
Context-Bounded Analysis for POWER

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Ahmed Bouajjani2,
and Tuan Phong Ngo1(B)

1 Uppsala University, Uppsala, Sweden
{parosh,mohamed faouzi.atig,tuan-phong.ngo}@it.uu.se

2 IRIF, Université Paris Diderot, Paris, France
abou@irif.fr

Abstract. We propose an under-approximate reachability analysis algo-
rithm for programs running under the POWER memory model, in the
spirit of the work on context-bounded analysis intitiated by Qadeer
et al. in 2005 for detecting bugs in concurrent programs (supposed to
be running under the classical SC model). To that end, we first intro-
duce a new notion of context-bounding that is suitable for reasoning
about computations under POWER, which generalizes the one defined
by Atig et al. in 2011 for the TSO memory model. Then, we provide
a polynomial size reduction of the context-bounded state reachability
problem under POWER to the same problem under SC: Given an input
concurrent program P , our method produces a concurrent program P ′

such that, for a fixed number of context switches, running P ′ under SC
yields the same set of reachable states as running P under POWER. The
generated program P ′ contains the same number of processes as P , and
operates on the same data domain. By leveraging the standard model
checker CBMC, we have implemented a prototype tool and applied it on
a set of benchmarks, showing the feasibility of our approach.

1 Introduction

For performance reasons, modern multi-processors may reorder memory access
operations. This is due to complex buffering and caching mechanisms that make
the response memory queries (load operations) faster, and allow to speed up
computations by parallelizing independent operations and computation flows.
Therefore, operations may not be visible to all processors at the same time, and
they are not necessarily seen in the same order by different processors (when they
concern different addresses/variables). The only model where all operations are
visible immediately to all processors is the Sequential Consistency (SC) model
[28] which corresponds to the standard interleaving semantics where the program
order between operations of a same processor is preserved. Modern architectures
adopt weaker models (in the sense that they allow more behaviours) due to
the relaxation in various ways of the program order. Examples of such weak
models are TSO adopted in Intel x86 machines for instance, POWER adopted
in PowerPC machines, or the model adopted in ARM machines.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 56–74, 2017.
DOI: 10.1007/978-3-662-54580-5 4

Context-Bounded Analysis for POWER 57

Apprehending the effects of all the relaxations allowed in such models is
extremely hard. For instance, while TSO allows reordering stores past loads (of
different addresses/variables) reflecting the use of store buffers, a model such as
POWER allows reordering of all kinds of store and load operations under quite
subtle conditions. A lot of work has been devoted to the definition of formal
models that accurately capture the program semantics corresponding to mod-
els such as TSO and POWER [11,30,32,34,35]. Still, programming against weak
memory models is a hard and error prone task. Therefore, developing formal ver-
ification approaches under weak memory models is of paramount importance. In
particular, it is crucial in this context to have efficient algorithms for automatic
bug detection. This paper addresses precisely this issue and presents an algo-
rithmic approach for checking state reachability in concurrent programs running
on the POWER semantics as defined in [21] (which is essentially the POWER
model presented in [34] with small changes that have been introduced in order
to increase the accuracy and the precision of the model).

The verification of concurrent programs under weak memory models is known
to be complex. Indeed, encoding the buffering and storage mechanisms used in
these models leads in general to complex, infinite-state formal operational mod-
els involving unbounded data structures like FIFO queues (or more generally
unbounded partial order constraints). For the case of TSO, efficient, yet precise
encodings of the effects of its storage mechanism have been designed recently
[3,5]. It is not clear how to define such precise and practical encodings for POWER.

In this paper, we consider an alternative approach. We investigate the issue of
defining approximate analysis. Our approach consists in introducing a parametric
under-approximation schema in the spirit of context-bounding [12,25,27,31,33].
Context-bounding has been proposed in [33] as a suitable approach for efficient
bug detection in multithreaded programs. Indeed, for concurrent programs, a
bounding concept that provides both good coverage and scalability must be
based on aspects related to the interactions between concurrent components. It
has been shown experimentally that concurrency bugs usually show up after a
small number of context switches [31].

In the context of weak memory models, context-bounded analysis has been
extended in [12] to the case of programs running on TSO. The work we present
here aims at extending this approach to the case of POWER. This extension is
actually very challenging due to the complexity of POWER and requires devel-
oping new techniques that are different from, and much more involved than, the
ones used for the case of TSO. First, we introduce a new concept of bounding
that is suitable for POWER. Intuitively, the architecture of POWER is similar
to a distributed system with a replicated memory, where each processor has its
own replica, and where operations are propagated between replicas according to
some specific protocol. Our bounding concept is based on this architecture. We
consider that a computation is divided in a sequence of “contexts”, where a con-
text is a computation segment for which there is precisely one active processor.
All actions within a context are either operations issued by the active proces-
sor, or propagation actions performed by its storage subsystem. Then, in our
analysis, we consider only computations that have a number of contexts that is

58 P.A. Abdulla et al.

less or equal than some given bound. Notice that while we bound the number
of contexts in a computation, we do not put any bound on the lengths of the
contexts, nor on the size of the storage system.

We prove that for every bound K, and for every concurrent program Prog ,
it is possible to construct, using code-to-code translation, another concurrent
program Prog• such that for every K-bounded computation π in Prog under
the POWER semantics there is a corresponding K-bounded computation π• of
Prog• under the SC semantics that reaches the same set of states and vice-versa.
Thus, the context-bounded state reachability problem for Prog can be reduced
to the context-bounded state reachability problem for Prog• under SC. We show
that the program Prog• has the same number of processes as Prog , and only
O(|P ||X |K + |R |) additional shared variables and local registers compared to
Prog , where |P | is the number of processes, |X | is the number of shared variables
and |R | is the number of local registers in Prog . Furthermore, the obtained pro-
gram has the same type of data structures and variables as the original one. As
a consequence, we obtain for instance that for finite-data programs, the context-
bounded analysis of programs under POWER is decidable. Moreover, our code-
to-code translation allows to leverage existing verification tools for concurrent
programs to carry out verification of safety properties under POWER.

To show the applicability of our approach, we have implemented our reduc-
tion, and we have used cbmc version 5.1 [17] as the backend tool for solving SC
reachability queries. We have carried out several experiments showing the effi-
ciency of our approach. Our experimental results confirm the assumption that
concurrency bugs manifest themselves within small bounds of context switches.
They also confirm that our approach based on context-bounding is more efficient
and scalable than approaches based on bounding sizes of computations and/or
of storage systems.

