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Abstract. The aim of industrial alarm flood analysis is to assist plant oper-
ators who face large amounts of alarms, referred to as alarm floods, in their
daily work. Many methods used to this end involve some sort of a similar-
ity measure to detect similar alarm sequences. However, multiple similarity
measures exist and it is not clear which one is best suited for alarm analysis.
In this paper, we perform an analysis of the behaviour of the similarity mea-
sures and attempt to validate the results in a semi-formalised way. To do
that, we employ synthetically generated floods, based on assumption that
synthetic floods that are generated as ’similar’ to the original floods should
receive similarity scores close to the original floods. Consequently, synthetic
floods generated as ’not-similar’ to the original floods are expected to receive
different similarity scores. Validation of similarity measures is performed by
comparing the result of clustering the original and synthetic alarm floods.
This comparison is performed with standard clustering validation measures
and application-specific measures.

1 Introduction

The phenomenon of alarm flooding is a recurring problem in industrial plant op-
eration [19]. It occurs when the frequency of alarm annunciations is so high that
it exceeds the operators capability of understanding the situation. This creates a
dangerous situation where the operator might overlook critical alarms that could
lead to significant downtime, irreversible damage or even loss of life [10].

The main reason for alarm flooding is imperfect alarm system design. Fig-
ure 1 presents a typical alarm generation system consisting of several modules.
The alarms are triggered based on sensor values, thresholds or more complex rules.
Basic signal and alarm filtering can be used to remove alarms that are known
to be noise before they are displayed to the operator. Operators themselves have
the opportunity to shelve alarms that they consider irrelevant or redundant. How-
ever, the real potential lies in the ”contextual preclassification” block, where expert
knowledge can be combined with intelligent computational methods to assist the
operator.
� This paper is an extended version of [7] and involves a more detailed analysis of the

behaviour of similarity measures.
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Fig. 1: Typical alarm filtering and shelving system extended by contextual preclas-
sification step (from: [16]).

Diagnosis of a failure of an industrial plant is a non-trivial task that requires
extensive knowledge of causalities between symptoms produced by the system [15].
Model-based methods often require explicit representation of expert knowledge
about the system and about possible failures, which is rarely available to the ex-
tent that is necessary for the method to provide reliable results. In these cases
shallow data-driven approaches are more applicable. Data-driven approaches are
based purely on the data obtained from the system, possibly with rudimentary ex-
pert knowledge inserted when available to improve the results. Data-driven methods
directly analyse, manage and reduce the alarm annunciation and therefore flooding
[2], without a semantic representation of the system. Multiple approaches exist to
this end, drawing from the data mining fields such as sequence identification and
pattern recognition [18, 4], correlation analysis [21] or visualisation [13]. Many of
these approaches utilise flood similarity measure of some kind, e.g., [20, 3].

Alarm flood detection and clustering is a data-driven approach to handle alarm
flooding. An operator assistance system can detect a newly annunciated alarm
flood, compare it to the previously seen floods and identify the most similar cluster.
If the history of flood of the plant has annotations, such as a log of repairs done
to remedy the reason of an original flood, the system can make a suggestion to the
operator regarding the fault diagnosis and repair procedure.

A major challenge in creating such a system is determining how similarity be-
tween alarm floods should be defined. A multitude of similarity measures (and,
analogously, distance measures) exists in the field of data mining and clustering [5].
Another challenge is, that real industrial alarm data is difficult to work with, e.g.
because of a high volume of alarms, or because of poor alarm system design. While
a certain similarity measure might work for a certain application, there is no guar-
antee it will work in other application scenarios, as there is not systematic method
for quantifying the usefulness of a given similarity measure in the industrial setting.
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We here propose a semi-formal approach to answering that issue by defining an
experimental design to validate the behaviour of a distance measure in regard to
alarm flood clustering. Analysis of the behaviour of the distance measure can then
help choose the most suitable distance measure. We also reproduce and extend the
alarm flood detection and clustering approach by Ahmed et al. [1] with additional
similarity measures based on Term frequency-inverse document frequency (TF-
IDF) representation [12] and Levenshtein distance [14], apply these measures to a
large real industrial alarm log and evaluate them using our validation method.

