties are authenticated with X.509 v3 certificates, signed by a trusted

Table 1. Comparison of the built-in DDS Security plugins and common
TLS/DTLS cipher suites

Requirements TLS/DTLS DDS
PKI with X.509 certificates PKI with X.509 certificates
Authenticity RSA or ECDSA and DHE or ECDHE for|RSA or ECDSA and DHE or ECDHE for
authentication and key exchange authentication and key exchange
Confidentiality |[AES-GCM AES-GCM
Integrity AES-GMAC AES-GMAC
Non-repudiation|None Possible with alternative plugins
Availability None QoS-policies to enable redundancy
Access Control | None Permissions and Governance document
signed by a CA
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shared CA. The DDS:Auth:PKI-DH plugin offers either RSA or ECDSA for
certificate authentication and relies on DHE or ECDHE for the key exchange.
Similar configurations can be achieved with common TLS/DTLS cipher suites,
namely:

TLS_DHE RSA WITH AES 128 GCM_SHA256

~ TLS_DHE_ECDSA_ WITH AES 128 GCM_SHA256

~ TLS_ECDHE_RSA_WITH AES 128 GCM_SHA256

~ TLS_ECDHE_ECDSA_ WITH AES_ 128 GCM_SHA256

Further comparisons in this section and in Table 1 will assume the usage of
one of these TLS/DTLS cipher suites. The use of 2048-bit keys for RSA and
DHE or 256-bit EC keys for ECDSA and ECDHE conforms with the state of
the art cryptographic security standards [BR18|. Furthermore, the availability of
ephemeral variants of the DH key exchange provide perfect forward secrecy. The
handshake of DDS closely resembles the TLS handshake protocol with minor
differences regarding the key derivation and key exchange. In TLS/DTLS, both
sides derive their key material from the premaster secret. In DDS, the handshake
initiator derives the key material, encrypts and sends it to the other participant
using the shared secret. Key derivation in DDS is based on the HKDF. In the
case of not uniformly distributed keying material, an attacker could gain partial
knowledge about it (e.g. exchanged DH values). HKDF uses the extract phase
to eliminate the risk of having a dispersed entropy of the input keying material
and concentrates it into a cryptographically strong key first to expand upon it
later. TLS/DTLS utilizes a similar scheme with a differently implemented PRF
and without the preceding extraction phase. However, the transformation of the
premaster secret into the master secret serves a similar purpose. Nevertheless,
the new TLS version 1.3 [Resl18] adopted the HKDF approach to standardize
the key derivation and conform with the current security standards.

Confidentiality: AES-GCM with either 128-bit or 256-bit keys is supported by
DDS and TLS/DTLS and is currently considered to be a secure encryption and
decryption standard [BR18|. This Authenticated Encryption with Associated
Data (AEAD) cipher suite provides confidentiality, integrity and authenticity.
DDS fully utilizes the AEAD functionality by using different RTPS message
protection modes. Among other configuration options, it is possible to use the
"authenticated encryption" on the payload and consider the header of a message
as the "associated data" which is only equipped with a MAC. This gives the
payload confidentiality, the header integrity and both authenticity.

Integrity: AES-GCM natively provides encrypt-then-MAC functionality. By
applying a keyed-hash function on the ciphertext, its data integrity is ensured.
TLS initially only made use of the MAC-then-encrypt construct which was re-
garded as secure at the time of its original specification. It is known today that
malleable ciphertext allows attackers to alter messages without breaking the in-
tegrity of the encryption. The encrypt-then-MAC approach identifies invalid or
corrupted ciphertext without having to waste resources on decrypting the mes-
sage first. The introduction of AEAD cipher suites solved these concerns. In case
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no data encryption is required, the nature of the AES-GCM allows to only gen-
erate MACs using the same key, referred to as AES-GMAC. While AEAD cipher
suites are optionally supported by TLS 1.2, in TLS 1.3 their use is mandated
and non-AEAD ciphers are not supported.

