
Maximizing the Conditional Expected Reward
for Reaching the Goal

Christel Baier(B), Joachim Klein(B), Sascha Klüppelholz(B),
and Sascha Wunderlich(B)

Institute for Theoretical Computer Science, Technische Universität Dresden,
Dresden, Germany

{christel.baier,joachim.klein,sascha.klueppelholz,
sascha.wunderlich}@tu-dresden.de

Abstract. The paper addresses the problem of computing maximal
conditional expected accumulated rewards until reaching a target state
(briefly called maximal conditional expectations) in finite-state Markov
decision processes where the condition is given as a reachability con-
straint. Conditional expectations of this type can, e.g., stand for the
maximal expected termination time of probabilistic programs with non-
determinism, under the condition that the program eventually termi-
nates, or for the worst-case expected penalty to be paid, assuming that
at least three deadlines are missed. The main results of the paper are (i)
a polynomial-time algorithm to check the finiteness of maximal condi-
tional expectations, (ii) PSPACE-completeness for the threshold problem
in acyclic Markov decision processes where the task is to check whether
the maximal conditional expectation exceeds a given threshold, (iii) a
pseudo-polynomial-time algorithm for the threshold problem in the gen-
eral (cyclic) case, and (iv) an exponential-time algorithm for computing
the maximal conditional expectation and an optimal scheduler.

1 Introduction

Stochastic shortest (or longest) path problems are a prominent class of opti-
mization problems where the task is to find a policy for traversing a proba-
bilistic graph structure such that the expected value of the generated paths
satisfying a certain objective is minimal (or maximal). In the classical setting
(see e.g. [15,22,25,29]), the underlying graph structure is given by a finite-state
Markov decision process (MDP), i.e., a state-transition graph with nondetermin-
istic choices between several actions for each of its non-terminal states, proba-
bility distributions specifying the probabilities for the successor states for each
state-action pair and a reward function that assigns rational values to the state-
action pairs. The stochastic shortest (longest) path problem asks to find a sched-
uler, i.e., a function that resolves the nondeterministic choices, possibly in a

The authors are supported by the DFG through the collaborative research cen-
tre HAEC (SFB 912), the Excellence Initiative by the German Federal and State
Governments (cluster of excellence cfAED), the Research Training Group QuantLA
(GRK 1763), and the DFG-project BA-1679/11-1.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 269–285, 2017.
DOI: 10.1007/978-3-662-54580-5 16

270 C. Baier et al.

history-dependent way, which minimizes (maximizes) the expected accumulated
reward until reaching a goal state. To ensure the existence of the expectation
for given schedulers, one often assumes that the given MDP is contracting, i.e.,
the goal is reached almost surely under all schedulers, in which case the optimal
expected accumulated reward is achieved by a memoryless deterministic sched-
uler that optimizes the expectation from each state and is computable using
a linear program with one variable per state (see e.g. [25]). The contraction
assumption can be relaxed by requiring the existence of at least one scheduler
that reaches the goal almost surely and taking the extremum over all those
schedulers [15,16,22]. These algorithms and corresponding value or policy iter-
ation approaches have been implemented in various tools and used in many
application areas.

The restriction to schedulers that reach the goal almost surely, however, limits
the applicability and significance of the results. First, the known algorithms
for computing extremal expected accumulated rewards are not applicable for
models where the probability for never visiting a goal state is positive under
each scheduler. Second, statements about the expected rewards for schedulers
that reach the goal with probability 1 are not sufficient to draw any conclusion for
the best- or worst-case behavior, if there exist schedulers that miss the goal with
positive probability. This motivates the consideration of conditional stochastic
path problems where the task is to compute the optimal expected accumulated
reward until reaching a goal state, under the condition that a goal state will
indeed be reached and where the extrema are taken over all schedulers that reach
the goal with positive probability. More precisely, we address here a slightly
more general problem where we are given two sets F and G of states in an
MDP M with non-negative integer rewards and ask for the maximal expected
accumulated reward until reaching F , under the condition that G will be visited
(denoted E

max
M,sinit

(F |♦G) where sinit is the initial state of M). Computation
schemes for conditional expectations of this type can, e.g., be used to answer the
following questions (assuming the underlying model is a finite-state MDP):

(Q1) What is the maximal termination time of a probabilistic and nondetermin-
istic program, under the condition that the program indeed terminates?

(Q2) What are the maximal expected costs of the repair mechanisms that are
triggered in cases where a specific failure scenario occurs, under the con-
dition that the failure scenario indeed occurs?

(Q3) What is the maximal energy consumption, under the condition that all
jobs of a given list will be successfully executed within one hour?

The relevance of question (Q1) and related problems becomes clear from the work
[14,20,23,24,26] on the semantics of probabilistic programs where no guarantees
for almost-sure termination can be given. Question (Q2) is natural for a worst-
case analysis of resilient systems or other types of systems where conditional
probabilities serve to provide performance guarantees on the protocols triggered
in exceptional cases that appear with positive, but low probability. Question
(Q3) is typical when the task is to study the trade-off between cost and utility
functions (see e.g. [9]). Given the work on anonymity and related notions for
information leakage using conditional probabilities in MDP-like models [7,21] or

Maximizing the Conditional Expected Reward for Reaching the Goal 271

Fig. 1. MDP M[r] for Example 1.1

the formalization of posterior vulnerability as an expectation [4], the concept of
conditional accumulated excepted rewards might also be useful to specify the
degree of protection of secret data or to study the trade-off between privacy and
utility, e.g., using gain functions [3,5]. Other areas where conditional expecta-
tions play a crucial role are risk management where the conditional value-at-risk
is used to formalize the expected loss under the assumption that very large
losses occur [2,32] or regression analysis where conditional expectations serve to
predict the relation between random variables [31].

