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Abstract. We present a novel propositional proof tracing format that
eliminates complex processing, thus enabling efficient (formal) proof
checking. The benefits of this format are demonstrated by implementing
a proof checker in C, which outperforms a state-of-the-art checker by two
orders of magnitude. We then formalize the theory underlying proposi-
tional proof checking in Coq, and extract a correct-by-construction proof
checker for our format from the formalization. An empirical evaluation
using 280 unsatisfiable instances from the 2015 and 2016 SAT competi-
tions shows that this certified checker usually performs comparably to
a state-of-the-art non-certified proof checker. Using this format, we for-
mally verify the recent 200 TB proof of the Boolean Pythagorean Triples
conjecture.

1 Introduction

The practical success of Boolean Satisfiability (SAT) solvers cannot be over-
stated. Generally accepted as a mostly academic curiosity until the early 1990s,
SAT solvers are now used ubiquitously, in a variety of industrial settings, and
with an ever increasing range of practical applications [6]. Several of these appli-
cations are safety-critical, and so in these cases it is essential that produced
results have some guarantee of correctness [37].

One approach investigated over the years has been to develop formally
derived SAT solvers [7,32,34,35,39]. These works all follow the same underly-
ing idea: formally specify SAT solving techniques within a constructive theorem
prover and apply program extraction (an implementation of the Curry–Howard
correspondence) to obtain a certified SAT solver. Unfortunately, certified SAT
solvers produced by this method cannot match the performance of carefully
hand-optimized solvers, as these optimizations typically rely on low-level code
whose correctness is extremely difficult to prove formally, and the performance
gap is still quite significant.

An alternative approach that has become quite popular is to check the results
produced by SAT solvers, thus adding some level of assurance regarding the com-
puted results. This line of work can be traced at least to the seminal work of
Blum and Kannan [8], with recent work also focusing on certifying algorithms
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and their verification [1,36]. Most SAT checkers expect the SAT solver to pro-
duce a witness of its result, and then validate the witness against the input for-
mula. For satisfiable instances, this is a trivial process that amounts to checking
the computed satisfying assignment against the input formula. For unsatisfiable
instances, since SAT is known to be in NP and believed not to be in coNP, it is
unlikely that there exist succinct witnesses, in the worst case. As a result, the
solution in practice has been to output a trace of the execution of the SAT solver,
which essentially captures a resolution proof of the formula’s unsatisfiability.
Although this approach finds widespread use [5,18,20–24,26–28,38,40,44–47],
and has been used to check large-scale resolution proofs [9,25,29–31], its main
drawback is that there still is effectively no guarantee that the computed result
is correct, since the proof checker has again not been proven correct.

Combining these two approaches, several authors [2,16,17,23,43,44] have
experimented with the idea of developing certified proof checkers, i.e. programs
that check traces of unsatisfiability proofs and that have themselves been for-
mally proven correct. However, all these approaches are limited in their scalabil-
ity, essentially for one of two reasons: (1) information about deletion of learned
clauses is not available nor used [2,16,17,43]; and (2) the formats used to pro-
vide proof traces by SAT solvers still require the checker to perform complex
checking steps [22,23,44,46], which are very difficult to optimize.

In this paper we examine the fundamental reasons for why these attempts do
not scale in practice, and propose a resolution proof trace format that extends the
one developed in recent work [21–23,45] by incorporating enough information to
allow the reconstruction of the original resolution proof with minimum compu-
tational effort. This novel proof trace format impacts resolution proof checking
in a number of fundamental aspects. First, we show how we can implement an
(uncertified, optimized) proof checker in C whose run times are negligible when
compared to those of state-of-the-art checkers, in particular drat-trim [19,45]1.
Second, we capitalize on the simplicity of the new proof format to formalize the
proof verification algorithm inside the theorem prover Coq. Third, we extract
a certified checker from this formalization and show that it performs compa-
rably with drat-trim on a number of significant test cases. As a consequence,
this certified checker is able to verify, in reasonable time, the currently largest
available resolution proof, namely the 200 TB proof of the unsatisfiability of a
SAT encoding of the Boolean Pythagorean Triples conjecture [25].

