
Inference and Evolution of
TypeScript Declaration Files

Erik Krogh Kristensen and Anders Møller(B)

Aarhus University, Aarhus, Denmark
{erik,amoeller}@cs.au.dk

Abstract. TypeScript is a typed extension of JavaScript that has
become widely used. More than 2000 JavaScript libraries now have pub-
licly available TypeScript declaration files, which allows the libraries to
be used when programming TypeScript applications. Such declaration
files are written manually, however, and they are often lagging behind the
continuous development of the libraries, thereby hindering their usability.
The existing tool tscheck is capable of detecting mismatches between
the libraries and their declaration files, but it is less suitable when cre-
ating and evolving declaration files.

In this work we present the tools tsinfer and tsevolve that are
designed to assist the construction of new TypeScript declaration files
and support the co-evolution of the declaration files as the under-
lying JavaScript libraries evolve. Our experimental results involving
major libraries demonstrate that tsinfer and tsevolve are superior
to tscheck regarding these tasks and that the tools are sufficiently fast
and precise for practical use.

1 Introduction

The TypeScript [13] programming language has become a widely used alter-
native to JavaScript for developing web applications. TypeScript is a super-
set of JavaScript adding language features that are important when developing
and maintaining larger applications. Most notably, TypeScript provides optional
types, which not only allows many type errors to be detected statically, but also
enables powerful IDE support for code navigation, auto-completion, and refac-
toring. To allow TypeScript applications to use existing JavaScript libraries, the
typed APIs of such libraries can be described in separate declaration files. A
public repository exists containing declaration files for more than 2000 libraries,
and they are a critical component of the TypeScript software ecosystem.1

Unfortunately, the declaration files are written and maintained manually,
which is tedious and error prone. Mismatches between declaration files and
the corresponding JavaScript implementations of libraries affect the TypeScript
application programmers. The type checker produces incorrect type error mes-
sages, and code navigation and auto-completion are misguided, which may cause

1 https://github.com/DefinitelyTyped/DefinitelyTyped
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 99–115, 2017.
DOI: 10.1007/978-3-662-54494-5_6

https://github.com/DefinitelyTyped/DefinitelyTyped

100 E.K. Kristensen and A. Møller

programming errors and increase development costs. The tool tscheck [8] has
been designed to detect such mismatches, but three central challenges remain.
First, the process of constructing the initial version of a declaration file is still
manual. Although TypeScript has become popular, many new libraries are still
being written in JavaScript, so the need for constructing new declaration files
is not diminishing. We need tool support not only for checking correctness of
declaration files, but also for assisting the programmers creating them from the
JavaScript implementations. Second, JavaScript libraries evolve, as other soft-
ware, and when their APIs change, the declaration files must be updated. We
observe that the evolution of many declaration files lag considerably behind the
libraries, which causes the same problems with unreliable type checking and IDE
support as with erroneous declaration files, and it may make application pro-
grammers reluctant or unable to use the newest versions of the libraries. With the
increasing adaptation of TypeScript and the profusion of libraries, this problem
will likely grow in the future. For these reasons, we need tools to support the pro-
grammers in this co-evolution of libraries and declaration files. Third, tscheck
is not sufficiently scalable to handle modern JavaScript libraries, which are often
significantly larger than a couple of years ago.

The contributions of this paper are as follows.

– To further motivate our work, we demonstrate why the state-of-the-art tool
tscheck is inadequate for inference and evolution of declaration files, and we
describe a small study that uncovers to what extent the evolution of Type-
Script declaration files typically lag behind the evolution of the underlying
JavaScript libraries (Sect. 2).

– We present the tool tsinfer, which is based on tscheck but specifically
designed to address the challenge of supporting programmers when writing
new TypeScript declaration files for JavaScript libraries, and to scale to even
the largest libraries (Sect. 3).

– Next, we present the tool tsevolve, which builds on top of tsinfer to sup-
port the task of co-evolving TypeScript declaration files as the underlying
JavaScript libraries evolve (Sect. 4).

– We report on an experimental evaluation, which shows that tsinfer is better
suited than tscheck for assisting the developer in creating the initial ver-
sions of declaration files, and that tsevolve is superior to both tscheck and
tsinfer for supporting the co-evolution of declaration files (Sect. 5).

2 Motivating Examples

The PixiJS Library. PixiJS2 is a powerful JavaScript library for 2D rendering
that has been under development since 2013. A TypeScript declaration file3
was written manually for version 2.2 (after some incomplete attempts), and the
authors have since then made numerous changes to try to keep up-to-date with
2 http://www.pixijs.com/
3 https://github.com/pixijs/pixi-typescript

http://www.pixijs.com/
https://github.com/pixijs/pixi-typescript

Inference and Evolution of TypeScript Declaration Files 101

Fig. 1. Example output from tsinfer, when run on PixiJS version 2.2.

the rapid evolution of the library. At the time of writing, the current version
of PixiJS is 4.0, and the co-evolution of the declaration file continues to require
substantial manual effort as testified by the numerous commits and issues in the
repository. Hundreds of library developers face similar challenges with building
TypeScript declaration files and updating them as the libraries evolve.