Example 1.1. To illustrate the challenges for designing algorithms to compute
maximal conditional expectations we regard the MDP M[r] shown in Fig. 1. The
reward of the state-action pair (s1, γ) is given by a reward parameter r ∈ N. Let
sinit = s0 be the initial state and F = G = {goal}. The only nondeterministic
choice is in state s2, while states s0 and s1 behave purely probabilistic and goal
and fail are trap states. Given a scheduler S, we write CE

S for the conditional
expectation E

S
M[r],s0

(goal |♦goal). (See also Sect. 2 for our notations.) For the
two memoryless schedulers that choose α resp. β in state s2 we have:

CE
α =

1
2 · r + 1

2 · 0
1
2 + 1

2

=
r

2
and CE

β =
1
2 · r + 0
1
2 + 0

= r

We now regard the schedulers Sn for n = 1, 2, . . . that choose β for the first n
visits of s2 and action α for the (n+1)-st visit of s2. Then:

CE
Sn =

1
2 · r + 1

2 · 1
2n · n

1
2 + 1

2 · 1
2n

= r +
n − r

2n+1

Thus, CE
Sn > CE

β iff n > r, and the maximum is achieved for n = r+2.
This example illustrates three phenomena that distinguish conditional and

unconditional expected accumulated rewards and make reasoning about maximal
conditional expectations harder than about unconditional ones. First, optimal
schedulers for M[r] need a counter for the number of visits in state s2. Hence,
memoryless schedulers are not powerful enough to maximize the conditional
expectation. Second, while the maximal conditional expectation for M[r] with

272 C. Baier et al.

initial state sinit = s0 is finite, the maximal conditional expectation for M[r]
with starting state s2 is infinite as:

sup
n∈N

E
Sn

M[r],s2
(goal |♦goal) = sup

n∈N

n
2n

1
2n

= ∞

Third, as S2 maximizes the conditional expected accumulated reward for r = 0,
while S3 is optimal for r = 1, optimal decisions for paths ending in state s2
depend on the reward value r of the γ-transition from state s1, although state
s1 is not reachable from s2. Thus, optimal decisions for a path π do not only
depend on the past (given by π) and possible future (given by the sub-MDP
that is reachable from π’s last state), but require global reasoning. �

The main results of this paper are the following theorems. We write CE
max for the

maximal conditional expectation, i.e., the supremum of the conditional expecta-
tions E

S
M,sinit

(F |♦G), when ranging over all schedulers S where PrSM,sinit
(♦G)

is positive and PrSM,sinit
(♦F |♦G) = 1. (See also Sect. 2 for our notations.)

Theorem 1 (Checking finiteness and upper bound). There is a
polynomial-time algorithm that checks if CE

max is finite. If so, an upper bound
CE

ub for CE
max is computable in pseudo-polynomial time for the general case

and in polynomial time if F = G and Prmin
M,s(♦G) > 0 for all states s with

s |= ∃♦G.

The threshold problem asks whether the maximal conditional expectation
exceeds or misses a given rational threshold ϑ.

Theorem 2 (Threshold problem). The problem “does CE
max �� ϑ hold?”

(where ��∈ {>,�, <,�}) is PSPACE-hard and solvable in exponential (even
pseudo-polynomial) time. It is PSPACE-complete for acyclic MDPs.

For the computation of an optimal scheduler, we suggest an iterative scheduler-
improvement algorithm that interleaves calls of the threshold algorithm with
linear programming techniques to handle zero-reward actions. This yields:

Theorem 3 (Computing optimal schedulers). The value CE
max and an

optimal scheduler S are computable in exponential time.

Algorithms for checking finiteness and computing an upper bound (Theorem1)
will be sketched in Sect. 3. Section 4 presents a pseudo-polynomial thresh-
old algorithm and a polynomially space-bounded algorithm for acyclic MDPs
(Theorem 2) as well as an exponential-time computation scheme for the con-
struction of an optimal scheduler (Theorem 3). Further details, soundness proofs
and a proof for the PSPACE-hardness as stated in Theorem2 can be found
in [13]. The general feasibility of the algorithms will be shown by experimental
studies with a prototypical implementation (for details, see Appendix K of [13]).

Related Work. Although conditional expectations appear rather naturally in
many applications and despite the large amount of publications on variants

Maximizing the Conditional Expected Reward for Reaching the Goal 273

of stochastic path problems and other forms of expectations in MDPs (see
e.g. [18,30]), we are not aware that they have been addressed in the context of
MDPs. Computation schemes for extremal conditional probabilities Prmax(ϕ|ψ)
or Prmin(ϕ|ψ) where both the objective ϕ and the assumption ψ are path proper-
ties specified in some temporal logic have been studied in [6,8,11]. For reachabil-
ity properties ϕ and ψ, the algorithm of [6,8] has exponential time complexity,
while the algorithm of [11] runs in polynomial time. Although the approach
of [11] is not applicable for calculating maximal conditional expectations (see
Appendix B of [13]), it can be used to compute an upper bound for CE

max

(see Sect. 3). Conditional expected rewards in Markov chains can be computed
using the rescaling technique of [11] for finite Markov chains or the approxi-
mation techniques of [1,19] for certain classes of infinite-state Markov chains.
The conditional weakest precondition operator of [26] yields a technique to com-
pute conditional expected rewards for purely probabilistic programs (without
non-determinism).

2 Preliminaries

We briefly summarize our notations used for Markov decision processes. Further
details can be found in textbooks, see e.g. [25,29] or Chapter 10 in [10].

A Markov decision process (MDP) is a tuple M = (S,Act , P, sinit , rew)
where S is a finite set of states, Act a finite set of actions, sinit ∈ S the
initial state, P : S × Act × S → [0, 1] ∩ Q is the transition probability
function and rew : S × Act → N the reward function. We require that∑

s′∈S P (s, α, s′) ∈ {0, 1} for all (s, α) ∈ S × Act . We write Act(s) for the
set of actions that are enabled in s, i.e., α ∈ Act(s) iff P (s, α, ·) is not the null
function. State s is called a trap if Act(s) = ∅. The paths of M are finite or
infinite sequences s0 α0 s1 α1 s2 α2 . . . where states and actions alternate such
that P (si, αi, si+1) > 0 for all i � 0. A path π is called maximal if it is either
infinite or finite and its last state is a trap. If π = s0 α0 s1 α1 s2 α2 . . . αk−1 sk is
finite then rew(π) = rew(s0, α0) + rew(s1, α1) + . . . + rew(sk−1, αk−1) denotes
the accumulated reward and first(π) = s0, last(π) = sk its first resp. last state.
The size of M, denoted size(M), is the sum of the number of states plus the
total sum of the logarithmic lengths of the non-zero probability values P (s, α, s′)
and the reward values rew(s, α).1

An end component of M is a strongly connected sub-MDP. End components
can be formalized as pairs E = (E,A) where E is a nonempty subset of S and
A a function that assigns to each state s ∈ E a nonempty subset of Act(s) such
that the graph induced by E is strongly connected.

A (randomized) scheduler for M, often also called policy or adversary, is
a function S that assigns to each finite path π where last(π) is not a trap a
1 The logarithmic length of an integer n is the number of bits required for a represen-

tation of n as a binary number. The logarithmic length of a rational number a/b is
defined as the sum of the logarithmic lengths of its numerator a and its denominator
b, assuming that a and b are coprime integers and b is positive.

