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Abstract. HARE (Hybrid Abstraction-Refinement Engine) is a coun-
terexample guided abstraction-refinement (CEGAR) based tool to verify
safety properties of hybrid automata, whose continuous dynamics in each
mode is non-linear, but initial values, invariants, and transition relations
are specified using polyhedral constraints. HARE works by abstracting
non-linear hybrid automata into hybrid automata with polyhedral inclu-
sion dynamics, and uses dReach to validate counterexamples. We show
that the CEGAR framework forming the theoretical basis of HARE, makes
provable progress in each iteration of the abstraction-refinement loop.
The current HARE tool is a significant advance on previous versions of
HARE—it considers a richer class of abstract models (polyhedral flows
as opposed to rectangular flows), and can be applied to a larger class of
concrete models (non-linear hybrid automata as opposed to affine hybrid
automata). These advances have led to better performance results for a
wider class of examples. We report an experimental comparison of HARE
against other state of the art tools for affine models (SpaceEx, PHAVer,
and SpaceEx AGAR) and non-linear models (FLOW*, HSolver, and C2E2).

1 Introduction

Abstractions play an important role in the verification of cyber-physical sys-
tems, where complex continuous dynamics are abstracted into simpler dynamics
that are amenable to automated analysis. This is because the general prob-
lem of safety verification is undecidable even for very simple class of contin-
uous dynamics [2,4,20,25,32]. The success of the abstraction based method
depends on finding the right abstraction, which can be difficult. One app-
roach that tries to address this issue is the counter example guided abstrac-
tion refinement (CEGAR) framework [9] that tries to automatically discover
the right abstraction through a process of progressive refinement based on
analyzing spurious counter examples in abstract models. CEGAR has been
found to be useful in a number of contexts [6,12,21,22], including hybrid sys-
tems [3,10,11,14,17,23,30,31].
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In this paper, we present the tool HARE, which is a CEGAR based tool for
safety verification of hybrid automata with non-linear hybrid systems. The input
to HARE is the parallel composition of one or more hybrid automata, where the
continuous dynamics in each control mode is described by non-linear ordinary
differential equations, while the initial values, invariants, and transition rela-
tions are specified using polyhedral constraints. HARE abstracts such models into
hybrid automata with polyhedral inclusion dynamics, i.e., in the abstract model,
in each mode, the derivative of the continuous variables with respect to time is
constrained to belong to a polyhedral set. In this sense, HARE is different from the
other CEGAR based tool for non-linear hybrid systems, namely, HSolver [28],
which abstracts hybrid automata by finite discrete transition systems. To per-
form validation of counter examples, HARE uses dReach and the δ-satisfiability
procedure of dReal.

The tool described in this paper, is a significant improvement over the version
reported in [29]. First, the old version only verified affine hybrid automata. The
new version also considers non-linear dynamics. Second, the old version used
rectangular automata to abstract concrete models. The new version uses poly-
hedral hybrid automata. We have observed a marked improvement in running
time due to the change in abstract models—there are fewer refinement iterations
on many examples because of the use of polyhedral hybrid automata. Third, the
tool has been made robust. The implementation has migrated to C++ from Scala
to improve its running time. We have changed some of the 3rd party tools that
HARE uses internally. All these changes have enabled HARE to handle a larger class
of examples (including more affine hybrid automata), with a faster running time
(see results reported in Sect. 6). We have compared the performance of HARE
against a number of state of the art model checkers for affine hybrid automata
and non-linear hybrid automata— SpaceEx [19], PHAVer [18], SpaceEx AGAR [7],
HSolver [28], C2E2 [16], and FLOW* [8]. We also compare against the old version
of HARE [29]. We show that the new tool successfully proves safety when the
others fail, and the running time is comparable to the other tools (see Sect. 6).
A virtual machine for the new HARE, along with examples and scripts can be
downloaded from https://uofi.box.com/v/HARE.

The rest of the paper is organized as follows. We introduce basic definitions
and notation in Sect. 3. Our CEGAR framework, algorithms for abstraction,
counter example validation, and refinement, that form the theoretical basis for
HARE, are described in Sect. 4. The tool architecture and its internals are pre-
sented in Sect. 5, and Sect. 6 reports our experimental results.

2 Related Work

Doyen et al. consider rectangular abstractions for safety verification of affine
hybrid systems in [15]. However, their refinement is not guided by counter
example analysis. Instead, a reachable unsafe location in the abstract system is
determined, and the invariant of the corresponding concrete location is split to
ensure certain optimality criteria on the resulting rectangular dynamics. This,

https://uofi.box.com/v/HARE
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in general, may not lead to abstract counter example elimination, as in our
CEGAR algorithm. We believe that the refinement algorithms of the two papers
are incomparable—one may perform better than the other on certain exam-
ples. Empirical evaluations could provide some insights into the merits of the
approaches, however, the implementation of the algorithm in [15] was not avail-
able for comparison at the time of writing the paper.

