
Encodings of Bounded Synthesis

Peter Faymonville1, Bernd Finkbeiner1, Markus N. Rabe2,
and Leander Tentrup1(B)

1 Saarland University, Saarbrücken, Germany
tentrup@react.uni-saarland.de

2 University of California, Berkeley, USA

Abstract. The reactive synthesis problem is to compute a system sat-
isfying a given specification in temporal logic. Bounded synthesis is the
approach to bound the maximum size of the system that we accept as
a solution to the reactive synthesis problem. As a result, bounded syn-
thesis is decidable whenever the corresponding verification problem is
decidable, and can be applied in settings where classic synthesis fails,
such as in the synthesis of distributed systems. In this paper, we study
the constraint solving problem behind bounded synthesis. We consider
different reductions of the bounded synthesis problem of linear-time tem-
poral logic (LTL) to constraint systems given as boolean formulas (SAT),
quantified boolean formulas (QBF), and dependency quantified boolean
formulas (DQBF). The reductions represent different trade-offs between
conciseness and algorithmic efficiency. In the SAT encoding, both inputs
and states of the system are represented explicitly; in QBF, inputs are
symbolic and states are explicit; in DQBF, both inputs and states are
symbolic. We evaluate the encodings systematically using benchmarks
from the reactive synthesis competition (SYNTCOMP) and state-of-the-
art solvers. Our key, and perhaps surprising, empirical finding is that
QBF clearly dominates both SAT and DQBF.

1 Introduction

There has been a recent surge of new algorithms and tools for the synthesis
of reactive systems from temporal specifications [5,9,14,15,19]. Roughly, these
approaches can be classified into two categories: game-based synthesis [8] trans-
lates the specification into an deterministic automaton and subsequently deter-
mines the winner in a game played on the state graph of this automaton; bounded
synthesis [25] constructs a constraint system that characterizes all systems, up to
a fixed bound on the size of the system, that satisfy the specification.

The success of game-based synthesis is largely due to the fact that it is often
possible to represent and analyze the game arena symbolically, in particular with
BDDs (cf. [19]). As a result, it has been possible to scale synthesis to realistic
benchmarks such as the AMBA bus protocol [3]. However, because the deter-
ministic automaton often contains many more states than are needed by the

Supported by the European Research Council (ERC) Grant OSARES (No. 683300).

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 354–370, 2017.
DOI: 10.1007/978-3-662-54577-5 20

Encodings of Bounded Synthesis 355

implementation, the synthesized systems are often unnecessarily (and imprac-
tically) large (cf. [11]). This problem is addressed by bounded synthesis, where
an iteratively growing bound can ensure that the synthesized system is actually
the smallest possible realization of the specification. However, bounded synthesis
has not yet reached the same scalability as game-based synthesis. A likely expla-
nation for the phenomenon is that the encoding of bounded synthesis into the
constraint system is “less symbolic” than the BDD-based representation of the
game arena. Even though bounded synthesis tools typically use powerful SMT
solvers, a careful study of the standard encoding shows that both the states of
the synthesized system and its inputs are enumerated explicitly [14].

The question arises whether it is the encodings that need to be improved, or
whether the poor scalability points to a more fundamental flaw in the underly-
ing solver technology. To answer this question, we reduce the bounded synthe-
sis problem of linear-time temporal logic (LTL) to constraint systems given as
boolean formulas (SAT), quantified boolean formulas (QBF), and dependency
quantified boolean formulas (DQBF). The reductions are landmarks on the spec-
trum of symbolic vs. explicit encodings. All encodings represent the synthesized
system in terms of its transition function, which identifies the successor state in
terms of the current state and the input, and additionally in terms of an output
function, which identifies the output signals in terms of the current state and
the input, and annotation functions, which relate the states of the system to the
states of a universal automaton representing the specification.

In the SAT encoding of the transition function, a separate boolean variable
is used for every combination of a source state, an input signal, and a target
state. The encoding is thus explicit in both the state and the input. In the
QBF encoding, a universal quantification over the inputs is added, so that the
encoding becomes symbolic in the inputs, while staying explicit in the states.
Quantifying universally over the states, just like over the input signals, is not
possible in QBF because the states occur twice in the transition function, as
source and as target. Separate quantifiers over sources and targets would allow
for models where, for example, the value of the output function differs, even
though both the source state and the input are the same. In DQBF we can
avoid such artifacts and obtain a “fully symbolic” encoding in both the states
and the input.

We evaluate the encodings systematically using benchmarks from the reactive
synthesis competition (SYNTCOMP) and state-of-the-art solvers. Our empirical
finding is that QBF clearly dominates both SAT and DQBF. While the domi-
nance of QBF over SAT fits with our intuition that a more symbolic encoding
provides opportunities for optimization in the solver, the dominance of QBF over
DQBF is surprising. This indicates that with the currently available solvers, the
most symbolic encoding (DQBF) is not the best choice. Of course, with bet-
ter DQBF solvers, this may change: our benchmarks identify opportunities for
improvement for current DQBF solvers.

