
Ultimate Automizer with an On-Demand
Construction of Floyd-Hoare Automata

(Competition Contribution)

Matthias Heizmann(B), Yu-Wen Chen, Daniel Dietsch, Marius Greitschus,
Alexander Nutz, Betim Musa, Claus Schätzle, Christian Schilling,

Frank Schüssele, and Andreas Podelski

University of Freiburg, Freiburg, Germany
heizmann@informatik.uni-freiburg.de

Abstract. Ultimate Automizer is a software verifier that implements
an automata-based approach for the verification of safety and liveness
properties. A central new feature that speeded up the abstraction refine-
ment of the tool is an on-demand construction of Floyd-Hoare automata.

1 Verification Approach

Ultimate Automizer is a software verifier of the Ultimate program analy-
sis framework1. The tool implements the automata-theoretic verification app-
roach [3,4] that is outlined in Fig. 1 and is able to analyze reachability of error
functions, memory safety, absence of overflows and termination. In this section,
we briefly explain the overall algorithm and discuss a feature that speeded up the
tool significantly, namely the on-demand construction of Floyd-Hoare automata,
in detail.

1 Aabs
0 := constructCFA()

2 for i = 0, 1, 2, . . .
3 if (Aabs

i = ∅)
4 return property holds
5 take error trace πi ∈ Aabs

i

6 if (πi is feasible)
7 return property violated
8 construct automaton Afh

i s.t.
πi ∈ Afh

i and Afh
i accepts

only infeasible traces
9 Aabs

i+1 := Aabs
i \Afh

i

Fig. 1. Overall verification algorithm

We initially construct an automaton,
called control flow automaton (CFA),
that resembles the control flow graph
and whose acceptance condition reflects
the property that is checked. E.g., for
reachability problems, the error location
of the program is the accepting state of
the CFA. The alphabet Σ of the CFA
consists of all program statements that
occur in the control flow graph. We call
a word over the alphabet Σ a trace and
a word that is accepted by the CFA an
error trace. The input program violates
the given property if and only if there
exists a feasible error trace, i.e., an error

1 https://ultimate.informatik.uni-freiburg.de.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 394–398, 2017.
DOI: 10.1007/978-3-662-54580-5 30

https://ultimate.informatik.uni-freiburg.de

Ultimate Automizer with an On-Demand Construction 395

trace that corresponds to a real program execution. In our algorithm we
construct automata Aabs

i that overapproximate the set of feasible error traces.
Our initial abstraction Aabs

0 is the CFA. All subsequent abstractions Aabs
i are

constructed in a CEGAR-style refinement loop (depicted in Fig. 1).
A central step of this algorithm is the construction of the automaton Afh

i

in line 8. This automaton defines the set of (spurious) error traces that are
eliminated in the current iteration. If this automaton accepts only few traces,
the overall algorithm is more likely to diverge. For soundness, we require that
Afh

i does not accept any feasible error trace. To account for that we construct Afh
i

as a Floyd-Hoare automaton [4] which is a kind of automaton over the alphabet
of program statements that accepts only infeasible traces. More details on the
construction are given below.

Construction of Difference. In line 9 of the algorithm we construct a new abstrac-
tion for the set of feasible error traces. This new abstraction is an automaton
Aabs

i+1 whose set of traces is the set-theoretic difference of the traces from the
old abstraction Aabs

i and the traces from the Floyd-Hoare automaton Afh
i . The

automaton Afh
i is deterministic and total. We construct Aabs

i+1 as the product
automaton of Aabs

i and Afh
i where a state of the product is accepting iff its first

component is accepting and the second component is not accepting. In our imple-
mentation, we construct this product incrementally. We start with the initial
state of the product and construct successively all reachable states and transi-
tions. This allows us to construct the Floyd-Hoare automaton Afh

i on-demand
as we explain next.

Afh
i := (Σ,Q, , q0, Qfin)
Q := {∧

P | P ∈ 2Pred}
(ϕ, st) :=

∧{p ∈ Pred | Hoare triple
{ϕ}st{p} is valid}

q0 := true
Qfin := {false}

Fig. 2. Definition of Floyd-Hoare
automaton for i-th iteration

On-Demand Construction of Floyd-Hoare
Automata . The input for the construc-
tion is a set of predicates Pred. We obtain
this set by computing sequences of inter-
polants along infeasible error traces. Con-
ceptually, the Floyd-Hoare automaton
Afh

i is the automaton (defined in Fig. 2)
whose states are the input predicates and
all conjunctions of the input predicates.
By construction, this automaton accepts
only infeasible traces.

Usually, the automaton Aabs
i is very sparse and hence only few transitions

of Afh
i contribute to the difference operation (line 9). Since we construct the

reachable state-space of the difference incrementally, we can construct the Floyd-
Hoare automaton Afh

i on-demand. At the beginning, we construct only the initial
state. Whenever the difference operation asks for successors of a state ϕ under a
symbol st, we check if this transition was already added. If not, we compute the
successor state and add transition and successor state if necessary. The successor
state is the conjunction of all input predicates p ∈ Pred such that the Hoare triple
{ϕ}st{p} is valid.