From Checking to Inferring Declaration Files. To our knowledge, only one tool
exists that may alleviate the manual effort required: tscheck [8]. This tool
detects mismatches between a JavaScript library and a TypeScript declaration
file. It works in three phases: (1) it executes the library’s initialization code
and takes a snapshot of the resulting runtime state; (2) it then type checks the
objects in the snapshot, which represent the structure of the library API, with
respect to the TypeScript type declarations; (3) it finally performs a light-weight
static analysis of each library function to type check the return value of each
function signature. This works well for detecting errors, but not for inferring and
evolving the declaration files. For example, running tscheck on PixiJS version
2.2 and a declaration file with an empty PIXI module (mimicking the situation
where the module is known to exist but its API has not yet been declared) reports
nothing but the missing properties of the PIXI module, which is practically useless. In
comparison, our new tool tsinfer is able to infer a declaration file that is quite close
to the manually written one. Figure 1 shows the automatically inferred declaration for
one of the classes in PixiJS version 2.2. The declaration is not perfect (the types of
frameId, crossorigin, scaleMode, and shader could be more precise), but evidently
such output is a better starting point when creating the initial version of a declaration
file than starting completely from scratch.

Evolving Declaration Files. The PixiJS library has recently been updated from
version 3 to version 4. Using tscheck as a help to update the declaration file would not
be particularly helpful. For example, running tscheck on version 4 of the JavaScript
file and the existing version 3 of the declaration file reports that 38 properties are

102 E.K. Kristensen and A. Møller

Fig. 2. Example output from tsevolve, when run on PixiJS versions 3 and 4.

missing on the PIXI object, without any information about their types. Moreover, 15
of these properties are also reported if running tscheck on version 3 of the JavaScript
file, since they are due to the developers intentionally leaving some properties undoc-
umented. Our experiments presented in Sect. 5 show that many libraries have such
intentionally undocumented features, and some also have properties that intentionally
exist in the declaration file but not in the library.4 While tsinfer does suggest a type
for each of the new properties, it does not have any way to handle the intentional dis-
crepancies. Our other tool tsevolve attempts to solve that problem by looking only
at differences between two versions of the JavaScript implementation and is thereby
better at only reporting actual changes. When running tsevolve on PixiJS version 3
and 4, it reports (see Fig. 2(a)) that 8 properties have been removed and 24 properties
have been added on the PIXI object. All of these correctly reflect an actual change
in the library implementation, and the declaration file should therefore be updated
accordingly. This update inevitably requires manual intervention, though; in this spe-
cific case, PrimitiveShader has been removed from the PIXI object but the developers
want to keep it in the declarations as an internal class, and TransformManual, although
it is new to version 4, is a deprecated alias for the also added TransformBase.

Changes in a library API from one version to the next often consist of extensions,
but features are also sometimes removed, or types are changed. As an example of the
latter, one of the changes from version 3 to 4 for PixiJS was changing the type of the
field stencilMaskStack in the class RenderTarget from type PIXI.StencilMaskStack
to type PIXI.Graphics[]. The developer updating the declaration file noticed that the
field was now an array, but not that the elements were changed to type PIXI.Graphics,
so the type was erroneously updated to PIXI.StencilMaskStack[]. In comparison,
tsinfer reports the change correctly as shown in Fig. 2(b).

4 This situation is rare, but can happen if, for example, documentation is needed for a
class that is not exported, see e.g. https://github.com/pixijs/pixi.js/issues/2312/#
issuecomment-174608951.

https://github.com/pixijs/pixi.js/issues/2312/#issuecomment-174608951
https://github.com/pixijs/pixi.js/issues/2312/#issuecomment-174608951

Inference and Evolution of TypeScript Declaration Files 103

A Study of Evolution of Type Declarations. To further motivate the need for new
tools to support the co-evolution of declaration files as the libraries evolve, we have
measured to what extent existing declaration files lag behind the libraries.5 We collected
every JavaScript library that satisfies the following conditions: it is being actively
developed and has a declaration file in the DefinitelyTyped repository, the declaration
file contains a recognizable version number, and the library uses git tags for marking
new versions, where we study the commits from January 2014 to August 2016. This
resulted in 49 libraries. By then comparing the timestamps of the version changes for
each library and its declaration file, respectively (where we ignore patch releases and
only consider major.minor versioning), we find that for more than half of the libraries,
the declaration file is lagging behind by at least a couple of months, and for some
more than a year. This is notable, given that all the libraries are widely used according
to the github ratings, and it seriously affects the usefulness of the declaration files in
TypeScript application development.