356 P. Faymonville et al.

Related Work. The game-based approach to the synthesis of reactive systems
dates back to Büchi and Landweber’s seminal 1969 paper [8]. Modern imple-
mentations of this approach exploit symbolic representations of the game arena,
using BDDs (cf. [19]) or decision procedures for the satisfiability of Boolean for-
mulas (SAT-, QBF- and DQBF-solvers). We refer to [4] for a detailed comparison
of the different methods.

Bounded synthesis belongs to the class of Safraless decision procedures [22].
Safraless synthesis algorithms avoid the translation of the specification into
an equivalent deterministic automaton via Safra’s determinization procedure.
Instead, the specification is first translated into an equivalent universal co-Büchi
automaton, whose language is then approximated in a sequence of determin-
istic safety automata, obtained by bounding the number of visits to reject-
ing states [25]. Most synthesis tools for full LTL, including Unbeast [9], and
Acacia+ [5], are based on this idea.

Bounded synthesis [25] limits not only the number of visits to rejecting states,
but also the number of states of the synthesized system itself. As a result, the
bounded synthesis problem can be represented as a decidable constraint system,
even in settings where the classic synthesis problem is undecidable, such as the
synthesis of asynchronous and distributed systems (cf. [14]). There have been
several proposals for encodings of bounded synthesis. The first encoding [13,25]
was based on first-order logic modulo finite integer arithmetic. Improvements to
the original encoding include the representation of transition systems that are
not necessarily input-preserving, and, hence, often significantly smaller [14], the
lazy generation of the constraints from model checking runs [11], and specifi-
cation rewriting and modular solving [21]. Recently, a SAT-based encoding was
proposed [27]. Another SAT-based encoding [12] bounds, in addition to the num-
ber of states, also the number of loops. A QBF-based encoding has been used
in the related problem of solving Petri games [10]. Petri games can be used to
solve certain distributed synthesis problems. They have, however, a significantly
simpler winning condition than the games resulting from LTL specifications.

This paper presents the first encodings of bounded synthesis based on QBF
and DQBF, and the first comprehensive evaluation of the spectrum of encodings
from SAT to DQBF with state-of-the-art solvers. The encodings are significantly
more concise than the previous SAT-based encodings and provide opportunities
for solvers to exploit the symbolic representation of inputs and states. The empir-
ical evidence shows that, with current solvers, the QBF encoding is superior to
the SAT and DQBF encodings. A further contribution of the paper are the
benchmarks themselves, which pinpoint opportunities for the improvement of
the solvers, in particular for DQBF.

2 Preliminaries

Given a finite set of variables V , we identify boolean assignments α : V → B as
elements from the powerset of V , i.e., given V and α, then v = {v | α(v) = �} ∈
2V is a representation of α. We use B(V) to denote the set of propositional
boolean formulas over the variables V .

Encodings of Bounded Synthesis 357

LTL. Linear-time temporal logic (LTL) is the standard specification language
for linear-time properties. Let Σ be a finite alphabet, i.e., a finite set of atomic
propositions. The grammar of LTL is given by

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ | ϕ U ψ | ϕ R ψ,

where p ∈ Σ is an atomic proposition. The abbreviations true := p∨¬p, false :=
¬true, ϕ = true U ϕ, and ϕ = false R ϕ are defined as usual. We assume
standard semantics and write σ � ϕ if σ ∈ (2Σ)ω satisfies ϕ. The language of ϕ,
written L(ϕ), is the set of ω-words that satisfy ϕ.

Automata. A universal co-Büchi automaton A over finite alphabet Σ is a tuple
〈Q, q0, δ, F 〉, where Q is a finite set of states, q0 ∈ Q the designated initial state,
δ : Q × 2Σ × Q is the transition relation, and F ⊆ Q is the set of rejecting
states. Given an infinite word σ ∈ (2Σ)ω, a run of σ on A is an infinite path
q0q1q2 · · · ∈ Qω where for all i ≥ 0 it holds that (qi, σi, qi+1) ∈ δ. A run is
accepting, if it contains only finitely many rejecting states. A accepts a word σ,
if all runs of σ on A are accepting. The language of A, written L(A), is the set
{σ ∈ (2Σ)ω | A accepts σ}.

We represent automata as directed graphs with vertex set Q and a sym-
bolic representation of the transition relation δ as propositional boolean formulas
B(Σ). The rejecting states in F are marked by double lines.

Lemma 1. Given an LTL formula ϕ, we can construct a universal co-Büchi
automaton Aϕ with O(2|ϕ|) states that accepts the language L(ϕ).

Example 1. Consider the LTL formula ψ = (r1 → g1) ∧ (r2 → g2) ∧
¬(g1 ∧ g2). Whenever there is a request ri, the corresponding grant gi must be

set eventually. Further, it is disallowed to set both grants simultaneously. The
universal co-Büchi automaton Aψ that accepts the same language as ψ is shown
in Fig. 1(a).