Our study shows that the flood distance measure in [1] behaves significantly dif-
ferent from the other analysed distance measures; in particular, the other measures
produce a more stable clustering in the presence of noise in the data.

Methodology for detecting floods and computing distance measures is given
in Section 2, as well as our proposed approach for validating the behaviour of
clustering results using alarm floods synthetically generated from real alarm flood
data. Section 4 presents and discusses results of empirical validation on a real
industrial dataset. We summarize the results and conclude in Section 5.

2 Clustering methodology

The approach for alarm flood similarity measure analysis is illustrated in Figure 2.
Alarm flood similarity measure analysis consists of seven steps divided into two
stages: (1) clustering performed once on alarm floods detected in the alarm log
and (2) repeatable generation of synthetic alarm floods and clustering. Analysis
is preceded by the acquisition of alarm log A from the Cyber—Physical Produc-
tion System (CPPS) performed by component C1, as described in Section 2.1.
Component C2 is responsible for detecting the alarm floods which as described in
Section 2.2. Stage 1 clustering (component C4) is performed only once on the set
of alarm floods detected in the alarm log FO and yields a clustering solution SO.
Clustering methodology is described in Section 2.3. Stage 2 is performed multiple
times and begins with synthetic flood generation (component C3) which yields a
set of synthetic floods FS . Synthetic floods are clustered alone by component C6
which yields solution SS , as well as merged with the original floods forming FOS

and clustered together by component C5, yielding solution SOS . The procedure for
generating synthetic floods is described in Section 3.1. The process is repeated an
arbitrary number of times and each round is evaluated according to the metrics
described in Section 3.

2.1 Alarm log acquisition

Alarms triggered within a CPPS are processed by an alarm logging system (compo-
nent C1) within its data acquisition and management system. Alarms are displayed
to the operator and saved into a historical database referred to as a historical alarm
log A. Recorded alarms are characterised by, at the very least, alarm ID, alarm trig-
ger time and alarm acknowledgement time. Alarm log can also contain additional
information such as a description, location and other details of the alarm.
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Fig. 2: Approach for validating alarm flood similarity measures.

2.2 Flood detection and preprocessing

First step of the analysis is performed once for a historical alarm log.
Flood detector (component C2) detects the floods based on the alarm flood

definition. According to the industry standard for Management of Alarm Systems
for Process Industries, an alarm flood begins when the alarm annunciation rate
exceeds 10 alarms per 10 minutes and ends when the alarm annunciation rate
drops under 5 alarms per 10 minutes [9], see Figure 3c.

However, the specific methodology for flood detection is up to interpretation.
Firstly, the alarm logs should be preprocessed to account for the lingering and

chattering alarms (see Figure 3a). Ambiguity arises in the case of lingering alarms
that are active for a long time before the flood is considered to begin. Since they
might be relevant to the root cause of the flood, we include such alarms in the flood
if they were triggered no longer than a lingering threshold tl before the flood start
(see Figure 3b). Moreover, chattering alarms falsely increase the number of alarms
within a time period so they are merged before flood detection.

Redundant alarms convey the same information, see Figure 3a, while unnec-
essarily cluttering the operator display. As a most simple example, two alarms
triggered based on the same condition are redundant. In more complex situations,
a redundant alarm is triggered based on a condition which is directly caused by
an event that triggers another alarm, and is not influenced by any other factors.
Redundant alarms are more difficult to deal with, requiring an analysis and re-
finement of the alarm system or using an advanced reasoning to detect causalities
between alarms.

Floods are detected using a sliding window and the outcome is a set of original
floods FO.
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Fig. 3: (a) Undesirable alarms caused by imperfections in alarm system design: A, B
- redundant alarms, C - chattering alarm, D - lingering alarm. (b) Flood detection
from a more detailed point of view, where a dilemma arises which alarms exactly
should be included. Alarms A, B, C are included in the flood, while alarm D is not.
ts - alarm flood start, te - alarm flood end, tl - lingering alarm inclusion margin. (c)
Flood detection: ar - alarm rate (alarms active in 10 minute period), t - 10-minute
time periods, ts - alarm flood start, te - alarm flood end.