274 C. Baier et al.

probability distribution over Act(last(π)). S is called memoryless if S(π) =
S(π′) for all finite paths π, π′ with last(π) = last(π′), in which case S can be
viewed as a function that assigns to each non-trap state s a distribution over
Act(s). S is called deterministic if S(π) is a Dirac distribution for each path π,
in which case S can be viewed as a function that assigns an action to each finite
path π where last(π) is not a trap. We write PrSM,s or briefly PrSs to denote the
probability measure induced by S and s. Given a measurable set ψ of maximal
paths, then Prmin

M,s(ψ) = infS PrSM,s(ψ) and Prmax
M,s(ψ) = supS PrSM,s(ψ). We will

use LTL-like notations to specify measurable sets of maximal paths. For these it
is well-known that optimal deterministic schedulers exists. If ψ is a reachability
condition then even optimal deterministic memoryless schedulers exist.

Let ∅ �= F ⊆ S. For a comparison operator �� ∈ {=, >,�, <,�} and r ∈ N,
♦��rF denotes the event “reaching F along some finite path π with rew(π) �� r”.
The notation F will be used for the random variable that assigns to each
maximal path ς in M the reward rew(π) of the shortest prefix π of ς where
last(π) ∈ F . If ς �|= ♦F then (F)(ς) = ∞. If s ∈ S then E

S
M,s(F) denotes

the expectation of F in M with starting state s under S, which is infinite
if PrSM,s(♦F) < 1. E

max
M,s(F) ∈ R ∪ {±∞} stands for supS E

S
M,s(F) where

the supremum is taken over all schedulers S with PrSM,s(♦F) = 1. Let ψ be a
measurable set of maximal paths. E

S
M,s(F |ψ) stands for the expectation of F

w.r.t. the conditional probability measure PrSM,s(· |ψ) given by PrSM,s(ϕ|ψ) =
PrSM,s(ϕ ∧ ψ)/PrSM,s(ψ). E

max
M,s(F |ψ) is the supremum of E

S
M,s(F |ψ) where

PrSM,s(ψ) > 0 and PrSM,s(♦F |ψ) = 1, and Prmax
M,s(ϕ|ψ) = supS PrSM,s(ϕ|ψ)

where S ranges over all schedulers with PrSM,s(ψ) > 0 and sup ∅ = −∞.
For the remainder of this paper, we suppose that two nonempty subsets F

and G of S are given such that Prmax
M,s(♦F |♦G) = 1. The task addressed in this

paper is to compute the maximal conditional expectation given by:

CE
max
M,s

def= sup
S

CE
S
M,s ∈ R ∪ {∞} where CE

S
M,s = E

S
M,s(F |♦G)

Here, S ranges over all schedulers S with PrSM,s(♦G) > 0 and PrSM,s(♦F |♦G) =
1. If M and its initial state are clear from the context, we often simply write
CE

max resp. CE
S. We assume that all states in M are reachable from sinit and

sinit /∈ F ∪ G (as CE
max = 0 if s ∈ F and CE

max = E
max
M,sinit

(F) if s ∈ G \ F).

3 Finiteness and Upper Bound

Checking Finiteness. We sketch a polynomially time-bounded algorithm
that takes as input an MDP M = (S,Act , P, sinit , rew) with two distin-
guished subsets F and G of S such that Prmax

M,sinit
(♦F |♦G) = 1. If CE

max =
E
max
M,sinit

(F |♦G) = ∞ then the output is “no”. Otherwise, the output is an
MDP M̂ = (Ŝ, Âct , P̂ , ŝinit , ˆrew) with two trap states goal and fail such that:

Maximizing the Conditional Expected Reward for Reaching the Goal 275

(1) E
max
M,sinit

(F |♦G) = E
max
M̂,ŝinit

(goal |♦goal),

(2) ŝ |= ∃♦goal and Prmin
M̂,ŝ

(
♦(goal ∨ fail)

)
= 1 for all states ŝ ∈ Ŝ \ {fail}, and

(3) M̂ does not have critical schedulers where a scheduler U for M̂ is said to be
critical iff PrUM̂,ŝinit

(♦fail) = 1 and there is a reachable positive U-cycle.2

We provide here the main ideas of the algorithms and refer to Appendix C
of [13] for the details. The algorithm first transforms M into an MDP M̃ that
permits to assume F = G = goal . Intuitively, M̃ simulates M, while operating
in four modes: “normal mode”, “after G”, “after F” and “goal”. M̃ starts in
normal mode where it behaves as M as long as neither F nor G have been visited.
If a G \F -state has been reached in normal mode then M̃ switches to the mode
“after G”. Likewise, as soon as an F \G-state has been reached in normal mode
then M̃ switches to the mode “after F”. M̃ enters the goal mode (consisting of
a single trap state goal) as soon as a path fragment containing a state in F and
a state in G has been generated. This is the case if M visits an F -state in mode
“after G” or a G-state in mode “after F”, or a state in F ∩ G in the normal
mode. The rewards in the normal mode and in mode “after G” are precisely as
in M, while the rewards are 0 in all other cases. We then remove all states s̃
in the “after G” mode with Prmax

M̃,s̃
(♦goal) < 1, collapse all states s̃ in M̃ with

s̃ �|= ∃♦goal into a single trap state called fail and add zero-reward transitions to
fail from all states s̃ that are not in the “after G” mode and Prmax

M̃,s̃
(♦goal) = 0.

Using techniques as in the unconditional case [22] we can check whether M̃ has
positive end components, i.e., end components with at least one state-action
pair (s, α) with rew(s, α) > 0. If so, then E

max
M,sinit

(F |♦G) = ∞. Otherwise, we
collapse each maximal end component of M̃ into a single state.

Let M̂ denote the resulting MDP. It satisfies (1) and (2). Property (3) holds
iff E

max
M̂,ŝinit

(goal |♦goal) < ∞. This condition can be checked in polynomial

time using a graph analysis in the sub-MDP of M̂ consisting of the states ŝ with
Prmin

M̂,ŝ
(♦goal) = 0 (see Appendix C of [13]).

Computing an Upper Bound. Due to the transformation used for checking
finiteness of the maximal conditional expectation, we can now suppose that
M = M̂, F = G = {goal} and that (2) and (3) hold. We now present a
technique to compute an upper bound CE

ub for CE
max. The upper bound will

be used later to determine a saturation point from which on optimal schedulers
behave memoryless (see Sect. 4).

