
Software Verification with Validation of Results

(Report on SV-COMP 2017)

Dirk Beyer

LMU Munich, Munich, Germany

Abstract. This report describes the 2017 Competition on Software Ver-
ification (SV-COMP), the 6th edition of the annual thorough compara-
tive evaluation of fully-automatic software verifiers. The goal is to reflect
the current state of the art in software verification in terms of effec-
tiveness and efficiency. The major achievement of the 6th edition of
SV-COMP is that the verification results were validated in most cate-
gories. The verifiers have to produce verification witnesses, which contain
hints that a validator can later use to reproduce the verification result.
The answer of a verifier counts only if the validator confirms the verifica-
tion result. SV-COMP uses two independent, publicly available witness
validators. For 2017, a new category structure was introduced that now
orders the verification tasks according to the property to verify on the
top level, and by the type of programs (e.g., which kind of data types
are used) on a second level. The categories Overflows and Termination
were heavily extended, and the category SoftwareSystems now contains
also verification tasks from the software system BusyBox. The competi-
tion used 8 908 verification tasks that each consisted of a C program and
a property (reachability, memory safety, termination). SV-COMP 2017
had 32 participating verification systems from 12 countries.

1 Introduction

Software verification is an increasingly important research area, and the annual
Competition on Software Verification (SV-COMP)1 is the showcase of the state
of the art in the area, in particular, of the effectiveness and efficiency that is cur-
rently achieved by tool implementations of the most recent ideas, concepts, and
algorithms for fully-automatic verification. Every year, the SV-COMP project
consists of two parts: (1) The collection of verification tasks and their parti-
tion into categories has to take place before the actual experiments start, and
requires quality-assurance work on the source code in order to ensure a high-
quality evaluation. It is important that the SV-COMP verification tasks reflect
what the research and development community considers interesting and chal-
lenging for evaluating the effectivity (soundness and completeness) and efficiency
(performance) of state-of-the-art verification tools. (2) The actual experiments
of the comparative evaluation of the relevant tool implementations is performed

1 https://sv-comp.sosy-lab.org

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 331–349, 2017.
DOI: 10.1007/978-3-662-54580-5 20

https://sv-comp.sosy-lab.org

332 D. Beyer

by the organizer of SV-COMP. Since SV-COMP shall stimulate and showcase
new technology, it is necessary to explore and define standards for a reliable and
reproducible execution of such a competition: we use BenchExec [10], a mod-
ern framework for reliable benchmarking and resource measurement, to run the
experiments, and verification witnesses [7,8] to validate the verification results.

As for every edition, this SV-COMP report describes the (updated) rules
and definitions, presents the competition results, and discusses other interesting
facts about the execution of the competition experiments. Also, we need to
measure the success of SV-COMP by evaluating whether the main objectives of
the competition are achieved (list taken from [5]):

1. provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers,

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

3. establish standards that make it possible to compare different verification
tools, including a property language and formats for the results, and

4. accelerate the transfer of new verification technology to industrial practice.

As for (1), there were 32 participating software systems from 12 countries, rep-
resenting a broad spectrum of technology (cf. Table 4). SV-COMP is considered
an important event in the research community, and increasingly also in industry.
This year, SV-COMP for the first time had two participating verification sys-
tems from industry. As for (2), the total set of verification tasks increased in size
from 6 661 to 8 908. Still, SV-COMP has an ongoing focus on collecting and con-
structing verification tasks to ensure even more diversity. Compared to the last
years, the level and amount of quality-assurance activities from the SV-COMP
community increased significantly, as witnessed by the issue tracker2 and by the
pull requests3 in the GitHub project. As for (3), the largest step forward was to
apply an extension of the standard witness language as a common, exchangeable
format to correctness witnesses as well this year (violation witnesses have been
used before). This means, if a verifier reports False (claims to know an error
path through the program that violates the specification), then it produces a
violation witness; if a verifier reports True (claims to know a proof of correct-
ness), then it produces a correctness witness. The two points of the SV-COMP
scoring schema for correct answers True are assigned only if the correctness
witness was confirmed by a witness validator, i.e., a proof of correctness could
be reconstructed by a different tool. As for (4), we continuously received positive
feedback from industry.