2.3 Alarm flood clustering

Original flood set FO is clustered to obtain the original clustering solution SO

(see Figure 2 component C4). Density-based spatial clustering of applications with
noise (DBSCAN) [6] is a clustering algorithm that intrinsically deduces the most-
fitting number of clusters. It is based on the concept of density, where points within
a specified distance threshold ε to each other are considered to belong to a dense
area—a cluster. Points that are distant from dense areas are considered outliers
and are gathered in a separate group. Preliminary experiments showed, that it is
a disadvantage to predefine the number of clusters, because the number of nat-
ural clusters in the data is expected to change with different distance measures.
Therefore, to perform an unbiased comparison of distance measures, we use the
DBSCAN algorithm which is not biased to a fixed number of clusters and exclude
the outliers in our analysis.

Choice of a distance measure is the second, after the clustering algorithm itself,
most critical aspect when performing clustering, and the focus of this paper. Each
distance measure requires a specific data representation and four distance measures
are analysed: Jaccard distance [11] on a bag of words representation, distance based
on the frequency of consecutive alarms [1], Euclidean distance on TF-IDF repre-
sentation [12] and Levenshtein distance [14]. Chosen measures are focused either
on the appearance of alarms (Jaccard distance and TF-IDF representation) or on
the order of alarms (frequency of consecutive alarms and Levenshtein distance); in
the latter, the absolute time distance is not considered.
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Jaccard distance (J) Jaccard distance is the ratio between alarm types occurring
only in one of the two floods, and the number of alarm types in both floods. Each
flood fi is represented as a binary vector fi = (a1, a2, . . . , am), where m is the
number of unique alarm identifiers in the complete alarm log and aj is a binary
value representing whether an alarm appeared in the flood, regardless of its count.
The Jaccard distance between floods fi and fj is given by

Jij =
|fi xor fj |
|fi or fj | , (1)

where |x| returns the number of true values in vector x. Alarm types that are
absent from both floods are irrelevant for Jaccard distance. This measure was used
as preprocessing in [1].

Frequency of consecutive alarms (F) This measure was proposed in [1] based
on a simplification of first-order Markov chains. Each flood is represented as a
matrix of counts of each pair of alarms appearing consecutively,

P =

⎡
⎢⎢⎣
f11 f12 . . . f1m
...

...
. . .

...
fm1 fm2 . . . fmm

⎤
⎥⎥⎦ , (2)

where fij is the frequency of alarm aj being annunciated directly after alarm ai in
a given alarm flood. Then, the distance between two floods can be calculated as a
distance between their P matrices, e.g. using Frobenius distance.

Term frequency-inverse document frequency (T) TF-IDF is a measure often
used in natural language processing to weight terms in a document according to
how frequent and discriminative they are with respect to a document collection.
We apply TF-IDF to weight alarms in alarm floods with respect to the collection
of all floods. TF-IDF is calculated for each alarm a and flood f as

tf-idf(a, f) = tf(a, f) ∗ idf(a). (3)

Term frequency is calculated as

tf(a, f) =
fa,f
|f | , (4)

where fa,f is the number of annunciations of alarm a in flood f and |f | is the total
number of alarm annunciations in f .

Inverse document frequency is calculated as

idf(a) = loge
|F |

|{f ∈ F | a ∈ f}| , (5)
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where |F | is the total number of floods. TF-IDF score is calculated for every alarm
type and every flood in the log and yields a flood representation in the form of a
vector of length m, the total number of unique alarm signatures.

Two floods fi and fj can then be compared using a distance measure such as
Euclidean distance between two vectors:

d(fi, fj) =

√√√√ m∑
k=1

(tf-idf(ak, fi)− tf-idf(ak, fj))2. (6)

Levenshtein distance (L) This metric counts the amount of “edits” that are
needed to transform one sequence into another one, where an edit is a symbol
insertion, symbol deletion, or a symbol substitution. To apply this metric, alarm
floods are represented as sequences of symbols, which in turn represent unique
alarm types. The Levenshtein distance d(|fi|, |fj |) between floods fi and fj is cal-
culated recursively, where the distance for the first x and y symbols of fi and fj ,
respectively, is calculated as follows:

d(x, y)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
max(x, y) if min(x, y)= 0

min

⎧⎪⎨
⎪⎩
d(x - 1, y)+ 1

d(x, y - 1)+ 1 otherwise,
d(x - 1, y - 1)+1fi(x) �= fj(y)

(7)

where 1condition is the indicator function. The distance score is normalised over the
length of floods.