Transition Systems. In the following, we partition the set of atomic propositions
into a set I that contains propositions controllable by the environment and a set
O that contains propositions controllable by the system. A transition system T
is a tuple 〈T, t0, τ〉 where T is a finite set of states, t0 ∈ T is the designated initial
state, and τ : T×2I → 2O×T is the transition function. The transition function τ
maps a state t and a valuation of the inputs i ∈ 2I to a valuation of the outputs,
also called labeling, and a next state t′. If the labeling produced by τ(t, i) is
independent of i, we call T a state-labeled (or Moore) transition system and
transition-labeled (or Mealy) otherwise. Formally, T is a state-labeled transition
system if, given a state t ∈ T and any i �= i′ ∈ 2I with τ(t, i) = (o,) and
τ(t, i′) = (o′,) it holds that o = o′.

Given an infinite word i0i1 · · · ∈ (2I)ω over the inputs, T produces an infinite
trace ({t0} ∪ i0 ∪o0)({t1} ∪ i1 ∪o1) · · · ∈ (2T∪I∪O)ω where τ(tj , ij) = (oj , tj+1)
for every j ≥ 0. A path w ∈ (2I∪O)ω is the projection of a trace to the atomic
propositions. We denote the set of all paths generated by a transition system T
as Paths(T). A transition system realizes an LTL formula if Paths(T) ⊆ L(ϕ).

358 P. Faymonville et al.

Example 2. Figure 1(b) depicts the two-state (state-labeled) transition system
Tarb = 〈{t0, t1}, t0, τ〉 with τ(t0, i) = ({g1}, t1) and τ(t1, i) = ({g2}, t0) for every
i ∈ 2I . The set of paths is Paths(T) = ({g1}{g2})ω ∪ (2{i1,i2})ω.

q0

q1 q2

qe

�

r1 r2

g1g2

g1 g2

�
notamotuaihcüB-oclasrevinU)a(Aψ

t0 t1

�/g1

�/g2

(b) Transition system Tarb

Fig. 1. A specification automaton over inputs r1, r2 and outputs g1, g2 and a realizing
transition system.

3 Bounded Synthesis

Bounded synthesis [14] is a synthesis procedure for LTL specifications that pro-
duces size-optimal transition systems. A given LTL formula ϕ is translated into
a universal co-Büchi automaton A that accepts the language L(ϕ). A transition
system T realizes specification ϕ if, and only if, every trace generated by T is
in the language L(ϕ). T is accepted by A if every path of the unique run graph,
that is the product of T and A, has only finitely many visits to rejecting states.
This acceptance is witnessed by a bounded annotation on this product.

The bounded synthesis approach is to synthesize a transition system of
bounded size n, by solving a constraint system that asserts the existence of
a transition system and labeling function of T as well as a valid annotation. In
this section we discuss how to construct a formula that represents that a given
annotation is correct. We will use this formula as a building block for different
bounded synthesis constraint systems in Sect. 4.

The product of a transition system T = 〈T, t0, τ〉 and a universal co-Büchi
automaton A = 〈Q, q0, δ, F 〉 is a run graph G = 〈V,E〉, where V = T × Q is the
set of vertices and E ⊆ V × V is the edge relation with

((t, q), (t′, q′)) ∈ E iff ∃i ∈ 2I .∃o ∈ 2O. τ(t, i) = (o, t′) and (q, i ∪ o, q′) ∈ δ.

An annotation λ : T ×Q → {⊥}∪N is a function that maps nodes from the run
graph to either unreachable ⊥ or a natural number k. An annotation is valid if
it satisfies the following conditions:

Encodings of Bounded Synthesis 359

– the pair of initial states (t0, q0) is labeled by a natural number (λ(t0, q0) �= ⊥),
and

– if a pair of states (t, q) is annotated with a natural number (λ(t, q) = k �= ⊥)
then for every i ∈ 2I and o ∈ 2O with τ(t, i) = (o, t′) and (q, i∪o, q′) ∈ δ, the
successor pair (t′, q′) is annotated with a greater number, which needs to be
strictly greater if q′ ∈ F is rejecting. That is, λ(t′, q′) �q′ k where �q′ := >
if q′ ∈ F and ≥ otherwise.

〈t0, q0〉

λ : 0

〈t1, q0〉

λ : 0

〈t1, q1〉

λ : 1

〈t1, q2〉

λ : 2

〈t0, q1〉

λ : 2

〈t0, q2〉

λ : 1

〈t0, qe〉

λ : ⊥

〈t1, qe〉

λ : ⊥

Fig. 2. Run graph of the automaton Aψ and the two-state transition system Tarb from
the earlier example (Fig. 1). The bottom node part displays a valid λ-annotation of the
run graph.

Example 3. Figure 2 shows the run graph of Tarb and Aψ from our earlier
example (Fig. 1). Additionally, a valid annotation λ is provided at the second
component of every node. One can verify that the annotation is correct by check-
ing every edge individually. For example, the annotation has to increase from
〈t0, q0〉 → 〈t1, q2〉 and from 〈t0, q2〉 → 〈t1, q2〉 as q2 is rejecting. As λ(〈t0, q0〉) = 0
and λ(〈t0, q2〉) = 1, it holds that λ(〈t1, q2〉) must be at least 2.

