
Bounded Quantifier Instantiation for Checking
Inductive Invariants

Yotam M.Y. Feldman1(B), Oded Padon1, Neil Immerman2, Mooly Sagiv1,
and Sharon Shoham1

1 Tel Aviv University, Tel Aviv, Israel
yotam.feldman@gmail.com
2 UMass, Amherst, USA

Abstract. We consider the problem of checking whether a proposed
invariant ϕ expressed in first-order logic with quantifier alternation is
inductive, i.e. preserved by a piece of code. While the problem is undecid-
able, modern SMT solvers can sometimes solve it automatically. However
they employ powerful quantifier instantiation methods that may diverge,
especially when ϕ is not preserved. A notable difficulty arises due to coun-
terexamples of infinite size.

This paper studies Bounded-Horizon instantiation, a natural method
for guaranteeing the termination of SMT solvers. The method bounds the
depth of terms used in the quantifier instantiation process. We show that
this method is surprisingly powerful for checking quantified invariants in
uninterpreted domains. Furthermore, by producing partial models it can
help the user diagnose the case when ϕ is not inductive, especially when
the underlying reason is the existence of infinite counterexamples.

Our main technical result is that Bounded-Horizon is at least as pow-
erful as instrumentation, which is a manual method to guarantee con-
vergence of the solver by modifying the program so that it admits a
purely universal invariant. We show that with a bound of 1 we can sim-
ulate a natural class of instrumentations, without the need to modify
the code and in a fully automatic way. We also report on a prototype
implementation on top of Z3, which we used to verify several examples
by Bounded-Horizon of bound 1.

1 Introduction

This paper addresses a fundamental problem in automatic program verification:
how to prove that a piece of code preserves a given invariant. In Floyd-Hoare
style verification this means that we want to automatically prove the validity
of the Hoare triple {P}C{P} where P is an assertion and C is a command.
Alternatively, this can be shown by proving the unsatisfiability of the formula
P (V) ∧ δ(V, V ′) ∧ ¬P (V ′) (the verification condition) where P (V) denotes the
assertion P before the command, P (V ′) denotes the assertion P after the com-
mand, and δ(V, V ′) is a formula expressing the meaning of the command C as
a transition relation between pre- and post-states. When C is a loop body, such

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 76–95, 2017.
DOI: 10.1007/978-3-662-54577-5 5

Bounded Quantifier Instantiation for Checking Inductive Invariants 77

a P is an inductive invariant and can be used to prove safety properties of the
loop (if it also holds initially and implies the desired property).

For programs with infinite state space, proving the validity of {P}C{P}
is generally undecidable even when C does not include loops. Indeed, existing
SMT solvers can diverge even for simple assertions and simple commands. Recent
attempts to apply program verification to prove the correctness of critical sys-
tem’s design and code [16] identify this as the main hurdle for using program
verification.

The difficulty is rooted in powerful constructs used in SMT-based verification
of interesting programs. Prominent among these constructs are arithmetic and
other program operations modeled using background theories, and logical quanti-
fiers. In this paper we target the verification of applications in which the problem
can be modeled without interpreted theories. This is in line with recent works
that show that although reasoning about arithmetic is crucial for low-level code,
in many cases the verification of high-level programs and designs can be per-
formed by reasoning about quantification in uninterpreted theories. Specifically,
the decidable Effectively Propositional logic (EPR) has been successfully applied
to domains such as linked-list manipulation [21], Software-Defined Networks [6]
and some distributed protocols [29]. Without interpreted theories it remains to
address the complications induced by the use of quantifier alternation.

In the presence of quantifier alternation, the solver’s ability to check asser-
tions is hindered by the following issues: (1) an infinite search space of proofs
that needs to be explored for correct assertions, a problem which is sometimes
manifested in matching loops [12], and (2) a difficulty of finding counterexam-
ples for invalid assertions, notably when counterexamples may be of infinite size.
Current SMT techniques often fail to produce models of satisfiable quantified
formulas [15,34], which is somewhat unfortunate since one of the main values
of program verification is early detection of flaws in designs and programs. The
existence of infinite counterexamples is a major complication as they are diffi-
cult to find. In uninterpreted domains, infinite counterexamples usually do not
indicate a real violation of the verification conditions and are counterintuitive to
programmers, yet render assertions invalid in the context of general first-order
logic (on which SMT proof techniques are based). Hence infinite counter-models
pose a real problem in the verification process.

Previous work on EPR [6,21,29] used universally quantified invariants with
programs expressed by ∃∗∀∗ formulas1, in which case checking inductive invari-
ants is decidable, hence problems (1) and (2) do not occur. In particular, EPR
enjoys the finite-model property and so counterexamples are of finite size. EPR
programs are in fact Turing-complete [29], but universal invariants are not always
sufficient to express the required program properties.

For example, [16] describes a client server scenario where the invariant is
“For every reply message sent by the server, there exists a corresponding request

1 Automated tools that extract EPR transition relation from code exist for C code
manipulating linked lists [21–23] and for the modeling language RML [29] which is
Turing-complete.

78 Y.M.Y. Feldman et al.

message sent by a client”. (See Example 1 for further details.) This invariant is
∀∗∃∗ and thus leads to verification conditions with quantifier alternation. This
kind of quantifier alternation may lead to divergence of the solver as problems
(1) and (2) re-emerge.

The current work aims to expand the applicability of the EPR-based verifi-
cation approach to invariants of more complex quantification. We focus on the
class ∀∗∃∗ invariants, which arise in interesting programs. As we show, checking
inductiveness of invariants in this class is undecidable. We thus study problems
(1),(2) above for this setting using the notion of bounded quantifier instantia-
tions, which we term Bounded-Horizon.

Main Results. This paper explores the utility of limited quantifier instan-
tiations for checking ∀∗∃∗invariants, and for dealing with the problems that
arise from quantifier alternation: divergence of the proof search and infinite
counter-models.

We consider instantiations that are bounded in depth of terms. Bounded
instantiations trivially prevent divergence while maintaining soundness.
Although for a given bound the technique is not complete, i.e. unable to
prove every correct invariant, we provide completeness guarantees by compar-
ing bounded instantiations to the method of instrumentation, a powerful tech-
nique implicitly employed in previous works [21,23,29]. Instrumentation tackles
a ∀∗∃∗invariant by transforming the program in a way that allows the invari-
ant to be expressed in a universal form, and, accordingly, makes the verification
conditions fall in EPR. We show that for invariants that can be proven using a
typical form of instrumentation, bounded instantiations of a small bound are also
complete. Namely, they are sufficiently powerful to prove the original program
without modifications and in a fully automatic way. This is encouraging since
instrumentation is labor-intensive and error-prone while bounded instantiations
are completely automatic.