2.4 Distance matrix postprocessing

Distance matrix is optionally postprocessed using a Jaccard similarity measure
threshold t. The rationale for postprocessing is that only floods that have a sig-
nificant number of alarms in common can be assigned a low distance value [1]. To
ensure that, distance values for each pair of floods are filtered based on the value
of the Jaccard distance for this pair. For any distance measure d, distance value dij
remains unchanged if the Jaccard distance between the corresponding floods dJij is
lower than the threshold t; otherwise, the distance is replaced with the maximum
value dij = 1:

d̂ij =

{
dij if dJij < t,

1 otherwise.
(8)

Postprocessed distance matrix d̂ yields clustering solution Ŝ.

3 Evaluation methodology

At the core of the proposed approach, the original flood set FO is concatenated
with the synthetic flood set FS to create a joint set FOS . Procedure to generate
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synthetic floods is described in section 3.1. The clustering result of the join set,
SOS is used to evaluate the behaviour of the distance measures. Clustering (see
Figure 2 components 5 and 6) is performed analogously to the original floods, as
described in 2.3. We propose to evaluate the clustering solutions in regard to the
distance measure behaviour using two measures: cluster membership of synthetic
floods m1 (see section 3.2) and cluster stability, based on adjusted Rand index [17],
in five variants: R1, R2, R3, R4 and R5 (se section 3.3).

3.1 Synthetic flood generation

Second step of the analysis is focused on generating synthetic alarm floods that
can be included in clustering to evaluate the distance measures. Synthetic floods
are generated based on the existing set of original floods FO. Each original flood
fO is used to create one synthetic flood fS . The original alarm flood is modified in
three ways to create the synthetic flood, as illustrated in Figure 4: (i) by addition
of randomly chosen alarms, (ii) by removal of randomly chosen alarms and (iii) by
transposing randomly chosen pairs of alarms.

Those three modifications correspond to the expected possible variations in an
industrial alarm log, which stem e.g. from delays on the bus or data acquisition
sampling rate. For simplicity, we always apply an equal amount, at least one, of all
three modifications to each flood. The number of modifications is varied throughout
the experiments to obtain different synthetic flood sets, ranging from very similar
to dissimilar to the original floods. We represent the degree of modification as a
percentage of the number of alarms in a flood that has been modified.

This way of modification of floods from real datasets is chosen according to our
domain knowledge and experience with floods and their variation in the industrial
setting.

3.2 Cluster Membership of Synthetic Floods

The first validation approach is the fraction of synthetic floods that is assigned to
the same cluster as their original flood. It is calculated as

m1 =
|fS

i : c(fS
i ) = c(fO

i )|
|FS | , (9)

where fS
i is a synthetic flood generated from original flood fO

i , c(f) is the cluster
flood f was assigned to and FS is the set of all synthetic floods. This measure
is calculated for each synthetic flood with respect to its mother flood, without
considering (potentially random) similarities to other original floods. Therefore, if
a synthetic flood by chance becomes more similar to a different original flood than
its mother flood, it will not affect the results.

3.3 Cluster Stability

We can consider the original flood clustering results to be the ground truth, or the
"target", as in the supervised machine learning validation methods. This assump-
tion is made only for the purpose of validation of the similarity measure behaviour.
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Each synthetic flood has a known mother flood, and is expected to be treated
similarly by the clustering algorithm if it was generated with a low degree of modi-
fication; i.e., the synthetic flood is expected to have similar distance scores to other
floods as its mother flood, and therefore to be clustered alike. Hence, the synthetic
floods are given the same target as their mother floods. On the other hand, if the
synthetic flood was generated using a high degree of modification it is expected to
be treated differently by the clustering algorithm than its original flood.

