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Abstract. A monitoring algorithm is trace-length independent if its
space consumption does not depend on the number of events processed.
The analysis of many monitoring algorithms has aimed at establish-
ing trace-length independence. But a trace-length independent monitor’s
space consumption can depend on characteristics of the trace other than
its size.

We put forward the stronger notion of event-rate independence, where
the monitor’s space usage does not depend on the event rate. This prop-
erty is critical for monitoring voluminous streams of events arriving at a
varying rate. Some previously proposed algorithms for past-only tempo-
ral logics satisfy this new property. However, when dealing with future
operators, the traditional approach of using a queue to wait for future
obligations to be resolved is not event-rate independent. We propose a
new algorithm that supports metric past and bounded future operators
and is almost event-rate independent, where “almost” denotes a logarith-
mic dependence on the event rate: the algorithm must store the event
rate as a number. We compare our algorithm with traditional ones, pro-
viding evidence that almost event-rate independence matters in practice.

1 Introduction

Rules are integral to society. Companies and administrations are highly regu-
lated and subjected to rules, laws, and policies that they must comply to and
demonstrate their compliance to. In many domains, the rules are sufficiently pre-
cise that automatic monitoring tools can be used to prove compliance or identify
violations.

A monitoring tool should solve the standard (online) monitoring problem:
Given a stream of time-stamped data, called events, and a policy formulated
in a temporal logic, decide whether the policy is satisfied at every point in the
stream [6,13,17]. Compared with other verification techniques, the monitoring
problem is attractive because it can be solved in a scalable way. Monitoring
algorithms usually have a modest time complexity per inspected event. In con-
trast, keeping the space requirements low for high-velocity event streams is more
challenging; this is precisely the problem we tackle here.
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Monitoring algorithms have been analyzed in the past with respect to their
space requirements. The notion of trace-length independence requires a moni-
tor’s space complexity to be constant in the overall number of events. In some
settings, only algorithms satisfying this property are considered worthy of being
called monitors [5]. Trace-length independence aims at distinguishing monitors
that can handle huge volumes of data from those that cannot. The classic 3 V
characterization by volume, velocity, and variety [15], however, tells us that this
is only one challenging aspect of big data. Here, we account for another aspect:
velocity or event rate.

We propose a new notion, event-rate independence, which states that a mon-
itor’s space requirement does not depend on the number of events in a fixed time
unit. We survey existing monitoring algorithms (Sect. 2) and identify several for
past-only linear temporal logic (ptLTL) [10] and its extension with metric inter-
vals (ptMTL) [19] that have this property. No such monitors exist, however, that
support future operators.

We tackle this problem, focusing on metric temporal logic (MTL) [12] with
bounded future operators interpreted over streams of time-stamped events
(Sect. 3). This discrete semantics is based on integer time-stamps, which mir-
rors the imprecision of physical clocks. A finite number of consecutive events,
each defining a time-point, might, however, carry the same time-stamp. The
event rate is defined as the number of time-points per time-stamp. There are
several trace-length independent monitoring algorithms for MTL on streams
with a bounded event rate, but none that are event-rate independent or even
trace-length independent on streams with an unbounded event rate.

From a traditional standpoint, event-rate independent monitors for MTL
seem impossible: future operators require the monitor to wait before it can out-
put a Boolean verdict on whether the formula holds. The sheer number of events
that the monitor may need to wait for is larger than the event rate. Moreover,
it is unclear if one could even achieve a slightly weaker notion, which we call
almost event-rate independence, where the monitor’s space complexity is upper
bounded by a logarithm of the event rate (and hence the monitor can store
indices or pointers).

As a way out of this dilemma, we propose a monitor that works differently
from the traditional ones. Our monitor outputs two kinds of verdicts: standard
Boolean verdicts expressing that a formula is true or false at a particular time-
point and equivalence verdicts. The latter express that the monitor does not
know the Boolean verdict at a given time-point, but it knows that the verdict
will be equal to another one (presently also not known) at a different time-
point. Additionally, our monitor will output verdicts out of order relative to the
input stream. Thus, it must indicate in the output to which time-point a verdict
belongs. Instead of storing (and outputting) a global time-point reference, we
store the time-stamp and the time-point’s relative offset denoting its position
among the time-points labeled with the same time-stamp. We assume that time-
stamps can be stored in constant space, which is realistic since 32 bits (as used
for Unix time-stamps) will suffice to model seconds for the next twenty years.
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Storing the offset, however, requires space logarithmic in the event rate.1 Beyond
this, our monitor’s space requirement is independent of the event rate.

Although our monitor’s output is nonstandard, we are convinced that it is
useful. First, the output provides sufficient information to reconstruct all viola-
tions. Second, often the monitor’s users are only interested in the existence of
violations. In this case, they can safely ignore all equivalence verdicts. Third,
users are generally interested in the first (earliest) violation. When outputting
equivalences, we ensure that the equivalence is output for the later time-points,
while the earliest time-point stays in the monitor’s memory and is eventually
output with a Boolean verdict. Thus, users will always see a truth value at the
earliest violating event.

In summary, our work makes the following contributions. We propose the
new notion of (almost) event-rate independence, which is crucial for the online
monitoring of high-velocity event streams (Sect. 4). We provide an almost event-
rate independent monitoring algorithm for MTL on integer time-stamps with
bounded future operators (Sect. 5). Finally, we report on a prototype imple-
mentation of our algorithm (Sect. 5.4) together with an experimental evaluation
(Sect. 6). Taken together, these contributions lay the foundations for online mon-
itoring that scales both with respect to the volume and the velocity of the event
stream.