Related work. There has been a lot of work on automatic program verification
under weak memory models, based on precise, under-approximate, and abstract
analyses, e.g., [2,5,8,10,12–16,18–20,23,24,26,29,36–40]. While most of these
works concern TSO, only a few of them address the safety verification problem
under POWER (e.g., [6,9–11,36]). The paper [21] addresses the different issue
of checking robustness against POWER, i.e., whether a program has the same
(trace) semantics for both POWER and SC.

The work in [9] extends the cbmc framework by taking into account weak mem-
ory models including TSO and POWER. While this approach uses reductions to
SC analysis, it is conceptually and technically different from ours. The work in [10]
develops a verification technique combining partial orders with bounded model
checking, that is applicable to various weak memory models including TSO and
POWER. However, these techniques are not anymore supported by the latest ver-
sion of cbmc. The work in [6] develops stateless model-checking techniques under
POWER. In Sect. 4, we compare the performances of our approach with those
of [6,9]. The tool herd [11] operates on small litmus tests under various memory
models. Our tool can handle in an efficient and precise way such litmus tests.

Recently, Tomasco et al. [36] presented a new verification approach, based
on code-to-code translations, for programs running under TSO and PSO. They

Context-Bounded Analysis for POWER 59

also discuss the extension of their approach to programs running under POWER
(however the detailed formalization and the implementation of this extension are
kept for future work). Our approach and the one proposed in [36] are orthogonal
since we are using different bounding parameters: In this paper, we are bounding
the number of contexts while Tomasco et al. [36] are bounding the number of
write operations.

2 Concurrent Programs

In this section, we first introduce some notations and definitions. Then, we
present the syntax we use for concurrent programs and its semantics under
POWER as in [21,34].

Preliminaries. Consider sets A and B. We use [A �→ B] to denote the set of
functions from A to B, and write f : A �→ B to indicate that f ∈ [A �→ B].
We write f(a) = ⊥ to denote that f is undefined for a. We use f [a ← b] to
denote the function g such that g(a) = b and g(x) = f(x) if x �= a. We will use a
function gen which, for a given set A, returns an arbitrary element gen (A) ∈ A.
For integers i, j, we use [i..j] to denote the set {i, i + 1, . . . , j}. We use A∗ to
denote the set of finite words over A. For words w1, w2 ∈ A∗, we use w1 · w2 to
denote the concatenation of w1 and w2.

Syntax. Figure 1 gives the grammar for a small but general assembly-like lan-
guage that we use for defining concurrent programs. A program Prog first
declares a set X of (shared) variables followed by the code of a set P of processes.
Each process p has a finite R (p) of (local) registers. We assume w.l.o.g. that the
sets of registers of the different processes are disjoint, and define R := ∪pR (p).
The code of each process p ∈ P starts by declaring a set of registers followed by
a sequence of instructions.

Fig. 1. Syntax of concurrent programs.

For the sake of simplicity, we assume
that the data domain of both the shared
variables and registers is a single set D.
We assume a special element 0 ∈ D which
is the initial value of each shared variable
or register. Each instruction i is of the
form λ :s where λ is a unique label (across
all processes) and s is a statement. We
define lbl (i) := λ and stmt (i) := s. We define Ip to be the set of instructions
occurring in p, and define I := ∪p∈PIp. We assume that Ip contains a designated
initial instruction iinitp from which p starts its execution. A read instruction in
a process p ∈ P has a statement of the form $r ← x, where $r is a register
in p and x ∈ X is a variable. A write instruction has a statement of the form
x ← exp where x ∈ X is a variable and exp is an expression. We will assume a set
of expressions containing a set of operators applied to constants and registers,
but not referring to the content of memory (i.e., the set of variables). Assume,
conditional, and iterative instructions (collectively called aci instructions) can
be explained in a similar manner. The statement term will cause the process to

60 P.A. Abdulla et al.

terminate its execution. We assume that term occurs only once in the code of a
process p and that it has the label λterm

p . For an expression exp, we use R (exp)
to denote the set of registers that occur in exp. For a write or an aci instruction
i, we define R (i) := R (exp) where exp is the expression that occurs in stmt (i).

For an instruction i ∈ Ip, we define next (i) to be the set of instructions that
may follow i in a run of a process. Notice that this set contains two elements if i is
an aci instruction (in the case of an assume instruction, we assume that if the con-
dition evaluates to false, then the process moves to λterm

p : term), no element if i is a
terminating instruction, and a single element otherwise. We define Tnext (i) (resp.
Fnext (i)) to be the (unique) instruction to which the process execution moves in
case the condition in the statement of i evaluates to true (resp. false).

Configurations. We will assume an infinite set E of events, and will use an event
to represent a single execution of an instruction in a process. A given instruction
may be executed several times during a run of the program (for instance, when it
is in the body of a loop). In such a case, the different executions are represented
by different events. An event e is executed in several steps, namely it is fetched,
initialized, and then committed. Furthermore, a write event may be propagated to
the other processes. A configuration c is a tuple 〈E,≺, ins, status, rf, Prop,≺co〉,
defined as follows.

Events. E ⊆ E is a finite set of events, namely the events that have been created
up to the current point in the execution of the program. ins : E �→ I is a function
that maps an event e to the instruction ins (e) that e is executing. We partition
the set E into disjoint sets Ep, for p ∈ P , where Ep := {e ∈ E | ins (e) ∈ Ip}, i.e.,
for a process p ∈ P , the set Ep contains the events whose instructions belong to
p. For an event e ∈ Ep, we define proc (e) := p. We say that e is a write event if
ins (e) is a write instruction. We useEW to denote the set of write events. Similarly,
we define the setER of read events, and the setEACI of aci events whose instructions
are either assume, conditional, or iterative. We define EW

p, E
R
p, and EACI

p , to be the
restrictions of the above sets to Ep. For an event e where stmt (ins (e)) is of the
form x ← exp or $r ← x, we define var (e) := x. If e is neither a read nor a write
event, then var (e) := ⊥.

Program Order. The program-order relation ≺⊆ E × E is an irreflexive partial
order that describes, for a process p ∈ P , the order in which events are fetched
from the code of p. We require that (i) e1 �≺ e2 if proc (e1) �= proc (e2), i.e., ≺
only relates events belonging to the same process, and that (ii) ≺ is a total order
on Ep.

Status. The function status : E �→ {fetch, init, com} defines, for an event e,
the current status of e, i.e., whether it has been fetched, initialized, or committed.

Propagation. The function Prop : P ×X �→ EW ∪Einit defines, for a process p ∈ P
and variable x ∈ X , the latest write event on x that has been propagated to p. Here
Einit := {einitx | x ∈ X} is a set disjoint from the set of events E , and will be used
to define the initial values of the variables.