Non-repudiation: Neither TLS/DTLS nor DDS digitally sign messages out-
side of the initial handshake. However, the DDS specification states that alterna-
tive plugin implementations can make use of digital signatures for regular data
exchange. The RTPS messages already have the necessary structure to carry
additional signatures, as they could simply replace the MACs.

Awailability: TLS/DTLS does not provide any means to guarantee availabil-
ity. The DDS Security plugins also do not consider availability assurance, how-
ever the inherent DDS architecture and its QoS policies enable various possibil-
ities to create redundant communication patterns and ensure the availability of
data access.

Access Control: DDS makes use of permissions and governance documents
that specify access rights to individual Topics and general security policies within
a whole Domain. The documents are legitimized by a CA that is part of the
PKI. TLS/DTLS is unable to provide such functionality, as it lacks the same
tight integration into the DDS architecture.

5 Conclusion

Before the DDS Security specification was published, the usage of TLS/DTLS
was best practice. DDS communication would have simply been layered on top
of it. Since TLS/DTLS operates on the transport layer in the ISO/OSI reference
model, all application data is encrypted according to the configured cipher suite.
Whenever two Endpoints attempted to communicate, a separate TLS/DTLS ses-
sion was created between the two DDS-enabled applications. However, the DDS
Security specification introduced a new plugin-based security approach that was
tightly knit into the existing DDS core architecture. While the basic mecha-
nisms like authentication, key exchange and encryption were addressed with
similar standards and approaches as in TLS/DTLS, more sophisticated features
like access control could only be realized by integrating it into the DDS Core
specification. Furthermore, availability, even though not explicitly part of the
DDS Security specifications, can be ensured using the decentralized nature of
the DDS communication topology. Together with the big variety of QoS parame-
ters, redundant communication patterns can be established to avoid single point
of failure scenarios. Another big difference to TLS/DTLS is the ability of DDS
to separately configure the protection modes for the underlying communicating
entities and their logical address space. Each Topic can be protected differently,
so that data being published and subscribed is either encrypted, only signed
or not secured at all. The DDS-specific RTPS messages itself can be protected
on different levels and in different configurations. E.g. encrypting the payload
and submessages and providing MACs for the message header or encrypting the
message as a whole. The Domain address space can be differently configured by
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specifying which entities need authentication and how much access is granted to
them individually. While in TLS/DTLS each individual connection between two
applications is secured separately with different master secrets that first need to
be derived, DDS reuses key material that is once established for multiple con-
nections. Two Domain Participants can host multiple Data Readers and Data
Writers and reuse the same master sender key to derive session keys for the
different connections. When adding up the various configuration possibilities of
DDS Security, its advantages over TLS/DTLS become clear. DDS promises to
be a highly scalable middleware that provides low-latency communication for
distributed systems. A security architecture that can be tailored by the user to
its own use-case is therefore essential to achieve these advertised goals, while
still upholding current security standards. In environments where applications
scale across powerful server nodes and resource-constrained embedded devices
with networks where bandwidth capacity can be scarce, the security mechanisms
and the messages on the wire need to be customizeable in complexity and size.
TLS/DTLS has a large set of cipher suites but is unable to provide the same
level of adaptability as the service plugins in DDS.

In this work the basic security requirements for industrial applications were
defined and the the security functions of DDS Security and TLS/DTLS were dis-
cussed and evaluated. The results have shown that both make use of the same
state of the art mechanisms to provide confidentiality, integrity and authentic-
ity but TLS/DTLS lacks the ability to provide the needed customization that
the highly scalable DDS architecture requires to fulfill its advertised objectives.
Namely low-latency, low-overhead and simultaneous data exchange between a
very large number of participants. DDS Security defines service plugin interfaces
that integrate security mechanisms in a configurable manner. Their incorpora-
tion into the DDS Core architecture makes the implementation of sophisticated
access control features possible that could not have been realized with a trans-
port layer solution such as TLS/DTLS. As the actual performance differences
were not evaluated in this paper, future work could provide more insight by com-
paring the latencies and computational efforts of running DDS over TLS/DTLS
and over DDS Security in various protection modes.
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