2 Related Work

There is considerable related work on monitoring. We focus on those algorithms
and techniques that are closely related to ours and we touch upon other related
works.

Havelund and Roşu [10] propose a simple, yet efficient online monitor for past-
time linear temporal logic (ptLTL) using dynamic programming. The satisfaction
relation of ptLTL can be recursively defined on a trace by examining the truth-
values of subformulas only at the previous time-point. They exploit this insight
to develop an algorithm that stores the truth-values of subformulas only at the
two latest time-points. The algorithm’s space complexity is O(n), where n is the
number of subformulas.

Thati and Roşu [19] extend the results by Havelund and Roşu [10] to provide a
trace-length independent, dynamic programming monitoring algorithm for MTL
based on derivatives of formulas. Their monitor’s space complexity depends only
on the size of the formula and the constants occurring in its intervals. Thus
their monitor is event-rate independent. However, the algorithm outputs verdicts
with respect to a non-standard semantics of MTL, truncated to finite traces. It
immediately outputs a verdict at time-points without looking at future events

1 One could argue that, if time-stamps model seconds, there is a physical bound on
the number of events that fit into this fixed unit of time and the space to store this
number can be considered constant. However, we envision applications where time-
stamps model days, month, or even years, for which the number of events fitting
into one time unit increases dramatically.
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that could possibly alter the verdict. Computing verdicts this way defeats the
purpose of (top-level) future operators: An until that is not satisfied at the
current time-point, but only at the next one, is reported as a violation.

Our algorithm builds on these dynamic programming approaches [10,19] to
handle past-time operators. Our technique for monitoring future formulas under
the standard non-truncated semantics of MTL in an event-rate independent
manner is new.

Basin et al. [3,4] introduce techniques to handle MTL and metric first-order
temporal logic with bounded future operators, adhering to the standard non-
truncated semantics for future formulas. Their monitor uses a queue to postpone
evaluation until sufficient time has elapsed to determine the formula’s satisfia-
bility at a previous time-point. This requires the algorithm to store in the worst
case all time-points during the time-interval it waits. Therefore the monitor’s
space complexity grows linearly with the event rate, as is confirmed by their
empirical evaluation [3, Sect. 6.3]. Their monitor outputs verdicts in order with
respect to time-points, while our algorithm may output verdicts out of order to
achieve a better space complexity.

Researchers have developed trace-length independent monitoring algorithms
for various temporal specification languages. Maler et al. [14] compare the expres-
sive power of timed automata and MTL. They show that past formulas can be
converted to deterministic timed automata (DTA) and there exist future for-
mulas that cannot be represented by a DTA. Ho et al. [11] give a trace-length
independent algorithm for MTL in the dense time domain. There exist trace-
length independent monitors for timed regular expressions [20], ptLTL extended
with counting quantifiers [7], and ptMTL extended with recursive definitions [9].
The underlying logics have different time domains and semantics. We leave the
study of event-rate independence in these settings as future work.

3 Metric Temporal Logic

Metric temporal logic (MTL) [12] is a logic for specifying qualitative and quan-
titative temporal properties. We briefly describe the syntax and the point-based
semantics of MTL over a discrete time domain. A more in-depth discussion of
various flavors of MTL is given elsewhere [4].

Let I denote the set of non-empty intervals over N. We write an interval in I

as [a, b], where a ∈ N, b ∈ N ∪ {∞}, a ≤ b, and [a, b] = {x ∈ N | a ≤ x ≤ b}. For
a number n ∈ N, I − n denotes {x − n | x ∈ I} ∩ N. For an interval I, let max(I)
denote the largest constant occurring at the endpoints of I, i.e. max([a, b]) = b if
b �= ∞, else a. We write r for the upper bound of the interval, i.e., r([a, b]) = b,
which is possibly ∞.

The set of MTL formulas over a set of atomic propositions P is defined
inductively:

ϕ = p | ¬ϕ | ϕ1 ∨ ϕ2 | �I ϕ | �I ϕ | ϕ1 SI ϕ2 | ϕ1 UI ϕ2,

where p ∈ P and I ∈ I. Along with the standard Boolean operators, MTL
includes the temporal operators �I (previous), SI (since), �I (next), and UI
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(until), which may be nested freely. We restrict the intervals attached to future
operators to be bounded, i.e., we require r(I) �= ∞, as we want the formulas to be
both finitely satisfiable and falsifiable (see [3] for details). We omit the subscript
I if I = [0,∞), and use the usual syntactic sugar for additional Boolean constants
and operators true = p ∨ ¬p, false = ¬true, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ) and future
temporal operators eventually ♦Iϕ ≡ true UI ϕ and always �Iϕ ≡ ¬♦I¬ϕ as well
as their past counterparts once �I and historically �I .