Bogomolov et al. consider polyhedral inclusion dynamics as abstract models
of affine hybrid systems for CEGAR in [7]. Their abstraction merges the loca-
tions, and refinement corresponds to splitting the locations. Hence, the CEGAR
loop ends with the original automaton in a finite number of steps, if safety is not
proved by then. Our algorithm splits the invariants of the locations, and hence,
explores finer abstractions. Our method is orthogonal to that of [7], and can be
used in conjunction with [7] to further refine the abstractions.

Nellen et al. use CEGAR in [26] to model check chemical plants controlled
by programmable logic controllers. They assume that the dynamics of the sys-
tem in each location is given by conditional ODEs, and their abstraction con-
sists of choosing a subset of these conditional ODEs. The refinement consists of
adding some of these conditional ODEs based on an unsafe location in a counter
example. The method does not ensure counter example elimination in successive
iterations. Their prototype tool does not automate the refinement step, in that
the inputs to the refinements need to be provided manually. Hence, we did not
experimentally compare with this tool.

Zutshi et al. propose a CEGAR-based search in [33] to find violations of safety
properties. Here they consider the problem of finding a concrete counter example
and use CEGAR to guide the search of the same. We instead use CEGAR to
prove safety—the absence of such concrete counter examples.

3 Preliminaries

Numbers. Let N, Q, and R denote the set of natural, rational, and real num-
bers, respectively. Similarly, N+, Q+, and R+ are respectively the set of pos-
itive natural, rational, and real numbers, and Q≥0 and R≥0 are respectively
the set of non-negative rational and real numbers. For any n ∈ N we define
[n] = {0, 1, . . . , n − 1}.

Sets and Functions. For any sets A and B, |A| is the size of A (the number
of elements in A), 2A is the power set of A, A × B is the Cartesian product of
A and B, and BA (similarly A → B) is the set of all functions from A to B. In
order to make the notations simpler, for any n,m ∈ N, by An and An×m, we
mean A[n] and A[n]×[m]. The latter represents matrices of dimension n×m with
elements from A. For any f ∈ A → B and set C ⊆ A, f(C) = {f(c) | c ∈ C}.
Similarly, for any π = a1, a2, . . . , an, a sequence of elements in A, we define f(π)
to be f(a1), f(a2), . . . , f(an).

Polytopes. For any set of variables X, a function c ∈ R
X, and a constant b ∈ R,

Σx∈Xcxx ≤ b is an affine constraint over the variables in X. A polyhedron is a
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conjunction of finite number of affine constraints. Every polyhedron P over X,
defines a set of points in R

X, namely the set of points that satisfy all constraints
of P . We only consider non-strict inequalities, therefore P always defines a closed
set. For any point ν ∈ R

X, ν ∈ P means ν satisfies all the constraints in P . A
polyhedron that defines a bounded set is called polytope. We denote the set of
all polytopes over X by P

X.

3.1 Hybrid Automata

In this section, we present hybrid automata models for representing concrete
and abstract hybrid systems.

Definition 1 (Hybrid Automata). A hybrid automata H is a tuple (Q, X, I, F,
E, Qinit, Qbad) in which

– Q is a non-empty finite set of locations.
– X is a non-empty finite set of variables. We let V := R

X be the set of all possible
valuations of variables in X. We also let X′ to be the set of primed variables
(X ∩ X′ = ∅ and |X| = |X′|). For every variable x ∈ X we use x′ to denote the
corresponding variable in X′.

– I ∈ Q −→ P
X maps each location to a polytope over R

X as invariant of that
location.

– F ∈ Q −→ 2V×V maps each location q to the set of possible flows of that location.
Each element in this set is a pair (ν, ν̇). Intuitively it means, if the current
continuous state is ν then ν̇ is a possible direction field.

– E is a set of edges of the form e = (s, d, r) where
• s, d ∈ Q are respectively source and destination of e,
• r ∈ P

X∪X′
specifies relation of valuations before and after taking edge e as

the reset relation.
We let G(e) := ∃X′ • r to be guard of e, as the set of valuations for which the
reset relation is non-empty (note that G(e) can be represented by a polytope in
P
X). We use S(e), D(e) and R(e), to denote different elements of guard e.

– Qinit, Qbad ⊆ Q are respectively sets of initial and unsafe locations.