The paper is organized as follows. Section 2 briefly summarizes basic SAT
and proof checking definitions, and presents a brief overview of the Coq theorem
prover and its extraction mechanism. Section 3 provides an overview of the best
known resolution proof formats proposed in the recent past. Section 4 introduces
the novel resolution proof trace format and outlines the pseudo-code of a veri-
fication algorithm, which is then implemented in C. Section 4 also compares its
performance to that of drat-trim [45]. Section 5 then describes a formalization
of the SAT problem in Coq, which includes a specification of the pseudo-code
in the previous section and a proof of its soundness. By applying the program

1 The sole purpose of comparing two checkers with different aims and based on different
formats is to motivate the development of the efficient certified checker.
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extraction capabilities of Coq, we obtain a certified checker in OCaml, which
we evaluate on the same test set as our uncertified C checker. Section 6 details
the performance of the certified checker on the verification of the proof of the
Pythagorean Boolean Triples conjecture. The paper concludes in Section 7.

2 Preliminaries

Standard Boolean Satisfiability (SAT) definitions are assumed throughout [6].
Propositional variables are taken from a set X. In this work, we assume X = N

+.
A literal is either a variable or its negation. A clause is a disjunction of literals,
also viewed as a set of literals. A conjunctive normal form (CNF) formula is a con-
junction of clauses, also viewed as a set of clauses. Formulas are represented in
calligraphic font, e.g. F , with var(F) denoting the subset of X representing the
variablesoccurring inF .Clausesare representedwithcapital letters, e.g.C.Assign-
ments are represented by a mapping µ : X → {0, 1}, and the semantics is defined
inductively on the structure of propositional formulas, as usual. The paper focuses
on CDCL SAT solvers [6]. The symbol � is used for entailment, whereas �u is used
for representing the result of running the well-known unit propagation algorithm.

Thispaperdevelopsa formalizedchecker forproofs ofunsatisfiabilityofproposi-
tional formulasusingthe theoremproverCoq [4].Coq isa type-theoretical construc-
tive interactive theorem prover based on the Calculus of Constructions (CoC) [10]
using a propositions-as-types interpretation. Proofs of theorems are terms in the
CoC, which are constructed interactively and type checked when the proof is com-
pleted; this final step ensures that the correctness of the results obtained in Coq
only depends on the correctness of the type checker – a short piece of code that is
much easier to verify by hand than the whole system.

A particular feature of Coq that we make use of in this paper is program
extraction [33], which is an implementation of the Curry–Howard correspondence
for CoC and several functional programming languages (in our case, OCaml).
Programs thus obtained are correct-by-construction, as they are guaranteed to
satisfy all the properties enforced by the Coq term they originate form. The CoC
includes a special type Prop of propositions, which are understood to have no
computational content; in particular, it is not allowed to define computational
objects by case analysis on a term whose type lives in Prop. This allows these
terms to be removed by program extraction, making the extracted code much
smaller and more efficient; however, all properties of the program that they
express are still valid, as stated by the soundness of the extraction mechanism.

3 Propositional Proof Trace Formats

The generation of resolution proof traces for checking the results of SAT solvers
has been actively studied since the early 2000s [18,47]. Over the course of the
years, different resolution proof tracing formats and extensions have been pro-
posed [5,18,20–24,26,27,38,40,42,44–47]. These all boil down to listing infor-
mation about the clauses learned by CDCL SAT solvers, with recent efforts
allowing an extended set of operations [22,44]. Resolution proof traces can list
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the literals of each learned clause [21,23,40,42,45,46], the labels of the clauses
used for learning each clause, or both [5,40,42]. Moreover, the checking of proof
traces can traverse the trace from the start to the end, i.e. forward checking,
or from end to the start, i.e. backward checking. In addition, the checking of
proof traces most often exploits one of two key mechanisms. One validation
mechanism uses trivial resolution steps (TVR) [3]. This is a restriction over the
already restricted input resolution [42]. For proof checking purposes it suffices to
require that every two consecutively listed clauses must contain a literal and its
complement (and obviously not be tautologous). Another validation mechanism
exploits the so-called reverse unit propagation (RUP) property [18]. Let F be a
CNF formula, and C be a clause learned from F . Thus, we must have F � C.
The RUP property observes that, since F ∧ ¬C � ⊥, then it is also true that
F ∧ ¬C � ⊥. The significance of the RUP property is that proof checking can
be reduced to validating a sequence of unit propagations that yield the empty
clause. More recent work proposed RAT property2 checking [22,46]. The result-
ing format, DRAT, enables extended resolution proofs and, as a result, a wide
range of preprocessing techniques [22,24,45].

A few additional properties of formats have important impact on the type
of resulting proof checking. Some formats do not allow for clause deletion. This
is the case with the RUP [40,42] and the trace [5] formats. For formats that
generate clause dependencies, some will allow clauses not to be ordered, and so
the checker is required to infer the correct order of steps.