MTL formulas are interpreted over streams, which are infinite sequences of
time-stamped events. A time-stamped event is of the form (πi, τi), where πi ∈ 2P

and τi ∈ N. Given a stream ρ = 〈(π0, τ0), (π1, τ1), (π2, τ2), . . .〉, abbreviated
by 〈(πi, τi)〉i∈N, we call the τi time-stamps and their indices i time-points. The
sequence of time-stamps 〈τi〉i∈N is monotonically increasing, i.e., τi ≤ τi+1 for all
i ≥ 0. Moreover, 〈τi〉i∈N makes progress, i.e., for every τ ∈ N, there is some index
i ≥ 0 such that τi > τ. Note that successive time-points can have identical time-
stamps; for example, 〈5, 5, 5, 7, 8, . . .〉. Hence, time-stamps may stutter, but only
for finitely many time-points. A finite prefix of an event stream is called trace.

The semantics of MTL formulas for a given stream ρ = 〈(πi, τi)〉i∈N and a
time-point i is defined inductively as follows.

(ρ, i) |= p iff p ∈ πi
(ρ, i) |= ¬ϕ iff (ρ, i) �|= ϕ
(ρ, i) |= ϕ1 ∨ ϕ2 iff (ρ, i) |= ϕ1 or (ρ, i) |= ϕ2
(ρ, i) |= �Iϕ iff i > 0 and τi − τi−1 ∈ I and (ρ, i − 1) |= ϕ
(ρ, i) |= �Iϕ iff τi+1 − τi ∈ I and (ρ, i + 1) |= ϕ
(ρ, i) |= ϕ1 SI ϕ2 iff (ρ, j) |= ϕ2 for some j ≤ i with τi − τ j ∈ I

and (ρ, k) |= ϕ1 for all j < k ≤ i
(ρ, i) |= ϕ1 UI ϕ2 iff (ρ, j) |= ϕ2 for some j ≥ i with τ j − τi ∈ I

and (ρ, k) |= ϕ1 for all i ≤ k < j

When the stream ρ is clear from the context, we also simply write i |= ϕ.
From the semantics of MTL, it is easy to derive an equivalent recursive

definition for the until and since operators for a fixed stream ρ:

i |= ϕ1 SI ϕ2 iff 0 ∈ I and i |= ϕ2, or
i > 0, τi − τi−1 ≤ r(I), i |= ϕ1, and i − 1 |= ϕ1 SI−(τi−τi−1) ϕ2

i |= ϕ1 UI ϕ2 iff 0 ∈ I and i |= ϕ2, or
τi+1 − τi ≤ r(I), i |= ϕ1, and i + 1 |= ϕ1 UI−(τi+1−τi) ϕ2

Note that the formula being “evaluated” on the right-hand side of these recur-
sive equations has the same structure as the initial formula, except that the
interval has been shifted by the difference between the current and the previ-
ous (or the next) time-stamps. Our algorithm, described in Sect. 5, uses these
recursive equations to update the monitor’s state by simultaneously monitor-
ing the formulas arising from all possible interval shifts. We call such formulas
interval-skewed subformulas. For an MTL formula ϕ, let SF(ϕ) denote the set of
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i (time-point)
i (events) {a} {a} {a} {b} {a b}
i (time-stamps)

3 40 1 2

1 2 2 3 4
i |= aU[0, 1] b ⊥ � � � �

Fig. 1. Evaluation of a U[0, 1] b on an example stream

its subformulas defined in the usual manner. Note that ϕ ∈ SF(ϕ). The set of
interval-skewed subformulas of ϕ is defined as

ISF(ϕ) = SF(ϕ) ∪ {ϕ1 SI−n ϕ2 | ϕ1 SI ϕ2 ∈ SF(ϕ) and n ∈ [1,max(I)]}
∪ {ϕ1 UI−n ϕ2 | ϕ1 UI ϕ2 ∈ SF(ϕ) and n ∈ [1,max(I)]}.

Clearly, the size of ISF(ϕ) is bounded by O(|SF(ϕ)| × c), where c is the largest
integer constant occurring in the intervals of ϕ. We define a well-order < over
ISF(ϕ) that respects the following conditions:

– if ϕ1 is a subformula of ϕ2 and ϕ1 �= ϕ2, then ϕ1 < ϕ2
– if ϕ1 = α SI β and ϕ2 = αS I′β and I′ = I − n for some n > 0, then ϕ1 < ϕ2.

We use this to order the elements of ISF(ϕ) into an array in Sect. 5.
We also define the future reach (FR) of an MTL formula following Ho

et al. [11], which we subsequently use to analyze the complexity of our proposed
algorithm.

FR(p) = 0 FR(¬ϕ) = FR(ϕ) FR(ϕ1 ∨ ϕ2) = max(FR(ϕ1), FR(ϕ2))
FR(�Iϕ) = FR(ϕ) − inf(I) FR(�Iϕ) = sup(I) + FR(ϕ)
FR(ϕ1 SI ϕ2) = maximum(FR(ϕ1), FR(ϕ2) − inf(I))
FR(ϕ1 UI ϕ2) = sup(I) + maximum(FR(ϕ1), FR(ϕ2))

Here maximum denotes the maximum of two integers and sup and inf denote the
supremum and infimum of sets of integers, respectively. For a bounded future
MTL formula ϕ, we have FR(ϕ) �= ∞. Intuitively, events that have a time-stamp
larger than τi + FR(ϕ) are irrelevant for determining ϕ’s validity at a time-point
i with time-stamp τi.

Example 1. Consider the formula ϕ = a U[0, 1] b and the event stream ρ =
〈({a}, 1), ({a}, 2), ({a}, 2), ({b}, 3), ({a, b}, 4), . . .〉. In Fig. 1, � and ⊥ denote
the satisfaction and violation of ϕ. Note that the verdict ⊥ at time-point 0 is
determined only after the event ({b}, 3) has arrived. This observation would also
apply, even if the event ({a}, 2) was replicated arbitrarily often in the stream.