Related Competitions. It is well-understood that competitions are an important
evaluation method, and there are other competitions in the field of software ver-
ification: RERS4 [20] and VerifyThis5 [22]. While SV-COMP performs replicable
2 https://github.com/sosy-lab/sv-benchmarks/issues?q=is:issue
3 https://github.com/sosy-lab/sv-benchmarks/pulls?q=is:pr
4 http://rers-challenge.org
5 http://etaps2016.verifythis.org

https://github.com/sosy-lab/sv-benchmarks/issues?q=is:issue
https://github.com/sosy-lab/sv-benchmarks/pulls?q=is:pr
http://rers-challenge.org
http://etaps2016.verifythis.org

Software Verification with Validation of Results 333

experiments in a controlled environment (dedicated resources, resource limits),
the RERS Challenges give more room for exploring combinations of interactive
with automatic approaches without limits on the resources, and the VerifyThis
Competition focuses on evaluating approaches and ideas rather than on fully-
automatic verification. The termination competition termCOMP6 [16] concen-
trates on termination but considers a broader range of systems, including logic
and functional programs. A more comprehensive list of other competitions is
provided in the report on SV-COMP 2014 [4].

2 Procedure

The overall competition organization did not change in comparison to the past
editions [2–6]. SV-COMP is an open competition, where all verification tasks
are known before the submission of the participating verifiers, which is neces-
sary due to the complexity of the language C. During the benchmark submission
phase, new verification tasks were collected and classified, during the training
phase, the teams inspected the verification tasks and trained their verifiers (also,
the verification tasks received fixes and quality improvement), and during the
evaluation phase, verification runs were preformed with all competition candi-
dates, and the system descriptions were reviewed by the competition jury. The
participants received the results of their verifier directly via e-mail, and after a
few days of inspection, the results were publicly announced on the competition
web site. The Competition Jury consisted again of the chair and one member of
each participating team. Team representatives of the jury are listed in Table 3.

3 Definitions, Formats, and Rules

Verification Task. The definition of verification task was not changed (taken
from [4]). A verification task consists of a C program and a property. A verifica-
tion run is a non-interactive execution of a competition candidate (verifier) on
a single verification task, in order to check whether the following statement is
correct: “The program satisfies the property.” The result of a verification run is
a triple (answer, witness, time). answer is one of the following outcomes:

True: The property is satisfied (no path exists that violates the property), and a
correctness witness is produced that contains hints to reconstruct the proof.

False: The property is violated (there exists a path that violates the property),
and a violation witness is produced that contains hints to replay the error
path to the property violation.

Unknown: The tool cannot decide the problem, or terminates abnormally, or
exhausts the computing resources time or memory (the competition candi-
date does not succeed in computing an answer True or False).

6 http://termination-portal.org/wiki/Termination Competition

http://termination-portal.org/wiki/Termination_Competition

334 D. Beyer

Arrays

Bit Vectors

Heap Data Structures

Integers and Control Flow

Software Systems

Arrays

ArraysReach

ArraysMemSafety

Bit Vectors

BitVectorsReach

Overflows

Heap Data Structures

HeapReach

HeapMemSafety

Floats

Integers and Control Flow

ControlFlow

Simple

ECA

Loops

Recursive

ProductLines

Sequentialized

Termination

Concurrency

Software Systems

DeviceDriversLinux64

Overall

Overflows

MemorySafety

ReachSafety

SoftwareSystems

Termination

ReachSafety

ArraysReach

BitVectorsReach

ControlFlow

ECA

Floats

HeapReach

Loops

ProductLines

Recursive

Sequentialized

MemorySafety

ArraysMemSafety

HeapMemSafety

LinkedLists

Other

ConcurrencySafety

Overflows

BitVectors

Other

Termination

Main-ControlFlow

Main-Heap

Other

SoftwareSystems

BusyBox MemorySafety

BusyBox Overflows

DeviceDriversLinux64 Safety

Overall

Fig. 1. Categories; left: SV-COMP 2016; right: SV-COMP 2017; category Falsification
contains all verification tasks of Overall without Termination

Software Verification with Validation of Results 335

Table 1. Properties used in SV-COMP 2017 (cf. [5] for more details)

Formula Interpretation

G ! call(foo()) A call to function foo is not reachable on any finite execution

G valid-free All memory deallocations are valid (counterexample: invalid
free). More precisely: There exists no finite execution of the
program on which an invalid memory deallocation occurs

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program on which an invalid pointer dereference occurs

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists no
finite execution of the program on which the program lost track
of some previously allocated memory

F end All program executions are finite and end on proposition end,
which marks all program exits (counterexample: infinite loop).
More precisely: There exists no execution of the program on
which the program never terminates

The component witness [7,8] was this year for the first time mandatory for
both answers True or False; a few categories were excluded from validation if
the validators did not sufficiently support a certain kind of program or prop-
erty. We used the two publicly available witness validators CPAchecker and
UAutomizer. time is measured as consumed CPU time until the verifier ter-
minates, including the consumed CPU time of all processes that the verifier
started [10]. If time is equal to or larger than the time limit (15 min), then the
verifier is terminated and the answer is set to ‘timeout’ (and interpreted as
Unknown).

