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Abstract. Controller synthesis for general linear temporal logic (LTL)
objectives is a challenging task. The standard approach involves trans-
lating the LTL objective into a deterministic parity automaton (DPA) by
means of the Safra-Piterman construction. One of the challenges is the
size of the DPA, which often grows very fast in practice, and can reach
double exponential size in the length of the LTL formula. In this paper we
describe a single exponential translation from limit-deterministic Büchi
automata (LDBA) to DPA, and show that it can be concatenated with a
recent efficient translation from LTL to LDBA to yield a double exponen-
tial, “Safraless” LTL-to-DPA construction. We also report on an imple-
mentation, a comparison with the SPOT library, and performance on
several sets of formulas, including instances from the 2016 SyntComp
competition.

1 Introduction

Limit-deterministic Büchi automata (LDBA, also known as semi-deterministic
Büchi automata) were introduced by Courcoubetis and Yannakakis (based on
previous work by Vardi) to solve the qualitative probabilistic model-checking
problem: Decide if the executions of a Markov chain or Markov Decision Process
satisfy a given LTL formula with probability 1 [Var85,VW86,CY95]. The prob-
lem faced by these authors was that fully nondeterministic Büchi automata
(NBAs), which are as expressible as LTL, and more, cannot be used for proba-
bilistic model checking, and deterministic Büchi automata (DBA) are less expres-
sive than LTL. The solution was to introduce LDBAs as a model in-between: as
expressive as NBAs, but deterministic enough.

After these papers, LDBAs received little attention. The alternative path
of translating the LTL formula into an equivalent fully deterministic Rabin
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automaton using Safra’s construction [Saf88] was considered a better option,
mostly because it also solves the quantitative probabilistic model-checking prob-
lem (computing the probability of the executions that satisfy a formula). How-
ever, recent papers have shown that LDBAs were unjustly forgotten. Blahoudek
et al. have shown that LDBAs are easy to complement [BHS+16]. Kini and
Viswanathan have given a single exponential translation of LTL\GU to LDBA
[KV15]. Finally, Sickert et al. describe in [SEJK16] a double exponential trans-
lation for full LTL that can also be applied to the quantitative case, and behaves
better than Safra’s construction in practice.

In this paper we add to this trend by showing that LDBAs are also attractive
for synthesis. The standard solution to the synthesis problem with LTL objec-
tives consists of translating the LTL formula into a deterministic parity automa-
ton (DPA) with the help of the Safra-Piterman construction [Pit07]. While limit-
determinism is not “deterministic enough” for the synthesis problem, we intro-
duce a conceptually simple and worst-case optimal translation LDBA→DPA.
Our translation bears some similarities with that of [Fin15] where, however, a
Muller acceptance condition is used. This condition can also be phrased as a
Rabin condition, but not as a parity condition. Moreover, the way of tracking
all possible states and finite runs differs.

Together with the translation LTL→LDBA of [SEJK16], our construction
provides a “Safraless”, procedure to obtain a DPA from an LTL formula. How-
ever, the direct concatenation of the two constructions does not yield an algo-
rithm of optimal complexity: the LTL→LDBA translation is double exponential
(and there is a double-exponential lower bound), and so for the LTL→DPA
translation we only obtain a triple exponential bound. In the second part of
the paper we solve this problem. We show that the LDBAs derived from LTL
formulas satisfy a special property, and prove that for such automata the con-
catenation of the two constructions remains double exponential. To the best of
our knowledge, this is the first double exponential “Safraless” LTL→DPA pro-
cedure. (Another asymptotically optimal “Safraless” procedure for determiniza-
tion of Büchi automata with Rabin automata as target has been presented in
[FKVW15].)

In the third and final part, we report on the performance of an implemen-
tation of our LTL→LDBA→DPA construction, and compare it with algorithms
implemented in the SPOT library [DLLF+16]. Note that it is not possible to
force SPOT to always produce DPA, sometimes it produces a deterministic gen-
eralized Büchi automaton (DGBA). The reason is that DGBA are often smaller
than DPA (if they exist) and game-solving algorithms for DGBA are not less
efficient than for DPA. Therefore, also our implementation may produce DGBA
in some cases. We show that our implementation outperforms SPOT for sev-
eral sets of parametric formulas and formulas used in synthesis examples taken
from the SyntComp 2016 competition, and remains competitive for randomly
generated formulas.

Structure of the Paper. Section 2 introduces the necessary preliminaries
about automata. Section 3 defines the translation LDBA→DPA. Section 4 shows
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how to compose of LTL→LDBA and LDBA→DPA in such a way that the result-
ing DPA is at most doubly exponential in the size of the LTL formula. Section 5
reports on the experimental evaluation of this worst-case optimal translation,
and Sect. 6 contains our conclusions. Several proofs and more details on the
implementation can be found in [EKRS17].