Interestingly, we also find many cases where the version number found in the decla-
ration file has not been updated correctly along with the contents of the file.6 Not being
able to trust version numbers of course also affects the usability of the declaration files.
For some high-profile libraries, such as jQuery and AngularJS, the declaration files are
kept up-to-date, which demonstrates that the developers find it necessary to invest the
effort required, despite the lack of tool support. We hope our new tools can help not
only those developers but also ones who do not have the same level of manual resources
available.

Scalability. In addition to the limitations of tscheck described above, we find that
its static analysis component, which we use as a foundation also for tsinfer and
tsevolve, is not sufficiently scalable to handle the sizes and complexity of contempo-
rary JavaScript libraries. In Sect. 3.2 we explain how we replace the unification-based
analysis technique used by tscheck with a more precise subset-based one, and in
Sect. 5 we demonstrate that this modification, perhaps counterintuitively, leads to a
significant improvement in scalability. As an example, the time required to analyze
Moment.js is improved from 873 s to 12 s, while other libraries simply are not analyz-
able in reasonable time with the unification-based approach.

3 tsinfer: Inference of Initial Type Declarations

Our inference tool tsinfer works in three phases: (1) it concretely initializes the library
in a browser and records a snapshot of the resulting runtime state, much like the first
phase of tscheck (see Sect. 2); (2) it performs a static analysis of all the functions in
that snapshot, similarly to the third phase of tscheck; (3) lastly it emits a TypeScript
declaration file. As two of the phases are quite similar to the approach used by tscheck,
we here focus on what tsinfer does differently.

3.1 The Snapshot Phase

In JavaScript, library code needs to actively put entry points into the heap in order for
it to be callable by application code. This initialization, however, often involves complex
5 Our data material from this study is available at http://www.brics.dk/tstools/.
6 An example is Backbone.js, until our patch https://github.com/DefinitelyTyped/

DefinitelyTyped/pull/10462.

http://www.brics.dk/tstools/
https://github.com/DefinitelyTyped/DefinitelyTyped/pull/10462
https://github.com/DefinitelyTyped/DefinitelyTyped/pull/10462

104 E.K. Kristensen and A. Møller

metaprogramming, and statically analyzing the initialization of a library like jQuery
can therefore be extremely complicated [2]. We sidestep this challenge by concretely
initializing the library in a real browser and recording a snapshot of the heap after the
top-level code has finished executing. This is done in the same way as described by
tscheck, and we work under the same assumptions, notably, that the library API has
been established after the top-level code has executed. We have, however, changed a
few things.

For all functions in the returned snapshot, we record two extra pieces of information
compared to tscheck: (1) the result of calling the function with the new operator (if
the call returned normally), which helps us determine the structure of a class if the
function is found to be a constructor; (2) all calls to the function that occur during the
initialization, which we use to seed the static analysis phase.

The last step is to create a class hierarchy. JavaScript libraries use many different
and complicated ways of creating their internal class structures, but after the initial-
ization is done, the vast majority of libraries end up with constructor functions and
prototype chains. The class hierarchy is therefore created by making a straightforward
inspection of the prototype chains.

3.2 The Static Analysis Phase

The static analysis phase takes the produced snapshot as input and performs a static
analysis of each of the functions. It produces types for the parameters and the return
value of each function.

The analysis is an unsound, flow-insensitive, context-insensitive analysis that has
all the features described in previous work [8], including the treatment of properties
and native functions. There are, however, some important changes.

tscheck analyzes each function separately, meaning that if a function f calls a
function g, this information is ignored when analyzing function g. This works well for
creating an analysis such as tscheck that only infers the return type of functions.
When creating an analysis that also infers function parameter types, the information
gained by observing calls to a function is important. Our analysis therefore does not
analyze each function separately, but instead performs a single analysis that covers all
the functions.

While tscheck opts for a unification-based analysis, we find that switching to
a subset-based analysis is necessary to gain the scalability needed to infer types for
the bigger JavaScript libraries, as discussed in Sect. 2. The subset-based analysis is
similar to the one described by Pottier [15], as it keeps separate constraint variables
for upper-bounds and lower-bounds. After the analysis, the types for the upper-bound
and lower-bound constraint variables are merged to form a single resulting type for
each expression.

Compared to tscheck, some constraints have been added to improve precision for
parameter types, for example, so that the arguments to operators such as - and * are
treated as numbers. (Due to the page limit, we omit the actual analysis constraints
used by tsinfer.)