Categories. The collection of verification tasks is partitioned into categories.
A major update was done on the structure of the categories, in order to sup-
port various extensions that were planned for SV-COMP 2017. For example, the
categories Overflows and Termination were considerably extended (Overflows
from 12 to 328 and Termination from 631 to 1 437 verification tasks). Figure 1
shows the previous structure of main and sub-categories on the left, and the
new structure is shown on the right. The guideline is to have main categories
that correspond to different properties and sub-categories that reflect the type of
program. The goal of the category SoftwareSystems is to complement the other
categories (which sometimes contain small and constructed examples to show
certain verification features) by large and complicated verification tasks from
real software systems (further structured according to system and property to
verify). The category assignment was proposed and implemented by the com-
petition chair, and approved by the competition jury. SV-COMP 2017 has a
total of eight categories for which award plaques are handed out, including the
six main categories, category Overall, which contains the union of all categories,

336 D. Beyer

Table 2. Scoring schema for SV-COMP 2017

Reported result Points Description

Unknown 0 Failure to compute verification result

False correct +1 Violation of property in program was correctly found

False incorrect −16 Violation reported but property holds (false alarm)

True correct +2 Correct program reported to satisfy property

True correct
unconfirmed

+1 Correct program reported to satisfy property, but the
witness was not confirmed by a validator

True incorrect −32 Incorrect program reported as correct (wrong proof)

TASK

VERIFIERtrue-unreach

VERIFIER

false-unreach

WITNESS_VALIDATOR

true

0unknown

-16

false

2true (witness confirmed)

1unconfirmed (false, unknown, or ressources exhausted)

0invalid (error in witness syntax)

-32
true

0
unknown

WITNESS_VALIDATOR

false 0invalid (error in witness syntax)

0unconfirmed (true, unknown, or ressources exhausted)

1false (witness confirmed)

Fig. 2. Visualization of the scoring schema for the reachability property

and category Falsification. Category Falsification consists of all verification tasks
with safety properties, and any answers True are not counted for the score (the
goal of this category is to show bug-hunting capabilities of verifiers that are not
able to construct correctness proofs). The categories are described in more detail
on the competition web site.7

Properties and Their Format. For the definition of the properties and the
property format, we refer to the previous competition report [5]. All specifica-
tions are available in the main directory of the benchmark repository. Table 1
lists the properties and their syntax as overview.

Evaluation by Scores and Run Time. The scoring schema of SV-COMP
2017 is similar to the previous scoring schema, except that results with answer
True are now assigned two points only if the witness was confirmed by a val-
idator, and one point is assigned if the answer matches the expected result but
the witness was not confirmed. Table 2 provides the overview and Fig. 2 visually
illustrates the score assignment for one property. The ranking is decided based
on the sum of points (normalized for meta categories) and for equal sum of points
according to success run time, which is the total CPU time over all verification

7 https://sv-comp.sosy-lab.org/2017/benchmarks.php

https://sv-comp.sosy-lab.org/2017/benchmarks.php

Software Verification with Validation of Results 337

(a) Verification Tasks
(public git: 'svcomp17')

(e) Verification Run
(BenchExec 1.10)

(b) Benchmark Definitions
(public git: 'svcomp17')

(c) Tool-Info Modules
(BenchExec 1.10)

(d) Verifier Archives
(public web: sha1hash)

FALSE UNKNOWN TRUE(f) Violation
Witness

(g) Correctness
Witness

Fig. 3. Setup: SV-COMP components that support reproducibility

tasks for which the verifier reported a correct verification result. Opt-out from
Categories and Score Normalization for Meta Categories was done as described
previously [3] (page 597).

4 Reproducibility

It is important that the SV-COMP experiments can be independently replicated,
and that the results can be reproduced. Therefore, all major components that are
used for the competition need to be publicly available. Figure 3 gives an overview
over the components that contribute to the reproducible setup of SV-COMP.