This result suggests that in many cases correct ∀∗∃∗invariants of EPR pro-
grams can be proven using a simple proof technique. Typically in such cases tools
such as Z3 will also manage to automatically prove the verification conditions.
However, bounded instantiations guarantee termination a-priori even when the
invariant is not correct. When it terminates, the procedure returns a logical
structure which is not necessarily a true counterexample but “approximates” it,
as it satisfies all the bounded instantiations. Interestingly, this suggests a way
to overcome the problem of infinite models. This problem arises when the user
provides an invariant that is correct for finite models but is incorrect in general
first-order logic. In such cases, state-of-the-art SMT solvers typically produce
“unknown” or timeout since they fail to find infinite models. Thus the user is
left with very little aid from the solver when attempting to make progress and
successfully verify the program. In contrast, bounded quantifier instantiation can
be used to find finite models with increasing sizes, potentially indicating the exis-
tence of an infinite model, and provide hints as to the source of the error. This
information allows the user to modify the program or the invariant to exclude
the problematic models. We demonstrate this approach on a real example in

Bounded Quantifier Instantiation for Checking Inductive Invariants 79

which such a scenario occurred in one of our verification attempts. We show
that the provided models assist in identifying and fixing the error, allowing the
user to successfully verify the program.

We also implemented a prototype tool that performs bounded instantiations
of bound 1, and used it to verify several distributed protocols and heap manipu-
lating programs. The implementation efficiently reduces the problem of checking
inductiveness with bound 1 to a Z3 satisfiability check on which the solver always
terminates, thereby taking advantage of Z3’s instantiation techniques while guar-
anteeing termination.

2 Preliminaries

In this section we provide background and explain our notation. Σ will always
denote a relational first-order vocabulary, which may contain constant symbols,
ci, and relation symbols, rj , but no function symbols. For a formula ϕ we denote
by const[ϕ] the set of constants that appear in ϕ. We write that ϕ ∈ ∃∗(Σ) to
mean that ϕ is an existential formula defined over vocabulary Σ. Similarly, the
class of universal formulas is denoted by ∀∗(Σ). We say that ϕ is quantifier-free,
denoted ϕ ∈ QF(Σ) if it contains no quantifiers, and that it is alternation free,
denoted ϕ ∈ AF(Σ), if it can be written as a Boolean combination of formulas
in ∃∗(Σ). FOL(Σ) stands for arbitrary first-order formulas over Σ. A sentence
is a closed formula.

EPR. The effectively-propositional (EPR) fragment of first-order logic, also
known as the Bernays-Schönfinkel-Ramsey class, consists of ∃∗∀∗(Σ) sentences.
Such sentences enjoy the small model property. Thus satisfiability of EPR sen-
tences is decidable [31].

EPR Transition Relation. We specify a transition relation via an EPR sen-
tence, δ, over a vocabulary Σ � Σ′ where Σ is a relational vocabulary used to
describe the source state of a transition and Σ′ = {a′ | a ∈ Σ} is used to describe
the target state.

Inductive Invariants. A first-order sentence I over Σ is an inductive invariant
for δ if I ∧δ → I ′ is valid, or, equivalently, if I ∧δ∧¬I ′ is unsatisfiable2, where I ′

results from substituting every constant and relation symbol in I by its primed
version.

Skolemization. Let ϕ(z1, . . . , zn) ∈ FOL(Σ). The Skolemization of ϕ, denoted
ϕS , is a universal formula over Σ � ΣS , where ΣS consists of fresh constant
symbols and function symbols, obtained as follows. We first convert ϕ to negation
normal form (NNF) using the standard rules. For every existential quantifier
∃y that appears under the scope of the universal quantifiers ∀x1, . . . ,∀xm, we
introduce a fresh function symbol fy ∈ ΣS of arity n + m. We replace each
bound occurrence of y by fy(z1, . . . , zn, x1, . . . , xm), and remove the existential

2 In this paper, satisfiability and validity refer to general models, not restricted to
finite models.

80 Y.M.Y. Feldman et al.

quantifier. If n + m = 0 (i.e., ϕ has no free variables and ∃y does not appear in
the scope of a universal quantifier) a fresh constant symbol is used to replace y.
It is well known that ϕS → ϕ is valid and ϕS and ϕ are equi-satisfiable.

3 Bounded-Horizon

In this section, we define a systematic method of quantifier instantiation called
Bounded-Horizon as a way of checking the inductiveness of first-order logic for-
mulas, and explore some of its basic properties. We start with the undecidability
of the problem.

Undecidability of Inductiveness. For a universal formula I ∈ ∀∗(Σ), check-
ing inductiveness amounts to checking unsatisfiability of an EPR formula, and is
therefore decidable. The same holds for I ∈ AF (Σ). However, this is no longer
true when quantifier alternation is introduced. For example, checking induc-
tiveness of I ∈ ∀∗∃∗(Σ) amounts to checking unsatisfiability of a formula in a
fragment for which satisfiability is undecidable. In fact we prove that:

Theorem 1. The problem of determining on input I ∈ ∀∗∃∗(Σ) and δ ∈ ∃∗∀∗

(Σ,Σ′), whether I is an inductive invariant for δ, is undecidable.

Proof Sketch. The proof is by reduction from the halting problem, which can be
encoded using a ∀∗∃∗ formula via tiling (see e.g. [20]). For the setting of checking
invariants, we start with a Turing machine M , and construct δ ∈ ∃∗∀∗(Σ,Σ′),
and I ∈ ∀∗∃∗(Σ) s.t. I is an inductive invariant for δ iff M halts on the empty
tape. In case M does not halt, the counter-model that shows that I is not
inductive is an infinite structure which encodes an infinite run of M . �	

Bounded-Horizon Instantiations. Let δ ∈ ∃∗∀∗(Σ,Σ′) be an EPR transition
relation and I ∈ FOL(Σ) a candidate invariant. We would like to check the
satisfiability of I ∧ δ ∧ ¬I ′, and equivalently of Ind = IS ∧ δS ∧ (¬I ′)S . Recall
that ϕS denotes the Skolemization of ϕ, and note that IS and (¬I ′)S possibly
add Skolem functions to the vocabulary. Roughly speaking, for a given k ∈ N,
Bounded-Horizon instantiates the universal quantifiers in Ind, while restricting
the instantiations to produce ground-terms of function nesting at most k.