A subset-based analysis gives more precise dataflow information compared to a
unification-based analysis, however, more precise dataflow information does not neces-
sarily result in more precise type inference. For example, consider the expression foo
= bar || "", where bar is a parameter to a function that is never called within the
library. A unification-based analysis, such as tscheck, will unify the types of foo, bar

Inference and Evolution of TypeScript Declaration Files 105

and "", and thereby conclude that the type of bar is possibly a string. A more precise
subset-based analysis will only constrain the possible types of foo to be a superset of
the types of bar and "", and thereby conclude that the type of bar is unconstrained.
In a subset-based analysis with both upper-bound and lower-bound constraint vari-
ables, the example becomes more complicated, but the result remains the same. This
shows that changing from unification-based to subset-based analysis does not neces-
sarily improve the precision of the type inference. We investigate this experimentally
in Sect. 5.

3.3 The Emitting Phase

The last phase of tsinfer uses the results of the preceding phases to emit a declaration
for the library. A declaration can be seen as a tree structure that resembles the heap
snapshot, so we create the declaration by traversing the heap snapshot and converting
the JavaScript values to TypeScript types, using the results from the static analysis
when a function is encountered.

Implementing this phase is conceptually straightforward, although it does involve
some technical complications, for example, handling cycles in the heap snapshot and
how to combine a set of recursive types into a single type.

4 tsevolve: Evolution of Type Declarations

The goal of tsevolve is to create a list of changes between an old and a new version
of a JavaScript library. To do this it has access to three input files: the JavaScript files
for the old version old.js and the new version new.js and an existing TypeScript
declaration file for the old version old.d.ts.

To find the needed changes for the declaration file, a naive first approach would
be to compare old.d.ts with the output of running tsinfer on new.js. However,
this will result in a lot of spurious warnings, both due to imprecisions in the analysis
of new.js, but also because of intentional discrepancies in old.d.ts, as discussed in
Sect. 2.

Instead we choose a less obvious approach, where tsevolve uses tsinfer to gen-
erate declarations for both old.js and new.js. These declarations are then traversed
as trees, and any location where the two disagree is marked as a change. The out-
put of this process will still contain spurious changes, but unchanged features in the
implementation should rarely appear as changes, as imprecisions in unchanged features
are likely the same in both versions. We then use old.d.ts to filter out the changes
that concern features that are not declared in old.d.ts, which removes many of the
remaining spurious changes. Relevant function sources code from old.js and new.js
are also printed as part of the output, which allows for easy manual identification of
many of the remaining spurious changes. As the analysis does not have perfect preci-
sion, it is necessary to manually inspect and potentially adjust the suggested changes
before modifying the declaration file.

As an extra feature, in case a partially updated declaration file for the new version
is available, tsevolve can use that file to filter out some of the changes that have
already been made.

106 E.K. Kristensen and A. Møller

5 Experimental Evaluation

Our implementations of tsinfer and tsevolve, which together contain around 20000
lines of Java code and 1000 lines of JavaScript code, are available at http://www.brics.
dk/tstools/.

We evaluate the tools using the following research questions.

– RQ1: Does the subset-based approach used by tsinfer improve analysis speed and
precision compared to the unification-based alternative?

– RQ2: A tool such as tscheck that only aims to check existing declarations may
blindly assume that some parts of the declarations are correct, whereas a tool such
as tsinfer must aim to infer complete declarations. For this reason, it is relevant
to ask: How much information in declarations is blindly ignored by tscheck but
potentially inferred by tsinfer?

– RQ3: Can tsinfer infer useful declarations for libraries? That is, how accurate is the
structure of the declarations and the quality of the types compared to handwritten
declarations?

– RQ4: Is tsevolve useful in the process of co-evolving declaration files as the under-
lying libraries evolve? In particular, does the tool make it possible to correctly
update a declaration file in a short amount of time?

We answer these questions by running the tools on randomly selected
JavaScript libraries, all of which have more than 5000 stars on GitHub and a Type-
Script declaration file of at least 100 LOC. Our tools do not yet support the require
function from Node.js,7 so we exclude Node.js libraries from this evaluation. All exper-
iments have been executed on a Windows 10 laptop with 16GB of RAM and an Intel
i7-4712MQ processor running at 1.5 GHz.

RQ1 (Subset-Based vs. Unification-Based Static Analysis)

To compare the subset-based and unification-based approaches, we ran tsinfer on
20 libraries. The results can be found in the left half of Table 1. The Funcs column
shows the number of functions analyzed for each library. The Unification and Subset
columns show the analysis time for the unification-based and subset-based analysis,
respectively, using a timeout of 30min.

The results show that our subset-based analysis is significantly faster than the
unification-based approach. This is perhaps counterintuitive for readers familiar with
Andersen-style [1] (subset-based) and Steengaard-style [20] (unification-based) pointer
analysis for e.g. C or Java. However, it has been observed before for JavaScript, where
the call graph is usually inferred as part of the analysis, that increased precision often
boosts performance [2,19].