Example 1. Figure 1 samples the proof tracing formats RUP, trace, and DRUP.
(Compared to DRUP, the DRAT format is of interest when extended resolution is
used. Every DRUP proof is by definition also a DRAT proof.) With the exception
of the more verbose RES format, earlier formats did not allow for clause deletion.
The DRUP format (and the more recent DRAT format) allow for clause deletion.
A number of different traces would represent DRAT traces, including the DRUP
trace shown.

Table 1 summarizes some of the best known formats, and their drawbacks.
RES [40,42] is extremely verbose, separately encoding each resolution step, and
is not in current use. RUP [40,42] and trace [5] do not consider clause deletion,
and so are inadequate for modern SAT solvers. DRUP addresses most of the
drawbacks of earlier formats, and has been superseded by DRAT, which provides
an extended range of operations besides clause learning.

A number of guidelines for implementing resolution proof trace checking have
emerged over the years. First, backward checking is usually preferred, since only
the clauses in some unsatisfiable core need to be checked. Second, RUP is pre-
ferred over checking TVR steps [21–23,45,46], because the format becomes more
flexible. Third, the SAT solver is often expected to minimize the time spent
generating the proof trace. This means that, for formats that output clause
dependencies, these are in general unordered. Moreover, modern checkers also
carry out the validation of the RAT property [22,45,46]. These observations also

2 We do not detail the RAT property here, as it is immaterial for our development.
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problem CNF

p cnf 3 5

1 2 0

-1 2 0

1 -2 0

-1 3 0

-2 -3 0

RUP format

1 0

2 0

3 0

0

tracecheck

1 1 2 0 0

2 -1 2 0 0

3 1 -2 0 0

4 -1 3 0 0

5 -2 -3 0 0

6 1 0 1 3 0

7 2 0 2 6 0

8 3 0 4 6 0

9 0 5 7 8 0

DRUP format

1 0

d 1 2 0

d 1 -2 0

2 0

d -1 2 0

3 0

d -1 3 0

d 1 0

0

Fig. 1. Examples of trace formats (example adapted from [23]; with original clauses
in green, deletion information in blue, learnt clauses in red, and unit propagation
information in yellow) (Color figure online)

Table 1. Comparison of some of the best known proof tracing formats

Format Clause

dependencies

Clause

literals

Clause

deletion

Clause

reordering

RAT

checking

Drawbacks

RES [40,42] Yes Yes Yes No No Size, RAT

RUP [40,42] No Yes No No No Deletion,

RAT

trace [5] Yes Yes No Yes No Deletion,

reordering,

RAT

DRUP [21,23] No Yes Yes Yes No RAT,

reordering

DRAT [45,46] No Yes Yes No Yes Complex

checking

indicate that recent work on checking of resolution proof traces has moved in
the direction of more complex checking procedures.

Besides efficient checking of resolution proof traces, another important line
of work has been to develop certified checkers. Different researchers exploited
existing proof formats to develop certified proof checkers [2,16,17,43]. The main
drawback of this earlier work is that it was based on proof formats that did
not enable clause deletion. For large proofs, this can result in unwieldy memory
requirements. Recent work addressed this issue by considering proof formats
that enable clause deletion [22,44,46]. Nevertheless, this recent work builds on
complex proof checking (see Table 1) and so does not scale well in practice.

Given past evidence, one can argue that, in order to develop efficient certified
resolution proof checkers, proof checking must be as simple as possible. This has
immediate consequences on the proof format used, and also on the algorithm
used for checking that format. The next section details our proposed approach.
The proposed format requires enough information to enable a checking algorithm
that minimizes the processing effort. The actual checking algorithms exploits the
best features of TVR and RUP, to enable what can be described as restricted
reverse unit propagation.
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4 Introducing the GRIT Format

As described in the section above, an important aspect in the design of propo-
sitional proof trace formats has been the desire to make it easy for SAT solvers
to produce a proof in that format. As a consequence, all the major proof trace
formats have left some complex processing to the proof checker:

– The DRUP and DRAT formats specify the clauses learnt, but they do not spec-
ify the clauses that are used in reverse unit propagation to verify redundancy of
these clauses. Thus, proof checkers need to implement a full unit-propagation
algorithm. Our results suggest that even state-of-the-art implementations of
such algorithms underperform our approach.

– The trace format specifies which clauses are used in reverse unit propagation,
but it deliberately leaves the order of these undetermined. Thus, proof checkers
still need to implement a unit-propagation algorithm, though limited to the
clauses specified.

Experience from recent work verifying large-scale proof [14,15], co-authored by
two of the authors of this work, suggests that fully eliminating complex process-
ing is a key ingredient in developing efficient proof checkers that scale to very
large proofs. Furthermore, in the concrete case of unit-propagation, efficient algo-
rithms rely on pointer structures that are not easily ported to the typical func-
tional programming setting used in most theorem provers.