We consider the MDP M′ simulating M, while operating in two modes. In
its first mode, M′ attaches the reward accumulated so far to the states. More
precisely, the states of M′ in its first mode have the form 〈s, r〉 ∈ S × N where
0 � r � R and R =

∑
s∈S′ max{rewM′(s, α) : α ∈ ActM′(s)}. The initial

state of M′ is s′
init = 〈sinit , 0〉. The reward for the state-action pairs (〈s, r〉, α)

where r+rew(s, α) � R is 0. If M′ fires an action α in state 〈s, r〉 where

2 The latter means a U-path π = s0 α0 s1 α1 . . . αk−1 sk where s0 = ŝinit and si = sk
for some i ∈ {0, 1, . . . , k−1} such that ˆrew(sj , αj) > 0 for some j ∈ {i, . . . , k−1}.

276 C. Baier et al.

r′ def= r+rew(s, α) > R then it switches to the second mode, while earning reward
r′. In its second mode M′ behaves as M without additional annotations of the
states and earning the same rewards as M. From the states 〈goal , r〉, M′ moves
to goal with probability 1 and reward r. There is a one-to-one correspondence
between the schedulers for M and M′ and the switch from M to M′ does not
affect the probabilities and the accumulated rewards until reaching goal .

Let N denote the MDP resulting from M′ by adding reset-transitions from
fail (as a state of the second mode) and the copies 〈fail , r〉 in the first mode to
the initial state s′

init . The reward of all reset transitions is 0. The reset-mechanism
has been taken from [11] where it has been introduced as a technique to compute
maximal conditional probabilities for reachability properties. Intuitively, N “dis-
cards” all paths of M′ that eventually enter fail and “redistributes” their prob-
abilities to the paths that eventually enter the goal state. In this way, N mimics
the conditional probability measures PrSM′,s′

init
(· |♦goal) = PrSM,sinit

(· |♦goal)
for prefix-independent path properties. Paths π from sinit to goal in M are sim-
ulated in N by paths of the form � = ξ1; . . . ξk;π where ξi is a cycle in N with
first(ξi) = s′

init and ξi’s last transition is a reset-transition from some fail-state
to s′

init . Thus, rew(π) � rewN (�). The distinction between the first and second
mode together with property (3) ensure that the new reset-transitions do not
generate positive end components in N . By the results of [22], the maximal
unconditional expected accumulated reward in N is finite and we have:

E
max
M,sinit

(goal |♦goal) = E
max
M′,s′

init
(goal |♦goal) � E

max
N ,s′

init
(goal)

Hence, we can deal with CE
ub = Emax

N ,s′
init

(goal), which is computable in time
polynomial in the size of N by the algorithm proposed in [22]. As size(N) =
Θ(R · size(M)) we obtain a pseudo-polynomial time bound for the general case.
If, however, Prmin

M,s(♦goal) > 0 for all states s ∈ S \ {fail} then there is no need
for the detour via M′ and we can apply the reset-transformation M � N by
adding a reset-transition from fail to sinit with reward 0, in which case the upper
bound CE

ub = E
max
N ,sinit

(goal) is obtained in time polynomial in the size of M.
For details we refer to Appendix C of [13].

4 Threshold Algorithm and Computing Optimal
Schedulers

In what follows, we suppose that M = (S,Act , P, sinit , rew) is an MDP with two
trap states goal and fail such that s |= ∃♦goal for all states s ∈ S \ {fail} and
mins∈S Prmin

M,s(♦(goal ∨ fail)) = 1 and CE
max = E

max
M,sinit

(goal |♦goal) < ∞.
A scheduler S is said to be reward-based if S(π) = S(π′) for all finite paths π,

π′ with (last(π), rew(π)) = (last(π′), rew(π′)). Thus, deterministic reward-based
schedulers can be seen as functions S : S × N → Act . We show in Appendix D
of [13] that CE

max equals the supremum of the values CE
S, when ranging over

all deterministic reward-based schedulers S with PrSM,sinit
(♦goal) > 0.

Maximizing the Conditional Expected Reward for Reaching the Goal 277

The basis of our algorithms are the following two observations. First, there
exists a saturation point ℘ ∈ N such that the optimal decision for all paths π
with rew(π) � ℘ is to maximize the probability for reaching the goal state (see
Proposition 4.1 below). The second observation is a technical statement that will
be used at several places. Let ρ, θ, ζ, r, x, y, z, p ∈ R with 0 � p, x, y, z � 1, p > 0,
y > z and x + z > 0 and let

A =
ρ + p(ry + θ)

x + py
, B =

ρ + p(rz + ζ)
x + pz

and C = max{A,B}

Then:

A � B iff r +
θ−ζ

y−z
� C iff θ − (C−r)y � ζ − (C−r)z (†)

and the analogous statement for > rather than �. For details, see Appendix G
of [13]. We will apply this observation in different nuances. To give an idea how
to apply statement (†), suppose A = CE

T and B = CE
U where T and U are

reward-based schedulers that agree for all paths � that do not have a prefix π
with rew(π) = r where last(π) is a non-trap state, in which case x denotes the
probability for reaching goal from sinit along such a path � and ρ stands for the
corresponding partial expectation, while p denotes the probability of the paths π
from sinit to some non-trap state with rew(π) = r. The crucial observation is that
r+(θ−ζ)/(y−z) does not depend on x, ρ, p. Thus, if r+(θ−ζ)/(y−z) � CE

ub for
some upper bound CE

ub of CE
max then (†) allows to conclude that T’s decisions

for the state-reward pairs (s, r) are better than U, independent of x, ρ and p.
Let R ∈ N and S, T be reward-based schedulers. The residual scheduler S↑R

is given by (S↑R)(s, r) = S(s,R+r). S�R T denotes the unique scheduler that
agrees with S for all state-reward pairs (s, r) where r < R and (S�RT)↑R = T.
We write ES

M,s for the partial expectation

ES
M,s =

∞∑

r=0

PrSM,s(♦=rgoal) · r

Thus, ET
M,s = E

T
M,s(goal) if PrTM,s(♦goal) = 1, while ET

M,s < ∞ =
E
T
M,s(goal) if PrTM,s(♦goal) < 1.

Proposition 4.1. There exists a natural number ℘ (called saturation point of
M) and a deterministic memoryless scheduler M such that:

(a) CE
T � CE

T�℘M for each scheduler T with PrTM,sinit
(♦goal) > 0, and

(b) CE
S = CE

max for some deterministic reward-based scheduler S such that
PrSM,sinit

(♦goal) > 0 and S↑℘ = M.

The proof of Proposition 4.1 (see Appendices E and F of [13]) is constructive
and yields a polynomial-time algorithm for generating a scheduler M as in
Proposition 4.1 and a pseudo-polynomial algorithm for the computation of a
saturation point ℘.