We denote different elements of H by adding a subscript to their names. For
example, we use XH to denote the set of variables of H. We may omit the sub-
script whenever it is clear from the context.

In this paper, we use non-linear hybrid automata to specify a concrete sys-
tem. In this class of automata, for any location q ∈ Q, F(q) is specified by a
continuous (possibly nonlinear) function f of type I(q) −→ V. More precisely,
F(q) := {(ν, f(ν)) | ν ∈ I(q)}. Therefore, F(q) defines exactly one direction for
any valuation in the invariant of that location. We abuse the notation and write
F(q) = f when it causes no confusion. Next, in this paper, we use polyhe-
dral hybrid automata to specify abstract systems. In this class of automata,
for any location q ∈ Q, F(q) is specified by a polytope P ∈ P

X. More precisely,
F(q) := {(ν, ν̇) | ν ∈ I(q) ∧ ν̇ ∈ P}. Therefore, F(q) is independent of the current
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valuation. We abuse the notation and write F(q) = P when it causes no confu-
sion. Note that affine hybrid automata and rectangular automata which we used
in [29] for specifying concrete and abstract systems, are subclasses of non-linear
automata and polyhedral automata we use in this paper.

The semantics of a hybrid automaton H is defined using an infinite transition
system [[H]] in the usual way. S[[H]] := Q × V is the state set of [[H]]. For any two

states (q1, ν1), (q2, ν2) ∈ S[[H]], we write (q1, ν1)
t−→ (q2, ν2) iff q1 = q2 and ν1 goes

to ν2 at non-negative time t according to the continuous dynamics of location
q1. We also write (q1, ν1)

e−→ (q2, ν2) iff q1 and q2 are source and destination of
the edge e and ν1 and ν2 satisfies invariants of source and destination locations
as well as the transition relation. Finally, we use Sinit[[H]] and Sbad[[H]] to refer to the set
of initial and unsafe states respectively.

A trajectory is a sequence τ = s0, (t0, e0), s1, (t1, e1), s2, (t2, e2), . . . , sn such
that for any i < n there is a state s′

i such that si
ti−→ s′

i
ei−→ si+1. We define τ0

to be the initial state s0 and τlst to be final state sn. For any hybrid automaton
H, the reachability problem asks whether or not H has a trajectory τ such that
τ0 ∈ Sinit[[H]] and τlst ∈ Sbad[[H]]. If the answer is positive, we say the H is unsafe.

Otherwise, we say the H is safe.
For any hybrid automaton H, set of states S ⊆ S[[H]], and edge e ∈ EH we

define the following functions:

– dposteH(S) = {s′ | ∃s ∈ S • s
e−→ s′}. Discrete post of S in H with respect to

e is the set of states reachable from S after taking e.
– dpree

H(S) = {s | ∃s′ ∈ S • s
e−→ s′}. Discrete pre of S in H with respect to e is

the set of states that can reach a state in S after taking e.
– cpostH(S) = {s′ | ∃s ∈ S, t ∈ R≥0 • s

t−→ s′}. Continuous post of S in H is the
set of states reachable from S in an arbitrary amount of time using dynamics
specified for the source locations.

– cpreH(S) = {s | ∃s′ ∈ S, t ∈ R≥0 • s
t−→ s′} Continuous pre of S in H is the

set of states that can reach a state in S in an arbitrary amount of time using
dynamics specified for the source locations.

4 CEGAR Algorithm for Safety Verification of Non-linear
Automata

Every CEGAR-based algorithm has four main parts [9]: 1. abstracting the con-
crete system, 2. model checking the abstract system, 3. validating the abstract
counter example, and 4. refining the abstract system. We explain parts of our
algorithm regarding each of these parts in this section. Algorithm1 shows at a
very high level what the steps of our algorithm are.
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Algorithm 1. High level steps of our CEGAR algorithm
Input: C a non-linear automaton � C is called concrete hybrid automaton. Def 1
Output: Whether or not C is safe � this is the reachability problem.
1. Add a self-loop to every location of C
2. P ← the initial partition of invariants in C � Sec 4.1
3. A ← α(C, P ) � A is called abstract hybrid automaton. Def 3
4. τ = OPoly(A) � OPoly model checks polyhedral automata. Sec 4.2
5. � τ is an annotated counter example. Sec 4.2
6. while τ �= ∅ do � while abstract system is unsafe
7. if τ is valid in C then return ‘unsafe’ � Sec 4.3
8. (q, p) ← abstract location that should be split � Sec 4.3
9. p1, p2 ← sets that should be separated in (q, p) � Sec 4.3

10. refine P (q) such that p1 and p2 gets separated � Sec 4.3
11. A ← α(C, P ) � Sec 4.1
12. τ = OPoly(A) � Sec 4.2
13. end while
14. return ‘safe’

For technical reasons (see Sect. 4.1 of [29]), we assume that in the concrete
hybrid automaton, each location has a self loop transition that ensures that
the duration between successive discrete steps is bounded. This assumption also
makes defining the refinement step technically easier.