Based on these observations, as well as on the importance of deleting clauses
that are no longer needed [21,22], we propose a novel proof trace format that
includes deletion and fully eliminates complex processing, effectively reducing
unit-propagation to simple pre-determined set operations.

4.1 The Format

The Generalized ResolutIon Trace (GRIT) format builds on the trace format
with its unique clause identifiers, but with two fundamental changes:

– We fix the order of the clauses dependencies given as a witness for each learnt
clause to be: an order in which unit propagation produces the empty clause.
This is a restriction of the freedom allowed by the trace format.

– In addition to the two types of lines specifying original and learnt clauses, we
extend the format with a third type of line for deletions. These lines start with
a 0 followed by a list of clause identifiers to delete and end with a 0, and are
thus easily distinguishable from the other two types of lines that start with a
positive integer.

These changes are minimal w.r.t. achieving the integration of deletion and the
elimination of complex processing, and in particular the new lines keep some of
the properties that make the trace format easy to parse (two zeroes per line;
the integers between those zeroes are clause identifiers). In this way, the changes
follow the spirit of the extension of the RUP format to DRUP and later DRAT,
just with trace as the point of departure.
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problem CNF

p cnf 3 5

1 2 0

-1 2 0

1 -2 0

-1 3 0

-2 -3 0

tracecheck

1 1 2 0 0

2 -1 2 0 0

3 1 -2 0 0

4 -1 3 0 0

5 -2 -3 0 0

6 1 0 1 3 0

7 2 0 2 6 0

8 3 0 4 6 0

9 0 5 7 8 0

DRUP format

1 0

d 1 2 0

d 1 -2 0

2 0

d -1 2 0

3 0

d -1 3 0

d 1 0

0

GRIT format

1 1 2 0 0

2 -1 2 0 0

3 1 -2 0 0

4 -1 3 0 0

5 -2 -3 0 0

6 1 0 1 3 0

0 1 3 0

7 2 0 6 2 0

0 2 0

8 3 0 6 4 0

0 4 6 0

9 0 7 8 5 0

Fig. 2. Synthesis of the GRIT format (with original clauses in green, deletion informa-
tion in blue, learnt clauses in red, and unit propagation information in yellow). (Color
figure online)

proof = line clause = lit , ”0”
line = ( original learnt delete ), ”\n” idlist = id , id
original = id , clause , ”0”, ”0” id = pos
learnt = id , clause , ”0”, idlist , ”0” lit = pos neg
delete = ”0”, idlist , ”0” pos = ”1” | ”2” | . . .

neg = ”-”, pos

Fig. 3. EBNF grammar for the GRIT format. (Color figure online)

Figure 2 shows how the GRIT version of our running example from Fig. 1
incorporates the deletion information from the DRUP format into a trace-style
proof, where the clause dependencies have been reordered to avoid the complex-
ity of checking the RUP property by full unit propagation, instead facilitating
the application of restricted reverse unit propagation.

The full syntax of the GRIT format is given by the grammar in Fig. 3, where
for the sake of sanity whitespace (tabs and spaces) is ignored. Here, additions
with respect to the original trace format are given in green. In addition to the
extension with delete information, there is a semantic restriction on the list of
clause identifiers marked in red, namely that the clause dependencies represented
are in the order as specified above. Existing parsers for the trace format should
be easy to extend to this syntax.

4.2 The Checker

To obtain an empirical evaluation of the potential of the GRIT format, we imple-
mented a proof checking algorithm based on restricted reverse unit propagation
in C. The source code is available from [13]. While the C code is quite opti-
mized, the general algorithm follows the pseudo code given in Fig. 4 as 25 lines
of fully-functional Python (also available from [13]).

The set of instances we considered consists of the 280 instances from the 2015
and 2016 main and parallel tracks of the SAT competition that could be shown
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def parse(line):
ints = [int(s) for s in line.split() ]
i0 = ints.index(0)
return ints[0 ], set(ints[1:i0 ]), ints[i0+1:−1 ]

def verify(file):
cs = {}
for id, c, ids in (parse(line) for line in file):
if not id: # delete clauses

for id in ids: del cs[id ]
elif not ids: # add original clause

cs[id ] = c

else: # check & add learnt clause

d = c.copy()
for i in ids:
e = cs[i ]−d

if e:
d.add(−e.pop()) # propagate

assert not e # is unit?
else: # empty clause reached

cs[id ] = c

if not c: return "VERIFIED"

break

return "NOT VERIFIED"

import sys

print(verify(open(sys.argv[1 ])))

Fig. 4. Fully functional checker for the GRIT format written in Python.

to be UNSAT within 5000 s using the 2016 competition version of lingeling.
For each of these instances, the original CNF and proof trace are trimmed and
optimized using drat-trim in backward checking mode. This is a side-effect of
using drat-trim to generate proof traces in the GRIT format, and was applied
in the same way to generate DRAT files from the original RUP files in order to
ensure a level playing field. In this way, the RUP steps required are the same for
both GRIT and DRAT checkers.