Below we provide the formal definitions and discuss soundness and
(in)completeness. We start with the notion of instantiations, and recall
Herbrand’s theorem which establishes completeness of proof by (unrestricted)
instantiations. Suppose that some vocabulary Σ̃ including constants and func-
tion symbols is understood (e.g., Σ̃ = Σ � ΣS , where ΣS includes Skolem con-
stants and function symbols).

Definition 1 (Instantiation). Let ϕ(x) ∈ ∀∗(Σ̃) be a universal formula with
n free variables and m universal quantifiers. An instantiation of ϕ by a tuple
t of n + m ground terms, denoted by ϕ[t], is obtained by substituting t for the
free variables and the universally quantified variables, and then removing the
universal quantifiers.

Bounded Quantifier Instantiation for Checking Inductive Invariants 81

Note that an instantiation is a quantifier-free sentence.

Theorem 2 (Herbrand’s Theorem). Let ϕ ∈ ∀∗(Σ̃). Then ϕ is satisfiable
iff the (potentially infinite) set

{
ϕ[t] | t is a tuple of ground terms over Σ̃

}
is

satisfiable.

We now turn to restrict the depth of terms used in instantiations.

Definition 2 (Bounded-Depth Terms). For every k ∈ N, we define BHTk

to be the set of ground terms over Σ̃ with function symbols nested to depth at
most k. BHTk is defined by induction over k. Let C be the set of constants in
Σ̃, F the set of functions, and for every f ∈ F let Arityf be the arity of f . Then
BHT0 = C and for k > 0:

BHTk = BHTk−1 ∪ {f(t1, . . . tm) | f ∈ F, m = Arityf , t1, . . . , tm ∈ BHTk−1}.

We will also write t ∈ BHTk for a tuple of terms t, to mean that every entry
of t is in BHTk (the number of elements in t should be clear from the context).
Note that the set of ground terms is BHT∞ =

⋃
k∈N

BHTk.

Definition 3 (Depth of Instantiation). Let ϕ ∈ ∀∗(Σ̃) and t ∈ BHT∞. The
depth of instantiation, denoted depth(ϕ[t]), is the smallest k such that all ground
terms that appear in ϕ[t] are included in BHTk.

Bounded-Horizon Algorithm. Given a candidate invariant I ∈ FOL(Σ), a
transition relation δ over Σ � Σ′, and k ∈ N, the Bounded-Horizon algorithm
constructs the formula Ind = IS ∧ δS ∧ (¬I ′)S , and checks if the set

{
Ind[t] | t ∈ BHTk, depth(Ind[t]) ≤ k

}
(1)

is unsatisfiable. If it is, then I is provably inductive w.r.t. δ with Bounded-
Horizon of bound k. Otherwise we report that I is not known to be inductive.

Note that the satisfiability check performed by Bounded-Horizon is decidable
since the set of instantiations is finite, and each of them is a ground formula.

Bounded-Horizon for ∀∗∃∗ Invariants. We illustrate the definition of
Bounded-Horizon in the case that I ∈ ∀∗∃∗(Σ). Assume that I = ∀x. ∃y. α(x, y)
where α ∈ QF. Then IS = ∀x. α(x, f(x)) where f are new Skolem function
symbols. δS introduces Skolem constants but no function symbols, and in this
case so does (¬I ′)S . Bounded-Horizon check of bound k can be approximately
understood as checking the satisfiability of

(∧

t∈BHTk−1

IS [t]
) ∧ (∧

t∈BHTk

δS [t]
) ∧ (∧

t∈BHTk

(¬I ′)
S
[t]

)
. (2)

(In fact, it is possible that IS contains sub-formulas for which instantiations of
depth k do not increase the total depth of instantiations beyond k, and are thus
also included.)

82 Y.M.Y. Feldman et al.

Lemma 1 (Soundness). For every k ∈ N, Bounded-Horizon with bound k is
sound, i.e., if it reports that I ∈ FOL(Σ) is inductive w.r.t. δ, then I is indeed
inductive.

Proof. Assume that I is not inductive w.r.t. δ, so there is a structure A such
that A |= IS ∧ δS ∧ (¬I ′)S . In particular A |= Ind[t] for every t ∈ BHT∞ and
in particular for every t ∈ BHTk such that depth(Ind[t]) ≤ k. Hence, Bounded-
Horizon of bound k will not report that I is inductive. �	

Fig. 1. Example demonstrating a ∀∗∃∗ invariant that is provable with bound 1. The
reader should first ignore the instrumentation code denoted by /@ (see Example 2).
This example is inspired by [16]. The complete program is provided in [2] (files
client server ae.ivy, client server instr.ivy).

Example 1. Figure 1 presents a simple model of the client server scenario
described in [16]. The program induces an EPR transition relation, and its invari-
ant is provable by Bounded-Horizon of bound 1.

We first explain this example ignoring the annotations denoted by “/@”.
The system state is modeled using three binary relations. The req relation stores
pairs of users and requests, representing requests sent by users. The resp relation
similarly stores pairs of users and replies, representing replies sent back from the
server. The match relation maintains the correspondence between a request and
its reply.

The action new request models an event where a user u sends a new request
to the server. The action respond models an event where the server responds
to a pending request by sending a reply to the user. The request and response
are related by the match relation. The action check is used to verify the safety
property that every response sent by the server has a matching request, by
aborting the system if this does not hold.

A natural inductive invariant for this system is

I = ∀u, p. resp(u, p) → ∃q . req(u, q) ∧ match(q , p).

Bounded Quantifier Instantiation for Checking Inductive Invariants 83

The invariant proves that the then branch in action check will never happen
and thus the system will never abort. This invariant is preserved under execution
of all actions, and is provable by Bounded Horizon of bound 1.

Lemma 2 (Completeness for some k). If I ∈ FOL(Σ) is inductive w.r.t. δ
then there exists k ∈ N s.t. I is provably inductive w.r.t. δ with Bounded-Horizon
of bound k.

Proof. From Theorem 2 and compactness there is a finite set S of instantiations
that is unsatisfiable. Take k to be the maximal depth of instantiations in S. �	

For example, if I ∈ ∀∗ then Bounded-Horizon of bound 0 is complete. How-
ever, as expected due to the undecidability of checking inductiveness, for arbi-
trary invariants Bounded-Horizon is not necessarily complete for a given k: An
example for which a bound of 1 is insufficient appears in the extended version [1].