4 Almost Event-Rate Independence

The space complexity of monitoring algorithms has been previously analyzed
with respect to two parameters: formula size and trace length. In most sce-
narios, the formula is much smaller than the trace and does not change dur-
ing monitoring. Hence, an algorithm with a space complexity exponential in
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the formula size is usually tolerable, but a space complexity linear in the trace
length is problematic since this corresponds to storing the entire trace. Recently,
researchers have studied trace-length independence [5]. A monitor is trace-length
independent if its efficiency does not decline as the number of events increases. In
the setting of MTL, we call a monitoring algorithm M trace-length independent
on the stream ρ if the space required by M to output the verdict at time-point i
when monitoring ρ is independent of i. This property is critical for determining
whether a monitor scales to large quantities of data. However, it does not yield
insights into the monitor’s performance regarding other aspects of the stream
such as its velocity.

We propose the notion of event-rate independence, which not only guarantees
the monitor’s memory efficiency with respect to the number of events, but also
with respect to the rate at which the events arrive. A varying event rate is a
realistic concern in many practically relevant monitoring scenarios. For example,
if the unit of time-stamps is on the order of days, there may be millions of time-
points with the same time-stamp in a stream. An event-rate dependent algorithm
may work well on days with a few thousand events, but fall short of memory when
the number of events rises significantly. (Such a situation could be an indicator
that something interesting happened, which in turn makes the monitor’s output
particularly valuable on that day.)

We first formally define a stream’s event rate.

Definition 1. The event rate er of a stream ρ = 〈(πi, τi)〉i∈N at time-stamp τ
is defined as the number of time-points whose time-stamps are equal to τ, i.e.,
erρ(τ) = |{i | τi = τ}|.
An online monitoring algorithm M for MTL is event-rate independent on the
stream ρ if for all time-points i the monitor M’s space complexity to compute
the verdict at i is constant with respect to erρ(τj) for all j ≤ i, i.e., the event
rates in ρ at all time-stamps up to and including the current one. Ultimately,
we are interested in monitors that are event-rate independent on all streams ρ.
For example, the dynamic programming algorithms [10,19] are event-rate inde-
pendent on all streams ρ for past-only MTL.

The trace length up to time-point i is greater than the sum of the event rates
erρ(τ) for τ < τi for all streams ρ. Hence, we obtain the following lemma by
contraposition.

Lemma 1. Fix a stream ρ. Let M be a monitoring algorithm for MTL. If M
is event-rate independent on ρ, then M is trace-length independent on ρ.

In general, event-rate independence is not strictly stronger than trace-length
independence. To see this, consider the following stream where the event rate
itself depends on the trace length: ρ= 〈(π0, 0), (π1, 1), (π1, 1), (π2, 2), (π2, 2),
(π2, 2), (π2, 2), . . .〉, where (πτ, τ) is repeated 2τ times. Any event-rate dependent
monitor for ρ is also trace-length dependent, since the event rate is roughly half
of the trace length at each time-point.

In contrast to the above example, streams arising in practice have a bound on
the event rate. For such an (event-rate) bounded stream ρ we have ∀i. erρ(τi) < bρ
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for some arbitrary but fixed bρ. In fact, the related bounded variability assump-
tion [8,11,14] is deemed necessary for trace-length independence. The considera-
tion of the event rate clarifies the need for this assumption: On bounded streams
ρ, event-rate independence is strictly stronger than trace-length independence.
For example, monitors using a waiting queue for future operators [3] are trace-
length independent on ρ, but not event-rate independent on ρ. On unbounded
streams, i.e., streams that are not event-rate bounded, the two notions coincide.
This is in line with the fact that there are trace-length independent monitors for
MTL (with future operators) on bounded streams [3,11], but none on unbounded
streams.

Event-rate independence and trace-length independence for unbounded
streams are indeed impossible if we adhere to the mode of operation of exist-
ing MTL monitors. Existing monitors output verdicts monotonically, i.e., for
time-points i and j, if i < j then the verdict at i is output before the verdict
at j. Monotonicity makes any monitor handling future operators linearly event-
rate dependent (and hence trace-length dependent for unbounded streams), as
it must wait for and therefore store information associated to more than erρ(τ)-
many events (for some τ) before being able to output a verdict. So event-rate
independence seems to be too strong a condition for traditional monitors.

To overcome this problem, our monitor outputs verdicts differently. In addi-
tion to the standard Boolean verdicts � and ⊥, it outputs equivalence verdicts
j ≡ i (with i < j) if it is certain that the verdict at time-point j will be equiv-
alent to the verdict at a previous time-point i, even if the exact truth value is
presently unknown at both points. This makes verdict outputs non-monotonic
with respect to time-points, but it is still possible to ensure monotonicity with
respect to time-stamps for time-stamps that are far enough apart. More precisely,
a monitor that is monotonic with respect to time-stamps outputs the verdict at
i before the verdict at j when monitoring ϕ, if τ j − τi > FR(ϕ).