4.1 Abstraction

Input to our algorithm is a non-linear automaton C which we call the concrete
hybrid automaton. The first step is to construct an abstract hybrid automaton A
which is a polyhedral automaton. The abstract hybrid automaton A is obtained
from the concrete hybrid automaton C, by splitting the invariant of any location
q ∈ QC into a finite number of cells of type PX and defining an abstract location for
each of these cells which over-approximates the non-linear dynamics in the cell
by polyhedral dynamics. Definitions 2 and 3 formalizes the way an abstraction A
is constructed from C. Note that the construction guarantees that the behavior
of A over-approximates behavior of C and therefore if A is found to be safe, C is
guaranteed to be safe as well.

Definition 2 (Invariant Partitions). For any hybrid automaton C and func-
tion P ∈ Q → 2P

X

we say P partitions invariants of C iff the following conditions
hold for any location q ∈ Q:

–
⋃

P (q) = I(q), which means union of cells in P (q) covers invariant of q.
– For any p1, p2 ∈ P (q), p1 
= p2 implies p1 and p2 have disjoint interior1.

Definition 3 (Abstraction Using Invariant Partitioning). For any non-
linear automaton C and invariant partition P ∈ Q → 2P

X

, α(C,P ) returns poly-
hedral automaton A which is defined below:

– QA = {(q, p) | q ∈ QC ∧ p ∈ P (q)}, – XA = XC,
– QinitA =

{
(q, p) ∈ QA | q ∈ QinitC

}
, – IA((q, p)) = p,

1 Interior of a polytope is obtained by making all its corresponding constraints strict.
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– QbadA = {(q, p) ∈ QA | q ∈ QbadC },
– EA = {((s, p1), (d, p2), g, j, r) | (s, d, g, j, r) ∈ EC ∧ (s, p1), (d, p2) ∈ QA}, and
– FA((q, p), ν) = polyhull(

⋃
ν∈p FC(q, ν)), where for any bounded set S ⊂ R

X,
polyhull(S) is a polytope W such that ∀ν ∈ S • ν ∈ W and for any sequence
of bounded sets S1, S2, . . ., if the maximum distance of any two points in Sn

converges to 0 then the maximum distance of any two points in the image of
this sequence under polyhull converges to 0 as well.

In addition, we define function γA to map 1. every state in [[A]] to a state in
[[C]], and 2. every edge in EA to an edge in EC. Formally, for any s = ((q, p), ν) ∈
S[[A]] and e = ((q1, p1), (q2, p2), r) ∈ EA, we define γA(s) to be (q, ν) and γA(e) to
be (q1, q2, r).

When FC(q) is an affine dynamic, there is unique minimum polytope for
FA((q, p)) that can be constructed exactly and efficiently. However, if the con-
crete flow is non-linear, abstraction even using the minimum rectangular hull
might be very expensive. In our current implementation, when the flow is non-
linear, we first find the rectangular hull for IC(q) and then use interval arithmetic
to find a rectangular set that contains FA((q, p)) as specified in Definition 3.

4.2 Counter Example and Model Checking Polyhedral Automata

After an abstract hybrid automaton is constructed (initially and after any refine-
ment), we have to model check it. In this section we define the notion of a counter
example and annotation of a counter example, which we assume is returned by
the abstract model checker OPoly when it finds that the input hybrid automaton
is unsafe.

Definition 4. For any hybrid automaton H, a counter example is a path
e1, . . . , en such that Se1 ∈ Qinit and Den ∈ Qbad.

Definition 5. A counter example π is called valid in H iff H has a trajectory τ
and τ has the same sequence of edges as π. A counter example that is not valid
is called spurious.

Definition 6. An annotation for a counter example π = e1, . . . , en of hybrid
automaton H is a sequence τ = S0 −→ S′

0
e1−→ S1 −→ S′

1
e2−→ · · · en−→ Sn −→ S′

n such
that the following conditions hold:

1. ∀0 ≤ i ≤ n • ∅ 
= Si, S
′
i ⊆ S[[H]],

2. ∀0 ≤ i ≤ n • Si = cpreH (S′
i),

3. ∀0 ≤ i < n • S′
i = dpre

ei+1
H (Si+1),

4. S′
n = Sbad[[H]] ∩ ({Den} × VH).

Condition 1 means that each Si and S′
i in τ are a non-empty set of states.