278 C. Baier et al.

Scheduler M maximizes the probability to reach goal from each state. If
there are two or more such schedulers, then M is one where the conditional
expected accumulated reward until reaching goal is maximal under all sched-
ulers U with PrUM,s(♦goal) = Prmax

M,s(♦goal) for all states s. Such a scheduler
M is computable in polynomial time using linear programming techniques. (See
Appendix E of [13].)

The idea for the computation of the saturation point is to compute the
threshold ℘ above which the scheduler M becomes optimal. For this we rely
on statement (†) where θ/y stands for the conditional expectation under M, ζ/z
for the conditional expectation under an arbitrary scheduler S and C = CE

ub

is an upper bound of CE
max (see Theorem 1), while r = ℘ is the wanted value.

More precisely, for s ∈ S, let θs = EM
M,s, ys = PrMM,s(♦goal) = Prmax

M,s(♦goal).
To compute a saturation point we determine the smallest value ℘ ∈ N such that

θs − (CE
ub−℘) · ys = max

S

(
ES

M,s − (CE
ub−℘) · PrSM,s(♦goal)

)

for all states s where S ranges over all schedulers for M. In Appendix F of [13]
we show that instead of the maximum over all schedulers S it suffices to take
the local maximum over all “one-step-variants” of M. That is, a saturation point
is obtained by ℘ = max{�CE

ub − D�, 0} where

D = min
{
(θs − θs,α)/(ys − ys,α) : s ∈ S, α ∈ Act(s), ys,α < ys

}

and ys,α =
∑

t∈S

P (s, α, t) · yt and θs,α = rew(s, α) · ys,α +
∑

t∈S

P (s, α, t) · θt.

Example 4.2. The so obtained saturation point for the MDP M[r] in Fig. 1 is
℘ = �CE

ub+1�. Note that only state s = s2 behaves nondeterministically, and
M(s) = α, ys = ys,α = 1, θs = θs,α = 0, while ys,β = θs,β = 1

2 . This yields
D = (0− 1

2)/(1− 1
2) = −1. Thus, ℘ � r+2 as CE

ub � CE
max > r. �

The logarithmic length of ℘ is polynomial in the size of M. Thus, the value
(i.e., the length of an unary encoding) of ℘ can be exponential in size(M). This
is unavoidable as there are families (Mk)k∈N of MDPs where the size of Mk is
in O(k), while 2k is a lower bound for the smallest saturation point of Mk. This,
for instance, applies to the MDPs Mk = M[2k] where M[r] is as in Fig. 1. Recall
from Example 1.1 that the scheduler Sr+2 that selects β by the first r+2 visits
of s and α for the (r+3)-rd visit of s is optimal for M[r]. Hence, the smallest
saturation point for M[2k] is 2k+2.

Threshold Algorithm. The input of the threshold algorithm is an MDP M
as above and a non-negative rational number ϑ. The task is to generate a deter-
ministic reward-based scheduler S with S↑℘ = M (where M and ℘ are as in
Proposition 4.1) such that CE

S > ϑ if CE
max > ϑ, and CE

S = ϑ if CE
max = ϑ.

If CE
max < ϑ then the output of the threshold algorithm is “no”.3

3 The threshold algorithm solves all four variants of the threshold problem. E.g.,
CE

max � ϑ iff CE
S = ϑ, while CE

max < ϑ iff the threshold algorithm returns “no”.

Maximizing the Conditional Expected Reward for Reaching the Goal 279

The algorithm operates level-wise and determines feasible actions action(s, r)
for all non-trap states s and r = ℘−1, ℘−2, . . . , 0, using the decisions action(·, i)
for the levels i ∈ {r+1, . . . , ℘} that have been treated before and linear pro-
gramming techniques to treat zero-reward loops. In this context, feasibility
is understood with respect to the following condition: If CE

max � ϑ where
� ∈ {>,�} then there exists a reward-based scheduler S with CE

S � ϑ and
S(s,R) = action(s,min{℘,R}) for all R � r.

The algorithm stores for each state-reward pair (s, r) the probabilities ys,r to
reach goal from s and the corresponding partial expectation θs,r for the scheduler
given by the decisions in the action table. The values for r = ℘ are given by
action(s, ℘) = M(s), ys,℘ = PrMM,s(♦goal) and θs,℘ = EM

M,s. The candidates for
the decisions at level r < ℘ are given by the deterministic memoryless schedulers
P for M. We write P+ for the reward-based scheduler given by P+(s, 0) = P(s)
and P+(s, i) = action(s,min{℘, r+i}) for i � 1. Let ys,r,P = PrP+

M,s(♦goal) and

θs,r,P = EP+
M,s be the corresponding partial expectation.

To determine feasible actions for level r, the threshold algorithm makes use
of a variant of (†) stating that if θ − (ϑ−r)y � ζ − (ϑ−r)z and B�ϑ then A�ϑ,
where A and B are as in (†) and the requirement y > z is dropped. Thus, the aim
of the threshold algorithm is to compute a deterministic memoryless scheduler
P∗ for M such that the following condition (∗) holds:

θs,r,P∗ − (ϑ−r) · ys,r,P∗ = max
P

(
θs,r,P − (ϑ−r) · ys,r,P

)
(∗)

Such a scheduler P∗ is computable in time polynomial in the size of M (without
the explicit consideration of all schedulers P and their extensions P+) using the
following linear program with one variable xs for each state. The objective is to
minimize

∑

s∈S

xs subject to the following conditions:

(1) If s ∈ S \ {goal , fail} then for each action α ∈ Act(s) with rew(s, α) = 0:

xs �
∑

t∈S

P (s, α, t) · xt

(2) If s ∈ S \ {goal , fail} then for each action α ∈ Act(s) with rew(s, α) > 0:

xs �
∑

t∈S

P (s, α, t) · (θt,R + rew(s, α) · yt,R − (ϑ−r) · yt,R

)

where R = min{℘, r+rew(s, α)}
(3) For the trap states: xgoal = r − ϑ and xfail = 0.

This linear program has a unique solution (x∗
s)s∈S . Let Act∗(s) denote the set

of actions α ∈ Act(s) such that the following constraints (E1) and (E2) hold:

(E1) If rew(s, α) = 0 then: x∗
s =

∑

t∈S

P (s, α, t) · x∗
t

(E2) If rew(s, α) > 0 and R = min
{

℘, r+rew(s, α)
}

then:

x∗
s =

∑

t∈S

P (s, α, t) · (θt,R + rew(s, α) · yt,R − (ϑ−r) · yt,R

)

280 C. Baier et al.

Let M∗ = M∗
r,ϑ denote the MDP with state space S induced by the state-action

pairs (s, α) with α ∈ Act∗(s) where the positive-reward actions are redirected to
the trap states. Formally, for s, t ∈ S, α ∈ Act∗(s) we let PM∗(s, α, t) = P (s, α, t)
if rew(s, α) = 0 and PM∗(s, α, goal) =

∑
t∈S P (s, α, t)·yt,R and PM∗(s, α, fail) =

1 − PM∗(s, α, goal) if rew(s, α) > 0 and R = min{℘, r+rew(s, α)}. The reward
structure of M∗ is irrelevant for our purposes.