To output equivalence verdicts, the algorithm must refer to time-points. This
requires non-constant space, e.g., logarithmic space for natural numbers. Time-
points increase with the trace length, leading to a logarithmic dependence on
the trace length. An alternative way to refer to time-points is to use time-stamps
together with an offset pointing into a block of consecutive time-points labeled
with the same time-stamp. (The size of such a block is bounded by the event
rate.) The space requirement of an algorithm outputting such verdicts is there-
fore not event-rate independent. However, it is logarithmic in the event rate.
These observations suggest the slightly weaker notion of almost event-rate inde-
pendence, which is defined identically to event-rate independence except that
the space complexity is upper bounded by a logarithm of the event rate.

Definition 2. An online monitoring algorithm M for MTL is almost event-rate
independent if for all time-points i and streams ρ the space complexity of M for
outputting the verdict at i is O(log(max j≤i erρ(τj))).

Our proposed monitor is almost event-rate independent. Moreover, it is the
first almost trace-length independent monitor on unbounded streams.
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5 Monitoring Algorithm

We describe the high-level design of our monitoring algorithm for MTL infor-
mally. Then we give a formal description using functional programming notation,
prove its correctness and almost event-rate independence, and discuss implemen-
tation details.

5.1 Informal Account

The idea of outputting equivalence verdicts draws inspiration from a natural
way to approach simultaneous suffix matching with automata. To decide which
suffixes of a word are matched by an automaton, a naive approach is to start
running the automaton at each position in the word. For a word of length n
this requires storing n copies of the automaton. A more space-efficient approach
is to store a single copy, and use markers (one marker for each position in the
word) that are moved between states upon transitions. If n is larger than the
number of states, then at some point two markers will necessarily mark the same
state. At this point, it suffices to output their equivalence and track only one of
them, since they would travel through the automaton together. Our algorithm
follows a similar approach; however, we avoid explicitly constructing automata
from formulas.

Our algorithm builds on Havelund and Roşu’s dynamic programming algo-
rithm for past-time LTL [10], where the monitor’s state consists of an array
of Boolean verdicts for all subformulas of the monitored formula at a given
time-point. The array is dynamically updated when consuming the next event
based on the recursive definition of satisfiability for LTL. To support intervals,
we use the idea by Thati and Roşu [19] to store an array of verdicts for all
interval-skewed subformulas instead of plain subformulas as in Havelund and
Roşu. This accounts for possible interval changes when moving between differ-
ent time-stamps according to the recursive definition of satisfiability for past-
time MTL. This step crucially relies on the time-stamps being integer-valued,
as otherwise the number of skewed subformulas would be infinite.

The problem with future operators is that they require us to wait until we
are able to output a verdict. At first, we sidestep almost event-rate independence
and formulate a dynamic programming algorithm that treats past operators as
Havelund and Roşu’s algorithm [10] but also supports future operators. The
recursive equation for until reduces the satisfaction of a formula ϕ1 UI ϕ2 at the
current time-point to a Boolean combination of the satisfaction of ϕ1 and ϕ2 at
the current time-point and the satisfaction of ϕ1 UI−n ϕ2 (for some n) at the next
time-point. While we can immediately resolve the dependencies on the current
time-point, those on the next time-point force us to wait. This also means that
we cannot store the verdict in an array (because we do not know it yet), but
instead we will store the dependency in the form of pointers to some entries
in the next array to be filled. In general, our dynamically updated array (of
length |ISF(ϕ)|), indexed by interval-skewed subformulas, will contain Boolean
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expressions instead of Booleans, in which the variables denote the dependencies
on those next entries.

Additionally, we may only output verdicts when the Boolean expressions are
resolved to a Boolean verdict. This will happen eventually, since in our setting
time progresses and future intervals are bounded. But until this happens, the
yet-to-be-output Boolean expressions must be stored, which affects the algo-
rithm’s space consumption. In the worst case, the monitor would store as many
expressions as there are time-points in any interval of timespan d, where d is the
future reach of the monitored formula.

Finally, to obtain almost event-rate independence, we refine our monitor’s
output by allowing it to output equivalence verdicts between different time-
points. As soon as the monitor sees two semantically equivalent Boolean expres-
sions, it may output such verdicts and discard one of the two expressions.
Since there are only O(22

|ISF(ϕ)|
) semantically different Boolean expressions in

O(|ISF(ϕ)|) variables (corresponding to the verdicts for interval-skewed subfor-
mulas at the next time-point), the space required to store them depends only on
the monitored formula ϕ. However, for the equivalence verdicts to be understand-
able to users, the equivalences must refer to different time-points via indices.
Storing those indices requires logarithmic space in the event rate. Hence, the
overall algorithm is almost event-rate independent.

5.2 The Algorithm

We now give a more formal description of our algorithm. For the presentation,
we use a functional programming-style pseudo code, with pattern matching, that
resembles Standard ML. Type constructors, such as − list or − array for func-
tional lists and arrays (lists of fixed length with constant time element access),
are written postfix, with the exception of the product type × and the function
space →, which are written infix. We write N for the type of natural numbers
and for the type of time-stamps (although, in our case, these are again just
natural numbers). Lists are either empty [] or constructed by prepending an
element to a list x::xs. List concatenation is written infix as ++. Anonymous
functions are introduced using λ-abstractions.