Conditions 2 and 3 mean that sets of states in τ are computed using backward
reachability. Finally, condition 4 means that S′

n is the set of unsafe states in
destination of en. Note that these conditions completely specify S0, . . . , Sn and
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S′
0, . . . , S

′
n from e1, . . . , en and H. Also, every Si and S′

i is a subset of states
corresponding to exactly one location.

In this paper, we assume to have access to an oracle OPoly that can correctly
answer reachability problems when the hybrid automata are restricted to be
polyhedral automata. If no unsafe location of A is reachable from an initial
location of it, OPoly(A) returns ‘safe’. Otherwise, it returns an annotated counter
example of A.

i-1

ε

γi i+1

Fig. 1. Validation and refinement. There are three locations: i − 1, i, and i + 1. Si+1

and S′
i are elements of annotated counter example τ . R′

i−1, Ri, and cpostC(Ri) are
computed when τ is validated. i is the smallest index for which cpostC(Ri) and γA(S′

i)
are separated. Hence we need to refine A in location i. Refinement should be done in
such a way that for the result of refinement A′ we have cpostA′(γ−1

A′ (Ri))∩γA′(S′
i) = ∅

(γ−1 is the preimage of γ).

4.3 Validating Abstract Counterexamples and Refinement

For any invariant partition P and non-linear automaton C, if OPoly(A) (for A =
α(C, P )) returns ‘safe’, we know C is safe. So the algorithm returns C is ‘safe’
and terminates. On the other hand, if OPoly finds A to be unsafe it returns an
annotated counter example τ of A. Since A is an over-approximation of C, we
cannot be certain at this point that C is also unsafe. More precisely, if π is the
path in τ , we do not know whether γA(π) is a valid counter example in C or it is
spurious. Therefore, we need to validate τ in order to determine if it corresponds
to any actual run from an initial location to an unsafe location in C.

To validate τ , an annotated counter example of A = α(C,P ), we run τ on C.

More precisely, we create a sequence τ ′ = R0 −→ R′
0

e′
1−→ R1 −→ · · · e′

n−→ Rn −→ R′
n

where

1. e′
i = γA(ei),

2. R0 = γA(S0),
3. R′

i = cpostC(Ri) ∩ γA(S′
i),

4. Ri = dpost
e′
i

C (R′
i−1) ∩ γA(Si).

We proved the following proposition and lemma in [29].

Proposition 7. R′
n = ∅ in τ ′ implies there exists i such that 1. R′

i = ∅, 2.
Ri 
= ∅, 3. ∀j < i • Rj , R

′
j 
= ∅, and 4. cpostC(Ri) and γA(S′

i) are nonempty
disjoint sets.
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Lemma 8. The counter example π′ = e′
1, . . . , e

′
n of C is valid iff R′

n 
= ∅.
Refinement. Suppose the counterexample τ is spurious. There is a smallest index
i such that R′

i = ∅. We will refine the location (q, p) = Dei of A by refining
its invariant p. We know from Proposition 7, cpostC(Ri) ∩ γA(S′

i) = ∅. How-
ever, the corresponding sets in the abstract system A are not disjoint, that is,
cpostA(γ−1

A (Ri)) ∩ S′
i 
= ∅ (γ−1 is the preimage of γ). Our refinement strat-

egy is to find a partition for the location (q, p) such that in the refined model
R = α(C, P ′) (for some P ′), S′

i is not reachable from Ri (Fig. 1). Let us denote by
Cq,p the restriction of C to the single location q with invariant p, i.e., Cq,p has only
one location q whose flow and invariant is the same as that of (q, p) in A, and
only transitions whose source and destination is q. We will say that an invariant
partition Pr of Cq,p separates Ri from S′

i iff in the automaton A1 = α(Cq,p, Pr),
reachA1(γ

−1
A1

(Ri)) ∩ γ−1
A1

(γA(S′
i)) = ∅. In other words, the states corresponding

to S′
i in A1 are not reachable from γ−1

A1
(Ri) in A1. Our refinement strategy will

refine A by partitioning the control location (q, p) by the invariant partition Pr.
Using results from [27], we observed [29] that such a partition Pr always exists.
We also showed that such a refinement strategy ensures that any abstract counter
example appears only finitely many times in the CEGAR loop.

The previous discussion, relies on the fact that we can compute cpost(.)
exactly. Unfortunately this is not possible for the class of hybrid automaton
we are considering. We use δ-complete decision procedures available through
dReach and dReal to check whether R′

n will be empty for some n. If dReach
returns unsat, we know the R′

n = ∅, and we can conclude that the counter
example is spurious. However, if dReach returns δ-sat, we know δ-perturbation
of the syntax of the formula defining R′

n makes it satisfiable. But this does not
imply that R′

n itself isnon-empty. Hence, it is possible that because of our use of
dReach for counter example validation, we may not be able to detect spurious
counter examples.