Context-Bounded Analysis for POWER 61

Read-From. The function rf : ER �→ EW ∪ Einit defines, for a read event e ∈ ER,
the write event rf (e) from which e gets its value.

Coherence Order. All processes share a global view about the order in which write
events are propagated. This is done through the coherence order ≺co that is a par-
tial order on EW s.t. e1 ≺co e2 only if var (e1) = var (e2), i.e., it relates only
events that write on identical variables. If a write event e1 is propagated to a
process before another write event e2 and both events write on the same variable,
then e1 ≺co e2 holds. Furthermore, the events cannot be propagated to any other
process in the reverse order. However, it might be the case that a write event is
never propagated to a given process.

Dependencies. We introduce a number of dependency orders on events that we
will use in the definition of the semantics. We define the per-location program-
order ≺poloc⊆ E × E such that e1 ≺poloc e2 if e1 ≺ e2 and var (e1) = var (e2),
i.e., it is the restriction of ≺ to events with identical variables. We define the data
dependency order ≺data s.t. e1 ≺data e2 if (i) e1 ∈ ER, i.e., e1 is a read event;
(ii) e2 ∈ EW ∪ EACI, i.e., e2 is either a write or an aci event; (iii) e1 ≺ e2; (iv)
stmt (ins (e1)) is of the form $r ← x; (v) $r ∈ R (ins (e2)); and (vi) there is no
event e3 ∈ ER such that e1 ≺ e3 ≺ e2 and stmt (ins (e3)) is of the form $r ← y.
Intuitively, the loaded value by e1 is used to compute the value of the expression
in the statement on the instruction of e2. We define the control dependency order
≺ctrl such that e1 ≺ctrl e2 if e1 ∈ EACI and e1 ≺ e2.

We say that c is committed if status (e) = com for all events e ∈ E. The initial
configuration cinit is defined by 〈∅, ∅, λe.⊥, λe.⊥, λe.⊥, λp.λx.einitx , ∅〉. We use C
to denote the set of all configurations.

Transition Relation. We define the transition relation as a relation −→ ⊆ C ×
P × C. For configurations c1, c2 ∈ C and a process p ∈ P , we write c1

p−→ c2 to
denote that 〈c1, p, c2〉 ∈−→ . Intuitively, this means that p moves from the current
configuration c1 to c2. The relation −→ is defined through the set of inference rules
shown in Fig. 2.

The rule Fetch chooses the next instruction to be executed in the code of a
process p ∈ P . This instruction should be a possible successor of the instruction
that was last executed by p. To satisfy this condition, we define MaxI (c, p) to be the
set of instructions as follows: (i) If Ep = ∅ then define MaxI (c, p) :=

{
iinitp

}
, i.e.,

the first instruction fetched by p is iinitp . (ii) If Ep �= ∅, let e′ be the maximal event
of p (w.r.t. ≺) in the configuration c and then define MaxI (c, p) := next (ins (e′)).
In other words, we consider the instruction i′ = ins (e′) ∈ Ip, and take its possible
successors. The possibility of choosing any of the (syntactically) possible succes-
sors corresponds to speculatively fetching statements. As seen below, whenever we
commit an aci event, we check whether the made speculations are correct or not.
We create a new event e, label it by i ∈ MaxI (c, p), and make it larger than all the
other events of p w.r.t. ≺. In such a way, we maintain the property that the order
on the events of p reflects the order in which they are fetched in the current run of
the program.

There are two ways in which read events get their values, namely either from
localwrite events that are performed by the process itself, or from write events that

62 P.A. Abdulla et al.

Fig. 2. Inference rules defining the relation
p−→ where p ∈ P .

are propagated to the process. The first case is covered by the rule Local-Read in
which the process p initializes a read event e ∈ ER on a variable (say x), where e
has already been fetched. Here, the event e is made to read its value from a local
write event e′ ∈ EW

p on x such that (i) e′ has been initialized but not yet committed,
and such that (ii) e′ is the closest write event that precedes e in the order ≺poloc.
Notice that, by condition (ii), e′ is unique if it exists. To formalize this, we define
the Closest Write function CW (c, e) := e′ where e′ is the unique event such that
(i) e′ ∈ EW, (ii) e′ ≺poloc e, and (iii) there is no event e′′ such that e′′ ∈ EW

and e′ ≺poloc e′′ ≺poloc e. Notice that e′ may not exist, i.e., it may be the case
that CW (c, e) = ⊥. If e′ exists and it has been inititialized but not commited, we
initialize e and update the read-from relation appropriately. On the other hand,
if such an event does not exist, i.e., if there is no write event on x before e by p, or
if the closest write event on x before e by p has already been committed, then we
use the rule Prop-Read to let e fetch its value from the latest write event on x that
has been propagated to p. Notice this event is the value of Prop (p, x).

Context-Bounded Analysis for POWER 63

To commit an initialized read event e ∈ ER
p, we use the rule Com-Read. The rule

can be performed if e satisfies two conditions in c. The first condition is defined as
RdCnd (c, e) := ∀e′ ∈ ER : (e′ ≺poloc e) =⇒ (rf (e′) �co rf (e)). It states that
for any read event e′ such that e′ precedes e in the order ≺poloc, the write event
from which e′ reads its value is equal to or precedes the write event for e in the
coherence order ≺co. The second condition is defined by ComCnd (c, e) := ∀e′ ∈
E : (e′ ≺data e) ∨ (e′ ≺ctrl e) ∨ (e′ ≺poloc e) =⇒ (status (e′) = com). It states
that all events e′ ∈ E that precede e in one of the orders ≺data, ≺ctrl, or ≺poloc

should have already been committed.
To initialize a fetched write event e ∈ ER

p, we use the rule Init-Write that
requires all events that precede e in the order ≺data should have already been ini-
tialized. This condition is formulated as WrInitCnd (c, e) := ∀e′ ∈ ER : (e′ ≺data

e) =⇒ (status (e′) = init ∨ status (e′) = com). When a write event in a
process p ∈ P is committed, it is also immediately propagated to p itself. To main-
tain the coherence order, the semantics keeps the invariant that the latest write
event on a variable x ∈ X that has been propagated to a process p ∈ P is the largest
one in the coherence order among all write events on x that have been propagated
to p up to now in the run. This invariant is maintained in Com-Write by requiring
that the event e (that is being propagated) is strictly larger in the coherence order
than the latest write event on the same variable as e that has been propagated to p.

Write events are propagated to other processes through the rule Prop. A write
event e on a variable x is allowed to be propagated to a process q only if it has
a coherence order that is strictly larger than the coherence of any event that has
been to propagated to q up to now. Notice that this is given by coherence order of
Prop (q, x) which is the latest write event on x that has been propagated to q.