Our monitor for a fixed formula Φ operates on an input stream of time-
stamped events I and writes verdicts to an output stream O. Additionally, it
starts in some initial state init of type σ and can perform state transitions
step : σ → σ. The state consists of three parts: a list of time-stamped Boolean
expressions for which the verdict depends on future events, a current time-stamp,
and an array of Boolean expressions for all interval-skewed subformulas at the
current time-point (similarly to the state of Havelund and Roşu’s algorithm).
Expressions for small subformulas are stored at low indices in this array, while
the monitored formula Φ has index |ISF(Φ)| − 1. In other words, if we think of
the array as being indexed by subformulas, then the array’s indices are ordered
by the well-order <. We formalize the state using a record type:
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Fig. 2. The transition system of the monitor: init and step

Two points are worth noting here. First, in addition to the time-stamp for each
time-point, we store an offset of type N, which stores the position of the time-
point within a block of time-points with the same time-stamp. Using the time-
stamp and the offset, each time-point can be uniquely identified. Second, the
array in arr has a dependency on a future time-stamp because the recursive
definition of satisfaction for until depends the time-stamp difference between the
next and the current time-point. As a result, our monitor will output a verdict
for a time-point only after having seen the time-stamp of the next time-point.
We will revisit and rectify this limitation in Sect. 5.4.

Overloading notation, (Boolean) expressions can be defined inductively as
follows:

bexp = ⊥ | � | bexp ∧ bexp | bexp ∨ bexp | ¬bexp | var N.

Here, a variable should be thought of as a pointer into the arr array of the yet-
to-be-computed next state, i.e., a natural number less than n, where n is the
number of interval-skewed subformulas of Φ. To lighten the notation, we implic-
itly convert interval-skewed subformulas of Φ to natural numbers between 0 and
n − 1, and vice versa. For example, we write var ϕ (or a[ϕ]) to denote a variable
pointing to the array entry corresponding to the formula ϕ (or the array entry
itself). We assume that all expressions of type bexp are normalized using Boolean
simplifications, e.g., ⊥ ∧ x is rewritten to ⊥. Thus, each expression is either a
Boolean ⊥ or � or does not contain ⊥ or � as a subexpression. Furthermore,
we will use the function subst : (N → bexp) → bexp → bexp to replace variables
with expressions according to the given function argument as well as a decision
procedure ≡ : bexp → bexp → {⊥, �} for the semantic equivalence of Boolean
expressions. We omit the definitions of those two functions.

The monitor’s initial state init and its transition function step are shown
in Fig. 2. The function step formalizes the transition from the current time-
point to the next one. First, it retrieves the new event π and its time-stamp τ′

from the input stream I (which we write as (π, τ′) ⇐ I). Using τ′, the next step
evaluates the future-dependent array fa to obtain an array of Boolean expressions
a. Note that the expressions in a refer to the array of the next state, while all
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Fig. 3. Recursive formula progression and insertion modulo semantic expression equiv-
alence

expressions in the history h refer to the current state, namely to a itself. To
overcome this mismatch, the monitor iterates over the history using the standard
fold combinator on lists and updates each of the Boolean expressions to refer to
the next state using subst in the function update. This update may convert some
of the expressions into Boolean verdicts, which are immediately output (written
. . . ⇒ O) and removed from the history. Next, the monitor computes the new
offset j depending on whether the time-stamp has increased. Finally, the last
entry of the array a is added to the history (or output in case it is a Boolean
verdict) using the function add and the new future-dependent array is produced
by (a partial application of) the progress function and stored in the state. We
describe these two core functions next.

We consider three different implementations of the add function:

add (x as ( , , c)) xs =

if c = ⊥ ∨ c = � then (let x ⇒ O in xs) else

⎧
⎪⎨

⎪⎩

x::xs naive

go ⊥ [] x xs global

go � [] x xs local

The naive version simply prepends the element to the history (which is kept
in reversed order with respect to the input stream). This version is not almost
event-rate independent. The global version adds the new expression only if
there is no semantically equivalent expression in the history. The local version
adds the new expression only if there is no semantically equivalent expression
labeled with the same time-point. Whenever an expression is not added to the
history, an equivalence verdict is output. Both versions, local and global,
are implemented using the auxiliary function go shown in Fig. 3 and give rise to
almost event-rate independent algorithms.
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Fig. 4. An execution of the monitoring algorithm on a U[0, 1] b

The last missing piece is the update of the arr entry of the monitor’s state.
The function progress shown in Fig. 3 performs this update. It has access to
the previous time-stamp τ, the current time-stamp τ′, the next time-stamp τ′′,
the current event π, and the previous array of Boolean expressions a. Given
these inputs, it fills the next array b starting from the smallest subformulas
and progressing up to the formula Φ itself. Each array entry is filled following
the recursive definition of satisfaction of the topmost operator of the formula
it corresponds to. Moreover, whenever the previous array a is accessed for past
operators, the retrieved expression’s dependencies are updated using subst as
before. In contrast, for future dependencies, the var constructor of expressions
is used.

Example 1 (continued). Figure 4 shows the internal states of the global version
of our algorithm when monitoring the formula a U[0, 1] b on the stream ρ =
〈({a}, 1), ({a}, 2), ({a}, 2), ({b}, 3), ({a, b}, 4), . . .〉. The first two rows show the
incoming events and their time-stamps, the third the within-time-stamp offset,
and the fourth the current history. The next four rows are dedicated to the
Boolean expressions stored for each interval-skewed subformula. The last row
displays the monitor’s verdicts. At each time-point, the monitor’s state consists
(roughly) of one column from this table. Since it is hard to display the function
fa, we show instead the result of applying fa to the time-stamp of the next state.
This causes a delay of one time-point between the values in the arrays and the
history updates and verdict outputs.