A scheduler P∗ satisfying (∗) is obtained by computing a memoryless deter-
ministic scheduler for M∗ with PrP

∗
M∗,s(♦goal) = Prmax

M∗,s(♦goal) for all states s.
This scheduler P∗ indeed provides feasible decisions for level r, i.e., if CE

max�ϑ
where � ∈ {>,�} then there exists a reward-based scheduler S with CE

S � ϑ,
S(s, r) = P∗(s) and S(s,R) = action(s,min{℘,R}) for all R > r.

The threshold algorithm then puts action(s, r) = P∗(s) and computes the
values ys,r and θs,r as follows. Let T denote the set of states s ∈ S \ {goal , fail}
where rew(s,P∗(s)) > 0. For s ∈ T , the values ys,r = ys,r,P∗ and θs,r = θs,r,P∗

can be derived directly from the results obtained for the previously treated levels
r+1, . . . , ℘ as we have:

ys,r =
∑

t∈S

P (s, α, t) · yt,R and θs,r = rew(s, α) · ys,r +
∑

t∈S

P (s, α, t) · θt,R

where α = P∗(s) and R = min{℘, r+rew(s, α)}. For the states s ∈ S \ T :

ys,r =
∑

t∈T

PrP
∗

M,s(¬T U t) · yt,r and θs,r =
∑

t∈T

PrP
∗

M,s(¬T U t) · θt,r

Having treated the last level r = 0, the output of the algorithm is as follows.
Let S be the scheduler given by the action table action(·). For the condi-
tional expectation we have CE

S = θsinit ,0/ysinit ,0 if ysinit ,0 > 0. If ysinit ,0 = 0
or θsinit ,0/ysinit ,0 < ϑ then the algorithm returns the answer “no”. Otherwise, the
algorithm returns S, in which case CE

S > ϑ or CE
S = ϑ = CE

max. Proofs
for the soundness and the pseudo-polynomial time complexity are provided in
Appendix G of [13].

Example 4.3. For the MDP M[r] in Example 1.1, scheduler M selects action
α for state s = s2. Thus, action(s, ℘) = α for the computed saturation point
℘ � r + 2 (see Example 4.2). The threshold algorithm for each positive rational
threshold ϑ computes for each level r = ℘−1, ℘−2, . . . , 1, 0 where action(s, r +
1) = α, the value x∗

s = max{r−ϑ, 1
2 + 1

2 (r−ϑ)} and the action set Act∗(s) = {α}
if r > ϑ+1, Act∗(s) = {α, β} if r = ϑ+1 and Act∗(s) = {β} if r < ϑ+1. Thus, if
n = min{℘, �ϑ+1�} then action(s, r) = α, ys,r = 1, θs,r = 0 for r ∈ {n, . . . , ℘},
while action(s, n−k) = β, ys,n−k = 1/2k, θs,n−k = k/2k for k = 1, . . . , n. That
is, the threshold algorithm computes the scheduler Sn that selects β for the
first n visits of s and α for the (n+1)-st visit of s. Thus, if r � ϑ < r+1 then
n = r+2, in which case the computed scheduler Sn is optimal (see Example 1.1).
The returned answer depends on whether ϑ � CE

max. If, for instance, ϑ = r
2

and r > 0 is even then the threshold algorithm returns the scheduler Sn where
n = r

2+1, whose conditional expectation is r − (r
2−1)/(2

r
2+1+1) > r

2 = ϑ. �

Maximizing the Conditional Expected Reward for Reaching the Goal 281

MDPs Without Zero-Reward Cycles and Acyclic MDPs. If M does not contain
zero-reward cycles then there is no need for the linear program. Instead we can use
a topological sorting of the states in the graph of the sub-MDP consisting of zero-
reward actions and determine a scheduler P∗ satisfying (∗) directly. For acyclic
MDPs, there is even no need for a saturation point. We can explore M using
a recursive procedure and determine feasible decisions for each reachable state-
reward pair (s, r) on the basis of (∗). This yields a polynomially space-bounded
algorithm to decide whether CE

max�ϑ in acyclic MDPs. (See Appendix I of [13].)

Construction of an Optimal Scheduler. Let ThresAlgo[ϑ] denote the sched-
uler that is generated by calling the threshold algorithm for the threshold value
ϑ. A simple approach is to apply the threshold algorithm iteratively:

let S be the scheduler M as in Proposition 4.1;
REPEAT ϑ := CE

S; S := ThresAlgo[ϑ] UNTIL ϑ = CE
S;

return ϑ and S

The above algorithm generates a sequence of deterministic reward-based sched-
ulers that are memoryless from ℘ on with strictly increasing conditional expec-
tations. The number of such schedulers is bounded by md℘ where md denotes
the number of memoryless deterministic schedulers for M. Hence, the algorithm
terminates and correctly returns CE

max and an optimal scheduler. As md can be
exponential in the number of states, this simple algorithm has double-exponential
time complexity.

To obtain a (single) exponential-time algorithm, we seek for better (larger,
but still promising) threshold values than the conditional expectation of the
current scheduler. We propose an algorithm that operates level-wise and freezes
optimal decisions for levels r = ℘, ℘−1, ℘−2, . . . , 1, 0. The algorithm maintains
and successively improves a left-closed and right-open interval I = [A,B[with
CE

max ∈ I and CE
S ∈ I for the current scheduler S.

Initialization. The algorithm starts with the scheduler S = ThresAlgo[CE
M]

where M is as above. If CE
S = CE

M then the algorithm immediately terminates.
Suppose now that CE

S > CE
M. The initial interval is I = [A,B[where A =

CE
S and B = CE

ub+1 where CE
ub is as in Theorem 1.

Level-wise Scheduler Improvement. The algorithm successively determines opti-
mal decisions for the levels r = ℘−1, ℘−2, . . . , 1, 0. The treatment of level
r consists of a sequence of scheduler-improvement steps where at the same
time the interval I is replaced with proper sub-intervals. The current sched-
uler S has been obtained by the last successful run of the threshold algo-
rithm, i.e., it has the form S = ThresAlgo[ϑ] where CE

S > ϑ. Besides the
decisions of S (i.e., the actions S(s,R) for all state-reward pairs (s,R) where
s ∈ S \ {goal , fail} and R ∈ {0, 1, . . . , ℘}), the algorithm also stores the values
ys,R and θs,R that have been computed in the threshold algorithm.4 For the
4 As the decisions of the already treated levels are optimal, the values ys,R and

θs,R for R ∈ {r+1, . . . , ℘} can be reused in the calls of the threshold algorithms.
That is, the calls of the threshold algorithm that are invoked in the scheduler-
improvement steps at level r can skip levels ℘, ℘−1, . . . , r+1 and only need to process
levels r, r−1, . . . , 1, 0.