Small Bounded-Horizon for ∀∗∃∗ Invariants. Despite the incompleteness,
we conjecture that a small depth of instantiations typically suffices to prove
inductiveness. The intuition is that an EPR transition relation has a very limited
“horizon” of the domain: it interacts only with a small fraction of the domain,
namely elements pointed to by program variables (that correspond to logical
constants in the vocabulary).

When performing the Bounded-Horizon check with bound 1 on a ∀∗∃∗ invari-
ant I = ∀x. ∃y. α(x, y), we essentially assume that the existential part of the
invariant ψ(x) = ∃y. α(x, y) holds on all program variables—but not necessarily
on all elements of the domain — and try to prove that it holds on all elements
of the domain after the transition. We expect that for most elements of the
domain, the correctness of ψ is maintained simply because they were not modi-
fied at all by the transition. For elements that are modified by the transition, we
expect the correctness after modifications to result from the fact that ψ holds
for the elements of the domain that the transition directly interacts with. If this
is indeed the reason that ψ is maintained, a bound of 1 sufficiently uses ψ in the
pre-state to prove the invariant in the post-state, i.e. it is inductive.

This is the case in Example 1. Additional examples are listed in Sect. 6.

4 Power of Bounded-Horizon for Proving Inductiveness

We now turn to investigate the ability of Bounded-Horizon to verify inductive-
ness. In this section we provide sufficient conditions for its success by relating
it to the notion of instrumentation (which we explain below). We show that
Bounded-Horizon with a low bound of 1 or 2 is as powerful as a natural class of
sound program instrumentations, those that do not add existential quantifiers.
Section 6 demonstrates the method’s power on several interesting programs we
verified using Bounded-Horizon of bound 1.

84 Y.M.Y. Feldman et al.

4.1 Instrumentation

We present our view of the instrumentation procedure used in previous
works [21,23,29] to eliminate the need for quantifier-alternation, thus reduc-
ing the verification task to a decidable fragment. The procedure begins with a
program that induces a transition relation δ ∈ ∃∗∀∗(Σ ∪ Σ′). The purpose of
instrumentation is to modify δ into another transition relation δ̂ that admits an
inductive invariant with simpler quantification (e.g., universal, in which case it
is decidable to check). We note that instrumentation is generally a manual pro-
cedure. For simplicity, we describe the instrumentation process informally, but
provide the semantic soundness requirement in Definition 4. The instrumentation
procedure consists of the following three steps:

1. Identify a formula ψ(x) ∈ FOL(Σ) (usually ψ will be existential) that cap-
tures information that is needed in the inductive invariant. Extend the vocab-
ulary with an instrumentation relation r(x) that intentionally should capture
the derived relation defined by ψ(x). Let Σ̂ = Σ ∪ {r} denote the extended
vocabulary3.

2. Add update code that updates r when the original (“core”) relations are mod-
ified, and maintains the meaning of r as encoding ψ. The update code must
not block executions of real code, and can possibly be a sound approximation.
Sometimes it can be generated automatically via finite differencing [32].

3. Modify the program to use r. Often this is performed by rewriting some
program conditions, keeping in mind that r encodes ψ. This means replacing
some quantified expressions by uses of r.

Example 2. In the example of Fig. 1, to achieve a universal invariant we add an
instrumentation relation r defined by r(x, y) ≡ ∃z. req(x, z) ∧ match(z, y) (step
1). The simple form of ψ allows us to obtain precise update code, which appears
as annotations marked with /@ in lines that mutate req and match (step 2). We
also replace the if condition in the action check by an equivalent condition that
uses r (step 3). The line marked with /@ ↪→ in the check action replaces the line
above it. The resulting program has the invariant Î = ∀u, p. resp(u, p) → r(u, p),
which is universal.

Let δ̂ ∈ ∃∗∀∗(Σ̂ ∪ Σ̂′) denote the transition relation induced by the modified
program (modifications occur in steps 2, 3). The soundness of the instrumenta-
tion procedure is formalized in the following connection between ψ, δ, and δ̂:

Definition 4 (Sound Instrumentation). δ̂ ∈ ∃∗∀∗(Σ̂ ∪ Σ̂′) is a sound
instrumentation for δ ∈ ∃∗∀∗(Σ ∪ Σ′) and ψ ∈ FOL(Σ) if

(∀x. r(x) ↔ ψ(x) ∧
δ ∧ ∀x. r′(x) ↔ ψ′(x)

) → δ̂ is valid, or equivalently, δ → δ̂[ψ/r, ψ′/r′] is valid.

3 It is also possible to instrument the program with constants. This can be emulated by
adding a unary relation c(x) representing the constant, and adding the assumption
that c contains exactly one element to the invariant. This is also aligned with the
conditions of Theorem 5.

Bounded Quantifier Instantiation for Checking Inductive Invariants 85

Definition 4 ensures that the instrumented program includes at least all the
behaviors of the original program, when r is interpreted according to ψ. Thus,
if the instrumented program is safe, then it is sound to infer that the original
program is safe.

The instrumentation procedure does not require the user to know an induc-
tive invariant for the original program. However, if a sound instrumentation
which leads to an invariant exists, then an inductive invariant for the original δ
can be produced by substituting back the “meaning” of r as ψ (thus, safety of
the original program is implied):

Lemma 3. Let δ̂ be a sound instrumentation for δ and ψ, and Î ∈ FOL(Σ̂) be
an inductive invariant for δ̂. Then I = Î[ψ/r] is inductive w.r.t. δ.

Proof. Î ∧ δ̂ → Î ′ is valid, thus, so is (Î ∧ δ̂ → Î ′)[ψ/r, ψ′/r′]. δ̂ is a sound
instrumentation for δ, so (using Definition 4) I ∧ δ → I ′ is valid. �	
Note that typically the quantification structure of I is more complex than that
of Î.

Instrumentation Without Additional Existential Quantifiers. In order
to relate instrumentation to Bounded-Horizon instantiations, we consider the
typical case where the instrumentation process of δ does not add new existen-
tial quantifiers to δ̂. This happens when the update code does not introduce
additional existential quantifiers. Formally:

Definition 5 (Existential Naming). Let δ̂ = ∃z1, . . . zm. ϕ(z1, . . . , zm) where
ϕ ∈ ∀∗(Σ̂, Σ̂′). An existential naming η for (δ̂, δ) is a mapping η : {z1, . . . , zm}
→ const[δS] ∪ const[δ̂S]. We define η(δ̂) to be ϕ[η(z1)/z1, . . . , η(zm)/zm].