When committing an aci event through the rule Com-ACI, we also require that
we verify any potential speculation that have been made when fetching the subse-
quent events. We assume that we are given a function Val (c, e) that takes as input
an aci event e and returns the value of the expression of the conditional statement
in the instruction of e when evaluated in the configuration c. The Val (c, e) is only
defined when all events that precede e in the order ≺data should have already been
initialized.

To that end, we define predicate ValidCnd (c, e) := (∃e′ ∈ E : e ≺ e′ ∧�e′′ ∈
E : e ≺ e′′ ≺ e′) =⇒ ((Val (c, e) = true ∧ ins (e′) = Tnext (ins (e))) ∨
(Val (c, e) = false ∧ ins (e′) = Fnext (ins (e)))). The rule intuitively finds the
event e′ that was fetched immediately after e. Notice that such an event may not
exist and it is unique if it exists. The predicate requires the choice of e′ is consistent
with the value Val (c, e) of the expression in the statement of the instruction of e.

Bounded Reachability. A run π is a sequence of transitions c0
p1−→ c1

p2−→
c2 · · · cn−1

pn−→ cn. In such a case, we write c0
π−→ cn. We define last (π) := cn. We

define π↑:= p1p2 · · · pn, i.e., it is the sequence of processes performing the transi-
tions in π. For a sequence σ = p1p2 · · · pn ∈ P∗, we say that σ is a context if there
is a process p ∈ P such that pi = p for all i : 1 ≤ i ≤ n. We say that π is committed
(resp. k-bounded) if last (π) is committed (resp. if π ↑= σ1 · σ2 · · · · σk where σi is
a context for all i : 1 ≤ i ≤ k).

64 P.A. Abdulla et al.

For c ∈ C and p ∈ P , we define the set of reachable labels of the configuration
c as follows. (i) If c = cinit then lbl (c) := {⊥}, i.e. process p does not reach to
any label in the initial configuration. (ii) If c �= cinit , let e be the maximal event
of p (w.r.t. ≺) in c. We define lbl (c) := {lbl (ins (e))}, i.e. process p reaches
to the label of the maximal event e of p (w.r.t. ≺) in the configuration c. In the
reachability problem, we are given a label λ and asked whether there is a committed
run π and a configuration c such that cinit

π−→ c where λ ∈ lbl (c). For a natural
numberK, theK-bounded reachability problem is defined by requiring that the run
π in the above definition is K-bounded.

3 Translation

In this section, we introduce an algorithm that reduces, for a given number K, the
K-bounded reachability problem for POWER to the corresponding problem for
SC. Given an input concurrent program Prog , the algorithm constructs an out-
put concurrent program Prog• whose size is polynomial in Prog and K, such that
for each K-bounded run π in Prog under the POWER semantics there is a cor-
responding K-bounded run π• of Prog• under the SC semantics that reaches the
same set of process labels. Below, we first present a scheme for the translation of
Prog , and mention some of the challenges that arise due to the POWER seman-
tics. Then, we give a detailed description of the data structures we use in Prog•.
Finally, we describe the codes of the processes in Prog•.

Fig. 3. Translation map [[.]]K. We omit the label
of an intermediary instruction when it is not rel-
evant.

Scheme.Our construction is based
on code-to-code translation scheme
that transforms the program Prog
into the program Prog• following
the map function [[.]]K given in
Fig. 3. Let P and X be the sets of
processes and (shared) variables in
Prog . The map [[.]]K replaces the
variables of Prog by (|P | ·(2K+1))
copies of the set X , in addition to
a finite set of finite-data structures
(which will be formally defined in
theData Structures paragraph).
The map function then declares
two additional processes iniProc
and verProc that will be used to
initialize the data structures and to
check the reachability problem at
the end of the run of Prog•. The
formal definition of iniProc (resp.
verProc) will be given in the Ini-
tializing process (resp. Verifier

Context-Bounded Analysis for POWER 65

process) paragraph. Furthermore, the map function [[.]]K transforms the code of
each process p ∈ P to a corresponding process p• that will simulate the moves of
p. The processes p and p• will have the same set of registers. For each instruction
i appearing in the code of the process p, the map [[i]]pK transforms it to a sequence
of instructions as follows: First, it adds the code defined by activeCnt to check
if the process p is active during the current context, then it transforms the state-
ment s of the instruction i into a sequence of instructions following the map [[s]]pK,
and finally it adds the sequence of instructions defined by closeCnt to guess the
occurrence of a context switch. The translation of an aci statement keeps the same
statements and adds control to guess the contexts when the corresponding event
will be committed. The terminating statement remains identical by the map func-
tion [[term]]pK. The translations of write and read statements will be described in
the Write Instructions and Read Instructions paragraphs respectively.

Challenges. There are two aspects of the POWER semantics (cf. Sect. 2) that
make it difficult to simulate the run π under the SC semantics, namely non-
atomicity and asynchrony. First, events are not executed atomically. In fact, an
event is first fetched and initialized before it is committed. In particular, an event
may be fetched in one context and be initialized and committed only in later con-
texts. Since there is no bound on the number of events that may be fetched in
a given context, our simulation should be able to handle unbounded numbers of
pending events. Second, write events of one process are propagated in an asynchro-
nous manner to the other processes. This implies that we may have unbounded
numbers of “traveling” events that are committed in one context and propagated
to other processes only in subsequent contexts. This creates two challenges in the
simulation. On the one hand, we need to keep track of the coherence order among
the different write events. On the other hand, since write events are not distributed
to different processes at the same time, the processes may have different views of
the values of a given variable at a given point of time.

Since it is not feasible to record the initializing, committing, and propagat-
ing contexts of an unbounded number of events in an SC run, our algorithm will
instead predict the summary of effects of arbitrarily long sequences of events that
may occur in a given context. This is implemented using an intricate scheme that
first guesses and then checks these summaries. Concretely, each event e in the run π

is simulated by a sequence of instructions in π•. This sequence of instructions will
be executed atomically (without interruption from other processes and events).
More precisely, if e is fetched in a context k : 1 ≤ k ≤ K, then the corresponding
sequence of instructions will be executed in the same context k in π•. Furthermore,
we let π• guess (speculate) (i) the contexts in which e will be initialized, commit-
ted, and propagated to other processes, and (ii) the values of variables that are
seen by read operations. Then, we check whether the guesses made by π• are valid
w.r.t. the POWER semantics. As we will see below, these checks are done both on-
the-fly during π•, as well as at the end of π•. To implement the guess-and-check
scheme, we use a number of data structures, described below.

Data Structures. We will introduce the data structures used in our simulation
in order to deal with the above asynchrony and non-atomicity challenging aspects.