2 Preliminaries

Büchi Automata. A (nondeterministic) ω-word automaton A with Büchi
acceptance condition (NBA) is a tuple (Q, q0, Σ, δ, α) where Q is a finite set
of states, q0 ∈ Q is the initial state, Σ is a finite alphabet, δ ⊆ Q × Σ × Q is
the transition relation, and α ⊆ δ is the set of accepting transitions1. W.l.o.g.
we assume that δ is total in the following sense: for all q ∈ Q, for all σ ∈ Σ,
there exists q′ ∈ Q such that (q, σ, q′) ∈ δ. A is deterministic if for all q ∈ Q,
for all σ ∈ Σ, there exists a unique q′ ∈ Q such that (q, σ, q′) ∈ δ. When δ is
deterministic and total, it can be equivalently seen as a function δ : Q×Σ → Q.
Given S ⊆ Q and σ ∈ Σ, let postσδ (S) = {q′ | ∃q ∈ S · (q, σ, q′) ∈ δ}.

A run of A on a ω-word w : N → Σ is a ω-sequence of states ρ : N → Q such
that ρ(0) = q0 and for all positions i ∈ N, we have that (ρ(i), w(i), ρ(i + 1)) ∈ δ.
A run ρ is accepting if there are infinitely many positions i ∈ N such that
(ρ(i), w(i), ρ(i+1)) ∈ α. The language defined by A, denoted by L(A), is the set
of ω-words w for which A has an accepting run.

A limit-deterministic Büchi automaton (LDBA) is a Büchi automaton A =
(Q, q0, Σ, δ, α) such that there exists a subset Qd ⊆ Q satisfying the three fol-
lowing properties:

1. α ⊆ Qd × Σ × Qd, i.e. all accepting transitions are transitions within Qd;
2. ∀q ∈ Qd · ∀σ ∈ Σ · ∀q1, q2 ∈ Q · (q, σ, q1) ∈ δ ∧ (q, σ, q2) ∈ δ → q1 = q2, i.e. the

transition relation δ is deterministic within Qd;
3. ∀q ∈ Qd · ∀σ ∈ Σ · ∀q′ ∈ Q · (q, σ, q′) ∈ δ → q′ ∈ Qd, i.e. Qd is a trap (when

Qd is entered it is never left).

W.l.o.g. we assume that q0 ∈ Q\Qd, and we denote Q\Qd by Qd. Courcoubetis
and Yannakakis show that for every ω-regular language L, there exists an LDBA
A such that L(A) = L [CY95]. That is, LDBAs are as expressive as NBAs. An
example of LDBA is given in Fig. 1. Note that the language accepted by this
LDBA cannot be recognized by a deterministic Büchi automaton.

Parity Automata. A deterministic ω-word automaton A with parity accep-
tance condition (DPA) is a tuple (Q, q0, Σ, δ, p), defined as for deterministic
Büchi automata with the exception of the acceptance condition p, which is now

1 Here, we consider automata on infinite words with acceptance conditions based on
transitions. It is well known that there are linear translations from automata with
acceptance conditions defined on transitions to automata with acceptance conditions
defined on states, and vice-versa.
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Fig. 1. An LDBA for the LTL language FGa∨FGb. The behavior of A is deterministic
within the subset of states Qd = {2, 3, 4} which is a trap, the set of accepting transitions
are depicted in bold face and they are defined only between states of Qd.

a function assigning an integer in {1, 2, . . . , d}, called a color, to each transition
in the automaton. Colors are naturally ordered by the order on integers.

Given a run ρ over a word w, the infinite sequence of colors traversed by
the run ρ is noted p(ρ) and is equal to p(ρ(0), w(0), ρ(1)) p((ρ(1), w(1), ρ(2)) . . .
p(ρ(n), w(n), ρ(n+1)) . . . . A run ρ is accepting if the minimal color that appears
infinitely often along p(ρ) is even. The language defined by A, denoted by L(A)
is the set of ω-words w for which A has an accepting run.

While deterministic Büchi automata are not expressively complete for the
class of ω-regular languages, DPAs are complete for ω-regular languages: for
every ω-regular language L there exists a DPA A such that L(A) = L, see
e.g. [Pit07].

3 From LDBA to DPA

3.1 Run DAGs and Their Coloring

Run DAG. A nondeterministic automaton A may have several (even an infinite
number of) runs on a given ω-word w. As in [KV01], we represent this set of
runs by means of a directed acyclic graph structure called the run DAG of A on
w. Given an LDBA A = (Q,Qd, q0, Σ, δ, α), this graph Gw = (V,E) has a set of
vertices V ⊆ Q × N and edges E ⊆ V × V defined as follows:

– V =
⋃

i∈N
Vi, where the sets Vi are defined inductively:

• V0 = {(q0, 0)}, and for all i ≥ 1,
• Vi = {(q, i) | ∃(q′, i − 1) ∈ Vi−1 : (q′, w(i), q) ∈ δ};

– E = {((q, i), (q′, i + 1)) ∈ Vi × Vi+1 | (q, w(i), q′) ∈ δ}.