5 Tool’s Architecture

Figure 2 shows the flow and architecture of HARE. It also identifies 3rd party
libraries/tools that are internally used by HARE at different steps. We use Z3 [13]
to check if a fix-point is reached in the abstract system model-checking, and also
to check whether an unsafe state is reached. We use Boost Interval Arithmetic
Library (IAL) [1] to abstract non-linear dynamics. We use dReach to validate
a counter example (the validation a counter example of length n involves at
most n invocations of dReach). Note that dReach calls dReal, internally. Also,
dReach/dReal are not available in the form of libraries. Therefore, HARE executes
dReach as a separate process and communicates with it through files. Finally,
we use Parma Polyhedra Library (PPL) [5] to manipulate symbolic abstract
states. This includes, computing discrete/continuous abstract posts, constructing
annotated counter examples, finding rectangular hull of a polytope, abstracting
affine flows, and checking if a parallelly composed location/edge has non-empty
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Counter Example Validation

Refinement Abstract (Polyhedral) Model Checker

R cpost(R)

Input
Non-Linear Hybrid 

Automaton

Abstract Flows 
using Invariants

PPL

R  dpost(R)

Is R visited?

R  U ≠ 

  NO

NOUnknown + 
Reachable Set

Unsafe +
Counter Example

PPL

YES

Max iter. is 
reached?

Safe +
Reachable Set

YES

Bounded Safe + 
Reachable Set

YES

  NO

PPL and Boost IAL

Parallel Composition Emptiness/Universality  
Check: Z3 for unsafe sets, PPL for initial sets, 

invariants, and transition relations

Safe +
Over-approximated 

Reachable Set

Abstract Bounded 
Safe +

Over-approximated 
Reachable Set

Spurious
Counter Example

PPL

Z3

Z3

dReach

YES + Lowest
Empty Index

Unsafe +
Concrete Counter 

Example

NO

Split Largest 
Interval into 2 Locs

PPL

Add/Remove 
Abstract Edges & 

Initial/Unsafe States

PPL

Reverse Time if 
Necessary

PPL

  NO

YES

Max iter. is 
reached?

Update
Abstract Flows

PPL and Boost IAL

R Initial States
U Unsafe States

Z3

Z3

Fig. 2. Flow chart of HARE’s CEGAR loop

invariant/transition relation. Compared to the old version of HARE in [29], we
have replaced SpaceEx with dReach, since SpaceEx does not support non-linear
dynamics. Also, we have implemented everything in C++ instead of Scala to
improve performance.

The abstract model checker in HARE has a parameter direction with pos-
sible values forward and backward. It specifies whether the tool should per-
form forward or backward reachability. But PPL can only compute cpost and
not cpre. This is the reason for the step “Reverse Time If Necessary”. There is
an optional integer parameter max-iter for each of the abstract and concrete
model checkers. If the maximum number of iterations is reached in the abstract
model checker, it returns bounded-safe as an answer. If abstract model checker
returns this answer to the concrete model checker, abstract bounded safe
will be returned as a result. If the maximum number of iterations is reached in
the concrete model checker, it returns unknown as the answer. In addition to
Safe or Unsafe, the user can also ask HARE to produce a counter-example, an
annotated-counter-example, or the reachable-set. Clearly, the first two will
only be produced if the system is found to be unsafe and the last one will only
output the abstract reachable states. Note that abstract model checker can be
directly called by user.

The model to be checked along with all the options for the model checker
are specified in a single human readable text file according to INFO Parser from
Boost Property Tree Library [24]. Every model, contains one or more hybrid
automata and the safety problem is considered for their parallel composition
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which is constructed on the fly. Continuous variables can be read by all hybrid
automata. If the file specifies polyhedral automata, each hybrid automaton can
write to all variables through transition relations and flow. On the other hand,
if the file specifies a non-linear automaton, different hybrid automata can still
write to a common variable through transition relations, but flow of a variable
should be defined in exactly one hybrid automaton. Initial and unsafe states
are specified after all hybrid automata using zero or more polyhedra for each
composed location. Each edge has an optional label. If it is specified, it means
that edge must be synced with an edge from other hybrid automata in the file.
Otherwise, it will be interleaved. If a specified label does not end with ‘?’, ‘!’,
or ‘!!’, synchronization will be among all hybrid automata in the file (i.e. each
hybrid automaton must take an edge with the exact same label). Characters ‘?’,
‘!’, and ‘!!’ are used to specify input/output hybrid automata, where ‘?’ is for an
input edge, ‘!’ is for an output edge, and ‘!!’ is for a broadcast edge. Character
‘*’ at the beginning of a location name means that location is transient and time
cannot pass inside that location. Allowing transient locations in the model has
three benefits 1. neither abstract nor concrete model checker will waste time by
computing continuous post in transient locations, 2. the result automata will
have one less variable, and 3. the model will be easier to understand. Finally,
the current interface to the tool is only through the command line.