66 P.A. Abdulla et al.

Asynchrony. In order to keep track of the coherence order, we associate a time
stamp with each write event. A time stamp τ is a mapping P �→ K⊗ where K⊗ :=
K∪{⊗}. For a process p ∈ P , the value of τ (p) represents the context in which the
given event is propagated to p. In particular, if τ (p) = ⊗ then the event is never
propagated to p. We use T to denote the set of time stamps. We define an order �
on T such that τ1 � τ2 if, for all processes p ∈ P , either τ1(p) = ⊗, or τ2(p) = ⊗,
or τ1(p) ≤ τ2(p). Notice that if τ1 � τ2 and there is a process p ∈ P such that
τ1(p) �= ⊗, τ2(p) �= ⊗, and τ1(p) < τ2(p) then τ1(q) ≤ τ2(q) whenever τ1(q) �= ⊗
and τ2(q) �= ⊗. In such a case, τ1 � τ2. On the other hand, if either τ1(p) = ⊗ or
τ2(p) = ⊗ for all p ∈ P , then both τ1 � τ2 and τ2 � τ1. The coherence order ≺co

on write events will be reflected in the order � on their time stamps. In particular,
for events e1 and e2 with time stamps τ1 and τ2 respectively, if τ1 � τ2 then e1
precedes e2 in coherence order. The reason is that there is at least one process
p to which both e1 and e2 are propagated, and e1 is propagated to p before e2.
However, if both τ1 � τ2 and τ2 � τ1 then the events are never propagated to the
same process, and hence they need not to be related by the coherence order.

If τ1 � τ2 then we define the summary of τ1 and τ2, denoted by τ1 ⊕ τ2, to be
the time stamp τ such that τ(p) = τ1(p) if τ2(p) = ⊗, and τ(p) = τ2(p) otherwise.
For a sequence σ = τ0 � τ1 � · · · � τn of time stamps, we define the summary
⊕ σ := τ′

n where τ′
i is defined inductively by τ′

0 := τ0, and τ′
i := τ′

i−1 ⊕ τi for
i : 1 ≤ i ≤ n. Notice that, for p ∈ P , we have ⊕ σ(p) = τi(p) where i is the largest
j : 1 ≤ j ≤ n s.t. τj(p) �= ⊗.

Our simulation observes the sequence of write events received by a process in
each context. In fact, the simulation will initially guess and later verify the sum-
maries of the time stamps of such a sequence. This is done using data structures
αinit and α. The mapping αinit : P × X × K �→ [P �→ K⊗] stores, for a process
p ∈ P , a variable x ∈ X , and a context k : 1 ≤ k ≤ K, an initial guess αinit (p, x, k)
of the summary of the time stamps of the sequence of write events on x prop-
agated to p up to the start of context k. Starting from a given initial guess for
a given context k, the time stamp is updated successively using the sequence of
write events on x propagated to p in k. The result is stored using the mapping
α : P × X × K �→ [P �→ K⊗]. More precisely, we initially set the value of α to
αinit . Each time a new write event e on x is created by p in the context k, we
guess the time stamp β of e, and then update α (p, x, k) by computing its sum-
mary with β. Thus, given a point in a context k, α (p, x, k) contains the summary
of the time stamps of the whole sequence of write events on x that have been propa-
gated to p up to that point. At the end of the simulation, we verify, for each context
k : 1 ≤ k < K, that the value of α for a context k is equal to the value of αinit for
the next context k + 1.

Furthermore, we use three data structures for storing the values of variables.
The mapping μinit : P × X ×K �→ D stores, for a process p ∈ P , a variable x ∈ X ,
and a context k : 1 ≤ k ≤ K, an initial guess μinit (p, x, k) of the value of the latest
write event on x propagated to p up to the start of the context k. The mapping
μ : P × X × K �→ D stores, for a process p ∈ P , a variable x ∈ X , and a point in
a context k : 1 ≤ k ≤ K, the value μ (p, x, k) of the latest write event on x that

Context-Bounded Analysis for POWER 67

has been propagated to p up to that point. Moreover, the mapping ν : P ×X �→ D
stores, for a process p ∈ P and a variable x ∈ X , the latest value ν (p, x) that has
been written on x by p.

Non-atomicity. In order to satisfy the different dependencies between events, we
need to keep track of the contexts in which they are initialized and committed. One
aspect of our translation is that it only needs to keep track of the context in which
the latest read or write event on a given variable in a given process is initialized or
committed. The mapping iW : P×X �→ K defines, for p ∈ P and x ∈ X , the context
iW (p, x) in which the latest write event on x by p is initialized. The mapping cW :
P ×X �→ K is defined in a similar manner for committing (rather than initializing)
write events. Furthermore, we define similar mappings iR and cR for read events.
The mapping iReg : R �→ K gives, for a register $r ∈ R , the initializing context
iReg ($r) of the latest read event loading a value to $r. For an expression exp, we
define iReg (exp) := max {iReg ($r) | $r ∈ R (exp)}. The mapping cReg : R �→
K gives the contexts for committing (rather than initializing) of the read events.
We extend cReg from registers to expressions in a similar manner to iReg. Finally,
the mapping ctrl : P �→ K gives, for a process p ∈ P , the committing context
ctrl (p) of the latest aci event in p.

Initializing Process. Algorithm 1 shows the initialization process. The for-loop
of lines 1, 3 and 5 define the values of the initializing and committing data struc-
tures for the variables and registers together with ν (p, x), μ (p, x, 1), α (p, x, 1) and
ctrl (p) for all p ∈ P and x ∈ X . The for-loop of line 7 defines the initial values
of α and μ at the start of each context k ≥ 2 (as described above). The for-loop of
line 10 chooses an active process to execute in each context. The current context
variable cntxt is initialized to 1.

Write Instructions. Consider a write instruction i in a process p ∈ P whose
statement is of the form x ← exp. The translation of i is shown in Algorithm 3.
The code simulates an event e executing i, by encoding the effects of the inference
rules Init-Write, Com-Write and Prop that initialize, commit, and propagate a
write event respectively. The translation consists of three parts, namely guessing,
checking and update.

Guessing. We guess the initializing and committing contexts for the event e,
together with its time stamp. In line 1, we guess the context in which the event
e will be initialized, and store the guess in iW (p, x). Similarly, in line 3, we guess
the context in which the event e will be committed, and store the guess in cW (p, x)
(having stored its old value in the previous line). In the for-loop of line 4, we guess
a time stamp for e and store it in β. This means that, for each process q ∈ P , we
guess the context in which the event e will be propagated to q and we store this
guess in β (q).