We compared the precision of the two approaches by their ability to infer func-
tion signatures on the libraries where the unification-based approach does not reach a
timeout. Determining which of two machine generated function signatures is the most
precise is difficult to do objectively, so we randomly sampled some of the function
signatures and manually determined their precision. To minimize bias, each pair of
generated function signatures was shown randomly.

7 https://nodejs.org/

http://www.brics.dk/tstools/
http://www.brics.dk/tstools/
https://nodejs.org/

Inference and Evolution of TypeScript Declaration Files 107

Table 1. Analysis speed and precision.

Library Speed Precision
Funcs Unification Subset Unification Subset Equal Unclear

Ace 1 249 timeout 13.8 s - - - -
AngularJS 609 193.3 s 7.8 s 1 14 17 0
async 169 28.2 s 4.9 s 2 22 20 6
Backbone.js 176 28.7 s 4.8 s 1 9 44 0
D3.js 1 030 181.7 s 15.8 s 4 19 44 2
Ember.js 2 902 timeout 319.7 s - - - -
Fabric.js 1 032 timeout 15.7 s - - - -
Hammer.js 122 32.5 s 3.2 s 0 2 61 3
Handlebars.js 280 9.2 s 6.9 s 0 3 12 1
Jasmine 51 135.4 s 4.6 s 2 4 71 0
jQuery 500 timeout 41.2 s - - - -
Knockout 325 168.8 s 14.4 s 2 7 41 8
Leaflet 758 timeout 11.6 s - - - -
Moment.js 446 872.6 s 12.4 s 1 27 21 2
PixiJS 1 527 timeout 308.0 s - - - -
Polymer.js 748 424.2 s 8.5 s 1 10 41 3
React 1 261 timeout 14.0 s - - - -
three.js 1 243 timeout 208.8 s - - - -
Underscore.js 298 81.2 s 4.2 s 0 4 47 0
vue.js 433 timeout 6.2 s - - - -
Total 15 159 - 1 026.5 s 14 121 419 25

The results from these tests are shown in the right half of Table 1 where the function
signatures have been grouped into four categories: Unification (the unification-based
analysis inferred the most precise signature), Subset (the subset-based analysis was the
most precise), Equal (the two approaches were equally precise), and Unclear (no clear
winner). The results show that the subset-based approach in general infers better types
than the unification-based approach. The unification-based did in some cases infer the
best type, which is due to the fact that a more precise analysis does not necessarily
result in a more precise type inference, as explained in Sect. 3.2.

RQ2 (Information Ignored by tscheck but Considered by tsinfer)

tscheck only checks the return types of the functions where the corresponding sig-
nature in the declaration file do not have a void/any return type, which may detect
many errors, but the rest of the declaration file is blindly assumed to be correct. In
contrast, tsinfer infers types for all functions, including their parameters, and it also
infers classes and fields.

108 E.K. Kristensen and A. Møller

Table 2. Features in handwritten declaration files ignored by tscheck but taken into
account by tsinfer.

Library void/any functions (all) Parameters Classes Fields

Ace 301 (460) 370 2 4
AngularJS 8 (26) 39 0 0
async 64 (80) 222 0 0
Backbone.js 67 (149) 210 7 31
D3.js 7 (219) 271 5 12
Ember.js 270 (629) 991 58 103
Fabric.js 93 (330) 382 25 17
Hammer.js 33 (53) 53 16 24
Handlebars.js 20 (20) 19 1 0
Jasmine 1 (1) 1 1 0
jQuery 19 (53) 88 1 0
Knockout 68 (125) 226 6 0
Leaflet 48 (325) 435 26 17
Moment.js 0 (70) 71 0 0
PixiJS 338 (522) 639 86 584
Polymer.js 3 (4) 3 0 0
React 3 (21) 30 1 4
three.js 328 (993) 1 295 180 632
Underscore.js 36 (121) 241 0 0
vue.js 7 (23) 42 1 8
Total 1 714 (4 224) 5 628 416 1 436

Table 2 gives an indication of the amount of extra information that tsinfer can
reason about compared to tscheck. For each library, we show the number of functions
that have return type void or any (and in parentheses the total number of functions),
and the number of parameters, classes, and fields, respectively. The numbers are based
on the existing handwritten declaration files.

We see that on the 20 benchmarks, tscheck ignores 1714 of the 4224 functions,
silently assumes 5628 parameter types to be correct, and ignores 1436 instance fields
spread over 416 classes. In contrast tsinfer, and thereby also tsevolve, does consider
all these kinds of information.

RQ3 (Usefulness of tsinfer)

As mentioned in Sect. 2, tscheck is effective for checking declarations, but not for
inferring them. We are not aware of any other existing tool that could be considered as
an alternative to tsinfer. To evaluate the usefulness of tsinfer, we therefore evaluate
against existing handwritten declaration files, knowing that these contain imprecise
information.