Given T , A, and λ, we want to derive a propositional constraint that is
satisfiable if, and only if, the annotation is valid. First, by the characterization
above, we know that we can verify the annotation by local checks, i.e., we have to
consider only one step in the product graph. To derive a propositional encoding,
we encode T , A, and λ:

– T = 〈T, t0, τ〉. We represent the transition function τ by one variable ot,i

for every output proposition o ∈ O and one variable τt,i,t′ representing a
transition form t to t′. Given (t, t′) ∈ T × T and i ∈ 2I , it holds that (1)
τt,i,t′ is true if, and only if, τ(t, i) = (, t′), and (2) ot,i is true if, and only if,
τ(t, i) = (o,) and o ∈ o.

– A = 〈Q, q0, δ, F 〉. We represent δ : (Q × 2I∪O × Q) as propositional formulas
δt,q,i,q′ over the output variables ot,i. That is, an assignment o to the variables
ot,i satisfies δt,q,i,q′ iff (q, i ∪ o, q′) ∈ δ.

360 P. Faymonville et al.

– We first split the annotation λ into two parts: The first part λB : T × Q → B

represents the reachability constraint and the second part λ# : T × Q → N

represents the bound. For every t ∈ T and q ∈ Q we introduce variables λB

t,q

that we assign to be true iff the state pair is reachable from the initial state
pair and a bit vector λ#

t,q of length O(log(|T | · |Q|)) that we assign the binary
encoding of the value λ(t, q).

Using the variables ot,i, τt,i,t′ , λB

t,q, and λ#
t,q (which have a unique assignment for

a given T , A, and λ) as well as the propositional formulas δt,q,i,q′ , we construct
a formula that represents that the annotation is valid:

∧

q∈Q

∧

t∈T

⎛

⎝λB

t,q →
∧

q′∈Q

∧

i∈2I

(
δt,q,i,q′ →

∧

t′∈T

(
τt,i,t′ → λB

t′,q′ ∧ λ#
t′,q′ �q′ λ#

t,q

))⎞

⎠

Theorem 1 [14]. Given T , A, and an annotation λ. If the propositional encod-
ing of T , A, and λ satisfy the constraint system, then λ is a valid annotation.

4 Encodings

Using the constraints developed in the last section for checking the validity of
a given annotation, we now consider the problem of finding a transition system
with a valid annotation.

This section introduces four encodings, starting with the most explicit encod-
ing and moving first to an input-symbolic variant, then to a input- and state-
symbolic variant and then further to a “fully symbolic” variant which treats
inputs, transition systems states and the specification automaton symbolically.
The first encoding can be solved using a SAT solver, the second requires a QBF
solver, and the remaining two encodings require a DQBF solver. We will indi-
cate for each encoding the difficulty to switch from the decision variant of the
problem (realizability) to the constructive variant of the problem (synthesis).

4.1 SAT: The Basic Encoding

The basic encoding of bounded synthesis follows almost immediately from the
last section. Instead of checking that for given T , A, and λ, the unique assign-
ment to the variables satisfies the formula, we existentially quantify over the
variables to find an assignment. We only have to add constraints that assert
that the reachability information, represented in the variables λB

t,q, is consistent,
and that the transition relation, represented in the variables τt,i,t′ , provides at
least one transition for every source state and every input. The consistency of
the reachability annotation is given once we assert λB

t0,q0 , as the formula itself
asserts that the λB

t,q annotations are consistent with the transition relation.

Encodings of Bounded Synthesis 361

∃{λB

t,q, λ
#
t,q | t ∈ T, q ∈ Q}

∃{τt,i,t′ | (t, t′) ∈ T × T, i ∈ 2I}
∃{ot,i | o ∈ O, t ∈ T, i ∈ 2I}
λB

t0,q0 ∧
∧

t∈T

∧

i∈2I

∨

t′∈T

τt,i,t′

∧

q∈Q

∧

t∈T

⎛

⎝λB

t,q →
∧

q′∈Q

∧

i∈2I

(
δt,q,i,q′ →

∧

t′∈T

(
τt,i,t′ → λB

t′,q′ ∧ λ#
t′,q′ �q′ λ#

t,q

))⎞

⎠

Theorem 2. The size of the constraint system is in O(nm2 · 2|I| · (|δq,q′ | +
n log(nm))) and the number of variables is in O(n(m log(nm)+2|I| · (|O|+n))),
where n = |T | and m = |Q|.

Since we only quantify existentially over propositional variables, the encoding
can be solved by a SAT solver. The synthesized transition system can be directly
extracted from the satisfying assignment of the solver. For each state and each
input, there is at least one true variable, indicating a possible successor. The
variables ot,i indicate whether output o is given at state t for input i.

4.2 QBF: The Input-Symbolic Encoding

One immediate drawback of the encoding above is the explicit handling of the
inputs in the existential quantifiers representing the transition relation τ and
the outputs o, which introduces several variables for each possible input i ∈ 2I .
This leads to a constraint system that is exponential in the number of inputs,
both in the size of the constraints and in the number of variables. Also, since all
variables are quantified on the same level, some of the inherent structure of the
problem is lost and the solver will have to assign a value to each propositional
variable, which may lead to non-minimal solutions of τ and o due to unnecessary
interdependencies.