Results of clustering original and synthetic floods together can be compared to
that target solution. Adjusted RAND index is a well-known measure for quantifying
partition agreement between clustering solutions, while disregarding the actual
cluster number. Adjusted RAND index for two partitions C1 = {c0, c1, ..., cn} and
C2 = {c0, c1, ..., cn} of items is calculated as

R =
a+ b

a+ b+ c+ d
, (10)

where a is the number of pairs of items that are in the same cluster in C1 and in
C2, b is the number of pairs of items that are in different clusters in C1 and in C2,
c is the number of pairs of items that are in the same cluster in C1 but in different
clusters in C2, and d is the number of pairs of items that are in different clusters
in C1 but in the same cluster in C2.

We specify the following five different variants of cluster stability to perform the
analysis. Cluster stability R1 compares the cluster membership of original floods
and synthetic floods when clustered together. Cluster stability R2 is used to quan-
tify the change in original flood partitioning when clustered with and without the
synthetic floods. Cluster stability R3 quantifies the difference between the expected
outcome, which is the result of the original flood clustering, and the obtained solu-
tion. Cluster stability R4 compares the cluster memberships of the original and the
synthetic floods when clustered separately. Finally, cluster stability R5 compares
the solutions for the original floods obtained with and without the postprocessing
step described in section 2.4.

R1 = R(SOS(0, n), SOS(n+ 1, n+m)), (11)

R2 = R(SO, SOS(0, n)), (12)

R3 = R(SOS , SO · SO), (13)

R4 = R(SO, SS), (14)

R5 = R(S, Ŝ), (15)

where SO = sO0 , ..., s
O
n is the clustering solution for the set of original floods

FO = fO
0 , ..., fO

n , SS = sS0 , ..., s
S
m is the clustering solution for the set of synthetic

floods FS = fS
0 , ..., f

S
m, sOS = sOS

0 , ..., sOS
n , sOS

n+1, ..., s
OS
n+m is the clustering solution

for the joint set of original and synthetic floods FOS = fOS
0 , ..., fOS

n , fOS
n+1, ..., f

OS
n+m,

SOS(0, n) and SOS(n + 1, n +m) denote the joint solution subsets corresponding
to the original and synthetic floods respectively and Ŝ denotes a solution obtained
from a postprocessed distance matrix.
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Fig. 4: Creation of a synthetic flood
fs from an original flood fo composed
of alarms A,B,C,D,E, F,G through
three edits: a - addition, d - deletion,
t - transposition.

Table 1: Specification of performed
experiments.

Exp. Dist. measure Postproc.
1 Jaccard No
2 Jaccard Yes
3 Frequency No
4 Frequency Yes
5 TF-IDF No
6 TF-IDF Yes
7 Levenshtein No
8 Levenshtein Yes

4 Empirical evaluation results

The following results extend those already published in [7]. The experimental data
set is a 25-day alarm log from a production plant from the manufacturing industry,
consisting of 15 k annunciations of 96 alarm types. The flood detection algorithm
has been modified to account for the lingering alarm problem (cf. Section 2.2)
and yielded 166 alarm floods with an average length of 61 alarms. We perform
similarity measure analysis as described in the methodology section and analyse
the behaviour of the distance measure as it changes with adding synthetic floods
to the dataset and influences the structure of the clusters. DBSCAN clustering is
used in the experiments and since it does not require specification of the number
of target clusters, it is possible to observe how do the synthetic floods change the
structure of the data, for example by creating new inherent clusters.

4.1 Visualization on a demonstrative set of 25 floods

Fig. 5 visually demonstrates clustering and validation methodology on a reduced
dataset of 25 floods. Floods are arranged on X- and Y-axis in the same order, and
pixels indicate degree of similarity, where white means highest distance, and strong
colour means equality (which occurs mostly on the diagonal).

Row (a) presents original distance matrices of distance measures J, F, T, L.
Jaccard distance identified four floods as exactly the same (solid square in the
image), while all other distance metrics show that they are in fact not identical:
albeit they are composed of the same alarms, they differ in the number and order
of their annunciations.