Inference and Evolution of TypeScript Declaration Files 109

We first investigate the ability of tsinfer to identify classes, modules, instance
fields, methods, and module functions (but without considering inheritance relation-
ships between the classes and types of the fields, methods, and functions). These fea-
tures form a hierarchy in a declaration file. For example, PIXI.Matrix.invert identifies
the invert method in the Matrix class in the PIXI module of PixiJS. When comparing
the inferred features with the ones in the handwritten declaration files, a true positive
(TP) is one that appears in both, a false positive (FP) exists only in the inferred dec-
laration, and a false negative (FN) exists only in the handwritten declaration. In case
of FP or FN we exclude the sub-features from the counts. The quality of the types of
the fields and methods is investigated later in this section; for now we only consider
their existence.

The counts are shown in Table 3, together with the resulting precision (Prec) and
recall (Rec). We see that tsinfer successfully infers most of the structure of the decla-
ration files, although some manual post-processing is evidently necessary. For example,
80.9% of the classes and 95.7% of the fields are found by tsinfer. Having false positives
in an inferred declaration (i.e., low precision) is less problematic than false negatives
(i.e., low recall): it is usually easier to manually filter away extra unneeded information
than adding information that is missing in the automatically generated declarations.

The identification of classes, modules, methods, and module functions in tsinfer is
based entirely on the snapshots (Sect. 3.1), so one might expect 100% precision for those
counts. (Identification of fields is partly also based on the static analysis.) The main
reason for the non-optimal precision is that many features are undocumented in the

Table 3. Precision of inferring various features of a declaration file.

Library Classes Modules Class fields Class methods Module functions

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

Ace 0 2 0 1 0 1 0 0 0 0 0 0 3 2 0

AngularJS 0 0 0 2 1 0 0 0 0 0 0 0 22 2 4

async 0 0 0 1 1 0 0 0 0 0 0 0 88 6 0

Backbone.js 5 0 2 1 1 0 18 3 12 183 8 3 12 10 2

D3.js 5 13 0 1 9 9 12 4 0 15 4 2 56 247 12

Ember.js 62 64 54 16 32 7 8 187 35 40 54 74 333 678 112

Fabric.js 25 21 0 7 3 1 16 193 1 248 402 8 165 24 3

Hammer.js 8 8 7 2 0 1 7 64 0 39 6 0 16 9 9

Handlebars.js 2 4 0 4 3 2 0 3 0 20 4 0 28 8 3

Jasmine 2 22 0 1 4 0 0 0 0 0 8 0 28 33 3

jQuery 2 6 0 4 29 2 0 6 0 0 6 0 90 59 6

Knockout 5 3 1 14 11 1 0 4 0 14 3 0 91 63 2

Leaflet 33 10 0 22 21 1 5 75 12 241 248 2 137 135 1

Moment.js 0 2 0 1 0 0 0 0 0 0 0 0 89 25 6

PixiJS 70 2 16 31 8 2 812 46 52 450 37 7 128 14 16

Polymer.js 0 2 0 1 19 0 0 0 0 0 0 0 2 9 0

React 1 0 0 4 3 0 3 7 1 2 0 1 26 6 130

three.js 169 12 11 12 18 0 2 348 71 33 907 105 24 241 26 8

Underscore.js 0 1 0 1 0 0 0 0 0 0 0 0 117 1 3

vue.js 1 1 0 2 4 0 8 22 0 23 21 0 12 1 1

Total 390 173 91 128 167 27 3 237 685 146 2 182 906 121 1 684 1 358 321

Precision/Recall Prec: 69.3% Prec: 43.4% Prec: 82.5% Prec: 70.7% Prec: 55.36%

Rec: 80.9% Rec: 82.6% Rec: 95.7% Rec: 94.8% Rec: 84.0%

110 E.K. Kristensen and A. Møller

manually written declarations. By manually inspecting these cases, we find that most of
these are likely intentional: although they are technically exposed to the applications,
the features are meant for internal use in the libraries and not for use by applications.
Non-optimal recall is often caused by intentional discrepancies as discussed in Sect. 2
or by libraries that violate our assumption explained in Sect. 3.1 about the API being
fully established after the initialization code has finished. Other reasons for non-optimal
precision or recall are simply that the handwritten declaration files contain errors or, in
cases where the version number is not clearly stated in declaration file, we were unable
to correctly determine which library version it is supposed to match.

To measure the quality of the inferred types of fields and methods, we again used
the handwritten declaration files as gold standard and this time manually compared
the types, in places where the inferred and handwritten declaration files agreed about
the existence of a field or method. Such a comparison requires some manual work, so we
settled for sampling: for each library, we compared 50 fields and 100 methods (thereof
50 that were classified as constructors), or fewer if not that many were found in the
library.