By adding a universal quantification over the input variables, we obtain a
quantified boolean formula (QBF) and avoid this exponential blow-up. In this
encoding, the variables representing the λ-annotation remain in the outer exis-
tential quantifier - they cannot depend on the input. We then universally quantify
over the valuations of the input propositions I (interpreted as variables in this
encoding) before we existentially quantify over the remaining variables.

By the semantics of QBF, the innermost quantified variables, representing
the transition function τ of T , can be seen as boolean functions (Skolem func-
tions) whose domain is the set of assignments to I. Indicating the dependency
on the inputs in the quantifier hierarchy, we can now drop the indices i from
the variables τt,i,t′ and ot,i. Further, we now represent δ : (Q × 2I∪O × Q) as
propositional formulas δt,q,q′ over the inputs I and output variables ot (which
depend on I) with the following property: an assignment i ∪ o satisfies δt,q,q′ iff
(q, i ∪ o, q′) ∈ δ. We obtain the following formula for the input-symbolic encod-
ing. (The gray box highlights the changes in the quantifier prefix compared to
the previous encoding.)

362 P. Faymonville et al.

∃{λB

t,q, λ
#
t,q | t ∈ T, q ∈ Q}

∀I

∃{τt,t′ | (t, t′) ∈ T × T}
∃{ot | o ∈ O, t ∈ T}
λB

t0,q0 ∧
∧

t∈T

∨

t′∈T

τt,t′

∧

q∈Q

∧

t∈T

⎛

⎝λB

t,q →
∧

q′∈Q

(
δt,q,q′ →

∧

t′∈T

(
τt,t′ → λB

t′,q′ ∧ λ#
t′,q′ �q′ λ#

t,q

))⎞

⎠

Theorem 3. Let n = |T | and m = |Q|. The size of the input-symbolic constraint
system is in O(nm2(|δq,q′ |+n log(nm))). The number of existential and universal
variables is in O(n(m log(nm) + |O| + n)) and O(|I|), respectively.

The input-symbolic encoding is not only exponentially smaller (in |I|) than
the basic encoding, but also enables the solver to exploit the dependency between
I and the transition function τ . An additional property of this encoding that
we use in the implementation is the following: If we fix the values of the λ-
annotation, the resulting 2QBF query represents all transition systems that are
possible with respect to the λ-annotation. Since the outermost variables are
existentially quantified, their assignments (in case the formula is satisfiable) can
be extracted easily, even from non-certifying QBF solvers. For synthesis, we
thus employ a two-step approach. We first solve the complete encoding and, if
the formula was satisfiable, extract the assignment of the annotation variables
λB

t,q, and λ#
t,q. In the second step we instantiate the formula by the satisfiable

λ-annotation and solve the remaining formula with a certifying solver to gener-
ate boolean functions for the inner existential variables. Those can be then be
translated into a realizing transition system.

4.3 DQBF/EPR: The State- and Input-Symbolic Encoding

The previous encoding shows how to describe the functional dependency between
the inputs I and the transition function τ and outputs o as a quantifier alterna-
tion. The reactive synthesis problem, however, contains more functional depen-
dencies that we can exploit.

In the following we describe an encoding that also treats the states of the
system to generate symbolically. First, we change the definition of T slightly.
Where before, T was the set of states of the transition system, we now consider
T as the set of state bits of the transition system. Consequently, the state space
of T is now 2T and we consider the initial state to be the all-zero assignment to
the variables T .

Since all variables depend on the state, we no longer have propositional vari-
ables. Instead, we quantify over the existence of boolean functions. Candidate

Encodings of Bounded Synthesis 363

logics for solving this query are dependency-quantified boolean formulas (DQBF)
and the effective propositional fragment of first-order logic (EPR). While the
existential quantification over functions is not immediately available in DQBF,
we can encode them in a quadratic number of constraints, which is known as
Ackermannization [7].

∃{λB

q : 2T → B, λ#
q : 2T → B

b | q ∈ Q}
∃τ : 2T × 2I → 2T

∃{o : 2T × 2I → B | o ∈ O}

∀I.∀T, T ′.

(T = 0 → λB

q0(T))

∧

q∈Q

⎛

⎝λB

q (T) →
∧

q′∈Q

(
δq,q′ ∧ (τ(T, I) ⇒ T ′) → λB

q′(T ′) ∧ λ#
q′(T ′) �q′ λ#

q (T)
)
⎞

⎠

Theorem 4. Let n = |T | and m = |Q|. The size of the state-symbolic constraint
system is in O(m2(|δq,q′ | + log(nm))). The number of existential and universal
variables is in O(n + m log(nm) + |O|) and O(n + |I|), respectively.

Encoding the states of the specification automaton. The last dependency that we
consider here is the dependency on the state space of the specification automa-
ton. As a precondition, we need a symbolic representation A = 〈Q, qinit, δ, qreject〉
of a universal co-Büchi automaton over alphabet I ∪O, where Q is a set of vari-
ables whose valuations represent the state space, qinit ∈ B(Q) is a propositional
formula representing the initial state, δ ∈ B(Q, I ∪ O,Q′) is the transition rela-
tion (q ∪ i ∪ o ∪ q′ satisfies δ iff q

i∪o−−→ q′), and qreject ∈ B(Q) is a formula
representing the rejecting states.