We denote by V d
i the set Vi ∩ (Qd × {i}) that contains the subset of vertices of

layer i that are associated with states in Qd.
Observe that all the paths of Gw that start from (q0, 0) are runs of A on w,

and, conversely, each run ρ of A on w corresponds exactly to one path in Gw that
starts from (q0, 0). So, we call runs the paths in the run DAG Gw. In particular,
we say that an infinite path v0v1 . . . vn . . . of Gw is an accepting run if there
are infinitely many positions i ∈ N such that vi = (q, i), vi+1 = (q′, i + 1), and
(q, w(i), q′) ∈ α. Clearly, w is accepted by A if and only if there is an accepting
run in Gw. We denote by ρ(0..n) = v0v1 . . . vn the prefix of length n + 1 of the
run ρ.
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Ordering of Runs. A function Ord : Q → {1, 2, . . . , |Qd|,+∞} is called an
ordering of the states of A w.r.t. Qd if Ord defines a strict total order on the
state from Qd, and maps each state q ∈ Qd to +∞, i.e.:

– for all q ∈ Qd, Ord(q) = +∞,
– for all q ∈ Qd, Ord(q) �= +∞, and
– for all q, q′ ∈ Qd, Ord(q) = Ord(q′) implies q = q′.

We extend Ord to vertices in Gw as follows: Ord((q, i)) = Ord(q).
Starting from Ord, we define the following pre-order on the set of run prefixes

of the run DAG Gw. Let ρ(0..n) = v0v1 . . . vn . . . and ρ′(0..n) = v′
0v

′
1 . . . v′

n . . .
be two run prefixes of length n + 1, we write ρ(0..n) � ρ′(0..n), if ρ(0..n) is
smaller than ρ′(0..n), which is defined as:

– for all i, 0 ≤ i ≤ n, Ord(ρ(i)) = Ord(ρ′(i)), or
– there exists i, 0 ≤ i ≤ n, such that:

• Ord(ρ(i)) < Ord(ρ′(i)), and
• for all j, 0 ≤ j < i, Ord(ρ(j)) = Ord(ρ′(j)).

This is extended to (infinite) runs as: ρ � ρ′ iff for all i ≥ 0 · Ord(ρ(0..i)) �
Ord(ρ′(0..i)).

Remark 1. If A accepts a word w, then A has a �-smallest accepting run for w.

We use the �-relation on run prefixes to order the vertices of Vi that belong to
Qd: for two different vertices v = (q, i) ∈ Vi and v′ = (q′, i) ∈ Vi, v is �i-smaller
than v′, if there is a run prefix of Gw that ends up in v which is �-smaller than
all the run prefixes that ends up in v′, which induces a total order among the
vertices of V d

i because the states in Qd are totally ordered by the function Ord.

Lemma 1. For all i ≥ 0, for two different vertices v = (q, i), v′ = (q′, i) ∈ V d
i ,

then either v �i v′ or v′ �i v, i.e., �i is a total order on V d
i .

Indexing Vertices. The index of a vertex v = (q, i) ∈ Vi such that q ∈ Qd,
denoted by Indi(v), is a value in {1, 2, . . . , |Qd|} that denotes its order in V d

i

according to �i (the �i-smallest element has index 1). For i ≥ 0, we identify
two important sets of vertices:

– Dec(V d
i ) is the set of vertices v ∈ V d

i such that there exists a vertex v′ ∈ V d
i+1:

(v, v′) ∈ E and Indi+1(v′) < Indi(v), i.e. the set of vertices in V d
i whose

(unique) successor in V d
i+1 has a smaller index value.

– Acc(V d
i ) is the set of vertices v = (q, i) ∈ V d

i such that there exists v′ =
(q′, i + 1) ∈ V d

i+1: (v, v′) ∈ E and (q, w(i), q′) ∈ α, i.e. the set of vertices in V d
i

that are the source of an accepting transition on w(i).
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Remark 2. Along a run, the index of vertices can only decrease. As the function
Ind(·) has a finite range, the index along a run has to eventually stabilize.

Assigning Colors. The set of colors that are used for coloring the levels of the
run DAG Gw is {1, 2, . . . , 2 · |Qd| + 1}. We associate a color with each transition
from level i to level i + 1 according to the following set of cases:

1. if Dec(V d
i ) = ∅ and Acc(V d

i ) �= ∅, the color is 2 · minv∈Acc(V d
i ) Indi(v).

2. if Dec(V d
i ) �= ∅ and Acc(V d

i ) = ∅, the color is 2 · minv∈Dec(V d
i ) Indi(v) − 1.

3. if Dec(V d
i ) �= ∅ and Acc(V d

i ) �= ∅, the color is defined as the minimal color
among

– codd = 2 · minv∈Dec(V d
i ) Indi(v) − 1, and

– ceven = 2 · minv∈Acc(V d
i ) Indi(v).

4. if Dec(V d
i ) = Acc(V d

i ) = ∅, the color is 2 · |Qq| + 1.