The result of this comparison can be seen in Table 4 where Perfect means that
the inferred and handwritten type are identical, Good means that the inferred type
is better than having nothing, Any means that the main reason for the sample not
being perfect is that either the inferred or the handwritten type is any, Bad means
that the inferred type is far from correct, and No params means that the inferred type
has no parameters while the handwritten does. Obviously, this categorization to some
extent relies on human judgement, but we believe it nevertheless gives an indication of
the quality of the inferred types. An example in the Good category is in PixiJS where
tsinfer infers a perfect type for the PIXI.Matrix().applyInverse method, except
for the first argument where it infers the type {x: number, y: number} instead of the
correct PIXI.Point.

As can be seen in Table 4, the types inferred for fields are perfect in most cases,
and none of them are categorized as Bad. The story is more mixed for method types.
Here, there are relatively fewer perfect types, but function signatures are also much
more complex, given that they often contain multiple parameters as well as a return
type, and parameters can sometimes be extremely difficult to infer correctly. For many
method types categorized as Good, the overall structure of the inferred type is correct
but some spurious types appear in type unions for some of the parameters or the
return type, or, as in the example with applyInverse, an object type is inferred whose
properties is a subset of the properties in the handwritten type. The main reason that
some method types are categorized as No params is that our analysis is unable to reason
precisely about the built-in function Function.prototype.apply and the arguments
object. We leave it as future work to explore more precise abstractions of these features.

RQ4 (Usefulness of tsevolve)

To evaluate if tsevolve can assist in evolving declaration files, we performed a case
study where tsevolve was used for updating declaration files in 7 different evolution
scenarios. In each case, we used the output from tsevolve to make a pull request to
the relevant repository. All of these libraries have more than 10000 stars on GitHub
and had a need for the declaration file to be updated, but were otherwise randomly
selected. We had no prior experience in using any of the libraries.

Inference and Evolution of TypeScript Declaration Files 111

Table 4. Measuring the quality of inferred types of fields and methods.

Library Class fields Class methods and module functions
Perfect Good Any Bad Perfect Good Any Bad No params

Ace 0 0 0 0 0 3 0 0 0
AngularJS 0 0 0 0 10 10 2 0 0
async 0 0 0 0 0 26 18 0 6
Backbone.js 14 2 2 0 12 6 30 0 7
D3.js 3 0 9 0 11 36 5 2 1
Ember.js 3 3 2 0 42 37 11 5 5
Fabric.js 13 0 3 0 22 18 10 3 22
Hammer.js 0 0 1 0 7 17 9 0 8
Handlebars.js 0 0 0 0 6 22 9 2 7
Jasmine 0 0 0 0 1 12 6 0 9
jQuery 0 0 0 0 5 21 20 1 0
Knockout 0 0 0 0 5 25 24 0 1
Leaflet 3 2 0 0 14 36 7 0 19
Moment.js 0 0 0 0 8 15 21 0 6
PixiJS 32 5 13 0 38 40 21 1 0
Polymer 0 0 0 0 1 1 2 0 0
React 2 0 1 0 0 32 5 0 0
three.js 37 3 10 0 44 46 10 0 0
Underscore.js 0 0 0 0 0 11 35 3 1
vue.js 2 0 6 0 6 15 2 1 0
Total 109 15 47 0 232 429 247 18 92

The output from tsevolve is a list of changes for each declaration file. We took
the output lists from each of the 7 updates and classified each entry in each list based
upon how useful it was in the process of evolving the specific library.

The result of this can be seen in Table 5 where each change listed by tsevolve is
counted in one of the four columns. TP counts true positives, i.e. changes that reflect
an actual change in the library that should be reflected in the declaration file. Both FP
and FP* count false positives, the difference being that changes counted in FP* could
easily be identified as spurious by looking at the output from tsevolve, as explained
in Sect. 4. Unclear counts the listed changes that could not be easily categorized.

In the update from Ember.js version 1.13 to version 2.0, all of the 24 in the Bad
category are due to Ember.js breaking our assumption about the API being fully
established after the top-level code has executed. None of the other libraries violate
that assumption.

In the update of Handlebars.js from version 3 to 4, all the 59 in the Unclear cat-
egory are due to the structures of the handwritten and the inferred declaration files
being substantially different. tsevolve is therefore not able to automatically filter out
undocumented features, and all 59 entries are therefore filtered out manually.

112 E.K. Kristensen and A. Møller

Table 5. Classification of tsevolve output.

Library TP FP FP* Unclear

async 1.4 → 2.0 38 0 52 2
Backbone.js 1.0 → 1.3 34 0 42 2
Ember.js 1.13 → 2.0 55 24 40 0
Ember.js 2.0 → 2.7 44 0 54 0
Handlebars.js 3 → 4 37 3 8 59
Moment.js 2.11 → 2.14 10 0 54 2
PixiJS 3 → 4 270 13 41 2
Total 488 40 291 67

From Table 5 we can see that the output from tsevolve mostly points out changes
that should be reflected in the corresponding declaration file. Among the spuriously
reported changes, most of them can easily be identified as being spurious and are
therefore not a big problem.