∃λB : 2T × 2Q → B, λ# : 2T × 2Q → B
b

∃τ : 2T × 2I → 2T

∃{o : 2T × 2I → B | o ∈ O}

∀I.∀T, T ′.∀Q,Q′.

(tinit ∧ qinit → λB(T,Q)) ∧
(
λB(T,Q) →

(
δ ∧ (τ(T, I) ⇒ T ′) → λB(T ′, Q′) ∧ λ#(T ′, Q′) �q′

reject
λ#(T,Q)

))

Theorem 5. Let n = |T | and m = |Q|. The size of the state-symbolic constraint
system is in O(n + m + |δ| + log(nm)). The number of existential and universal
variables is in O(log n + |O|) and O(n + m + |I|), respectively.

4.4 Comparison

Table 1 compares the sizes of the encodings presented in this paper. From the
basic propositional encoding, we developed more symbolic encodings by making

364 P. Faymonville et al.

Table 1. The table compares the encodings with respect to the number of variables
and the size of the constraint system. We indicate the number of states of the transition
system and the automaton by n and m, respectively.

existentials # universals Constraint size

Basic n(m log(nm) + 2|I| · (|O|+ n)) - nm2 · 2|I| ·(∣∣δq,q′
∣
∣+ n log(nm))

Input-symbolic n(m log(nm) + |O|+ n) |I| nm2(
∣
∣δq,q′

∣
∣+ n log(nm))

State-symbolic n + m log(nm) + |O| n + |I| m2(
∣
∣δq,q′

∣
∣+ log(nm))

Symbolic logn + |O| n + m + |I| n + m + |δ|+ log(nm)

dependencies explicit and employing Boolean functions. This conciseness, how-
ever, comes with the price of higher solving complexity. In the following section
we study this tradeoff empirical.

5 Experimental Evaluation

5.1 Implementation

We implemented the encodings described in this paper in a tool called BoSy1.
The LTL to automaton conversion is provided by the tool ltl3ba [1]. We reduce
the number of counters and their size by only keeping them for automaton states
within a rejecting strongly connected component, as proposed in [21]. The tool
searches for a system implementation and a counter-strategy for the environment
in parallel. An exponential search strategy is employed for the bound on the size
of the transition system. In synthesis mode, we apply as a post-processing step
circuit minimization provided by ABC [6].

For solving the non-symbolic encoding, we translate the propositional query
to the DIMACS file format and solve it using the CryptoMiniSat SAT solver in
version 5. The satisfying assignment is used to construct the realizing transition
system.

The input-symbolic encoding is translated to the QDIMACS file format and
is solved by a combination of the QBF preprocessor Bloqqer [2] and QBF solver
RAReQS [18]. The solution extraction is implemented in two steps. For satisfi-
able queries, we first derive a top level (λ) assignment [26] and instantiate the
QBF query using this assignment which results in a 2QBF query that represents
transition systems that satisfy the specification. This is then solved using a cer-
tifying QBF solver, such as QuAbS [28], CADET [23], or CAQE [24]. Among
those, QuAbS performed best and was used in the evaluation. The resulting
resulting Skolem functions, represented as AIGER circuit, are transformed into
a representation of the transition system.

The symbolic encodings are translated to DQDIMACS file format and solved
by the DQBF solver iDQ [16]. Due to limited solver support, we have not imple-
mented solution extraction.

1 The tool is available at https://react.uni-saarland.de/tools/bosy/.

https://react.uni-saarland.de/tools/bosy/

Encodings of Bounded Synthesis 365

Table 2. Implementation matrix

Basic Input-symbolic State-symbolic Symbolic

Fragment SAT QBF DQBF/EPR DQBF/EPR

Mealy/Moore �/� �/� �/� �/�
Solution extraction � � � �

For comparison, we also implemented an SMT version using the classical
encoding [14]. We also tested the state-symbolic and symbolic encoding with
state-of-the art EPR solvers, but the solving times were not competitive. Table 2
gives an overview over the capabilities of the implemented encodings.

5.2 Setup and Benchmarks

For our experiments, we used a machine with a 3.6GHz quad-core Intel Xeon
processor and 32GB of memory. The timeout and memout were set to 1 h and
8GB, respectively. We use the LTL benchmark sets from the latest reactive
synthesis competition (SYNTCOMP 2016) [17]. The benchmarks include a vari-
ety of arbiter specifications of increasing complexity, load balancers, buffers,
detectors as well as benchmark suites from previously existing tools. Some of
the benchmark classes are parameterized in the number of clients or masters,
which allows scaling them for experimental purposes. In total, the realizability
benchmark suite of SYNTCOMP 2016 consists of 195 benchmarks. We have
additionally added six instances from scalable benchmark classes of this set to
cover larger parameter values, resulting in a total size of 201 benchmarks for our
benchmark set.