The intuition behind this coloring is as follows: the coloring tracks runs in Qd

(only those are potentially accepting as α ⊆ Qd × Σ × Qd) and tries to produce
an even color that corresponds to the smallest index of an accepting run. If in
level i the run DAG has an outgoing transition that is accepting, then this is a
positive event, as a consequence the color emitted is even and it is a function of
the smallest index of a vertex associated with an accepting transition from Vi to
Vi+1. Runs in Qd are deterministic but they can merge with smaller runs. When
this happens, this is considered as a negative event because the even colors that
have been emitted by the run that merges with the smaller run should not be
taken into account anymore. As a consequence an odd color is emitted in order
to cancel all the (good) even colors that were generated by the run that merges
with the smaller one. In that case the odd color is function of the smallest index
of a run vertex in Vi whose run merges with a smaller vertex in Vi+1. Those
two first cases are handled by cases 1 and 2 of the case study above. When
both situations happen at the same time, then the color is determined by the
minimum of the two colors assigned to the positive and the negative events. This
is handled by case 3 above. And finally, when there is no accepting transition
from Vi to Vi+1 and no merging, the largest odd color is emitted as indicated by
case 4 above.

According to this intuition, we define the color summary of the run DAG Gw

as the minimal color that appears infinitely often along the transitions between
its levels. Because of the deterministic behavior of the automaton in Qd, each
run can only merge at most |Qd| − 1 times with a smaller one (the size of the
range of the function Ind(·) minus one), and as a consequence of the definition of
the above coloring, we know that, on word accepted by A, the smallest accepting
run will eventually generate infinitely many (good) even colors that are never
trumped by smaller odd colors.

Example 1. The left part of Fig. 2 depicts the run DAG of the limit-deterministic
automaton of Fig. 1 on the word w = abb(ab)ω. Each path in this graph represents
a run of the automaton on this word. The coloring of the run DAG follows the
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Fig. 2. The run DAGs automaton of Fig. 1 on the word w = (ab)ω given on the left,
and on the word w = aabω given on the right, together with their colorings.

coloring rules defined above. Between level 0 and level 1, the color is equal to
7 = 2|Qd| + 1, as no accepting edge is taken from level 0 to level 1 and no run
merges (within Qd). The color 7 is also emitted from level 1 to level 2 for the
same reason. The color 4 is emitted from level 2 to level 3 because the accepting
edge (3, b, 3) is taken and the index of state 3 in level 2 is equal to 2 (state 4 has
index 1 as it is the end point of the smallest run prefix within Qd). The color 3
is emitted from level 3 to level 4 because the run that goes from 3 to 4 merges
with the smaller run that goes from 4 to 4. In order to cancel the even colors
emitted by the run that goes from 3 to 4, color 3 is emitted. It cancels the even
color 4 emitted before by this run. Afterwards, colors 3 is emitted forever. The
color summary is 3 showing that there is no accepting run in the run DAG.

The right part of Fig. 2 depicts the run DAG of the limit deterministic
automaton of Fig. 1 on the word w = aabω. The coloring of the run DAG fol-
lows the coloring rules defined above. Between levels 0 and 1, color 7 is emitted
because no accepting edge is crossed. To the next level, we see the accepting
edge (2, a, 2) and color 2 · 1 = 2 is emitted. Upon reading the first b, we see
again 7 since there is neither any accepting edge seen nor any merging takes
place. Afterwards, each b causes an accepting edge (3, b, 3) to be taken. While
the smallest run, which visits 4 forever, is not accepting, the second smallest
run that visits 3 forever is accepting. As 3 has index 2 in all the levels below
level 3, the color is forever equal to 4. The color summary of the run is thus
equal to 2 · 2 = 4 and this shows that word w = aabω is accepted by our limit
deterministic automaton of Fig. 1.



From LTL and Limit-Deterministic Büchi Automata to DPA 433

The following theorem tells us that the color summary (the minimal color
that appears infinitely often) can be used to identify run DAGs that contain
accepting runs. The proof can be found in [EKRS17, Appendix A].

Theorem 1. The color summary of the run DAG Gw is even if and only if
there is an accepting run in Gw.

3.2 Construction of the DPA

From an LDBA A = (Q,Qd, q0, Σ, δ, α) and an ordering function Ord : Q →
{1, 2, . . . , |Qd|,+∞} compatible with Qd, we construct a deterministic parity
automaton B = (QB , qB

0 , Σ, δB , p) that, on a word w, constructs the levels of
the run DAG Gw and the coloring of previous section. Theorem1 tells us that
such an automaton accepts the same language as A.

First, we need some notations. Given a finite set S, we note P(S) the set of its
subsets, and OP(S) the set of its totally ordered subsets. So if (s,<) ∈ OP(S)
then s ⊆ S and < ⊆ s × s is a total strict order on s. For e ∈ s, we denote
by Ind(s,<)(e) the position of e ∈ s among the elements in s for the total strict
order <, with the convention that the index of the <-minimum element is equal
to 1. The deterministic parity automaton B = (QB , qB

0 , Σ, δB , p) is defined as
follows.