Repositories for Verification Tasks (a), Benchmark Definitions (b),
and Tool-Information Modules (c). The previous competition report [6]
describes how replicability is ensured by making all essential ingredients available
in public archives. The verification tasks (a) are available via the tag ‘svcomp17’
in a public Git repository.8 The benchmark definitions (b) define for each ver-
ifier (i) on which verification tasks the verifier is to be executed (each verifier
can choose which categories to participate in) and (ii) which parameters need
to be passed to the verifier (there are global parameters that are specified for
all categories, and there are specific parameters such as the bit architecture).
The benchmark definitions are available via the tag ‘svcomp17’ in another pub-
lic Git repository.9 The tool-information modules (c) ensure, for each verifier
respectively, that the command line to execute the verifier is correctly assem-
bled (including source and property file as well as the options) from the parts
specified in the benchmark definition (b), and that the results of the verifier are
correctly interpreted and translated into the uniform SV-COMP result (True,

False(p), Unknown). The tool-info modules that were used for SV-COMP
2017 are available in BenchExec 1.10.10

Reliable Assignment and Controlling of Computing Resources (e). We
use BenchExec

11 [10] to satisfy the requirements for scientifically valid experi-
mentation, such as (i) accurate measurement and reliable enforcement of limits

8 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp17/c
9 https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs

10 https://github.com/sosy-lab/benchexec/tree/1.10/benchexec/tools
11 https://github.com/sosy-lab/benchexec

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp17/c
https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/1.10/benchexec/tools
https://github.com/sosy-lab/benchexec

338 D. Beyer

for CPU time and memory, and (ii) reliable termination of processes (including
all child processes). For the first time in SV-COMP, we used BenchExec’s con-
tainer mode, in order to make sure that read and write operations are properly
controlled. For example, it was previously not automatically and reliably enforced
that tools do not increase the assigned memory by using a RAM disk. This and
some other issues that previously required manual inspection and analysis are
now systematically solved.

Violation Witnesses (f) and Correctness Witnesses (g). In SV-COMP,
each verification run (if applicable) is followed by a validation run that checks
whether the witness adheres to the exchange format and can be confirmed. The
resource limits for the witness validators were 2 processing units (one physical
CPU core with hyper-threading), 7 GB memory, and 10% of the verification time
(i.e., 1.5 min) for violation witnesses and 100% (15 min) for correctness witnesses.
The purpose of the tighter resource limits is to avoid delegating all verification
work to the validator. This witness-based validation process ensures a higher
quality of assignment of scores, compared to without witnesses: if a verifier claims
a found bug but is not able to provide a witness, then the verifier does not get
the full score. The witness format and the validation process is explained on the
witness-format web page12. The version of the exchange format that was used
for SV-COMP 2017 has the tag ‘svcomp17’. More details on witness validation
is given in two related research articles [7,8].

Verifier Archives (d). Due to legal issues we do not re-distribute the verifiers
on the competition web site, but list for each verifier a URL to an archive that
the participants promised to keep publicly available, together with the SHA1
hash of the archive that was used in SV-COMP. An overview table is provided
on the systems-description page of the competition web site13. For replicating
experiments, the archive can be downloaded and verified against the given SHA1
hash. Each archive contains all parts that are needed to execute the verifier
(statically-linked executables and all components that are required in a certain
version, or for which no standard Ubuntu package is available). The archives are
also supposed to contain a license that permits use in SV-COMP, replicating the
SV-COMP experiments, that all data that the verifier produces as output are
property of the person that executes the verifier, and that the results obtained
from the verifier can be published without any restriction.

5 Results and Discussion

For the sixth time, the competition experiments represent the state of the art in
fully-automatic software-verification tools. The report shows the improvements
of the last year, in terms of effectiveness (number of verification tasks that can

12 https://github.com/sosy-lab/sv-witnesses/tree/svcomp17
13 https://sv-comp.sosy-lab.org/2017/systems.php

https://github.com/sosy-lab/sv-witnesses/tree/svcomp17
https://sv-comp.sosy-lab.org/2017/systems.php

Software Verification with Validation of Results 339

Table 3. Competition candidates with tool references and representing jury members