For comparison, we run the other two solves that participated in the SYNT-
COMP 2016, that is Acacia [5], a game-based solver, and Party [20], a variant
of the SMT bounded synthesis.

5.3 Realizability

In Table 3, we report results on realizability for all scalable instances from the
aforementioned competition. We have omitted the results of our fully symbolic
encoding from the table, since it could not solve a single instance of the selected
benchmarks. The results from our own SMT encoding are also omitted, since they
are very close to the results of the tool Party. Highlighted are those entries which
reach the highest parameter value among the solvers and the best cumulative
runtime within the class of instances.

An overall comparison of all realizability solvers on the full benchmark set is
provided in Fig. 3. For the individual solvers, we track the number of instances
solved by this solver within a certain time bound.

366 P. Faymonville et al.

Table 3. Experimental results on selected scalable instances. Reported is the maximal
parameter value k for which the instance could be solved and the cumulative solving
time t (in seconds) up to this point.

basic input-sym state-sym Acacia Party

instance max k sum t max k sum t max k sum t max k sum t max k sum t

simple-arbiter 7 1008.7 8 2.7 3 100.5 8 59.2 6 902.7

full-arbiter 4 2994.5 3 0.6 2 13.3 5 2683.4 3 111.7

roundrob-arbiter 4 143.1 4 227.0 2 11.0 4 345.6 4 19.2

loadfull 5 268.7 8 44.2 2 25.1 4 83.7 4 213.5

prio-abiter 4 176.5 4 1.6 2 0.4 6 701.2 3 69.0

loadcomp 5 36.9 6 639.4 3 432.1 5 387.8 5 212.7

genbuf 2 1840.3 2 2711.8 0 – 5 159.3 0 –

generalized-buffer 2 2093.8 2 3542.8 0 – 6 3194.8 2 792.5

load-balancer 5 1148.8 8 83.2 2 75.3 5 270.8 0 –

detector 6 1769.0 8 1010.7 3 239.4 8 261.6 5 370.3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

10−2

10−1

100

101

102

103

instances

ti
m

e
(s

e
c
.)

fully-symbolic

state-symbolic

Party elli rally

SMT

basic

input-symbolic

Acacia

Fig. 3. Number of solved instances within 1 h among the 201 instances from
SYNTCOMP 2016. The time axis has logarithmic scale.

Encodings of Bounded Synthesis 367

5.4 Synthesis

To evaluate the different encodings in terms of their solutions to the synthesis
problem and to compare with other competing tools, we measure the size of
the provided solutions. In line with the rules of SYNTCOMP, the synthesized
transition system is encoded as an AIGER circuit. The size of the result is mea-
sured in terms of the number of AND gates. In the comparisons, we only consider
instances where both solvers in the comparison had a result. All resulting circuits
have been minimized using ABC.

First, we compare in the scatter plot of Fig. 4 the propositional, non-symbolic
encoding to the input-symbolic encoding. Since most points are below the diag-
onal and are therefore smaller than their counterparts, the input-symbolic solu-
tions are better in size compared to the non-symbolic encoding.

100 101 102 103
100

101

102

103

basic

in
p
u
t-

sy
m

b
o
li
c

Fig. 4. Scatter plot comparing the size of the synthesized strategies between the basic
(Sect. 4.1) and input-symbolic (Sect. 4.2) encoding. Both axes have logarithmic scale.

In Fig. 5, we compare our input-symbolic encoding against two competing
tools. On the left, we observe that the solution sizes of our input-symbolic encod-
ing are significantly better (observe the log-log scale) than the solutions provided
by Acacia. The reason for the size difference is that the strategies of Acacia may
depend on the current state of the specification automaton, as they are extracted
from the resulting safety game. When comparing to the SMT-based Party tool,
we again see a strict improvement in terms of strategy size, but not as significant
as for Acacia.

368 P. Faymonville et al.

We thus observe that the ability to universally quantify over the inputs and
extract the transition system from the functional descriptions leads to advan-
tages in terms of the size of the solution strategies.

100 101 102 103 104 105
100

101

102

103

104

105
Acacia

B
o
S
y

(i
n
p
u
t-

sy
m

b
o
li
c)

100 101 102 103
100

101

102

103

Party elli rally

B
o
S
y

(i
n
p
u
t-

sy
m

b
o
li
c)

Fig. 5. Scatter plot comparing the size of the synthesized strategies of BoSy, Acacia,
and Party elli rally. Both axes have logarithmic scale.

6 Conclusion

We have revisited the bounded synthesis problem [14] and presented alternative
encodings into boolean formulas (SAT), quantified boolean formulas (QBF), and
dependency-quantified boolean formulas (DQBF). Our evaluation shows that the
QBF approach clearly dominates the SAT approach and the DQBF approach,
and also previous approaches to bounded synthesis – both in terms of the num-
ber of instances solved and in the size of the solutions. This demonstrates that,
while modern QBF-solvers effectively exploit the input-symbolic representation,
current DQBF solvers cannot yet take similar advantage of the state-symbolic
representation. The benchmarks obtained from the encodings of bounded synthe-
sis problems should therefore be useful in improving current solvers, in particular
for DQBF.