States and Initial State. The set of states is QB = P(Qd) × OP(Qd), i.e.
a state of B is a pair (s, (t, <)) where s is a set of states outside Qd, and t is
an ordered subset of Qd. The ordering reflects the relative index of each state
within t. The initial state is qB

0 = ({q0}, ({}, {})).

Transition Function. Let (s1, (t1, <1)) be a state in QB , and σ ∈ Σ. Then
δB((s1, (t1, <1))) = (s2, (t2, <2)) where:

– s2 = postσδ (s1) ∩ Qd;
– t2 = postσδ (s1 ∪ t1) ∩ Qd;
– <2 is defined from <1 and Ord as follows: ∀q1, q2 ∈ t2: q1 <2 q2 iff:

1. either, ¬∃q′
1 ∈ t1 : q1 = δ(q′

1, σ), and ¬∃q′
2 ∈ t1 : q2 = δ(q′

2, σ), and
Ord(q1) < Ord(q2),
i.e. none has a predecessor in Qd, then they are ordered using Ord;

2. or, ∃q′
1 ∈ t1 : q1 = δ(q′

1, σ), and ¬∃q′
2 ∈ t1 : q2 = δ(q′

2, σ),
i.e. q1 has a σ-predecessor in Qd, and q2 not;

3. or ∃q′
1 ∈ t1 : q1 = δ(q′

1, σ), and ∃q′
2 ∈ t1 : q2 = δ(q′

2, σ), and min<1{q′
1 ∈

t1 | q1 = δ(q′
1, σ)} < min<1{q′

2 ∈ t1 | q2 = δ(q′
2, σ)},

i.e. both have a predecessor in Qd, and they are ordered according to the
order of their minimal parents.

Coloring. To define the coloring of edges in the deterministic automaton, we
need to identify the states q ∈ t1 in a transition (s1, (t1, <1))

σ→ (s2, (t2, <2))
whose indices decrease when going from t1 to t2. Those are defined as follows:

Dec(t1) = {q1 ∈ t1 | Ind(t2,<2)(δ(q1, σ)) < Ind(t1,<1)(q1)}.
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Additionally, let Acc(t1) = {q | ∃q′ ∈ t2 : (q, σ, q′) ∈ α} denote the subset of
states in t1 that are the source of an accepting transition.

We assign a color to each transition (s1, (t1, <1)) →σ (s2, (t2, <2)) as follows:

1. if Dec(t1) = ∅ and Acc(t1) �= ∅, the color is 2 · minq∈Acc(t1) Ind(t1,<1)(q).
2. if Dec(t1) �= ∅ and Acc(t1) = ∅, the color is 2 · minq∈Dec(t1) Ind(t1,<1)(q) − 1.
3. if Dec(t1) �= ∅ and Acc(t1) �= ∅, the color is defined as the minimal color

among
– codd = 2 · minq∈Dec(t1) Ind(t1,<1)(q) − 1, and
– ceven = 2 · minq∈Acc(t1) Ind(t1,<1)(q).

4. if Dec(t1) = Acc(t1) = ∅, the color is 2 · |Qq| + 1.
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Fig. 3. Left: DPA that accepts the LTL language FGa ∨ FGb, edges are decorated
with a natural number that specifies its color. Right: A reduced DPA.

Example 2. The DPA of Fig. 3 is the automaton that is obtained by applying the
construction LDBA→DPA defined above to the LDBA of Fig. 1 that recognizes
the LTL language FGa∨FGb. The figure only shows the reachable states of this
construction. As specified in the construction above, states of DPA are labelled
with a subset of Qd and a ordered subset of Qd of the original NBA. As an
illustration of the definitions above, let us explain the color of edges from state
({1}, [4, 3]) to itself on letter b. When the NBA is in state 1, 3 or 4 and letter b
is read, then the next state of the automaton is again 1, 3 or 4. Note also that
there are no runs that are merging in that case. As a consequence, the color that
is emitted is even and equal to the index of the smallest state that is the target
of an accepting transition. In this case, this is state 3 and its index is 2. This
is the justification for the color 4 on the edge. On the other hand, if letter a is
read from state ({1}, [4, 3]), then the automaton moves to states ({1}, [4, 2]). The
state 3 is mapped to state 4 and there is a run merging which induces that the
color emitted is odd and equal to 3. This 3 trumps all the 4’s that were possibly
emitted from state ({1}, [4, 3]) before.

Theorem 2. The language defined by the deterministic parity automaton B
is equal to the language defined by the limit deterministic automaton A, i.e.
L(A) = L(B).
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Proof. Let w ∈ Σω and Gw be the run DAG of A on w. It is easy to show
by induction that the sequence of colors that occur along Gw is equal to the
sequence of colors defined by the run of the automaton B on w. By Theorem 1,
the language of automaton B is thus equal to the language of automaton A. ��

3.3 Complexity Analysis

Upper Bound. Let n = |Q| be the size of the LDBA and let nd = |Qd| be the
size of the accepting component. We can bound the number of different orderings
using the series of reciprocals of factorials (with e being Euler’s number):

|OP(Qd)| =
nd∑

i=0

nd!
(nd − i)!