6 Experimental Results

The new version of HARE is available from https://uofi.box.com/v/HARE;
the old version of the tool can be downloaded from https://uofi.box.com/
cegar-hare-tacas-2016. Examples and scripts for running the examples can also
be found on the links. Both these links contain a virtual machine to make
repeatability straightforward.

We have run HARE with different set of examples with both affine and non-
linear dynamics. Brief explanations of the affine benchmarks can be found in [29].
Table 1 contains the results for the affine examples. We compare the performance
of HARE, its old version in [29], SpaceEx [19], PHAVer [18], and SpaceEx AGAR [7]s2.
The first two tools are affine hybrid automata model checkers that are not
CEGAR based, while the last is a CEGAR based tool for concurrent hybrid
automata3. In the past [29], we also reported the performance of HSolver [28]
on affine examples. However, since it performed poorly on affine examples, we
have not included it for comparison in Table 1.

The new version of HARE proved all examples are safe, while the old version
could not do this for four examples. Also the new version is faster on all examples,
except one. SpaceEx almost never reached a fixed point. PHAVer could prove
safety for only half of the examples, and it did it faster than new version of HARE
in only one case. Abstraction in SpaceEx AGAR appears to be a very expensive
2 By SpaceEx we mean SpaceEx with Supp as its scenario and by PHAVer we mean
SpaceEx with PHAVer as its scenario.

3 It is called “Assume Guarantee Abstraction Refinement” in [7].

https://uofi.box.com/v/HARE
https://uofi.box.com/cegar-hare-tacas-2016
https://uofi.box.com/cegar-hare-tacas-2016
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operation—in four examples, the initial abstraction was not constructed even
after 600 s (10 min) and we terminated the execution. Also, in three examples
we could not find any set of locations that does not cause the tool to crash right
at the beginning. Among 8 examples that worked for SpaceEx AGAR, it could
prove safety for 5 of them and it was always slower than new version of HARE.

Table 1. Comparing HARE with its old version in [29] and other tools for affine dynam-
ics. Dim. is the number of continuous variables. Size is the number of locations/edges
in the input (concrete) model. Iters. is the number of iterations in our CEGAR loop
before proving safety. FP. tells whether or not a tool reached a fixed-point. If a tool
does not reach a fixed-point then even if it says the system is safe, the answer may
not be true. As explained in [29], sometimes SpaceEx tells it reached a fixed-point, but
before that it generates a warning that its result may not be complete. We continue
to consider those cases as SpaceEx has not reached a fixed-point. Merged Locs. is the
number of locations we initially merged for SpaceEx AGAR. Columns old and new for
HARE contain results from the previous and current version of this tool. All times are in
seconds and all examples were run on a laptop with Intel i5 2.50 GHz CPU and 6GB
of RAM.

Table 2 contains results of comparing HARE with C2E2 [16], HSolver [28],
and FLOW* [8] on nonlinear examples. Note that HARE and HSolver support
proving safety for unbounded time and unbounded number of discrete transi-
tions. But both C2E2 and FLOW* require bounded time and bounded number of
discrete transitions. Also none of these two tools check whether the computed
(unbounded) reachable set so far is a fixed-point. Therefore, no matter how big
the time-bound is set, proving safety for this time bound in these tools does
not guarantee unbounded time safety. In our experience, we set the bound for
discrete number of transitions large enough so none of the tools reported maxi-
mum number of discrete transitions are reached. For the first 5 examples, we set
the time bound equal to 1000 in C2E2 and HSolver. For the last example, the
time bound is 10 in all tools. HARE always finished faster than C2E2. On three
examples HARE is faster than FLOW* and only in one example it is slower. On 3
examples HARE proved safety faster than HSolver, and in 2 examples HSolver
was faster. HSolver comes with an example named circuit (not reported in
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Table 2). The size of hybrid automaton in this example is small, but it has con-
stants of the order 1012, which turns out to be too big for C2E2 and dReach and
trigger a bug in these two tools (and hence HARE). Only HSolver proves safety
of this example. Finally, in our experiments, dReach performs much faster for
the affine dynamics. Non-linear examples are also available at link for the new
version of HARE we mentioned earlier.