Participant Ref. Jury member Affiliation

2LS [34] Peter Schrammel U. of Sussex, UK

AProVE [19] Jera Hensel RWTH Aachen, Germany

Blast [35] Vadim Mutilin ISP RAS, Russia

CBMC [26] Michael Tautschnig Queen Mary, UK

Ceagle Guang Chen Tsinghua U., China

CIVL [37] Stephen Siegel U. of Delaware, USA

ConSequence Anand Yeolekar TCS, India

CPA-BAM-BnB [1] Pavel Andrianov ISP RAS, Russia

CPA-kInd [9] Matthias Dangl U. of Passau, Germany

CPA-Seq [14] Karlheinz Friedberger U. of Passau, Germany

DepthK [33] Herbert O. Rocha Federal U. of Roraima, Brazil

ESBMC [28] Lucas Cordeiro U. of Oxford, UK

ESBMC-falsi [28] Bernd Fischer Stellenbosch U., ZA

ESBMC-incr [28] Denis Nicole U. of Southampton, UK

ESBMC-kind [15] Mikhail Ramalho U. of Southampton, UK

Forester [21] Martin Hruska Brno U. of Technology, Czechia

HipTNT+ [27] Ton Chanh Le National U. of Singapore, Singapore

Lazy-CSeq [23] Omar Inverso Gran Sasso Science Institute, Italy

Lazy-CSeq-Abs [30] Bernd Fischer Stellenbosch U., ZA

Lazy-CSeq-Swarm Truc Nguyen Lam U. of Southampton, UK

MU-CSeq [36] Salvatore La Torre U. of Salerno, Italy

PredatorHP [25] Tomas Vojnar Brno U. of Technology, Czechia

Skink [11] Franck Cassez Macquarie U. at Sydney, Australia

SMACK [32] Zvonimir Rakamarić U. of Utah, USA

Symbiotic [12] Jan Strejček Masaryk U., Czechia

SymDIVINE [24] Jǐŕı Barnat Masaryk U., Czechia

UAutomizer [18] Matthias Heizmann U. of Freiburg, Germany

UKojak [31] Daniel Dietsch U. of Freiburg, Germany

UL-CSeq [29] Gennaro Parlato U. of Southampton, UK

UTaipan [17] Marius Greitschus U. of Freiburg, Germany

VeriAbs [13] Priyanka Darke TCS, India

Yogar-CBMC Liangze Yin National U. of Defense Techn., China

be solved, correctness of the results, as accumulated in the score) and efficiency
(resource consumption in terms of CPU time). The results that are presented in
this article were inspected and approved by the participating teams.

Participating Verifiers. Table 3 provides an overview of the participating com-
petition candidates and Table 4 lists the features and technologies that are used
in the verification tools.

340 D. Beyer

Table 4. Technologies and features that the competition candidates offer

Software Verification with Validation of Results 341

Table 5. Quantitative overview over all results; empty cells mark opt-outs

342 D. Beyer

Table 6. Overview of the top-three verifiers for each category (CPU time in h, rounded
to two significant digits)

Computing Resources. The resource limits were the same as last year [6]:
Each verification run was limited to 8 processing units (cores), 15 GB of memory,
and 15 min of CPU time. The witness validation was limited to 2 processing
units, 7 GB of memory, and 1.5 min of CPU time for violation witnesses and
15 min of CPU time for correctness witnesses. The machines for running the
experiments were different from last year, because we now had 168 machines
available and each verification run could be executed on a completely unloaded,

Software Verification with Validation of Results 343

Table 7. Necessary effort to compute results False versus True (measurement values
rounded to two significant digits)

Result True False

CPU time CPU energy CPU time CPU energy

(avg. in s) (avg. in J) (avg. in s) (avg. in J)

UAutomizer 46 450 42 420

SMACK 210 2 200 51 580

CPA-Seq 65 650 39 320

dedicated machine, in order to achieve precise measurements. Each machine had
one Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of
3.4 GHz 33 GB of RAM, and a GNU/Linux operating system (x86 64-linux,
Ubuntu 16.04 with Linux kernel 4.4).

One complete verification execution of the competition consisted of
421 benchmarks (each verifier on each selected category according to the opt-
outs), summing up to 170 417 verification runs. Witness validation required
678 benchmarks (combinations of verifier, category with witness validation, and
two validators) summing up to 232 916 validation runs. The consumed total
CPU time for one complete competition run for verification required a total of
490 days of CPU time. Each tool was executed several times, in order to make
sure no installation issues occur during the execution. We used BenchExec [10]
to measure and control computing resources (CPU time, memory, CPU energy)
and VerifierCloud

14 to distribute, install, run, and clean-up verification runs,
and to collect the results.

Quantitative Results. Table 5 presents the quantitative overview over all tools
and all categories (Forester participated only in subcategory ReachSafety-
Heap, MemSafety-Heap, and MemSafety-LinkedLists; VeriAbs participated
only in some subcategories of ReachSafety). The head row mentions the cat-
egory, the maximal score for the category, and the number of verification tasks.
The tools are listed in alphabetical order; every table row lists the scores of
one verifier for each category. We indicate the top-three candidates by format-
ting their scores in bold face and in larger font size. An empty table cell means
that the verifier opted-out from the respective category. There was one cat-
egory for which the winner was decided based on the run time: in category
ConcurrencySafety, all top-three verifiers achieved the maximum score of 1293
points, but the run time differed. More information (including interactive tables,
quantile plots for every category, and also the raw data in XML format) is avail-
able on the competition web-site.15

Table 6 reports the top-three verifiers for each category. The run time (col-
umn ‘CPU Time’) refers to successfully solved verification tasks (column ‘Solved
Tasks’). The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of

14 https://vcloud.sosy-lab.org/
15 https://sv-comp.sosy-lab.org/2017/results/

https://vcloud.sosy-lab.org/
https://sv-comp.sosy-lab.org/2017/results/

344 D. Beyer

verification tasks for which the verifier reported wrong results: reporting an
error path but the property holds (incorrect False) and claiming that the
program fulfills the property although it actually contains a bug (incorrect
True), respectively.