≤ nd · nd! ·
∞∑

i=0

1
i!

= e · nd · nd! ∈ O(2n·log n)

Thus the obtained DPA has O(2n ·2n·log n) = 2O(n·log n) states and O(n) colours.

Lower Bound. We obtain a matching lower bound by strengthening Theorem 8
from [Löd99]:

Lemma 2. There exists a family (Ln)n≥2 of languages (Ln over an alphabet of
n letters) such that for every n the language Ln can be recognized by a limit-
deterministic Büchi automaton with 3n + 2 states but can not be recognized by a
deterministic Parity automaton with less than n! states.

Proof. The proof of Theorem 8 from [Löd99] constructs a non-deterministic
Büchi automaton of exactly this size and which is in fact limit-deterministic.

Assume there exists a deterministic Parity automata for Ln with m < n!
states. Since parity automata are closed under complementation, we can obtain
a parity automaton and hence also a Rabin automaton of size m for Ln and
thus a Streett automaton of size m for Ln, a contradiction to Theorem 8
of [Löd99]. ��
Corollary 1. Every translation from limit-deterministic Büchi automata of size
n to deterministic parity yields automata with 2Ω(n log n) states in the worst case.

4 From LTL to Parity in 22O(n)

In [SEJK16] we present a LTL→LDBA translation. Given a formula ϕ of size
n, the translation produces an asymptotically optimal LDBA with 22

O(n)
states.

The straightforward composition of this translation with the single exponential
LDBA→DPA translation of the previous section is only guaranteed to be triple
exponential, while the Safra-Piterman construction produces a DPA of at most
doubly exponential size. In this section we describe a modified composition that
yields a double exponential DPA. To the best of our knowledge this is the first



436 J. Esparza et al.

translation of the whole LTL to deterministic parity automata that is asymp-
totically optimal and does not use Safra’s construction.

The section is divided into two parts. In the first part, we explain and illus-
trate a redundancy occurring in our LDBA→DPA translation, responsible for
the undesired extra exponential. We also describe an optimization that removes
this redundancy when the LDBA satisfies some conditions. In the second part,
we show these conditions are satisfied on the products of the LTL→LDBA trans-
lation, which in turn guarantees a doubly exponential LTL→DPA procedure.

4.1 An Improved Construction

We can view the second component of a state of the DPA as a sequence of states
of the LDBA, ordered by their indices. Since there are 22

O(n)
states of the LDBA

for an LTL formula of length n, the number of such sequences is

22
O(n)

! = 22
2O(n)

If only the length of the sequences (the maximum index) were bounded by 2n,
the number of such sequences would be smaller than the number of functions
2n → 22

O(n)
which is

(22
O(n)

)2
n

= 22
O(n)·2n

= 22
O(n)

Fix an LDBA with set of states Q. Assume the existence of an oracle: a list
of statements of the form L(q) ⊆ ⋃

q′∈Qq
L(q′) where q ∈ Q and Qq ⊆ Q. We use

the oracle to define a mapping that associates to each run DAG Gw a “reduced
DAG” G∗

w, defined as the result of iteratively performing the following four-step
operation:

– Find the first Vi in the current DAG such that the sequence (v1, i) � (v2, i) �
· · · � (vni

, i) of vertices of V d
i contains a vertex (vk, i) for which the oracle

ensures

L(vk) ⊆
⋃

j<k

L(vj) (∗)

We call (vk, i) a redundant vertex.
– Remove (vk, i) from the sequence, and otherwise keep the ordering �i

unchanged (thus decreasing the index of vertices (v, 	) with 	 > k).
– Redirect transitions leading from vertices in Vi−1 to (vk, i) so that they lead

to the smallest vertex (v1, i) of Vi.
– Remove any vertices (if any) that are no longer reachable from vertices of V1.

We define the color summary of G∗
w in exactly the same way as the color summary

of Gw. The DAG G∗
w satisfies the following crucial property, whose proof can be

found in [EKRS17, Appendix B]:
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Proposition 1. The color summary of the run DAG G∗
w is even if and only if

there is an accepting run in Gw.

The mapping on DAGs induces a reduced DPA as follows. The states are
the pairs (s, (t, <)) such that (t, <) does not contain redundant vertices. There
is a transition (s1, (t1, <)) a→ (s2, (t2, <)) with color c iff there is a word w and
an index i such that (s1, (t1, <)) and (s2, (t2, <)) correspond to the i-th and
(i + 1)-th levels of G∗

w, and a and c are the letter and color of the step between
these levels in G∗

w. Observe that the set of transitions is independent of the words
chosen to define them.

The equivalence between the initial DPA A and the reduced DPA Ar follows
immediately from Proposition 1: A accepts w iff Gw contains an accepting run
iff the color summary of G∗

w is even iff Ar accepts w.