5.3 Correctness and Complexity Analysis

In this subsection, we fix a formula Φ and a stream ρ. To prove the soundness
and completeness of our monitor and to establish its space complexity bounds,
we formulate an invariant I that holds after processing the first event and all
subsequent states.
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I {hist = h, now = (τ, i), arr = fa)} =
(I1) (∀(τ′, j, b) ∈ h. τ′@ j |= Φ←→ τ@i |=bexp b)

∧ (I2) (∀ϕ ∈ ISF(Φ). τ@i |= ϕ←→ τ@i + 1 |=bexp fa (ττ@i+1)[ϕ])
∧ (I3) (∀ϕ ∈ ISF(Φ). vars (fa (ττ@i+1)[ϕ]) ⊆ ISF(ϕ))
∧ (I4) (∀(τ′, j, b) ∈ h. b �= � ∧ b �= ⊥)
∧ (I5) h is sorted in strictly descending order by time-point
∧ (I6) (∀(τ′, j, b)∈h. ∀(τ′′, k, c)∈h. τ′@ j �=τ′′@k→compact τ′ τ′′ b c)

We write τ@i to denote the time-point uniquely identified by the time-stamp
τ and the within-time-stamp offset i. Moreover, vars is the set of vars in a Boolean
expression, τk is the time-stamp from ρ at time-point k, and |=bexp is the lifting
of MTL satisfaction to expressions. For the base case of this lifting, we have
k |=bexp var ϕ←→ k |= ϕ.

The invariant consists of six predicates. (I1) and (I2) capture the semantics
of the entries in the history and the expression array. (I3) expresses that future
dependencies in any expression indexed by a subformula ϕ may only refer to ϕ’s
interval-skewed subformulas. (I4) and (I5) are important structural properties
of the history. (I6) is crucial for our complexity analysis. It uses an auxiliary
predicate compact, defined differently for each of the three versions of the mon-
itoring algorithm we consider.

compact τ′ τ′′ b c =

⎧
⎪⎨

⎪⎩

� naive

b �≡ c global

τ′ = τ′′ → b �≡ c local

We prove that I holds for every reachable state except the initial state itself.
In the initial state (I2) is violated. The fa array of the initial state is accessed
only for past-time operators at the first event. In this case, the stored values ⊥
for all subformulas have exactly the right semantics: essentially they affirm that
there is no previous time-point.

Lemma 2. I (step init) and for any state s if I(s) then I (step s).

Proof (core idea). The core of the proof is the preservation of (I2) by the progress
function. We prove the following auxiliary lemma: Fix a stream ρ = 〈(πi, τi)〉i∈N

and a time-point k. Assume progress a τk πk+1 τk+1 τk+1 = b and for all ϕ ∈
ISF(Φ) we have k |= ϕ←→ k + 1 |=bexp a[ϕ]. Then k + 1 |= ϕ←→ k + 2 |=bexp b[ϕ]
holds for all ϕ ∈ ISF(Φ).

The lemma follows by well-founded induction on the lexicographic product
of the natural number order on time-points and the order < on formulas: Fix
ϕ ∈ ISF(Φ). The induction hypothesis allows us to assume k + 1 |= ψ ←→ k +
2 |=bexp b[ψ] for any ψ < ϕ. We continue by a case distinction on ϕ and present
here only the case where ϕ = ϕ1 UI ϕ2. Let Δ = τ′′ − τ′ and I′ = I − Δ. We
calculate
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k + 1 |= ϕ1 UI ϕ2
recursive def. of|=←→ (0 ∈ I ∧ k + 1 |= ϕ2) ∨

(Δ ≤ r(I) ∧ k + 1 |= ϕ1 ∧ k + 2 |= ϕ1 UI′ ϕ2)
twice IH + def. |=bexp←→ (0 ∈ I ∧ k + 2 |=bexp b[ϕ2]) ∨
(Δ ≤ r(I) ∧ k + 2 |=bexp b[ϕ1] ∧ k + 2 |=bexp var (ϕ1 UI′ ϕ2))

def. of progress←→ k + 2 |=bexp b[ϕ1 UI ϕ2]

Other cases follow similarly. Past operators additionally use the assumption on a.
��

The step from the invariant to a correctness theorem is easy. For soundness,
we calculate the expected semantic properties for verdicts output in a step taking
(I1) and (I2) of the invariant into account. Completeness also holds: for each
time-point either a verdict is output or an expression is inserted into the history.
Each expression from the history is eventually output as time progresses and all
future intervals are bounded.

Theorem 1 (Correctness). The monitor for a formula Φ is sound: whenever
it outputs the Boolean verdict (τ, i, b) we have τ@i |= Φ ←→ b and whenever it
outputs the equivalence verdict (τ, i) ≡ (τ′, j) we have τ@i > τ′@ j and τ@i |=
Φ ←→ τ′@ j |= Φ. For the local mode, we additionally have τ = τ′. Moreover,
the monitor is complete.

Finally, we establish complexity bounds. Let n = |ISF(Φ)| and d = FR(ϕ).
Note that d ≤ n. The size of a Boolean expression in n variables can be bounded
by 2n assuming a normal form for expressions such as CNF. Then the size of the
future-dependent array arr is n · 2n. The length of the history depends on the
version of the algorithm used and (except for the naive algorithm) dominates
the size of arr.