Row (b) shows distance matrices postprocessed according to 2.4. Clearly this
filters out many values in the matrices, in particular in the case of TF-IDF many
low distance values are reset to highest distance. This property of TF-IDF can be
explained, because the principle of TF-IDF is to put more weight on terms that
occur more often in one flood and that occur less often in other floods. Therefore, to
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Fig. 5: Distance matrices obtained at every stage of the experiments for measures
J, F, T, and L for a reduced dataset of 25 floods. Pixels indicate pairwise similarity
between floods which are arranged on X- and Y-axis in the same order: stronger
colours show lower distance. Rows show (a) original flood distance matrices; (b)
distance matrices postprocessed using Jaccard distance threshold; (c) clustering
solutions using distances from (b), coloured according to the cluster number, with
outliers in the top left cluster highlighted by a black border; and (d) clustering
solutions after adding a 10% modified synthetic flood for each flood.

obtain high distance, a pair of floods needs to contain a distinct set of alarms that
has low frequency in other floods. In our dataset this rarely happens, concretely it
mainly happens in short floods, where the term frequency of rare alarms contributes
a large value to the distance measure.

Row (c) presents the DBSCAN clustering results on distance matrices of
row (b), where floods have been rearranged and coloured according to the cluster
number. The top left cluster represents outliers: their distance to other floods was
under the ε threshold and therefore they were not assigned to any cluster.
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Fig. 6: Measure m1 - cluster mem-
bership of synthetic floods calculated
with and without outliers for fre-
quency of consecutive alarms dis-
tance measure.

Fig. 7: Measure R5 - cluster stability
between clustering solutions with and
without postprocessing calculated for
the original flood set.

Row (d) presents clustering results after introducing synthetic floods with 10%
modification. Synthetic floods cause changes in the cluster structure, although the
structure of original clusters is mostly retained. As in this case, synthetic floods
are quite similar to their respective mother floods, many of the outlier floods are
clustered together with their synthetic counterpart and form two-flood clusters.

4.2 Clustering with synthetic floods on the full dataset

Further experiments were performed on the whole alarm flood dataset. Each dis-
tance measure is evaluated with and without the postprocessing step, as listed in
table 1. For validation experiments we generate experimental sets of synthetic floods
with a degree of modification (the amount of edits) ranging between none and 50%.
Each experiment is repeated 10 times and the measure values are averaged.

Figure 6 shows cluster membership of synthetic floods measure m1 calculated
for the frequency of consecutive alarms distance measure under two conditions:
including and excluding the outliers. Since the amount of outliers is high in a real
industrial dataset, including them in the analysis distorts the results. The number
of classifications that are correct from the perspective of m1 measure (so number
of synthetic floods assigned to the same cluster as the corresponding original flood)
is very high because the outliers constitute such a large cluster and the synthetic
floods based on the outliers also are assigned to the outlier cluster. Therefore, in
further analysis we focus on the floods that were not outliers.

Figure 7 presents the cluster stability between solutions obtained from un-
changed distance matrices and postprocessed distance matrices for the original
flood set. Low values of R5 indicate that the solutions obtained with and with-
out postprocessing are not consistent. Results imply that postprocessing heavily
influences the results.

Figures 8a to 8d present the evaluation measures m1, R1, R2, R3 and R4 for
experiments with varying degrees of modification used to generate the synthetic
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(a) Experiment 1 - Jaccard distance mea-
sure without postprocessing.

(b) Experiment 3 - Frequency of consecu-
tive alarms distance measure without post-
processing.

(c) Experiment 5 - TF-IDF distance mea-
sure without postprocessing.

(d) Experiment 7- Levenshtein distance
measure without postprocessing.

Fig. 8: Experimental results.

flood sets. Intuitively, identical floods will be clustered together, and indeed for
every distance measure the m1 and R1 measures for synthetic floods with no mod-
ifications are maximal. As the degree of modification is raised, m1 and R1 both
decrease. The decrease is most abrupt for frequency of consecutive alarms distance
measure, which implies that this measure is most sensitive to even small variation
in the data.