An existential naming provides a Skolemization procedure which uses existing
constants rather than fresh ones. If such η exists, it maps the (Skolemized)
existential quantifiers in δ̂ to their counterparts in δ. For example, the instru-
mentation in Fig. 1 results in δ̂ that has an existential naming w.r.t. the original
δ. Note that it is possible that δ̂ has in fact fewer existential quantifiers than
δ, for example due to the rewriting of conditions (as happens in the example of
Fig. 1—see the if statement in action check).

Definition 6 (Instrumentation Without Additional Existenials). δ̂ is a
sound instrumentation without additional existentials for δ if there exists an
existential naming η such that δS → η(δ̂)[ψ/r, ψ′/r′] is valid.

4.2 From Instrumentation to Bounded-Horizon

The results described in this section show that if there is an instrumentation
without additional existentials, then Bounded-Horizon with a low bound is able
to prove the original invariant, without specific knowledge of the instrumentation
and without manual assistance from the programmer. This is the case in the

86 Y.M.Y. Feldman et al.

example of Fig. 1, which admits an instrumentation that transforms the invariant
to a universal invariant (see Example 2) in a form that matches Theorem 3, and
indeed the original invariant is provable by Bounded-Horizon of bound 1.

Interestingly, in case Bounded-Horizon with a small bound does not prove
inductiveness (see the example in the extended version [1]), the results imply
that either the invariant is not inductive or no instrumentation that does not
add existential quantifiers can be used to show that it is inductive (even with
the programmer’s manual assistance).

In the remainder of this section we will assume that δ̂ is a sound instrumen-
tation without additional existentials for δ, and η is the corresponding naming
of existentials. Further, we assume that Î is an inductive invariant for δ̂ and
denote I = Î[ψ/r].

The following theorems state our results for I ∈ ∀∗∃∗.

Theorem 3. Let Î ∈ ∀∗. Assume ψ ∈ ∃∗ and r appears only positively in Î, or
ψ ∈ ∀∗ and r appears only negatively in Î. Then I = Î[ψ/r] is inductive for δ
with Bounded-Horizon of bound 1. (Note that I ∈ ∀∗∃∗.)

Proof Sketch. Let I = ∀x. α(x) where α ∈ ∃∗. Assume for the sake of contra-
diction that I is not inductive for δ with Bounded-Horizon of bound 1. By the
assumptions on ψ and Î, this means that there is a structure A such that

A |= (∧
c α(c)

) ∧ δS ∧ (¬I ′)S .

From the assumption (Definition 6) and properties of Skolemization, it follows
that

A |= (∧
c α(c)

) ∧ (
η(δ̂)

)
[ψ/r, ψ′/r′] ∧ (

(¬Î ′)S
)
[ψ/r, ψ′/r′].

From the assumptions on the way ψ appears in Î, when we write Î = ∀x. α̂(x)
where α̂ ∈ QF we have α = α̂[ψ/r]. Thus, from properties of substitution (inter-
preting r, r′ according to ψ,ψ′ in A) it follows that there is a structure Â such
that

Â |= (∧
c α̂(c)

) ∧ η(δ̂) ∧ (¬Î ′)S .

By reducing Â’s domain to the constants we have that
(∀x. α̂(x)

)∧η(δ̂)∧(¬Î ′)S
is satisfiable. (This is a use of complete instantiation for universal formulas.)

This in turn implies (by properties of Skolemization) that Î ∧ δ̂ ∧ ¬Î ′ is
satisfiable, which is a contradiction to the assumption that Î is inductive for δ̂.

�	
Theorem 4. Let Î ∈ ∀∗. If ψ ∈ AF then I = Î[ψ/r] is inductive for δ with
Bounded-Horizon of bound 2. (Note that I ∈ ∀∗∃∗.)

The following theorem generalizes the above result to 1-alternation invari-
ants. A formula is 1-alternation if it can be written as a Boolean combination of
∀∗∃∗ formulas.

Theorem 5. Let Î ∈ AF. If ψ ∈ AF then I = Î[ψ/r] is inductive for δ with
Bounded-Horizon of bound 2. (Note that I ∈ 1-alternation.)

Bounded Quantifier Instantiation for Checking Inductive Invariants 87

The full proofs appear in the extended version [1]. The results of this section
also apply when multiple instrumentation relations ψ1, . . . , ψt ∈ FOL(Σ) are
simultaneously substituted instead of the relation symbols r1, . . . , rt in δ̂ and Î.

Instrumentations for Higher Bounds. While instrumentation that does not
add existentials is at most as powerful as Bounded-Horizon with a low bound,
sound instrumentations that do add existentials to the program (thereby not
satisfying Definition 6) can be used to simulate quantifier instantiation of an
arbitrary depth. A simple way is to add r as an instrumentation that tracks the
existential part of a ∀∗∃∗ invariant. Instantiations are performed by introducing
existentially quantified variables to the program and using assume statements to
make these variables function as witnesses for a tuple of variables that instantiate
the universal quantifiers. Doing this recursively generates instantiations of an
arbitrary depth. See the extended version [1] for further details.

5 Partial Models for Understanding Non-Inductiveness

When conducting SMT-based deductive verification (e.g., using Dafny [26]), the
user constructs both the formal representation of the system and its invariants.
In many cases, the invariant I is initially not inductive w.r.t. the given program,
due to a bug in the program or in the invariant. Therefore, deductive verification
is typically an iterative process in which the user attempts to prove inductiveness,
and, when this fails, adapts the program, the invariant, or both.

In such scenarios, it is extremely desirable to present the user with a coun-
terexample to induction in the form of a state that satisfies I but makes a
transition to a state that violates it. Such a state can be obtained from a model
of the formula Ind = I ∧ δ ∧¬I ′ which is used to check inductiveness. It explains
the error, and guides the user towards fixing the program and/or the invari-
ant [13,26]. However, in many cases where the check involves quantifier alterna-
tion, current SMT solvers are unable to produce counterexamples. Instead, SMT
solvers usually diverge or report “unknown” [15,33]. In such cases, Bounded-
Horizon instantiations can be used to present a concrete logical structure which
is comprehensible to the user, and is obtained as a model of the (finite) instan-
tiations of the formula Ind. While this structure is not a true counterexample
(as it is only a model of a subset of the instantiations of the formula), it can
still guide the user in the right direction towards fixing the program and/or the
invariant.