Theorem 2 (Space Complexity). The space complexity for storing all
Boolean expressions used by the three versions of the algorithm at the time-stamp
τ is

naive: O(2n · (n +
∑τ
τ′=τ−d er(τ

′))), global: O(22
n+n), and local: O(d · 22

n+n).

Time-stamps additionally require a constant and the offsets a logarithmic amount
of space in the event rate. Hence, global and local are almost event-rate
independent.

Proof. Each stored Boolean expression requires O(2n) space. The bound for
naive follows since, at time-stamp τ, we can output Boolean verdicts for all
time-stamps that are at most τ− d. Hence, the history needs to store only those
expressions that fit into the interval (τ−d, τ]. For global (or local) there are
at most 22

n
(or d · 22

n
) semantically different Boolean expressions that must be

stored in the history. ��
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5.4 Implementation

We have implemented the presented algorithm using Standard ML. The imple-
mentation comprises just roughly 600 lines of code. It is available online [1].

Our implementation follows the pseudo-code in Sect. 5.2. In one aspect, it
takes a more refined approach. The monitor’s users would like violations to
be reported as early as possible. The presented monitor does not do this as
it delays the output of verdicts for one time-point, even if no future opera-
tors are involved. Our implementation improves this by refining the type of
arr in the monitor’s state from to the more precise

, where the type of potentially future expressions bexpf is
either an immediate Boolean expression or a future-dependent expression as
before. Formally

This refined type makes it possible to output verdicts at the current time-
point instead of the following one, provided that the computation of progress
resulted in a Now constructor for the monitored formula Φ. Accordingly, the
function progress must be refined to carefully assemble possibly future expres-
sions to maximize the number of Now constructors in the array. To achieve this,
all constructors (e.g., ∧) of bexp are lifted to functions (e.g., ∧f) on bexpf that
try to produce as many Nows as possible by applying simplification rules such
as Now ⊥ ∧f Later f = Now ⊥.

To implement the expression equivalence check, we use a simple BDD based
algorithm that has been formally verified in the Isabelle proof assistant by
Nipkow [16]. It would be interesting to explore working with BDDs instead of
Boolean expressions all the time (and not only in the equivalence check) to poten-
tially improve time complexity.

6 Evaluation

We compare the three versions of our tool with MonPoly [2,3], a state-of-
the art monitor for metric first-order temporal logic. The experiments were run
on a 3.1 GHz dual-core Intel Core-i7 processor and 16 GB RAM. We evaluate
the memory consumption of all tools while monitoring four MTL formulas on
pseudo-randomly generated event logs with varying average event rates. For the
random generation, we used a different probability distribution for each event,
depending on the formula. For example, for the formula ♦[0,5]p, the probability
of p occurring was very small. All our logs consist of 100 different time-stamps,
with the number of time-points labeled with the same time-stamp ranging from
100 to 100 000 on average per log. Overall, the log files comprised 8 GB of data.
Their generation required more time than the actual monitoring task (at least
for the local and global version of our algorithms). GNU Parallel [18] was
invaluable for both generating the logs and running the four tools on them.

Figure 5 shows our evaluation results. Each data point in the graphs rep-
resents the average of the maximum memory consumption over 10 randomly
generated logs of a fixed average event rate. (The standard deviation is omitted
in the figure as it was far below 1 MB for most time-points.) For all formulas,
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Fig. 5. Results of the experimental evaluation

the space consumption of both the naive version of our tool and MonPoly
increases linearly in the event rate, while for local and global it stays almost
constant. This relationship between the memory usage and the average event rate
is consistent with our theoretical analysis. Moreover, local and global do not
differ essentially in memory consumption. We therefore advise using the local
version of the algorithm given its additional guarantee of outputting equivalence
verdicts only for time-points labeled with the same time-stamp.

Although we were not measuring time, increasing the memory consumption
to 60 MB results in a significant increase in processing time per event, which
leads to a much lower throughput for monitors like naive and MonPoly. This
is not the case for our almost event-rate independent monitors.

7 Conclusion

We introduced the notion event-rate independence for measuring the space com-
plexity of monitoring algorithms. This notion is desirable for monitors processing
event streams of varying velocity. We presented a novel algorithm for monitoring
metric temporal logic with bounded future operators that is almost event-rate
independent. Our algorithm is concise and efficient.

As future work, we plan to study which extensions of metric temporal logic
permit almost event-rate independent algorithms. Moreover, we intend to par-
allelize our algorithm, using existing frameworks in the spirit of Spark [21], to
obtain monitors for expressive temporal logics that scale to big data applications.
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19. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
Electr. Notes Theor. Comput. Sci. 113, 145–162 (2005)

20. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636,
pp. 736–751. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 47

21. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Nahum, E.M., Xu, D. (eds.) HotCloud 2010.
USENIX Association (2010)

http://www.gnu.org/s/parallel
http://dx.doi.org/10.1007/978-3-662-49674-9_47

	Almost Event-Rate Independent Monitoring of Metric Temporal Logic
	1 Introduction
	2 Related Work
	3 Metric Temporal Logic
	4 Almost Event-Rate Independence
	5 Monitoring Algorithm
	5.1 Informal Account
	5.2 The Algorithm
	5.3 Correctness and Complexity Analysis
	5.4 Implementation

	6 Evaluation
	7 Conclusion
	References