On the other hand, measures R2 and R3 increase with the degree of modifi-
cation. As the synthetic floods become more and more different from the original
floods, the clustering solution of the original floods resembles more the solution
obtained in step 1 in the process. That means the synthetic floods no longer suffi-
ciently resemble the original floods. Measure R3 does not reach the upper limit of
1.0 like measure R2 does. That is due to the parameter of the clustering algorithm
which specifies the minimum number of samples to form a valid cluster. The set
of original floods is smaller and therefore the minimum number of samples to form
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(a) Experiment 1 (b) Experiment 2

(c) Experiment 3. (d) Experiment 4.

Fig. 9: Comparison of distance value histograms before (left) and after (right) post-
processing for distance measure: a,b - Jaccard, c,d - Frequency of consecutive
alarms. Postprocessed histograms (right) ignore the distance values of 1.

a cluster might not be reached for some subsets of floods, while after adding the
synthetic floods, the minimum is reached and clusters are formed.

The effect of postprocessing is analysed further by comparison of histograms
of distance matrices before and after postprocessing (Figures 9 and 10). During
postprocessing we replace with 1 all the values that have the Jaccard distance
value higher than the threshold t = 0.6. This means above a certain distance we
assume it is maximum distance. The resulting histograms are dominated by these
"1" values so we do not show them. We apply this postprocessing to the other
distance matrices as well. We always use Jaccard distance as the criterion whether
to reset a distance value to 1 (this is the methodology described in [1]) and therefore
histograms for the other distance measures show values above 0.6.

In the case of Jaccard distance measure (Figure 9b), postprocessing simply
removes all the values in range of (0.6, 1.0). While the postprocessed Levenshtein
distance matrix (Figure 10d) is consistent with the Jaccard measure (in the sense
that very few distance values remain in the range of (0.6, 1.0)), the two other
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(a) Experiment 5. (b) Experiment 6.

(c) Experiment 7. (d) Experiment 8.

Fig. 10: Comparison of distance value histograms before (left) and after (right)
postprocessing for each distance measure: a,b - TF—IDF, c,d - Levenshtein. Post-
processed histograms (right) ignore the distance values of 1.

measures show that alarm floods that have many IDs in common may in fact be
quite distant in the terms of (i) how frequently alarms appear in order (Figure 9d)
and (ii) the most discriminative alarms (Figure 10b).

5 Conclusion

In this paper, we continue the analysis of similarity measures that can be used in
alarm flood clustering [7].

The paper presents a methodology for validating similarity measures to help
choose a measure which is best suited for similarity-based approaches used in alarm
flood analysis. An example of a similarity-based approach is case-based reasoning,
where a new alarm flood is compared to a database of known cases to suggest a
course of action to the operator [8]. Choice of a similarity measure is a difficult
problem, which is normally solved arbitrarily by an expert. Synthetically gener-
ated alarm floods create a controlled environment for observing the behaviour and
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sensitivity of the similarity measure to expected variations in the data, which is not
possible using industrial data sets which are generated under unknown conditions
and limited in size. The validation process has been shown using a real industrial
dataset.

We have previously shown that the measure introduced in [1] produces very
different results than our newly introduced measures and results suggest that the
measure of [1] is less favourable. TF-IDF representation with Euclidean distance
has shown the most balanced results.

Since the alarm logging systems are flawed we can assume the alarm log data to
exhibit some degree of variability. For example, there may be delays on the bus or
sampling may be too slow so that many alarms are logged with the same timestamp
but not necessarily the correct order. Two of the analysed measures (frequency of
consecutive alarms and Levenshtein distance) rely heavily on the order of alarms
in the data. Results show that frequency of consecutive alarms distance measure
is most sensitive to variations in data, while Levenshtein distance is not because it
allows transpositions of adjacent alarms within a flood.

Results show that postprocessing heavily influences the results. It has been
shown that floods containing many of the same alarm IDs may in fact be very
distant when considering other characteristics, such as the order of the alarms or
the discriminating value of alarm IDs.

Moreover, DBSCAN clustering appears to produce more meaningful results
because of its adaptive choice of the number of clusters.

In the future work, using an annotated dataset (e.g. data generated in a con-
trolled simulation environment) could help further analyse these effect and establish
whether postprocessing is viable. Furthermore, additional similarity measures can
be analysed, including measures that take absolute time distance into account.
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