The C-checker successfully verifies all 280 GRIT files in just over 14 min
(843.64 s), while drat-trim requires more than a day to solve the corresponding
DRAT files (109214.08 s) using backward mode. Executing drat-trim in forward
mode incurred a runtime overhead of 15% on the total set of trimmed and
optimized instances. As expected, the overhead was even bigger when working
on the original CNFs and proof traces. The quantitative results are summarized
in the plots of Fig. 5, with details available from [13].

This two-orders-of-magnitude speedup demonstrates the potential of using a
file format for propositional resolution proof checking by restricted reverse unit
propagation. Note that we currently do not output the GRIT format directly, but
require a modified version of drat-trim as a pre-processor3 in order to determine

3 The modified version essentially uses drat-trim’s tracecheck output, interleaving it
with deletion information. The modified source code is available from [13].
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Fig. 5. Scatter and cactus plot comparing the runtime of the C-checker on GRIT files
and drat-trim on the corresponding DRAT files.

both the order of clauses used in unit propagation, the set of original and learnt
clauses relevant, and the deletion of clauses that are no longer needed. We stress
the importance of this additional information in obtaining the performance gains
we measure. Additional experiments (whose results we do not detail for space
constraints) show that deletion of clauses alone is responsible for a speedup
of more than one order of magnitude for the larger instances, when using the
certified checker we develop in the next section. In this way, deletion is essential
for making certified checking feasible on the largest available instances.

While it is in principle thinkable to modify a SAT solver to output the GRIT
format directly, building on [41], in this work our focus is on enabling sufficiently
efficient certified proof checking. To this end, it seems fully acceptable to run an
uncertified proof checker as a pre-processor to generate the oracle data enabling
the application of restricted reverse unit propagation in a certified checker.

5 Coq Formalization

We now show how to obtain a certified checker of unsatisfiability proofs. Rather
than verify the code of the C checker developed earlier, we formalize the underly-
ing algorithm in Coq and extract a new certified checker. This approach has the
benefits of being simpler and less dependent on the soundness of the underlying
software stack.

We follow the strategy outlined in [14,15]: first, we formalize the necessary
theoretical concepts (propositional satisfiability, entailment and soundness of
unit propagation); then, we naively specify the verification algorithm; finally, we
optimize this algorithm using standard computer science techniques to obtain
feasible runtimes. In the interest of succintness, we only present the formalization
obtained at the end of this process. The source files can be obtained from [13].
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5.1 Formalizing Propositional Satisfiability

We identify propositional variables with Coq’s binary natural numbers (type
positive), and define a literal to be a signed variable. The type of literals is
thus isomorphic to that of integers (excluding zero).

Inductive Literal : Type :=
| pos : positive → Literal

| neg : positive → Literal.

A clause is a set of literals, and a CNF is a set of clauses. For efficiency,
there are two different definitions of each type, with mappings between them.
A Clause is a list Literal, and is the type preferably used in proofs due to its
simplicity; it is also the type used for inputting data from the oracle. A CNF is a
BinaryTree Clause, where the dependent type BinaryTree implements search
trees over any type with a comparison operator. This is the type of the CNF given
as input to the algorithm, which is built once, never changed, and repeatedly
tested for membership. The working set uses two different representations of
these types. A SetClause is a BinaryTree Literal, where in particular set
differences can be computed much more efficiently than using Clause. Finally, an
ICNF is a Map {cl:SetClause | SC_wf cl}, where Map is the Coq standard library’s
implementation of Patricia trees. The elements of an ICNF must be well-formed
search trees (ensured by the condition in the definition of subset type); proofs
of well-formedness do not contain computational meaning and are removed by
extraction.4 In particular, every SetClause built from a Clause is well-formed.

A valuation is a function from positive numbers to Booleans. Satisfaction is
defined for literals, clauses and CNFs either directly (as below) or by translating
to the appropriate type (for SetClause and ICNF).

Definition Valuation := positive → bool.

Fixpoint L_satisfies (v:Valuation) (l:Literal) : Prop :=
match l with

| pos x ⇒ if (v x) then True else False

| neg x ⇒ if (v x) then False else True

end.