282 C. Baier et al.

current level r, the algorithm also computes for each state s ∈ S \ {goal , fail}
and each action α ∈ Act(s) the values ys,r,α =

∑
t∈S P (s, α, t) · yt,R and

θs,r,α = rew(s, α)·ys,r,α +
∑

t∈S P (s, α, t)·θt,R where R = min{℘, r+rew(s, α)}.

Scheduler-improvement Step. Let r be the current level, I = [A,B[the current
interval and S the current scheduler with CE

max ∈ I. At the beginning of the
scheduler-improvement step we have CE

S = A. Let

IS,r =
{

r + θs,r−θs,r,α

ys,r−ys,r,α
: s ∈ S \ {goal , fail}, α ∈ Act(s), ys,r > ys,r,α

}

I↑
S,r =

{
d ∈ IS,r : d � CE

S
} IB

S,r =
{

d ∈ IS,r : d < B
}

Intuitively, the values in d ∈ IB
S,r are the “most promising” threshold values, as

according to statement (†) these are the points where the decision of the current
scheduler S for some state-reward pair (s, r) can be improved, provided that
CE

max > d. (Note that the values in IS,r\IB
S,r can be discarded as CE

max < B.)
The algorithm proceeds as follows. If IB

S,r = ∅ then no further improvements
at level r are possible as the function P∗ = S(·, r) satisfies (∗) for the (still
unknown) value ϑ = CE

max. See Appendix H of [13]. In this case:

– If r = 0 then the algorithm terminates with the answer CE
max = CE

S and S
as an optimal scheduler.

– If r > 0 then the algorithm goes to the next level r−1 and performs the
scheduler-improvement step for S at level r−1.

Suppose now that IB
S,r is nonempty. Let K = I↑

S,r ∪ {CE
S}. The algorithm

seeks for the largest value ϑ′ ∈ K ∩ I such that CE
max � ϑ′. More precisely, it

successively calls the threshold algorithm for the threshold value ϑ′ = max(K∩I)
and performs the following steps for the generated scheduler S′ = ThresAlgo[ϑ′]:

– If the result of the threshold algorithm is “no” and PrS
′

M,sinit
(♦goal) is positive

(in which case CE
S′

� CE
max < ϑ′), then:

• If CE
S′

� A then the algorithm refines I by putting B := ϑ′.
• If CE

S′
> A then the algorithm refines I by putting A := CE

S′
, B := ϑ′

and adds CE
S′

to K (Note that then CE
S′ ∈ K ∩ I, while CE

S ∈ K \ I.)
– Suppose now that CE

S′
� ϑ′. The algorithm terminates if CE

S′
= ϑ′, in which

case S′ is optimal. Otherwise, i.e., if CE
S′

> ϑ′, then the algorithm aborts the
loop by putting K := ∅, refines the interval I by putting A := CE

S′
, updates

the current scheduler by setting S := S′ and performs the next scheduler-
improvement step.

The soundness proof and complexity analysis can be found in Appendix H
of [13], where (among others) we show that the scheduler-improvement step
for schedulers S with CE

S < CE
max terminates with some scheduler S′ such

that CE
S < CE

S′
. The total number of calls of the threshold algorithm is

in O(℘ · md · |S| · |Act |). This yields an exponential time bound as stated in
Theorem 3.

Maximizing the Conditional Expected Reward for Reaching the Goal 283

Example 4.4. We regard again the MDP M[r] of Example 1.1 where we sup-
pose r is positive and even. The algorithm first computes CE

ub (see Sect. 3), a
saturation point ℘ � r+2 (see Example 4.2), the scheduler M, its conditional
expectation CE

M = r
2 and the scheduler S = ThresAlgo[r2]. The initial interval

is I = [A,B[where A = CE
S = r − (r

2−1)/(2
r
2+1+1) (see Example 4.3) and

B = CE
ub+1. The scheduler improvement step for S at levels r = ℘−1, . . . , r+1

determines the set IS,r = {r−1} and calls the threshold algorithm for ϑ′ = r−1.
These calls are not successful for r = ℘−1, . . . , r+2. That is, the scheduler S
remains unchanged and the upper bound B is successively improved to r−1.
At level r = r+1, the threshold algorithm is called for ϑ′ = r, which yields the
optimal scheduler S′ = ThresAlgo[ϑ′] (see Example 4.3). �

Implementation and Experiments. We have implemented the algorithms
presented in this paper as a prototypical extension of the model checker
PRISM [27,28] and carried out initial experiments to demonstrate the general
feasibility of our approach (see https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/
TACAS17/ and Appendix K of [13] for details).

5 Conclusion

Although the switch to conditional expectations appears rather natural to escape
from the limitations of known solutions for unconditional extremal expected
accumulated rewards, to the best of our knowledge computation schemes for
conditional expected accumulated rewards have not been addressed before. Our
results show that new techniques are needed to compute maximal conditional
expectations, as optimal schedulers might need memory and local reasoning in
terms of the past and possible future is not sufficient (Example 1.1). The key
observations for our algorithms are the existence of a saturation point ℘ for the
reward that has been accumulated so far, from which on optimal schedulers can
behave memoryless, and a linear correlation between optimal decisions for all
state-reward pairs (s, r) of the same reward level r (see (∗) and the linear pro-
gram used in the threshold algorithm). The difficulty to reason about conditional
expectations is also reflected in the achieved complexity-theoretic results stating
that all variants of the threshold problem lie between PSPACE and EXPTIME.
While PSPACE-completeness has been established for acyclic MDPs (Appen-
dix I of [13]), the precise complexity for cyclic MDPs is still open. In contrast,
optimal schedulers for unconditional expected accumulated rewards as well as for
conditional reachability probabilities are computable in polynomial time [11,22].