Table 2. Comparing running time of HARE with other tools for non-linear dynamics.
Dim. is the number of continuous variables. Size is the number of locations/edges in the
input (concrete) model. Reached Abst. Size is the number of locations/edges in the final
abstract model that are reached in HARE right before safety is proved. Time Bound is 10
for the “Sinusoid” model in all four tools. For all the other examples, there is no time
bound in both HARE and HSolver. In other word, HARE and HSolver prove unbounded
time safety for all but the last example. C2E2 and FLOW* on the other hand, require
finite time bound, and we set it to be 1000 (except for the “Sinusoid” model which
is 10). We have terminated all the runs that took more than 600 s (10 min). HSolver
requires bounded invariants. So in the first four examples, we put 100 as an upper
bound and −100 for as a lower bound of unbounded variables. FLOW* does not support
trigonometric functions and C2E2 encounters an internal error on one of the examples.
All times are in seconds and all examples were run on a laptop with Intel i5 2.50 GHz
CPU and 6 GB of RAM.

6.1 Unbounded Invariants

The first 4 examples in Table 2 are taken from C2E2. Tools like C2E2 and FLOW*

that try to compute the reachable set as precisely as possible, tend not to specify
invariants. On the other hand, tools like HARE and HSolver that perform refine-
ment by partitioning the state space tend to require bounded invariants. Another
reason for HARE to prefer bounded invariants is that dReach, which HARE uses
internally, only works for bounded variables. We had a few options to bound
the invariants in those examples. The first option is to bound the invariants
using large enough numbers (just like what we did for HSolver). This means we
are guessing the invariant. If the guessed invariants are all closed sets, one can
verify the guess by setting closure of complement of it as the unsafe states. If
the unsafe states are not reachable then the guess is valid. Note that since HARE
computes over-approximation of unsafe states, it is possible that HARE incor-
rectly says a guessed invariant is invalid. The second option is to first use tools
like C2E2 or FLOW* and find a coarse invariant for all locations. Note that since
these tools have bounded number of discrete transitions and they do not check
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for fixpoint, one might still need to verify that invariants obtained using C2E2
or FLOW* are valid. The third option, which we have used for the current imple-
mentation, is noticing that the only part of the implementation that requires
invariant to be bounded is where dReach is called. If this tool is called with an
unbounded variable, then it will quickly raise an exception and terminate. In
other words, it will terminate without saying that the counter example is valid.
We take not saying valid as saying invalid. This approach makes it possible to
use dReach even when invariants are not bounded. Note that during validation
of a counter example of length larger than one, it is possible that only invariants
after some step k are unbounded. Our current approach guarantees all variables
are bounded when dReach is called for indices k or smaller. An example of such
a system, Automatic lane change system (driver assist) that comes with C2E2.
It is a system with affine dynamics and 10 unsafe sets. HARE proved unbounded
safety for all these sets in about 190 s. During this time, dReach encountered
exception in almost every iteration. But eventually, the abstract model checker
reached a fixed point and found the system to be safe, so dReach was not called
again. C2E2 needs to prove safety for each of these sets separately and it took this
tool about 1163 s to prove them all when the time bound is set to 1000. HSolver
and FLOW* could not prove safety for any of these sets within 600 s (10 min)4.
A fourth option is one where we initially partition the state space blindly for a
small number of times first, and then start the actual CEGAR loop. We used
this option in all four examples in Table 2 from C2E2.

7 Conclusion

We presented a new version of the CEGAR-based model checker for non-linear
hybrid systems called HARE. This version is a significant improvement over the
previous version of HARE that was reported in [29]. First, HARE can now verify
non-linear hybrid automata instead of hybrid automata with affine dynamics and
rectangular constraints. Second, HARE now uses polyhedral hybrid automata as
abstractions as opposed to rectangular hybrid automata. Finally, the implemen-
tation has been optimized. These changes have enabled the tool to handle a larger
class of examples, in faster time. These observations have been substantiated by
our experimental results reported here. While the use of dReach for counter
example validation has improved the performance for affine hybrid automaton,
our experiments show that dReach performs poorly for counter examples for non-
linear automata (when compared with C2E2). In the future, we plan to explore
if we can use C2E2 (instead of dReach) for counter example validation.
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3. Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of
hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)

4. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems hav-
ing piecewise-constant derivatives. TCS 138(1), 35–65 (1995)

5. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

6. Ball, T., Rajamani, S.K.: Bebop: a symbolic model checker for boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000). doi:10.1007/10722468 7

7. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C., Podelski, A.,
Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems. In:
Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 116–131. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-13338-6 10
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