Discussion of Scoring Schema and Normalization. The verification com-
munity considers it more difficult to compute correctness proofs compared to
computing error paths: according to Table 2, an answer True yields 2 points
(confirmed witness) and 1 point (unconfirmed witness), while an answer False
yields 1 point (confirmed witness). This can have consequences on the final rank-
ing, as discussed in the report on the last SV-COMP edition [6].

Assigning a higher score value to results True (compared to results False)
seems justified by the CPU time and energy that the verifiers need to compute
the result. Table 7 shows actual numbers on this: the first column lists the three
best verifiers of category Overall, the second and third columns report the aver-
age CPU time and average CPU energy for results True, and the forth and fifth
columns for results False. The average is taken over all verification tasks; the
CPU time is reported in seconds and the CPU energy in Joule (BenchExec

reads and accumulates the energy measurements of Intel CPUs). Especially for
the verifier SMACK, the effort to compute results True is significantly higher
compared to the effort to compute results False: 210 s versus 51 s of average
CPU time per verification task and 2 200 J versus 580 J of average CPU energy.

A similar consideration was made on the score normalization. The commu-
nity considers the value of each category equal, which has the consequence
that solving a verification task in a large category (many, often similar veri-
fication tasks) has less value than solving a verification task in a small cat-
egory (only a few verification tasks) [3]. The values for category Overall in
Table 6 illustrate the purpose of the score normalization: CPA-Seq solved
5 393 tasks, which is 791 solved tasks more than the winner UAutomizer could
solve (4 602). So why did CPA-Seq not win the category? Because UAutomizer

is better in the intuitive sense of ‘overall’: it solved tasks more diversely, the
‘overall’ value of the verification work is higher. Thus, UAutomizer received
7 099 points and CPA-Seq received 5 296 points. Similarly, in category Soft-
wareSystems, UAutomizer solved 177 more tasks than SMACK; the tasks
that UAutomizer solved were considered of less value (i.e., from large cate-
gories). SMACK was able to solve considerably more verification tasks in the
seemingly difficult BusyBox categories. In these cases, the score normalization
correctly maps the community’s intuition.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [3] because these visualizations make it easier to under-
stand the results of the comparative evaluation. The web-site (see footnote 15)
includes such a plot for each category; as example, we show the plot for category
Overall (all verification tasks) in Fig. 4. A total of 15 verifiers participated in
category Overall, for which the quantile plot shows the overall performance over
all categories (scores for meta categories are normalized [3]). A more detailed

Software Verification with Validation of Results 345

 1

 10

 100

 1000
T

im
e

in
 s

2LS
CBMC
Ceagle

CPA-kInd
CPA-Seq

DepthK
ESBMC-falsi
ESBMC-incr
ESBMC-kind

ESBMC
SMACK

Symbiotic
UAutomizer

UKojak
UTaipan

-2000 0 2000 4000 6000

Accumulated score

Fig. 4. Quantile functions for category Overall. Each quantile function illustrates the
quantile (x-coordinate) of the scores obtained by correct verification runs below a
certain run time (y-coordinate). More details were given previously [3]. A logarithmic
scale is used for the time range from 1 s to 1000 s, and a linear scale is used for the
time range between 0 s and 1 s.

Table 8. Confirmation rate of witnesses

Result True False

Total Confirmed Unconfirmed Total Confirmed Unconfirmed

UAutomizer 3 558 3 481 77 1 173 1 121 52

SMACK 2 947 2 695 252 1 929 1 768 161

CPA-Seq 3 357 3 078 279 2 342 2 315 27

discussion of score-based quantile plots, including examples of what interest-
ing insights one can obtain from the plots, is provided in previous competition
reports [3,6].

Correctness of Results. Out of those verifiers that participated in all cat-
egories, UKojak is the only verifier that did not report any wrong result,
CBMC did not report any false alarm, and Ceagle, CPA-kInd,CPA-Seq,
and ESBMC-falsi did not report any wrong proof.