Checking. We perform sanity checks on the guessed values in order to verify that
they are consistent with the POWER semantics. Lines 6–8 perform the sanity
checks for iW (p, x). In lines 6–7, we verify that the initializing context of the event

68 P.A. Abdulla et al.

Alg. 1: Translating [[iniProc]]K.

1 for p ∈ P ∧ x ∈ X do
2 iR (p, x) ← 1; cR (p, x) ← 1;

iW (p, x) ← 1; cW (p, x) ← 1;
ν (p, x) ← 0; µ (p, x, 1) ← 0;

α (p, x, 1) ← ⊗|P|;

3 for p ∈ P do
4 ctrl (p) ← 1;

5 for $r ∈ R do
6 iReg ($r) ← 1; cReg ($r) ← 1;

7 for p ∈ P ∧ x ∈ X ∧ k ∈ [2..K] do
8 α (p, x, k) ← αinit (p, x, k);

9 µ (p, x, k) ← µinit (p, x, k);

10 for k ∈ [1..K] do
11 active (k) ← gen (P);

12 cntxt ← 1;

Alg. 2:Translating [[$r ← x]]p,ReadK .

// Guess
1 old-iR ← iR (p, x);
2 iReg ($r) ← iR (p, x) ← gen ([1..K]);
3 old-cR ← cR (p, x);
4 cReg ($r) ← cR (p, x) ← gen ([1..K]);

// Check
5 assume (iR (p, x) ≥ cntxt);
6 assume (active (iR (p, x)) = p);
7 assume (iR (p, x) ≥ iW (p, x));
8 assume(iR (p, x) ≥ cW (p, x) =⇒

iR (p, x) ≥
α (p, x, old-iR) (p));

9 assume (cR (p, x) ≥ iR (p, x));
10 assume (active (cR (p, x)) = p);
11 assume(cR (p, x) ≥

max {ctrl (p) , old-cR, cW (p, x)});

// Update
12 if iR (p, x)<cW (p, x) then

$r ← ν (p, x) ;
13 else $r ← µ (p, x, iR (p, x)) ;

Alg. 3: Translating [[x ← exp]]p,WriteK .

// Guess
1 iW (p, x) ← gen ([1..K]);
2 old-cW ← cW (p, x);
3 cW (p, x) ← gen ([1..K]);
4 for q ∈ P do
5 β (q) ← gen

(
K⊗);

// Check
6 assume (iW (p, x) ≥ cntxt);
7 assume (active (iW (p, x)) = p);
8 assume (iW (p, x) ≥ iReg (exp));
9 assume (cW (p, x) ≥ iW (p, x));

10 assume(cW (p, x) ≥
max{cReg (exp) , ctrl (p) , cR (p, x) , old-cW});

11 for q ∈ P do
12 if q = p then
13 assume (β (q) = cW (p, x));

14 if q �= p then
15 assume(β (q) �=⊗ =⇒ β (q)≥cW (p, x));

16 if β (q) �= ⊗ then
17 assume (α (q, x, β (q)) � β);
18 assume(active (β (q)) = p);

// Update
19 for q ∈ P do
20 if β (q) �= ⊗ then
21 α (q, x, β (q)) ← α (q, x, β (q)) ⊕ β;
22 µ (q, x, β (q)) ← exp;

23 ν (p, x) ← exp;

Alg. 4: Translating [[verProc]]K.

1 for p ∈ P ∧ x ∈ X ∧ k ∈ [1..K − 1] do
2 assume

(
α (p, x, k) = αinit (p, x, k + 1)

)
;

3 assume
(
µ (p, x, k) = µinit (p, x, k + 1)

)
;

4 if λ is reachable then error ;

e is not smaller than the current context. This captures the fact that initialization
happens after fetching of e. It also verifies that initialization happens in a context
in which p is active. In line 8, we check whether WrInitCnd in the rule Init-Write
is satisfied. To do that, we verify that the data dependency order ≺data holds. More
precisely, we find, for each register $r that occurs in exp, the initializing context of
the latest read event loading to $r. We make sure that the initializing context of
e is later than the initializing contexts of all these read events. By definition, the
largest of all these contexts is stored in iReg (exp).

Lines 9–10 perform the sanity checks for cW (p, x). In line 9, we check the com-
mitting context of the event e is at least as large as its initializing context. In line
10, we check that ComCnd in the rule Com-Write is satisfied. To do that, we check
that the committing context is larger than (i) the committing context of all the
read events from which the registers in the expression exp fetch their values (to
satisfy the data dependency order ≺data, in a similar manner to that described

Context-Bounded Analysis for POWER 69

for initialization above), (ii) the committing contexts of the latest read and write
events on x in p, i.e., cR (p, x) and cW (p, x) (to satisfy the per-location program
order ≺poloc), and (iii) the committing context of the latest aci event in p, i.e.,
ctrl (p) (to satisfy the control order ≺ctrl).

The for-loop of line 11 performs three sanity checks on the time stamp β. In
line 12, we verify that the event e is propagated to p in the same context as the
one in which it is committed. This is consistent with the rule Com-Write which
requires that when a write event is committed then it is immediately propagated
to the committing process. In line 14, we verify that if the event e is propagated
to a process q (different from p), then the propagation takes place in a context
later than or equal to the one in which e is committed. This is to be consistent
with the fact that a write event is propagated to other processes only after it has
been committed. In line 17, we check that guessed time stamp of the event e does
not cause a violation of the coherence order ≺co. To do that, we consider each
process q ∈ P to which e will be propagated (i.e., β (q) �= ⊗). The time stamp of e
should be larger than the time stamp of any other write event e′ on x that has been
propagated to q up to the current point (since e should be larger in the coherence
order than e′). Notice that by construction the time stamp of the largest such event
e′ is currently stored in α (q, x, β (q)). Moreover, in line 18, we check that the event
is propagated to q in a context in which p is active.

Updating. The for-loop of line 19 uses the values guessed above for updating the
global data structure α. More precisely, if the event e is propagated to a process q,
i.e., β (q) �= ⊗, then we add β to the summary of the time stamps of the sequence of
write operations on x propagated to q up to the current point in the context β (q).
Lines 22–23 assign the value exp to μ (p, x, β (q)) and ν (p, x) respectively. Recall
that the former stores the value defined by the latest write event on x propagated
to q up to the current point in the context β (q), and the latter stores the value
defined by the latest write on x by p.

Read Instructions. Consider a read instruction i in a process p ∈ P whose state-
ment is of the form $r ← x. The translation of i is shown in Algorithm 2. The code
simulates an event e running i by encoding the three inference rules Local-Read,
Prop-Read, and Com-Read. In a similar manner to a write instruction, the transla-
tion scheme for a read instruction consists of guessing, checking and update parts.
Notice however that the initialization of the read event is carried out through two
different inference rules.