We illustrate this using a simple leader-election protocol in a ring [10], whose
model is presented in Fig. 2(a). The protocol assumes that nodes are organized
in a directional ring topology with unique IDs, and elects the node with the
highest ID as the leader. Each node sends its own ID to its successor, and
forwards messages when they contain an ID higher than its own ID. A node that
receives its own ID is elected as leader. We wish to prove a termination property
which states that once all nodes have sent their ID, and there are no pending
messages in the network, then there is an elected leader. To verify this we use a

88 Y.M.Y. Feldman et al.

Fig. 2. Leader-election in a ring protocol as an illustration of the use of partial models
for incorrect programs and invariants. (a) sketches the protocol (the complete program
appears in [2], file ring leader termination.ivy). (b), (c) show partial models of
bound 1 and 2, respectively, and (d) illustrates an infinite structure that explains the
root cause of the non-inductiveness.

relational model of the protocol similar to [29], and specify the property via the
following formula:

(∃n. leader(n)) ∨ (∃n1, n2. ¬sent(n1) ∨ pending(n1, n2)) (3)

A natural attempt of proving this using an inductive invariant is by conjoining
Eq. (3) (which is not inductive by itself) with the following property (this was
the authors’ actual next step in proving this termination property):

∀n1. sent(n1) ∧ ¬leader(n1) → ((∃n2. pending(n1, n2)) ∨ (∃n2. n1 < n2)) (4)

meaning that if a node has sent its own ID but has not (yet) become leader,
then there is either a message pending in the network with the node’s ID, or a
node with a higher ID.

Alas, the conjunction of Eqs. (3) and (4) is still not an inductive invariant for
the protocol (as we explain below). Since Eq. (4) contains ∀∗∃∗ quantification,
the associated inductiveness check is outside of the decidable EPR fragment.
Indeed, Z3 diverges when it is used to check Ind. This is not surprising since the
formula has no satisfying finite structures, but has an infinite model (a scenario
that is not unusual for ∀∗∃∗ formulas).

On the other hand, applying Bounded-Horizon (with any bound) to Ind
results in a formula that has finite models. These concrete models are partial
models of Ind. Figure 2(b) and (c) show partial models (restricted to the pre-
states) obtained with bounds of 1 and 2, respectively, on this example.

These models are not true counterexamples to induction: the sub-formula of
Eq. (4) residing under the universal quantifier does not hold for all the elements

Bounded Quantifier Instantiation for Checking Inductive Invariants 89

of the domain. It does, however, hold for all elements with which the quantifier
was instantiated, which are the elements above the dashed line. These elements
have all sent their own ID, which was blocked by their successor that has a higher
ID, so none of them is the leader. In a finite model, this has to end somewhere,
because one of the nodes must have the highest ID. Hence, no finite counter-
model exists. However, extrapolating from Fig. 2(b) and (c), we can obtain the
infinite model depicted in Fig. 2(d). This model represents an infinite (“open”)
ring in which each node has a lower ID than its successor. This model is a true
model of the formula Ind generated by the invariant in Eqs. (3) and (4), but the
fact that it is infinite prevented Z3 from producing it.

Since we use tools that check general (un)satisfiability, which is not limited
to finite structures, the only way to prove that an invariant is inductive is to
exclude infinite counterexamples to induction as well. Using Bounded-Horizon
instantiations, we are able to obtain meaningful partial models that provide
hints to the user about what is missing. In this case, the solution is to add an
axiom to the system model which states that there is a node with maximal ID:
∃n1. ∀n2. n2 ≤ n1. With this additional assumption, the formula Ind is unsatis-
fiable so the invariant is inductive, and this is proven both by Z3’s instantiation
heuristics and by Bounded-Horizon with a bound of 1. This illustrates the use-
fulness of Bounded-Horizon when the invariant is not inductive.

6 Implementation and Initial Evaluation

We implemented a prototype of Bounded-Horizon of bound 1 on top of Z3 [11]
and used it within Ivy [29] and the framework of [21]. We applied the procedure
to the incorrect example of Sect. 5, and successfully verified several correct pro-
grams and invariants using bound 1. These examples are (the examples’ code
can be found in [2]):

– The client-server example of Fig. 1.
– List reverse [21], where the invariant states that the n edges (“next” pointers)

are reversed. The invariant is ∀∗∃∗ due to the encoding of n via n∗ as explained
in [21].

– Learning switch [6], where the invariant states every routing node has a
successor.

– Hole-punching firewall [6], where the invariant states that every allowed exter-
nal node was contacted by some internal node. We explored two modeling
alternativies: using a ghost history relation, or existensially quantifying over
time.

– Leader election in a ring [10,29] with the invariant discussed in Sect. 5.

An initial evaluation of the method’s performance appears in Table 1.
Our implementation works by adding “guards” that restrict the range of uni-

versal quantifiers to the set of constants where necessary. Technically, recall that
we are considering the satisfiability of Ind = IS ∧ δS ∧ (¬I ′)S . Let ∀x. θ be a

90 Y.M.Y. Feldman et al.

Table 1. Experimental results.

Program #∀ #Func #Consts #∀↓ B1 Total B1 Solve Baseline Z3

Client-server 14 1 15 2 58 ms 3 ms 3 ms

List reverse 47 3 15 4 319 ms 211 ms 50 ms

Learning switch 70 1 7 37 245 ms 65 ms 33 ms

Hole-punching firewall with ghost 15 1 18 3 75 ms 4 ms 4 ms

Hole-punching firewall ∃ time 32 2 21 3 102 ms 4 ms 4 ms

Leader-election in a ring (correct) 41 1 21 1 113 ms 36 ms 27 ms

Leader-election in a ring (incorrect) 40 1 20 1 1112 ms 1008 ms —

B1 Total is the time in milliseconds for the bound 1 implementation. It is compared to Baseline Z3

which is the solving time in milliseconds of Ind as is (with quantifier alternation) by Z3. B1 Solve

measures the solving time of the formula restricted to bound 1, which demonstrates that most

of the overhead occurs when constructing the formula. #∀ is the number of universal quantifiers

in Ind, #Func the number of different Skolem function symbols, and #Consts the number of

constants. #∀↓ is the number of universally quantified variables that were restricted in the bound 1

check. Measurements were performed on a 3.5GHz Intel i5-4690 CPU with 8GB RAM running Linux

3.13 x86 64.

subformula of Ind. If θ contains function symbol applications4, we transform the
subformula to ∀x.

(∨
c x = c

) → θ where c ranges over const[Ind]. The resulting
formula is then dispatched to the solver. This is a simple way to encode the
termination criterion of bound 1 while leaving room for the solver to perform
the necessary instantiations cleverly. The translation enlarges the formula by
O(#Consts · #∀) although the number of bounded instantiations grows expo-
nentially with #∀. The exponential explosion is due to combinations of constants
in the instantiation, a problem we defer to the solver.