Fixpoint C_satisfies (v:Valuation) (c:Clause) : Prop :=
match c with

| nil ⇒ False

| l :: c' ⇒ (L_satisfies v l) ∨ (C_satisfies v c')
end.

Fixpoint satisfies (v:Valuation) (c:CNF) : Prop :=
match c with

| nought ⇒ True

| node cl c' c' ' ⇒ (C_satisfies v cl) ∧ (satisfies v c') ∧ (satisfies v c'')
end.

4 Soundness of extraction implies that these trees are well-formed.
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Definition unsat (c:CNF) : Prop := ∀ v:Valuation, ˜(satisfies v c).

Definition entails (c:CNF) (c':Clause) : Prop :=
∀ v:Valuation, satisfies v c → C_satisfies v c'.

We then prove the intuitive semantics of satisfaction: a clause is satisfied if
one of its literals is satisfied, and a CNF is satisfied if all its clauses are satisfied.
Other properties that we need include: the empty clause is unsatisfiable; every
non-empty clause is satisfiable; a subset of a satisfiable CNF is satisfiable; and
a CNF that entails the empty clause is unsatisfiable.

Lemma C_satisfies_exist : ∀ (v:Valuation) (cl:Clause),
C_satisfies v cl → ∃ l, In l cl ∧ L_satisfies v l.

Lemma satisfies_remove : ∀ (c:CNF) (cl:Clause) (v:Valuation),
satisfies v c → satisfies v (CNF_remove cl c).

Lemma unsat_subset : ∀ (c c':CNF),
(∀ cl, CNF_in cl c → CNF_in cl c') → unsat c → unsat c'.

Lemma CNF_empty : ∀ c, entails c nil → unsat c.

5.2 Soundness of Unit Propagation

The key ingredient to verifying unsatisfiability proofs in GRIT format is being
able to verify the original unit propagation steps. Soundness of unit propagation
relies on the following results, formalizing the two relevant outcomes of resolving
two clauses: a unit clause and the empty clause.

Lemma propagate_singleton : ∀ (cs:CNF) (c c':SetClause), ∀ l,
entails cs (SetClause_to_Clause (SC_add (negate l) c')) →
SC_diff c c' = (node l nought nought) → entails (CNF_add c cs) c'.

Lemma propagate_empty : ∀ (cs:CNF) (c c':SetClause),
SC_diff c c' = nought → entails (BT_add Clause_compare c cs) c'.

We then define a function propagate that receives an ICNF, a SetClause
and a list of indices (of type ad, used in the implementation of Map) and returns
true if reverse unit propagation from the given clause using the clauses referred
to by the given indices reaches the empty clause.5 Concretely, we take the clause
in the ICNF corresponding to the first index and check whether the set difference
between it and the given clause is (i) the empty clause, in which case we return
true, (ii) a singleton, in which case we add the negation of the derived literal
to the clause, remove the index from the list and recur, or (iii) a longer list of
literals, and we return false. We omit the formal definition of propagate, and
reproduce only the lemma stating its soundness.
5 The function propagate actually implements a restricted version of reverse unit

propagation analogous to the one in our C-checker, which in particular avoids com-
plex processing to determine the next clause to use in unit propagation.
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Lemma propagate_sound : ∀ (cs:ICNF) (c:SetClause) (is:list ad),
propagate cs c is = true → entails cs c.

To check that a given formula is unsatisfiable, we start with an empty work-
ing set, and iteratively change it by applying actions given by the oracle. These
actions form a type Action with three constructors: delete a clause; add a clause
from the original CNF; or extend it with a clause that is derivable by unit prop-
agation (together with the indices of the clauses that should be used in this
derivation).

Inductive Action : Type :=
| D : list ad → Action

| O : ad → Clause → Action

| R : ad → Clause → list ad → Action.

Definition Answer := bool.

We then define a function refute that processes a list of Actions (the oracle),
starting from a given CNF. This function starts with an empty ICNF, and processes
each Action as expected: it deletes the clause with the given index from the ICNF
(doing nothing if the index does not occur); it adds a clause from the argument
CNF (checking that it occurs there, and failing otherwise); or add a clause to the
ICNF after using propagate to ensure that it is entailed by the ICNF (and failing
otherwise).