Guessing. In line 1, we store the old value of iR (p, x). In line 2, we guess the con-
text in which the event e will be initialized, and store the guessed context both in
iR (p, x) and iReg ($r). Recall that the latter records the initializing context of the
latest read event loading a value to $r. In lines 3–4, we execute similar instructions
for committing (rather than initializing).

Checking. Lines 5–8 perform the sanity checks for iR (p, x). Lines 5–6 check that
the initializing context for the event e is not smaller than the current context and

70 P.A. Abdulla et al.

the initialization happens in a context in which p is active. Line 7 makes sure that
at least one of the two inference rules Local-Read and Prop-Read is satisfied, by
checking that the closest write event CW (c, e) (if it exists) has already been ini-
tialized. In line 8, we satisfy RdCnd in the rule Com-Read. Lines 9–11 perform the
sanity checks for cR (p, x) in a similar manner to the corresponding instructions
for write events (see above).

Updating. The purpose of the update part (the if-statement of line 12) is to ensure
that the correct read-from relation is defined as described by the inference rules
Local-Read and Prop-Read. If iR (p, x) < cW (p, x), then this means that the latest
write event e′ on x by p is not committed and hence, according to Local-Read, the
event e reads its value from that event. Recall that this value is stored in ν (p, x).
On the other hand, if iR (p, x) ≥ cW (p, x) then the event e′ has been committed
and hence, according to Prop-Read, the event e reads its value from the latest write
event on x propagated to p in the context where e is initialized. We notice that this
value is stored in μ (p, x, iR (p, x)).

Verifier Process. The verifier process makes sure that the updated value α of
the time stamp at the end of a given context k : 1 ≤ k ≤ K − 1 is equal to the
corresponding guessed value αinit at the start of the next context. It also performs
the corresponding checking for the values written on the variables (by comparing
μ and μinit). Finally, it checks whether we reach an error label λ or not.

4 Experimental Results

In order to evaluate the efficiency of our approach, we have implemented a context-
bounded model checker for programs under POWER, called power2sc1. We use
cbmc version 5.1 [17] as the backend tool. However, observe that our code-to-code
translation can be implemented on the top of any backend tool that provides safety
verification of concurrent programs running under the SC semantics. In the fol-
lowing, we present the evaluation of power2sc on 28 C/pthreads benchmarks col-
lected from goto-instrument [9], nidhugg [6], memorax [5], and the SV-COMP17
bechmark suit [1]. These are widespread medium-sized benchmarks that are used
by many tools for analyzing concurrent programs running under weak memory
models (e.g. [2–4,7,8,10,12–15,22,24,37,40]). We divide our results in two sets.
The first set concerns unsafe programs while the second set concerns safe ones. In
both parts, we compare results obtained from power2sc to the ones obtained from
goto-instrument and nidhugg, which are, to the best of our knowledge, the only two
tools supporting C/pthreads programs under POWER2. All experiments were run
on a machine equipped with a 2.4 GHz Intel x86-32 Core2 processor and 4 GB
RAM.

Table 1a shows that power2sc performs well in detecting bugs compared to the
other tools for most of the unsafe examples. We observe that power2sc manages to

1 https://www.it.uu.se/katalog/tuang296/mguess.
2 cbmc previously supported POWER [10], but has withdrawn support in later versions.

https://www.it.uu.se/katalog/tuang296/mguess

Context-Bounded Analysis for POWER 71

Table 1. Comparing ➂ power2sc with ➀ goto-instrument and ➁ nidhugg on two sets of
benchmarks: (a) unsafe and (b) safe (with manually inserted synchronizations). The LB
column indicates whether the tools were instructed to unroll loops up to a certain bound.
The CB column gives the context bound for power2sc. The program size is the number
of code lines. A t/o entry means that the tool failed to complete within 1800 s. The best
running time (in seconds) for each benchmark is given in bold font.

(a) (b)

Program/size LB ➀ ➁ ➂ Program/size LB ➀ ➁ ➂

Time Time Time CB Time Time Time CB

Bakery/76 [5] 8 226 t/o 1 3 Bakery/85 [5] 8 t/o t/o 70 3

Burns/74 [5] 8 t/o t/o 1 3 Burns/79 [5] 8 t/o t/o 1018 3

Dekker/82 [1] 8 t/o t/o 1 2 Dekker/88 [1] 8 t/o t/o 1158 2

Sim Dekker/69 [5] 8 12 t/o 1 2 Sim Dekker/73 [5] 8 209 t/o 14 2

Dijkstra/82 [5] 8 t/o t/o 5 3 Dijkstra/88 [5] 8 t/o t/o t/o 3

Szymanski/83 [1] 8 t/o t/o 1 4 Szymanski/93 [1] 8 t/o t/o 89 4

Fib bench 0/36 [1] - 2 1101 6 6 Fib bench 1/36 [1] - 9 t/o 5 6

Lamport/109 [1] 8 t/o 1 1 3 Lamport/119 [1] 8 t/o t/o t/o 3

Peterson/76 [1] 8 25 1056 1 3 Peterson/84 [1] 8 928 t/o 7 3

Peterson 3/96 [5] 8 t/o 1 3 4 Peterson 3/111 [5] 8 t/o t/o 348 4

Pgsql/69 [9] 8 1079 1 1 2 Pgsql/73 [9] 8 1522 2 38 2

Pgsql bnd/71 [6] - t/o 1 1 2 Pgsql bnd/75 [6] - t/o t/o 10 2

Tbar 2/75 [5] 8 16 1 1 3 Tbar 2/80 [5] 8 t/o 332 29 3

Tbar 3/94 [5] 8 104 1 1 3 Tbar 3/103 [5] 8 t/o t/o 138 3

find all the errors using at most 6 contexts while nidhugg and goto-instrument time
out to return the errors for several examples. This also confirms that few context
switches are sufficient to find bugs. Table 1b demonstrates that our approach is
also effective when we run safe programs. power2sc manages to run most of the
examples (except Dijkstra and Lamport) using the same context bounds as in the
case of their respective unsafe examples. While nidhugg and goto-instrument time
out for several examples, they do not impose any bound on the number of context
switches while power2sc does.

We have also tested the performance of power2sc with respect to the verifica-
tion of small litmus tests. power2sc manages to successfully run all 913 litmus tests
published in [34]. Furthermore, the output result returned by power2sc matches
the ones returned by the tool herd [11] in all the litmus tests.