Z3 terminates on the class of formulas because during the Model-Based Quan-
tifier Instantiation process every instantiation of a universally quantified formula
has the same truth value in the model as an instantiation using one of the exist-
ing ground terms (constants and then BHT1 terms). Z3’s instantiation engine
will produce instantiations using existing terms rather than create superfluous
new terms [8].

The results are encouraging because they suggest that the termination strat-
egy of Bounded-Horizon, at least for bound 1, can be combined with existing
instantiation techniques to assure termination with only a slight performance
penalty. Most encouraging is the satisfiable example of Sect. 5. On this instance,
Z3 was able to return “sat” within seconds, although to do so, in theory, the
solver must exhaust the entire set of bounded instantiations. This suggests that
the Bounded-Horizon termination criterion might indeed be useful for “sat”
instances on which the solver may diverge.

A different approach to the implementation is to integrate the termination
criterion of the bound with the solver’s heuristics more closely (see [7]).

4 This in fact implements the approximation as of Eq. (2). The exact bound 1 per
Eq. (1) can be implemented by a more careful consideration of which universally
quantified variables should be restricted, but this was not necessary for our examples.

Bounded Quantifier Instantiation for Checking Inductive Invariants 91

7 Related Work

Quantifier Instantiation. The importance of formulas with quantifier-
alternations for program verification has led to many developments in the SMT
and theorem-proving communities that aim to allow automated reasoning with
quantifier-alternations. The Simplify system [12] promoted the practical usage
of quantifier triggers, which let the user affect the quantifier instantiation in a
clever way. Similar methods are integrated into modern SMT solvers such as
Z3 [11]. Recently, a method for annotating the source code with triggers has
been developed for Dafny [27]. The notion of instantiation depth is related to
the notions of matching-depth [12] and instantiation-level [14] which are used
for prioritization within the trigger-based instantiation procedure.

In addition to user-provided triggers, many automated heuristics for quanti-
fier instantiation have been developed, such as Model-Based Quantifier Instan-
tiation [15]. Even when quantifier instantiation is refutation-complete, it is still
important and challenging to handle the SAT cases, which are especially impor-
tant for program verification. Accordingly, many works (e.g., [33]) consider the
problem of model finding.

Local Theory Extensions and Psi-Local Theories [7,19,36] identify settings in
which limited quantifier instantiations are complete. They show that complete-
ness is achieved exactly when every partial model can be extended to a (total)
model. In such settings Bounded-Horizon instantiations are complete for invari-
ant checking. However, Bounded-Horizon can also be useful when completeness
cannot be guaranteed.

Classes of SMT formulas that are decidable by complete instantiations
have been studied by [15]. In the uninterpreted fragment, a refined version of
Herbrand’s Theorem generates a finite set of instantiations when the dependen-
cies are stratified. Bounded-Horizon is a way to bound unstratified dependencies.

Natural Proofs. Natural proofs [30] provide a sound and incomplete proof
technique for deductive verification. The key idea is to instantiate recursive defi-
nitions over the terms appearing in the program. Bounded-Horizon is motivated
by a similar intuition, but focuses on instantiating quantifiers in a way that is
appropriate for the EPR setting.

Decidable Logics. Different decidable logics can be used to check inductive
invariants. For example, Monadic second-order logic [17] obtains decidability by
limiting the underlying domain to consist of trees only, and in particular does
not allow arbitrary relations, which are useful to describe properties of programs.
There are also many decidable fragments of first-order logic [9]. Our work aims
to transcend the class of invariants checkable by a reduction to the decidable
logic EPR. We note that the example of Sect. 5 does not fall under the Loosely-
Guarded Fragment of first-order logic [18] due to a use of a transitivity axiom,
and does not enjoy the finite-model property.

Abstractions for Verification of Infinite-State Systems. Our work is
closely related to abstractions of infinite state systems. These abstractions aim at

92 Y.M.Y. Feldman et al.

automatically inferring inductive invariants in a sound way. We are interested in
checking if a given invariant is inductive either for automatic and semi-automatic
verification.

The View-Abstraction approach [3–5] defines a useful abstraction for the
verification of parameterized systems. This abstraction is closely related to uni-
versally quantified invariants. An extension of this approach [5] adds contexts to
the abstraction, which are used to capture ∀∗∃∗ invariants in a restricted setting
where nodes have finite-state and are only related by specific topologies. Our
work is in line with the need to use ∀∗∃∗ invariants for verification, but applies
in a more general setting (with unrestricted high-arity relations) at the cost of
losing completeness of invariant checking.

Our work is related to the TVLA system [28,35] which allows the program-
mers to define instrumentation relations. TVLA also employs finite differenc-
ing to infer sound update code for updating instrumentation relations [32],
but generates non-EPR formulas and does not guarantee completeness. The
focus operation in TVLA implements materialization which resembles quantifier-
instantiation. TVLA shows that very few built-in instrumentation relations can
be used to verify many different programs.

Instrumentation and Update Formulas. The idea of using instrumentation
relations and generating update formulas is not limited to TVLA and was also
used for more predictable SMT verification [24,25].

8 Conclusion

We have provided an initial study of the power of bounded instantiations for
tackling quantifier alternation. This paper shows that quantifier instantiation
with small bounds can simulate instrumentation. This is a step in order to elim-
inate the need for instrumenting the program, which can be error-prone. The
other direction, i.e. simulating quantifier instantiation with instrumentation, is
also possible but is less appealing from a practical point of view, and is presented
in the extended version [1].

We are encouraged by our initial experience that shows that various proto-
cols can be proven with small instantiation bounds, and that partial models are
useful for understanding the failures of the solver to prove inductiveness. Some of
these failures correspond to non-inductive claims, especially those due to infinite
counterexamples. In the future we hope to leverage this in effective deductive
verification tools, and explore meaningful ways to display infinite counterexam-
ples to the user.

Acknowledgments. We would like to thank Nikolaj Bjørner, Shachar Itzhaky, and
Bryan Parno for helpful discussions, and Gilit Zohar-Oren for help and feedback. The
research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013)/ERC grant agreement no [321174]. This research was partially supported by
BSF grant no. 2012259, and by Len Blavatnik and the Blavatnik Family foundation.