The list of Actions is actually defined to be a lazy list. Lazy lists are defined
exactly as lists with constructors lnil and lcons, but with the second argument
of lcons inside an invocation of an identity function. Likewise, additional func-
tions for deferring or forcing evaluation inside refute are defined as the identity.
These additions are necessary to be able to extract a memory-efficient checker to
OCaml. On extraction, these functions are mapped to the adequate OCaml con-
structs implementing laziness; although in principle this approach could break
soundness of extraction, these constructs do indeed behave as identities. With-
out them, the extracted checker attempts to load the entire oracle data at the
start of execution, and thus risks running out of memory for larger proofs.6

The following result states soundness of refute: if refute c O returns true,
then c is unsatisfiable. Since O is universally quantified, the result holds even if
the oracle gives incorrect data. (Namely, because refute will output false.)

Theorem refute_correct : ∀ c O, refute c O = true → unsat (make_CNF c).

5.3 Experimental Evaluation

In order to evaluate the efficiency of our formalized checker, we extracted it to
OCaml. The extraction definition is available in the file Extraction.v from [13].
As is customary, we extract the Coq type positive, used for variable and clause

6 Targeting a lazy language like Haskell would not require this workaround. However,
in our context, using OCaml reduced computation times to around one-fourth.
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Fig. 6. Scatter and cactus plot comparing the runtime of our certified checker (includ-
ing pre-processing) and drat-trim on the original proof traces from lingeling.

identifiers, to OCaml’s native integers, and the comparator function on this type
to a straightforward implementation of comparison of two integers. This reduces
not only the memory footprint of the verified checker, but also its runtime (as
lookups in ICNFs require comparison of keys). It is routine to check that these
functions are correct. Furthermore, as described above, we extract the type of
lazy lists to OCaml’s lazy lists.

We ran the certified extracted checker on the same 280 unsatisfiable instances
as in the previous section, with a timeout of 20,000 s, resulting in 260 success-
ful verifications and 20 timeouts. On the 260 examples, the certified checker
runs in good 4 days and 18 h (412469.50 s) compared to good 2 days and
17 h (234922.46 s) required by the uncertified checker drat-trim. The pre-
processing using our modified version of drat-trim adds another 2 days and 19 h
(241453.84 s) for a total runtime of 7 days and good 13 (653923.34 s). Thus, the
extra degree of confidence provided by the certified checker comes at the price
of approx. 2.8 times slower verification for these instances (180% overhead).

The quantitative results on all 280 instances are summarized in the plots
of Fig. 6, where we added the pre-processing time to the time of the certified
checker, with details available from [13].

The reason for the 20 timeouts can be found in the set implementation
of our formalization. If we extract Coq sets to native OCaml sets, there are
no time-outs. We extracted such a version of the certified checker in order to
check this hypothesis, as well as to assess the performance impact. And indeed,
this version of our checker successfully verifies all 280 GRIT files in less time
(186599.20 s) than it takes to pre-process them using our modified drat-trim ver-
sion (281516.13), and consequently the overhead of running a certified checker
instead of an uncertified checker is down to 75%. The quantitative results for this
variant are summarized in the plots of Fig. 7, with details available from [13].
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Fig. 7. Scatter and cactus plot comparing the runtime of a certified checker using
OCaml sets (including pre-processing) and drat-trim on the original proof traces from
lingeling.

6 Veryifing the Boolean Pythagorean Triples Proof

As a large-scale litmus test of our formally verified checker, we reconstituted
the recent SAT-based proof of the Boolean Pythagorean Triples conjecture [25]
(508 CPU days) using the incremental SAT solver iGlucose, transformed it into
the GRIT format (871 CPU days) using our modified version of drat-trim, and
formally verified that all 1,000,000 cases (“cubes”) cover the entire search space
(12 min), and that they are all indeed unsatisfiable (2608 days) using our certi-
fied checker (the original version, where all data structures except integers are
extracted). This amounts to formally verifying the Boolean Pythagorean Triples
conjecture (provided that its encoding as a propositional formula is correct).

The cactus plot in Fig. 8 visualizes the distribution of runtime on the
1,000,000 cubes. The size of the reconstituted proof traces in RUP format was
measured to be 175 TB. After transformation to the more detailed GRIT format,
the proof traces filled a total 389 TB. During runtime, the maximum resident
memory usage of the incremental SAT solver was 237 MB, while drat-trim in
backward mode used up to 1.59 GB. Our certified checker reached a maximum of
67 MB of resident memory usage thanks to lazyness. Details on this experiment
are available from [12].

7 Conclusions and Research Directions

This paper revisits past work on proof checking, aiming at developing high-
performance certified proof checkers. It proposes a new format, which enables a
very simple proof checking algorithm. This simple algorithm is formalized in the
Coq theorem prover, from which an OCaml executable is then extracted.