References

1. SV-COM17 benchmark suit (2017). https://sv-comp.sosy-lab.org/2017/
benchmarks.php

2. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 28

https://sv-comp.sosy-lab.org/2017/benchmarks.php
https://sv-comp.sosy-lab.org/2017/benchmarks.php
http://dx.doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-662-46681-0_28

72 P.A. Abdulla et al.

3. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: The benefits of duality in veri-
fying concurrent programs under TSO. In: CONCUR. LIPIcs, vol. 59, pp. 5:1–5:15.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

4. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Auto-
matic fence insertion in integer programs via predicate abstraction. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 164–180. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33125-1 13

5. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28756-5 15

6. Abdulla, P.A., Atig, M.F., Jonsson, B., Leonardsson, C.: Stateless model checking
for POWER. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
134–156. Springer, Cham (2016). doi:10.1007/978-3-319-41540-6 8

7. Abdulla, P.A., Atig, M.F., L̊ang, M., Ngo, T.P.: Precise and sound automatic
fence insertion procedure under PSO. In: Bouajjani, A., Fauconnier, H. (eds.)
NETYS 2015. LNCS, vol. 9466, pp. 32–47. Springer, Cham (2015). doi:10.1007/
978-3-319-26850-7 3

8. Abdulla, P.A., Atig, M.F., Ngo, T.-P.: The best of both worlds: trading efficiency
and optimality in fence insertion for TSO. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol.
9032, pp. 308–332. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46669-8 13

9. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 28

10. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 9

11. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation, test-
ing, and data mining for weak memory. ACM TOPLAS 36(2), 7:1–7:74 (2014)

12. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 9

13. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness against
TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 533–553.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-37036-6 29

14. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking consistency of con-
current data types on relaxed memory models. In: PLDI, pp. 12–21. ACM (2007)

15. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 12

16. Burnim, J., Sen, K., Stergiou, C.: Testing concurrent programs on relaxed memory
models. In: ISSTA, pp. 122–132. ACM (2011)

17. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

18. Dan, A.M., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed
memory models. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935,
pp. 84–104. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9 7

http://dx.doi.org/10.1007/978-3-642-33125-1_13
http://dx.doi.org/10.1007/978-3-642-28756-5_15
http://dx.doi.org/10.1007/978-3-642-28756-5_15
http://dx.doi.org/10.1007/978-3-319-41540-6_8
http://dx.doi.org/10.1007/978-3-319-26850-7_3
http://dx.doi.org/10.1007/978-3-319-26850-7_3
http://dx.doi.org/10.1007/978-3-662-46669-8_13
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-39799-8_9
http://dx.doi.org/10.1007/978-3-642-39799-8_9
http://dx.doi.org/10.1007/978-3-642-22110-1_9
http://dx.doi.org/10.1007/978-3-642-37036-6_29
http://dx.doi.org/10.1007/978-3-540-70545-1_12
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-642-38856-9_7

Context-Bounded Analysis for POWER 73

19. Dan, A., Meshman, Y., Vechev, M., Yahav, E.: Effective abstractions for verifica-
tion under relaxed memory models. Comput. Lang. Syst. Struct. 47(Part 1), 62–76
(2017)

20. Demsky, B., Lam, P.: Satcheck: sat-directed stateless model checking for SC and
TSO. In: OOPSLA 2015, pp. 20–36. ACM (2015)

21. Derevenetc, E., Meyer, R.: Robustness against power is PSpace-complete.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8573, pp. 158–170. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43951-7 14

22. Huang, S., Huang, J.: Maximal causality reduction for TSO and PSO. In: OOPSLA
2016, pp. 447–461 (2016)

23. Kuperstein, M., Vechev, M.T., Yahav, E.: Automatic inference of memory fences.
In: FMCAD, pp. 111–119. IEEE (2010)

24. Kuperstein, M., Vechev, M.T., Yahav, E.: Partial-coherence abstractions for relaxed
memory models. In: PLDI, pp. 187–198. ACM (2011)

25. Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent
reachability to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 477–492. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02658-4 36

26. Lahav, O., Vafeiadis, V.: Explaining relaxed memory models with program trans-
formations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 479–495. Springer, Cham (2016). doi:10.1007/
978-3-319-48989-6 29

27. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to sequen-
tial analysis. FMSD 35(1), 73–97 (2009)

28. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. C–28(9), 690–691 (1979)

29. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M.T., Yahav, E.: Dynamic synthesis
for relaxed memory models. In: PLDI 2012, pp. 429–440. ACM (2012)

30. Mador-Haim, S., Maranget, L., Sarkar, S., Memarian, K., Alglave, J., Owens, S.,
Alur, R., Martin, M.M.K., Sewell, P., Williams, D.: An axiomatic memory
model for POWER multiprocessors. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 495–512. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31424-7 36

31. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of mul-
tithreaded programs. In: PLDI, pp. 446–455. ACM (2007)

32. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 391–407. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 27

33. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31980-1 7

34. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: PLDI, pp. 175–186. ACM (2011)

35. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. CACM 53, 89–97 (2010)

36. Tomasco, E., Lam, T.N., Fischer, B., La Torre, S., Parlato, G.: Embedding weak
memory models within eager sequentialization (2016). http://eprints.soton.ac.uk/
402285/

http://dx.doi.org/10.1007/978-3-662-43951-7_14
http://dx.doi.org/10.1007/978-3-662-43951-7_14
http://dx.doi.org/10.1007/978-3-642-02658-4_36
http://dx.doi.org/10.1007/978-3-642-02658-4_36
http://dx.doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1007/978-3-642-31424-7_36
http://dx.doi.org/10.1007/978-3-642-31424-7_36
http://dx.doi.org/10.1007/978-3-642-03359-9_27
http://dx.doi.org/10.1007/978-3-540-31980-1_7
http://eprints.soton.ac.uk/402285/
http://eprints.soton.ac.uk/402285/

74 P.A. Abdulla et al.

37. Tomasco, E., Lam, T.N., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Lazy
sequentialization for TSO and PSO via shared memory abstractions. In: FMCAD
2016, pp. 193–200 (2016)

38. Travkin, O., Wehrheim, H.: Verification of concurrent programs on weak memory
models. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 3–24.
Springer, Cham (2016). doi:10.1007/978-3-319-46750-4 1

39. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: a framework for
axiomatic and executable specifications of memory consistency models. In: IPDPS.
IEEE (2004)

40. Zhang, N., Kusano, M., Wang, C.: Dynamic partial order reduction for relaxed mem-
ory models. In: PLDI, pp. 250–259. ACM (2015)

http://dx.doi.org/10.1007/978-3-319-46750-4_1

	Context-Bounded Analysis for POWER
	1 Introduction
	2 Concurrent Programs
	3 Translation
	4 Experimental Results
	References