References

1. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata trans-
lation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28756-5 8

2. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
101–115. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 10

http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-642-22438-6_10

Encodings of Bounded Synthesis 369

3. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Interactive presentation: automatic hardware synthesis from specifications: a case
study. In: Proceedings of DATE, pp. 1188–1193. EDA Consortium, San Jose, CA,
USA (2007)

4. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54013-4 1

5. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 45

6. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 5

7. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Santuari, A., Sebastiani, R.:
To ackermann-ize or not to ackermann-ize? on efficiently handling uninterpreted
function symbols in SMT (EUF ∪T). In: Hermann, M., Voronkov, A. (eds.) LPAR
2006. LNCS (LNAI), vol. 4246, pp. 557–571. Springer, Heidelberg (2006). doi:10.
1007/11916277 38

8. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by
finite-state strategies. Trans. Am. Math. Soc. 138, 295–311 (1969).
http://www.jstor.org/stable/1994916

9. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19835-9 25

10. Finkbeiner, B.: Bounded synthesis for petri games. In: Meyer, R., Platzer, A.,
Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 223–237.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-23506-6 15

11. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-27940-9 15

12. Finkbeiner, B., Klein, F.: Bounded cycle synthesis. In: Chaudhuri, S., Farzan,
A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 118–135. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-41528-4 7

13. Finkbeiner, B., Schewe, S.: SMT-based synthesis of distributed systems. In: Pro-
ceedings of AFM (2007)

14. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013)
15. Finkbeiner, B., Tentrup, L.: Detecting unrealizable specifications of distributed

systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
78–92. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 6

16. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF
solving. In: Proceedings of POS@SAT. EPiC Series in Computing, vol. 27, pp.
103–116. EasyChair (2014)

17. Jacobs, S., Bloem, R., Brenguier, R., Khalimov, A., Klein, F., Könighofer, R.,
Kreber, J., Legg, A., Narodytska, N., Pérez, G.A., Raskin, J., Ryzhyk, L., Sankur,
O., Seidl, M., Tentrup, L., Walker, A.: The 3rd reactive synthesis competition
(SYNTCOMP 2016): Benchmarks, participants and results. In: Proceedings Fifth
Workshop on Synthesis, SYNT@CAV 2016, Toronto, Canada, 17–18 July, 2016.
EPTCS, vol. 229, pp. 149–177 (2016)

18. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

http://dx.doi.org/10.1007/978-3-642-54013-4_1
http://dx.doi.org/10.1007/978-3-642-31424-7_45
http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://dx.doi.org/10.1007/11916277_38
http://dx.doi.org/10.1007/11916277_38
http://www.jstor.org/stable/1994916
http://dx.doi.org/10.1007/978-3-642-19835-9_25
http://dx.doi.org/10.1007/978-3-319-23506-6_15
http://dx.doi.org/10.1007/978-3-642-27940-9_15
http://dx.doi.org/10.1007/978-3-642-27940-9_15
http://dx.doi.org/10.1007/978-3-319-41528-4_7
http://dx.doi.org/10.1007/978-3-642-54862-8_6

370 P. Faymonville et al.

19. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: a tool for property
synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
258–262. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73368-3 29

20. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token
rings. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 66

21. Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 108–127. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 9

22. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proceedings of
FOCS, pp. 531–542. IEEE Computer Society (2005)

23. Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Creignou, N., Le Berre,
D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 375–392. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-40970-2 23

24. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Proceedings of
FMCAD, pp. 136–143. IEEE (2015)

25. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-75596-8 33

26. Seidl, M., Könighofer, R.: Partial witnesses from preprocessed quantified boolean
formulas. In: Proceedings of DATE, pp. 1–6. European Design and Automation
Association (2014)

27. Shimakawa, M., Hagihara, S., Yonezaki, N.: Reducing bounded realizability analy-
sis to reachability checking. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP
2015. LNCS, vol. 9328, pp. 140–152. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24537-9 13

28. Tentrup, L.: Solving QBF by abstraction. CoRR abs/1604.06752 (2016)

http://dx.doi.org/10.1007/978-3-540-73368-3_29
http://dx.doi.org/10.1007/978-3-642-39799-8_66
http://dx.doi.org/10.1007/978-3-642-35873-9_9
http://dx.doi.org/10.1007/978-3-319-40970-2_23
http://dx.doi.org/10.1007/978-3-540-75596-8_33
http://dx.doi.org/10.1007/978-3-319-24537-9_13
http://dx.doi.org/10.1007/978-3-319-24537-9_13

	Encodings of Bounded Synthesis
	1 Introduction
	2 Preliminaries
	3 Bounded Synthesis
	4 Encodings
	4.1 SAT: The Basic Encoding
	4.2 QBF: The Input-Symbolic Encoding
	4.3 DQBF/EPR: The State- and Input-Symbolic Encoding
	4.4 Comparison

	5 Experimental Evaluation
	5.1 Implementation
	5.2 Setup and Benchmarks
	5.3 Realizability
	5.4 Synthesis

	6 Conclusion
	References