Using standard automata-based approaches, our method can easily be gen-
eralized to compute maximal conditional expected rewards for regular co-safety
conditions (rather than reachability conditions ♦G) and/or where the accumula-
tion of rewards is “controlled” by a deterministic finite automaton as in the logics
considered in [12,17] (rather than F). In this paper, we restricted to MDPs
with non-negative integer rewards. Non-negative rational rewards can be treated
by multiplying all reward values with their least common multiple (Appendix J.1
of [13]). In the case of acyclic MDPs, our methods are even applicable if the MDP

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/TACAS17/
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/TACAS17/

284 C. Baier et al.

has negative and positive rational rewards (Appendix J.2 of [13]). By swapping
the sign of all rewards, this yields a technique to compute minimal conditional
expectations in acyclic MDPs. We expect that minimal conditional expectations
in cyclic MDPs with non-negative rewards can be computed using similar algo-
rithms as we suggested for maximal conditional expectations. This as well as
MDPs with negative and positive rewards will be addressed in future work.

References

1. Abdulla, P.A., Henda, N.B., Mayr, R.: Decisive Markov chains. Logical Methods
Comput. Sci. 3(4) (2007)

2. Acerbi, C., Tasche, D.: Expected shortfall: a natural coherent alternative to value
at risk. Econ. notes 31(2), 379–388 (2002)

3. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: On
the information leakage of differentially-private mechanisms. J. Comput. Secur.
23(4), 427–469 (2015)

4. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: Axioms for information leakage. In: Proceedings of Computer Security Foun-
dations Symposium (CSF), pp. 77–92. IEEE Computer Society (2016)

5. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Proceedings of Computer Security
Foundations Symposium (CSF), pp. 265–279. IEEE Computer Society (2012)

6. Andrés, M.E.: Quantitative Analysis of Information Leakage in Probabilistic and
Nondeterministic Systems. Ph.D. thesis, UB Nijmegen (2011)

7. Andrés, M.E., Palamidessi, C., van Rossum, P., Sokolova, A.: Information hiding
in probabilistic concurrent systems. Theoret. Comput. Sci. 412(28), 3072–3089
(2011)

8. Andrés, M.E., van Rossum, P.: Conditional probabilities over probabilistic and
nondeterministic systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 157–172. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78800-3 12

9. Baier, C., Dubslaff, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Probabilistic
model checking for energy-utility analysis. In: Breugel, F., Kashefi, E., Palamidessi,
C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash Panan-
gaden. LNCS, vol. 8464, pp. 96–123. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06880-0 5

10. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

11. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional prob-
abilities in Markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 43

12. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear
temporal logic: complexity and decidability. In: Proceedings of Computer Science
Logic/Logic in Computer Science (CSL-LICS), pp. 11:1–11:10. ACM (2014)

13. Baier, C., Klein, J., Klüppelholz, S. Wunderlich, S.: Maximizing the conditional
expected reward for reaching the goal (extended version). arXiv:1701.05389 (2017)

14. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilis-
tic invariants via Doob’s decomposition. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 43–61. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-41528-4 3

http://dx.doi.org/10.1007/978-3-540-78800-3_12
http://dx.doi.org/10.1007/978-3-540-78800-3_12
http://dx.doi.org/10.1007/978-3-319-06880-0_5
http://dx.doi.org/10.1007/978-3-319-06880-0_5
http://dx.doi.org/10.1007/978-3-642-54862-8_43
http://dx.doi.org/10.1007/978-3-642-54862-8_43
http://arxiv.org/abs/1701.05389
http://dx.doi.org/10.1007/978-3-319-41528-4_3
http://dx.doi.org/10.1007/978-3-319-41528-4_3

Maximizing the Conditional Expected Reward for Reaching the Goal 285

15. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Math. Oper. Res. 16(3), 580–595 (1991)

16. Bertsekas, D.P., Yu, H.: Stochastic path problems under weak conditions. Technical
report, M.I.T. Cambridge, Report LIDS 2909 (2016)

17. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifica-
tions with accumulative values. In: Proceedings of Logic in Computer Science
(LICS), pp. 43–52. IEEE Computer Society (2011)

18. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on
multiple mean-payoff objectives in Markov decision processes. Logical Methods
Comput. Sci. 10(1) (2014)

19. Brázdil, T., Kučera, A.: Computing the expected accumulated reward and gain
for a subclass of infinite Markov Chains. In: Sarukkai, S., Sen, S. (eds.) FSTTCS
2005. LNCS, vol. 3821, pp. 372–383. Springer, Heidelberg (2005). doi:10.1007/
11590156 30

20. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilis-
tic programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 3–22. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-41528-4 1

21. Chatzikokolakis, K., Palamidessi, C., Braun, C.: Compositional methods for
information-hiding. Math. Struct. Comput. Sci. 26(6), 908–932 (2016)

22. Alfaro, L.: Computing minimum and maximum reachability times in probabilistic
systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 66–81. Springer, Heidelberg (1999). doi:10.1007/3-540-48320-9 7

23. Gretz, F., Katoen, J., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

24. Jansen, N., Kaminski, B.L., Katoen, J., Olmedo, F., Gretz, F., McIver, A.: Con-
ditioning in probabilistic programming. In: Proceedings of Mathematical Founda-
tions of Programming Semantics (MFPS), Electronic Notes Theoretical Computer
Science, vol. 319, pp. 199–216 (2015)

25. Kallenberg, L.: Markov Decision Processes. Lecture Notes. University of Leiden,
Leiden (2011)

26. Katoen, J.-P., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding
probabilistic programs. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct
System Design. LNCS, vol. 9360, pp. 15–32. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-23506-6 4

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

28. PRISM model checker. http://www.prismmodelchecker.org/
29. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley, New York (1994)
30. Randour, M., Raskin, J.-F., Sankur, O.: Variations on the stochastic shortest path

problem. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol.
8931, pp. 1–18. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46081-8 1

31. Seber, G., Lee, A.: Linear Regression Analysis. Wiley Series in Probability and
Statistics. Wiley, New York (2003)

32. Uryasev, S.: Conditional value-at-risk: optimization algorithms and applications.
In Proceedings of Computational Intelligence and Financial Engineering (CIFEr),
pp. 49–57. IEEE (2000)

http://dx.doi.org/10.1007/11590156_30
http://dx.doi.org/10.1007/11590156_30
http://dx.doi.org/10.1007/978-3-319-41528-4_1
http://dx.doi.org/10.1007/978-3-319-41528-4_1
http://dx.doi.org/10.1007/3-540-48320-9_7
http://dx.doi.org/10.1007/978-3-319-23506-6_4
http://dx.doi.org/10.1007/978-3-319-23506-6_4
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://www.prismmodelchecker.org/
http://dx.doi.org/10.1007/978-3-662-46081-8_1

	Maximizing the Conditional Expected Reward for Reaching the Goal
	1 Introduction
	2 Preliminaries
	3 Finiteness and Upper Bound
	4 Threshold Algorithm and Computing Optimal Schedulers
	5 Conclusion
	References