Example 3. Consider the LDBA of Fig. 1 and an oracle given by L(4) = ∅, ensur-
ing L(4) ⊆ ⋃

i∈I L(i) for any I ⊆ Q. Then 4 is always redundant and merged,
removing the two rightmost states of the DPA of Fig. 3(left), resulting in the
DPA of Fig. 3(right). However, for the sake of technical convenience, we shall
refrain from removing a redundant vertex when it is the smallest one (with
index 1).

Since the construction of the reduced DPA is parametrized by an oracle, the
obvious question is how to obtain an oracle that does not involve applying an
expensive language inclusion test. Let us give a first example in which an oracle
can be easily obtained:

Example 4. Consider an LDBA where each state v = {s1, . . . , sk} arose from
some powerset construction on an NBA in such a way that L({s1, . . . , sk}) =
L(s1) ∪ · · · L(sk). An oracle can, for instance, allow us to merge whenever vk ⊆⋃

j<k vj , which is a sound syntactic approximation of language inclusion. This
motivates the following formal generalization.

Let LB = {Li | i ∈ B} be a finite set of languages, called base languages.
We call LC := {⋃ L | L ⊆ LB} the join-semilattice of composed languages. We
shall assume an LDBA with some LB such that L(q) ∈ LC for every state q. We
say that such an LDBA has a base LB . In other words, every state recognizes
a union of some base languages. (Note that every automaton has a base of at
most linear size.) Whenever we have states vj recognizing

⋃
i∈Ij

Li with Ij ⊆ B

for every j, the oracle allows us to merge vertices vk satisfying Ik ⊆ ⋃
j<k Ij .

Intuitively, the oracle declares a vertex redundant whenever the simple syntactic
check on the indices allows for that.

Let V1 =
⋃

i∈I1
Li, · · · Vj =

⋃
i∈Ij

Li be a sequence of languages of LC where
the reduction has been applied and there are no more redundant vertices. The
maximum length of such a sequence is given already by the base LB and we
denote it width(LB).

Lemma 3. For any LB, we have width(LB) ≤ |LB | + 1.
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Proof. We provide an injective mapping of languages in the sequence (except
for V1) into B. Since I2 �⊆ I1, there is some i ∈ I2 \ I1 and we map V2 to this i.
In general, since Ik �⊆ ⋃k−1

j=1 Ij , we also have i ∈ Ik \ ⋃k−1
j=1 Ij and we map Vk to

this i. ��
On the one hand, the transformation of LDBA to DPA without the reduction

yields 2O(|Q|·log |Q|) states. On the other hand, we can now show that the second
component of reduced LDBA with a base can be exponentially smaller. Further,
let us assume the LDBA is initial-deterministic, meaning that δ ∩ (Qd ×Σ ×Qd)
is deterministic, thus not resulting in blowup in the first component.

Corollary 2. For every initial-deterministic LDBA with base of size m, there
is an equivalent DPA with 2O(m2) states.

Proof. The number of composed languages is LC = 2m. Therefore, the LDBA
has at most 2m (non-equivalent) states. Hence the construction produces at most

|LC | · |LC |O(width(LB)) = 2m · (2m)O(m) = 2O(m2)

states since the LDBA is initial-deterministic, causing no blowup in the first
component. ��

4.2 Bases for LDBAs Obtained from LTL Formulas

We prove that the width for LDBA arising from the LTL transformation is only
singly exponential in the formula size. To this end, we need to recall a property
of the LTL→LDBA translation of [SEJK16]. Since partial evaluation of formulas
plays a major role in the translation, we introduce the following definition. Given
an LTL formula ϕ and sets T and F of LTL formulas, let ϕ[T, F ] denote the
result of substituting tt (true) for each occurrence of a formula of T in ϕ, and
similarly ff (false) for formulas of F . The following property of the translation
is proven in [EKRS17, Appendix C].

Proposition 2. For every LTL formula ϕ, every state s of the LDBA of
[SEJK16] is labelled by an LTL formula label(s) such that (i) L(s) = L(label(s))
and (ii) label(s) is a Boolean combination of subformulas of ϕ[Ts, Fs] for some
Ts and Fs. Moreover, the LDBA is initial-deterministic.

As a consequence, we can bound the corresponding base:

Corollary 3. For every LTL formula ϕ, the LDBA of [SEJK16] for ϕ has a
base of size 2O(|ϕ|).

Proof. Firstly, we focus on states using the same ϕ[Ts, Fs]. The language of
each state can be defined by a Boolean formula over O(|ϕ|) atoms. Since every
Boolean formula can be expressed in the disjunctive normal form, its language
is a union of the conjuncts. The conjunctions thus form a base for these states.
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There are exponentially many different conjunction in the number of atoms.
Hence the base is of singly exponential size 2O(|ϕ|) as well.

Secondly, observe that there are only 2O(|ϕ|) different formulas ϕ[Ts, Fs] and
thus only 2O(|ϕ|) different sets of atoms. Altogether, the size is bounded by

2O(|ϕ|) · 2O(|ϕ|) = 2O(|ϕ|)

��
Theorem 3. For every LTL formula ϕ, there is a DPA with 22

O(|ϕ|)
states.