Bounded Quantifier Instantiation for Checking Inductive Invariants 93

References

1. Extended version. http://www.cs.tau.ac.il/research/yotam.feldman/papers/
tacas17/tacas17 extended.pdf

2. Full code materials. http://www.cs.tau.ac.il/research/yotam.feldman/papers/
tacas17/examples code.zip

3. Abdulla, P., Haziza, F., Hoĺık, L.: Parameterized verification through view abstrac-
tion. Int. J. Softw. Tools Technol. Transf. 1–22 (2015). http://dx.doi.org/10.1007/
s10009-015-0406-x

4. Abdulla, P.A., Haziza, F., Hoĺık, L.: All for the price of few. In: Giacobazzi, R.,
Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 476–495.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 28

5. Abdulla, P.A., Haziza, F., Hoĺık, L.: Block me if you can!. In: Müller-Olm, M.,
Seidl, H. (eds.) SAS 2014. LNCS, vol. 8723, pp. 1–17. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-10936-7 1

6. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira,
M., Valadarsky, A.: VeriCon: towards verifying controller programs in software-
defined networks. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2014, Edinburgh, United Kingdom, 09–11 June
2014, pp. 31 (2014)

7. Bansal, K., Reynolds, A., King, T., Barrett, C., Wies, T.: Deciding local
theory extensions via E-matching. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9207, pp. 87–105. Springer, Cham (2015). doi:10.1007/
978-3-319-21668-3 6

8. Bjørner, N.: Personal communication (2017)
9. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives

in Mathematical Logic. Springer, Berlin (1997)
10. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding

in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979)
11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

12. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

13. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Berlin,
Germany, 17–19 June 2002, pp. 234–245 (2002)

14. Ge, Y., Barrett, C.W., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. Ann. Math. Artif. Intell. 55(1–2), 101–122 (2009)

15. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfia-
biliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 306–320. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 25

16. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: IronFleet: proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP, pp.
1–17 (2015)

17. Henriksen, J.G., Jensen, J., Jørgensen, M., Klarlund, N., Paige, R., Rauhe,
T., Sandholm, A.: Mona: monadic second-order logic in practice. In: Brinksma,
E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS
1995. LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995). doi:10.1007/
3-540-60630-0 5

http://www.cs.tau.ac.il/research/yotam.feldman/papers/tacas17/tacas17_extended.pdf
http://www.cs.tau.ac.il/research/yotam.feldman/papers/tacas17/tacas17_extended.pdf
http://www.cs.tau.ac.il/research/yotam.feldman/papers/tacas17/examples_code.zip
http://www.cs.tau.ac.il/research/yotam.feldman/papers/tacas17/examples_code.zip
http://dx.doi.org/10.1007/s10009-015-0406-x
http://dx.doi.org/10.1007/s10009-015-0406-x
http://dx.doi.org/10.1007/978-3-642-35873-9_28
http://dx.doi.org/10.1007/978-3-319-10936-7_1
http://dx.doi.org/10.1007/978-3-319-21668-3_6
http://dx.doi.org/10.1007/978-3-319-21668-3_6
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-02658-4_25
http://dx.doi.org/10.1007/3-540-60630-0_5
http://dx.doi.org/10.1007/3-540-60630-0_5

94 Y.M.Y. Feldman et al.

18. Hodkinson, I.: Loosely guarded fragment of first-order logic has the finite model
property. Stud. Logica. 70(2), 205–240 (2002)

19. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verifica-
tion. In: 14th International Conference Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2008, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6 2008. Proceedings, pp. 265–281 (2008)

20. Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., Yorsh, G.: The bound-
ary between decidability and undecidability for transitive-closure logics. In:
Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 160–174.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30124-0 15

21. Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 756–772. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39799-8 53

22. Itzhaky, S., Bjørner, N., Reps, T., Sagiv, M., Thakur, A.: Property-directed shape
analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 35–51.
Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 3

23. Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-
directed inference of universal invariants or proving their absence. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 583–602. Springer,
Cham (2015). doi:10.1007/978-3-319-21690-4 40

24. Lahiri, S.K., Qadeer, S.: Verifying properties of well-founded linked lists. In: Pro-
ceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2006, Charleston, South Carolina, USA, 11–13 Jan-
uary 2006, pp. 115–126 (2006)

25. Lahiri, S.K., Qadeer, S.: Back to the future: revisiting precise program verifica-
tion using SMT solvers. In Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, 7–12 January 2008, pp. 171–182 (2008)

26. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

27. Leino, K.R.M., Pit-Claudel, C.: Trigger selection strategies to stabilize program
verifiers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
361–381. Springer, Cham (2016). doi:10.1007/978-3-319-41528-4 20

28. Lev-Ami, T., Sagiv, M.: TVLA: a system for implementing static analyses. In:
Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–301. Springer, Heidelberg
(2000). doi:10.1007/978-3-540-45099-3 15

29. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016,
Santa Barbara, CA, USA, 13–17 June 2016, pp. 614–630 (2016)

30. Qiu, X., Garg, P., Stefanescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2013, Seattle, WA, USA, 16–19 June 2013, pp.
231–242 (2013)

31. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. s2–30(1),
264–286 (1930)

32. Reps, T.W., Sagiv, M., Loginov, A.: Finite differencing of logical formulas for static
analysis. ACM Trans. Program. Lang. Syst. 32(6), 24:1–24:55 (2010)

http://dx.doi.org/10.1007/978-3-540-30124-0_15
http://dx.doi.org/10.1007/978-3-642-39799-8_53
http://dx.doi.org/10.1007/978-3-319-08867-9_3
http://dx.doi.org/10.1007/978-3-319-21690-4_40
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-319-41528-4_20
http://dx.doi.org/10.1007/978-3-540-45099-3_15

Bounded Quantifier Instantiation for Checking Inductive Invariants 95

33. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 42

34. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier
instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.)
CADE 2013. LNCS (LNAI), vol. 7898, pp. 377–391. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38574-2 26

35. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

36. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer,
Heidelberg (2005). doi:10.1007/11532231 16

http://dx.doi.org/10.1007/978-3-642-39799-8_42
http://dx.doi.org/10.1007/978-3-642-38574-2_26
http://dx.doi.org/10.1007/11532231_16

	Bounded Quantifier Instantiation for Checking Inductive Invariants
	1 Introduction
	2 Preliminaries
	3 Bounded-Horizon
	4 Power of Bounded-Horizon for Proving Inductiveness
	4.1 Instrumentation
	4.2 From Instrumentation to Bounded-Horizon

	5 Partial Models for Understanding Non-Inductiveness
	6 Implementation and Initial Evaluation
	7 Related Work
	8 Conclusion
	References