Verifiable Witnesses. For SV-COMP, it is not sufficient to answer with just
True or False: each answer must be accompanied by a verification witness. For
correctness witnesses, an unconfirmed answer True was still accepted, but was
assigned only 1 point instead of 2 (cf. Table 2). All verifiers in categories that
required witness validation support the common exchange format for violation
and correctness witnesses. We used the two independently developed witness
validators that are integrated in CPAchecker and UAutomizer [7,8].

It is interesting to see that the majority of witnesses that the top-three
verifiers produced can be confirmed by the witness-validation process (more
than 90%). Table 8 shows the confirmed versus unconfirmed result: the first

346 D. Beyer

column lists the three best verifiers of category Overall, the three columns for
result True reports the total, confirmed, and unconfirmed number of verifica-
tion tasks for which the verifier answered with True, respectively, and the three
columns for result False reports the total, confirmed, and unconfirmed number
of verification tasks for which the verifier answered with False, respectively.
More information (for all verifiers) is given in the detailed tables on the com-
petition web-site (see footnote 15), cf. also the report on the demo category for
correctness witnesses from SV-COMP 2016 [6].

6 Conclusion

SV-COMP 2017, the 6th edition of the Competition on Software Verification,
attracted 32 participating teams from 12 countries (number of teams 2012: 10,
2013: 11, 2014: 15, 2015: 22, 2016: 35). SV-COMP continues to be the broad-
est overview of the state of the art in automatic software verification. For the
first time in verification history, proof hints (stored in an exchangeable witness)
from verifiers were used on a large scale to help a different tool (validator) to
validate whether it can, given the proof hints, reproduce a correctness proof.
Given the results (cf. Table 8), this approach is successful. The two points for
the results True were counted only if the correctness witness was confirmed; for
unconfirmed results True, only 1 point was assigned. The number of verifica-
tion tasks was increased from 6 661 to 8 908. The partitioning of the verification
tasks into categories was considerably restructured; the categories Overflows,
MemSafety, and Termination were extended and structured using sub-categories;
many verification tasks from the software system BusyBox were added to the
category SoftwareSystems. As before, the large jury and the organizer made
sure that the competition follows the high quality standards of the TACAS
conference, in particular with respect to the important principles of fairness,
community support, and transparency.

References

1. Andrianov, P., Mutilin, V., Friedberger, K., Mandrykin, M., Volkov, A.: CPA-
BAM-BnB: Block-abstraction memorization and region-based memory models for
predicate abstractions (competition contribution). In: Legay, A., Margaria, T.
(eds.) TACAS 2017, Part II. LNCS, vol. 10206, pp. 355–359. Springer, Heidelberg
(2017)

2. Beyer, D.: Competition on software verification (SV-COMP). In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012)

3. Beyer, D.: Second competition on software verification. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 594–609. Springer, Heidelberg
(2013)

4. Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014. LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg (2014)

Software Verification with Validation of Results 347

5. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015)

6. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016)

7. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchang-
ing verification results between verifiers. In: FSE, pp. 326–337. ACM (2016)

8. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness vali-
dation and stepwise testification across software verifiers. In: FSE, pp. 721–733.
ACM (2015)

9. Beyer, D., Dangl, M., Wendler, P.: Boosting k -induction with continuously-refined
invariants. In: Kröning, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 622–640. Springer, Cham (2015)

10. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In:
Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178.
Springer, Cham (2015)

11. Cassez, F., Sloane, T., Roberts, M., Pigram, M., Aledo, P.G.D., Suvanpong, P.:
Skink 2.0: Static analysis of LLVM intermediate representation (competition
contribution). In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS,
vol. 10206, pp. 380–384. Springer, Heidelberg (2017)

12. Chalupa, M., Vitovská, M., Jonáš, M., Slaby, J., Strejček, J.: Symbiotic 4: Beyond
reachability (competition contribution). In: Legay, A., Margaria, T. (eds.) TACAS
2017, Part II. LNCS, vol. 10206, pp. 385–389. Springer, Heidelberg (2017)

13. Chimdyalwar, B., Darke, P., Chauhan, A., Shah, P., Kumar, S., Venkatesh, R.:
VeriAbs: Verification by abstraction (competition contribution). In: Legay, A.,
Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206, pp. 404–408. Springer,
Heidelberg (2017)

14. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive pro-
grams and floating-point arithmetic. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 423–425. Springer, Heidelberg (2015)

15. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. STTT 19(1), 97–114 (2017)

16. Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination com-
petition (termCOMP 2015). In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015.
LNCS (LNAI), vol. 9195, pp. 105–108. Springer, Cham (2015)