Proof. The LDBA for ϕ has base of singly exponential size 2O(|ϕ|) by Corollary 3
and is initial-deterministic by Proposition 2. Therefore, by Corollary 2, the size
of the DPA is doubly exponential, in fact

2(2
O(|ϕ|))2 = 22

O(|ϕ|)

��
This matches the lower bound 22

Ω(n)
by [KR10] as well as the upper bound by the

Safra-Piterman approach. Finally, note that while the breakpoint constructions
in [SEJK16] is analogous to Safra’s vertical merging, the merging introduced
here is analogous to Safra’s horizontal merging.

5 Experimental Evaluation

We evaluate the performance of our construction on several datasets taken
from [BKS13,DWDMR08,SEJK16] and several Temporal Logic Synthesis For-
mat (TLSF) specifications [JBB+16] of the SyntComp 2016 competition.

We use the size of the constructed deterministic automaton as an indicator for
the overall performance of the synthesis procedure. In [ST03] it is argued that the
degree of determinism of the automaton is a better predictor for performance in
model-checking problems; however, this parameter is not applicable for synthesis
problems, which require deterministic automata.

We compare two versions of our implementation (with and without optimiza-
tions, see below) with the algorithms of Spot [DLLF+16]. Each tool is given
64 GB of memory and 10 min. Increasing time to 10 hours does not change the
results. More precisely, we compare the following three setups:

S. (ltl2tgba, 2.1.1) - Spot [DLLF+16] implements a version of the Safra-
Piterman determinization procedure [Red12] with several optimizations.

L2P and L2P′. (ltl2dpa, 1.0.0) - L2P is the construction of this paper, avail-
able at https://www7.in.tum.de/∼sickert/projects/ltl2dpa. L2P′ adds two opti-
mizations. First, the tool translates both the formula and its negation to DPAs
A1, A2, complements A2 to yield A2, and picks the smaller of A1, A2. Further, we
apply the simplification routines of Spot (ltlfilt and autfilt, respectively).

We consider three groups of benachmarks:

https://www7.in.tum.de/~sickert/projects/ltl2dpa
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Fig. 4. Comparison of Spot and our implementation using the best configurations.
Timeouts are denoted by setting the size of the automaton to the maximum.

Parametric Formulas. 10 benchmarks from [BKS13,SEJK16]). In six cases S
and L2P′ produce identical results. The other four are

R(n) =
∧n

i=1(GFpi ∨ FGpi+1) G(n) = (
∧n

i=1GFpi) → (
∧n

i=1GFqi)
θ(n) = ¬((

∧n
i=1GFpi) → G(q → Fr)) F (n) =

∧n
i=1(GFpi → GFqi)

for which the results are shown in (Fig. 4a). Additionally, we consider the “f”
formulas from [SEJK16] (Table 1). Observe that L2P′ performs clearly better,
and the gap between the tools grows when the parameter increases.

Randomly Generated Formulas from [BKS13] (Fig. 4b).

Real Data. Formulas taken from case studies and synthesis competitions—the
intended domain of application of our approach. Figure 4c and d show results
for the real-world formulas of [BKS13] and the TLSF specifications contained in
the Acacia set of [JBB+16]. Table 1 shows results for LTL formulas expressing
properties of Szymanski’s protocol [DWDMR08], and for the generalised buffer
benchmark of Acacia.
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Table 1. Number of states and number of used colours in parenthesis for the con-
structed automata. Timeouts are marked with t.

f(1, 0) f(1, 2) f(1, 4) f(2, 0) f(2, 2) zn zp1 zp2 zp3 Buffer

S 18(6) 141(8) 2062(8) 208(12) 883(12) t t t t t

L2P 12(8) 114(9) 332(15) 144(14) 4732(19) t t t t 1425(27)

L2P′ 12(8) 78(7) 271(11) 106(9) 1904(15) 32(6) 42(6) 111(12) 97(12) 435(4)

Average Compression Ratios. The geometric average compression ratio for
a benchmark suite B is defined as

∏
ϕ∈B(nS

ϕ/nL2P ′
ϕ )

1/|B|
, where nS

ϕ and nL2P ′
ϕ

denote the number of states of the automata produced by Spot and L2P′, respec-
tively. The ratios in our experiments (excluding benchmarks where Spot times
out) are: 1.14 for random formulas, 1.12 for the real-world formulas of [BKS13],
and 1.35 for the formulas of Acacia.

6 Conclusion

We have presented a simple, “Safraless”, and asymptotically optimal transla-
tion from LTL and LDBA to deterministic parity automata. Furthermore, the
translation is suitable for an on-the-fly implementation. The resulting automata
are substantially smaller than those produced by the SPOT library for formulas
obtained from synthesis specifications, and have comparable or smaller size for
other benchmarks. In future work we want to investigate the performance of the
translation as part of a synthesis toolchain.

Acknowledgments. The authors want to thank Michael Luttenberger for helpful
discussions and the anonymous reviewers for constructive feedback.
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