396 M. Heizmann et al.

Checking Hoare Triples Using a Cache and Unified Predicates. We can check
Hoare triples using an SMT solver. However, these calls to an SMT solver can
be costly and we try to reduce their number as follows. First, we keep a cache
in which we store for each Hoare triple that has been checked so far whether it
was valid or not. In order to have only one representative for logically equiva-
lent predicates, we unify all predicates and all conjunctions of predicates that
were constructed as states of the Floyd-Hoare automaton Afh

i . In this unification
process, we check for all pairs of formulas ϕ,ψ whether the implications ϕ |= ψ
and ψ |= ϕ hold and store the results. If we now have to check the validity of
a Hoare triple, we first check if one of the rules depicted in Fig. 3 is applicable.
Only if none of these rules is applicable we use an SMT solver for the Hoare
triple check.

ϕ |= ϕ′

ψ′ |= ψ
{ϕ′}st{ψ′} is valid

{ϕ}st{ψ} is valid
ImplPos

ϕ′ |= ϕ
ψ |= ψ′

{ϕ′}st{ψ′} is not valid

{ϕ}st{ψ} is not valid
ImplNeg

ϕ |= ψ
vars(ϕ) ∩ write(st) = ∅

{ϕ}st{ψ} is valid
DataPos

ϕ �|= ψ
vars(ϕ) ∩ read(st) = ∅
vars(ψ) ∩ read(st) = ∅
vars(ψ) ∩ write(st) = ∅
{ϕ}st{ψ} is not valid

DataNeg

Fig. 3. Rules that allow us to infer validity of Hoare triples without calling an SMT
solver. The set vars(ϕ) contains all variables that occur in the formula ϕ, the sets read(st)
and write(st) contain all variables that are read (resp. written) by the statement st.

2 Software Architecture

Ultimate Automizer uses several SMT solvers. For the unification of pred-
icates, the simplification of formulas and the Hoare triple checks we use Z32

because this solver can handle several SMT theories in combination with quan-
tifiers. For the analysis of error traces we use CVC43, MathSAT4, SMTInter-
pol5, and Z3. These solvers each provide interpolants or unsatisfiable cores,
which both can be used by Ultimate to extract predicates from infeasi-
ble traces. Furthermore, Ultimate Automizer uses several components of
the Ultimate program analysis framework. The termination analysis is per-
formed by the Buchi Automizer [5] component. This component requires

2 https://github.com/Z3Prover.
3 https://cvc4.cs.nyu.edu.
4 http://mathsat.fbk.eu.
5 https://ultimate.informatik.uni-freiburg.de/smtinterpol/.

https://github.com/Z3Prover
https://cvc4.cs.nyu.edu
http://mathsat.fbk.eu
https://ultimate.informatik.uni-freiburg.de/smtinterpol/

Ultimate Automizer with an On-Demand Construction 397

ranking functions [6] and nontermination arguments [7] which are provided by
LassoRanker6. LassoRanker uses SMTInterpol for the synthesis of ranking
functions and Z3 for the synthesis of nontermination arguments. For our inter-
procedural analysis, we use nested word automata; in the termination analysis
these automata have a Büchi acceptance condition. Data structures and algo-
rithms for these automata are provided by the Automata Library. Ultimate
also provides support for violation witnesses [2] and correctness witnesses [1].
Our competition candidate is able to produce and to validate both kinds of
witnesses7.

3 Tool Setup and Configuration

A zip archive that contains the tool and all above mentioned SMT solvers is
available at the website of Ultimate Automizer8. The tool can be started by
the following command,

./Ultimate.py prop.prp inputfile 32bit|64bit simple|precise

where Ultimate.py is a Python script, prop.prp the SV-COMP property file,
and inputfile a C program. The other parameters determine the architecture
and the memory model, respectively.

4 Software Project

The Ultimate program analysis framework is mainly developed at the Uni-
versity of Freiburg and received contributions from more than 50 people. The
framework is written in Java and the source code is available on Github9.

References

1. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: exchanging
verification results between verifiers. In: FSE. ACM (2016)

2. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: ESEC/FSE, pp. 721–733.
ACM (2015)

3. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Hermenegildo,
M.V., Palsberg, J. (eds.) POPL, pp. 471–482. ACM, New York (2010)

4. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 2

6 https://ultimate.informatik.uni-freiburg.de/LassoRanker/.
7 https://github.com/sosy-lab/sv-witnesses.
8 https://ultimate.informatik.uni-freiburg.de/automizer/.
9 https://github.com/ultimate-pa.

http://dx.doi.org/10.1007/978-3-642-39799-8_2
https://ultimate.informatik.uni-freiburg.de/LassoRanker/
https://github.com/sosy-lab/sv-witnesses
https://ultimate.informatik.uni-freiburg.de/automizer/
https://github.com/ultimate-pa

398 M. Heizmann et al.

5. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning termi-
nating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
797–813. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 53

6. Leike, J., Heizmann, M.: Ranking templates for linear loops. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 172–186. Springer, Hei-
delberg (2014). doi:10.1007/978-3-642-54862-8 12

7. Leike, J., Heizmann, M.: Geometric nontermination arguments. CoRR, abs/1609.
05207 (2016)

http://dx.doi.org/10.1007/978-3-319-08867-9_53
http://dx.doi.org/10.1007/978-3-642-54862-8_12

	Ultimate Automizer with an On-Demand Construction of Floyd-Hoare Automata
	1 Verification Approach
	2 Software Architecture
	3 Tool Setup and Configuration
	4 Software Project
	References