17. Greitschus, M., Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schilling, C.,
Schüssele, F., Podelski, A.: Ultimate Taipan: Trace abstraction and abstract
interpretation (competition contribution). In: Legay, A., Margaria, T. (eds.)
TACAS 2017, Part II. LNCS, vol. 10206, pp. 399–403. Springer, Heidelberg (2017)

18. Heizmann, M., Chen, Y.-W., Dietsch, D., Greitschus, M., Musa, B., Nutz, A.,
Schätzle, C., Schilling, C., Schüssele, F., Podelski, A.: Ultimate Automizer

with an on-demand construction of Floyd-Hoare automata (competition contribu-
tion). In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206,
pp. 394–398. Springer, Heidelberg (2017)

19. Hensel, J., Emrich, F., Frohn, F., Stroeder, T., Giesl, J.: AProVE: Proving and
disproving termination of memory-manipulating C programs (competition contri-
bution). In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206,
pp. 350–354. Springer, Heidelberg (2017)

348 D. Beyer

20. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS grey-
box challenge 2012: Analysis of event-condition-action systems. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 608–614. Springer, Heidelberg
(2012)

21. Hruska, M., Holik, L., Vojnar, T., Lengal, O., Rogalewicz, A., Simacek, J.:
Forester: From heap shapes to automata predicates (competition contribution).
In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206,
pp. 365–369. Springer, Heidelberg (2017)

22. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis 2012: A program verification
competition. STTT 17(6), 647–657 (2015)

23. Inverso, O., Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A
context-bounded model checking tool for multi-threaded C programs. In: ASE,
pp. 807–812. IEEE (2015)

24. Jonáš, M., Mrázek, J., Štill, V., Barnat, J., Lauko, H.: Optimizing and caching SMT
queries in SymDIVINE (competition contribution). In: Legay, A., Margaria, T.
(eds.) TACAS 2017, Part II. LNCS, vol. 10206, pp. 390–393. Springer, Heidelberg
(2017)

25. Kotoun, M., Peringer, P., Šoková, V., Vojnar, T.: Optimized PredatorHP and
the SV-COMP heap and memory-safety benchmark (competition contribution).
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 942–945.
Springer, Heidelberg (2016)

26. Kröning, D., Tautschnig, M.: CBMC: C bounded model checker (competition con-
tribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413,
pp. 389–391. Springer, Heidelberg (2014)

27. Le, T.C., Ta, Q.-T., Chin, W.-N.: HipTNT+: A termination and non-termination
analyzer by second-order abduction (competition contribution). In: Legay, A.,
Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206, pp. 370–374.
Springer, Heidelberg (2017)

28. Morse, J., Ramalho, M., Cordeiro, L., Nicole, D., Fischer, B.: ESBMC 1.22 (com-
petition contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 405–407. Springer, Heidelberg (2014)

29. Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Lazy sequentialization
for the safety verification of unbounded concurrent programs. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 174–191. Springer,
Cham (2016)

30. Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq 2.0:
Combining lazy sequentialization with abstract interpretation (competition contri-
bution). In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206,
pp. 375–379. Springer, Heidelberg (2017)

31. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: Ultimate Kojak with
memory-safety checks (competition contribution). In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 458–460. Springer, Heidelberg (2015)

32. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from ver-
ifier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Cham (2014)

33. Rocha, W., Rocha, H.O., Ismail, H., Cordeiro, L., Fischer, B.: DepthK: A
k-induction verifier based on invariant inference for C programs (competition
contribution). In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS,
vol. 10206, pp. 360–364. Springer, Heidelberg (2017)

Software Verification with Validation of Results 349

34. Schrammel, P., Kröning, D.: 2LS for program analysis (competition contribution).
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 905–907.
Springer, Heidelberg (2016)

35. Shved, P., Mandrykin, M., Mutilin, V.: Predicate analysis with Blast 2.7 (com-
petition contribution). In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 525–527. Springer, Heidelberg (2012)

36. Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.:
MU-CSeq 0.4: Individual memory location unwindings (competition contribution).
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 938–941.
Springer, Heidelberg (2016)

37. Zheng, M., Edenhofner, J.G., Luo, Z., Gerrard, M.J., Rogers, M.S., Dwyer, M.B.,
Siegel, S.F.: CIVL: Applying a general concurrency verification framework to C/P
threads programs (competition contribution). In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 908–911. Springer, Heidelberg (2016)

	Software Verification with Validation of Results
	1 Introduction
	2 Procedure
	3 Definitions, Formats, and Rules
	4 Reproducibility
	5 Results and Discussion
	6 Conclusion
	References