The experimental results amply demonstrate the validity of the proposed
approach. The C implementation of the checker is on average two orders of
magnitude faster than what can be considered a reference C-implemented proof
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Fig. 8. Cactus plot comparing the runtimes for reconstituting the proof (decode and
solve), transforming it into GRIT (drat-trim and tac), and formally verifying the GRIT
files using our certified checker.

checker, drat-trim [19,45]. This represents an essential requirement for develop-
ing an efficient certified proof checker. More importantly, the certified OCaml
version of the checker performs comparably with drat-trim on problem instances
from the SAT competitions. Perhaps more significantly, the certified checker has
been used to formally verify the 200 TB proof of the Boolean Pythagorean Triples
conjecture [25], in time comparable to the non-certified drat-trim checker.

Future work will address existing limitations of the approach. Currently, a
modified version of drat-trim is used to generate the GRIT format. This can
impact the overall running time, especially if the C-implemented checker for
the GRIT format is to be used. This also includes modifying top performing
SAT solvers to output the GRIT format, potentially based on A. Van Gelder’s
approach [41,42].

A natural continuation of this work is the extension of GRIT to a format
as general as DRAT, in particular by including support for the RAT property.
This task is quite challenging, as verifying the RAT property requires global
checks on the whole CNF – unlike the properties describable by GRIT, which
are locally verified. Preliminary results regarding the extension of GRIT to the
RAT property can be found in [11].
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36. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Comput. Sci. Rev. 5(2), 119–161 (2011)

https://github.com/marijnheule/drat-trim
http://www.easychair.org/smart-program/VSL2014/APPA-index.html
http://www.easychair.org/smart-program/VSL2014/APPA-index.html
http://dx.doi.org/10.1007/978-3-642-38574-2_24
http://dx.doi.org/10.1007/978-3-319-21401-6_40
http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.1007/978-3-540-72788-0_21
http://dx.doi.org/10.1007/978-3-540-72788-0_21
http://dx.doi.org/10.1007/11814948_8
http://dx.doi.org/10.1007/978-3-319-09284-3_17
http://dx.doi.org/10.1007/978-3-642-04222-5_18
http://dx.doi.org/10.1007/978-3-642-04222-5_18
http://dx.doi.org/10.1007/978-3-540-69407-6_39


Efficient Certified Resolution Proof Checking 135

37. Shankar, N.: Trust and automation in verification tools. In: Cha, S.S., Choi, J.-Y.,
Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 4–17.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-88387-6 3

38. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev,
D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611.
Springer, Heidelberg (2006). doi:10.1007/11753728 60

39. Smith, D.R., Westfold, S.J.: Synthesis of satisfiability solvers. Technical report,
Kestrel Institute (2008)

40. Van Gelder, A.: Verifying RUP proofs of propositional unsatisfiability. In: ISAIM
(2008)

41. Gelder, A.: Improved conflict-clause minimization leads to improved propositional
proof traces. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 141–146.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2 15

42. Van Gelder, A.: Producing and verifying extremely large propositional refutations
- have your cake and eat it too. Ann. Math. Artif. Intell. 65(4), 329–372 (2012)

43. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL the-
orem provers. J. Appl. Logic 7(1), 26–40 (2009)

44. Wetzler, N., Heule, M.J.H., Hunt, W.A.: Mechanical verification of SAT refutations
with extended resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.)
ITP 2013. LNCS, vol. 7998, pp. 229–244. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39634-2 18

45. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). doi:10.1007/978-3-319-09284-3 31

46. Wetzler, N.D.: Efficient, mechanically-verified validation of satisfiability solvers.
Ph.D. thesis, The University of Texas at Austin (2015)

47. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based
checker: practical implementations and other applications. In: DATE, pp. 10880–
10885 (2003)

http://dx.doi.org/10.1007/978-3-540-88387-6_3
http://dx.doi.org/10.1007/11753728_60
http://dx.doi.org/10.1007/978-3-642-02777-2_15
http://dx.doi.org/10.1007/978-3-642-39634-2_18
http://dx.doi.org/10.1007/978-3-642-39634-2_18
http://dx.doi.org/10.1007/978-3-319-09284-3_31

	Efficient Certified Resolution Proof Checking
	1 Introduction
	2 Preliminaries
	3 Propositional Proof Trace Formats
	4 Introducing the GRIT Format
	4.1 The Format
	4.2 The Checker

	5 Coq Formalization
	5.1 Formalizing Propositional Satisfiability
	5.2 Soundness of Unit Propagation
	5.3 Experimental Evaluation

	6 Veryifing the Boolean Pythagorean Triples Proof
	7 Conclusions and Research Directions
	References