These outputs of tsevolve were used to create pull requests, which are described
in Table 6. For each pull request, we show how many lines the pull request added and
removed in the declaration file,8 along with a response from a library developer, if one
was given. For Handlebars.js, the pull request additionally contains a few corrections
of errors in the declaration file that were spotted while reviewing the report from

Table 6. Pull requests sent based in tsevolve output (The pull requests: https://
gist.github.com/webbiesdk/f82c135fc5f67b0c7f175e985dd0c889).

Library Lines added Lines removed Library author response

async 1.4 → 2.0 46 13 “pretty thorough and
seems to follow the 2.x
API much better than
what we currently have”

Backbone.js 1.0 → 1.3 27 3
Ember.js 1.13 → 2.0 8 508 “LGTMa ”
Ember.js 2.0 → 2.7 96 92 “ ”
Handlebars.js 3 → 4 49 2
Moment.js 2.11 → 2.14 4 0 “thank you, looks good”
PixiJS 3 → 4 (pre-release) 158 261 “Awesome PR”
PixiJS 3 → 4 19 4 “I went through all of

your changes and can
confirm everything is
perfect”

a An acronym for “Looks Good To Me”.

8 The complete pull requests in some cases contain more lines changed, due to minor
refactorings or copying and renaming of files to match the version numbers.

https://gist.github.com/webbiesdk/f82c135fc5f67b0c7f175e985dd0c889
https://gist.github.com/webbiesdk/f82c135fc5f67b0c7f175e985dd0c889

Inference and Evolution of TypeScript Declaration Files 113

tsinfer. All 7 pull requests were accepted without any modifications to the changes
derived from the tsevolve output.

The total working time spent going from tsevolve output to finished pull requests
was approximately one day, despite having no prior experience using any of the libraries.
Without tool support, creating such pull requests, involving a total of 407 lines added
and 883 lines removed, for libraries that contain a total of 129365 lines of JavaScript
code across versions and declaration files containing 3938 lines (after the updates),
clearly could not have been done in the same amount of time.

6 Related Work

The new tools tsinfer and tsevolve build on the previous work on tscheck [8], as
explained in detail in the preceding sections. Other research on TypeScript includes
formalization and variations of its type system [4,17,18,22], and several alternative
techniques for JavaScript type inference exist [6,11,16], however, none of that work
addresses the challenges that arise when integrating JavaScript libraries into typed
application code.

The need for co-evolving declaration files as the underlying libraries evolve can be
viewed as a variant of collateral evolution [14]. By using our tools to increase confidence
that the declaration files are consistent with the libraries, the TypeScript type checker
becomes more helpful when developers upgrade applications to use new versions of
libraries.

Our approach to analyze the JavaScript libraries differs from most existing dataflow
and type analysis tools for JavaScript, such as, TAJS [2,9] and SAFE [3], which are
whole-program analyzers and not sufficiently scalable and precise for typical JavaScript
library code. We circumvent those limitations by concretely executing the library ini-
tialization code and using a subset-based analysis that is inspired by Pottier [15],
Rastogi et al. [17], and Chandra et al. [6].

Other languages, such as typed dialects of Python [10,23], Scheme [21], Clojure [5],
Ruby [12], and Flow for JavaScript [7], have similar challenges with types and cross-
language library interoperability, though not (yet) at the same scale as TypeScript.
Although tsinfer and tsevolve are designed specifically for TypeScript, we believe
our solutions may be more broadly applicable.

7 Conclusion

We have presented the tools tsinfer and tsevolve and demonstrated how they
can help programmers create and maintain TypeScript declaration files. By making
the tools publicly available, we hope that the general quality of declaration files will
improve, and that further use of the tools will provide opportunities for fine-tuning the
analyses towards the intentional discrepancies found in real-world declarations.

Acknowledgments. This work was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program
(grant agreement No 647544).

114 E.K. Kristensen and A. Møller

References

1. Andersen, L.O.: Program analysis and specialization for the C programming lan-
guage. PhD thesis, University of Copenhagen (1994)

2. Andreasen, E., Møller, A.: Determinacy in static analysis for jQuery. In: Pro-
ceeding ACM International Conference on Object Oriented Programming Systems
Languages & Applications (2014)

3. Bae, S., Cho, H., Lim, I., Ryu, S.: SAFEWAPI: web API misuse detector for web
applications. In: Proceeding 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (2014)

4. Bierman, G.M., Abadi, M., Torgersen, M.: Understanding typescript. In: Proceed-
ing 28th European Conference on Object-Oriented Programming (2014)

5. Bonnaire-Sergeant, A., Davies, R., Tobin-Hochstadt, S.: Practical optional types
for clojure. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 68–94.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49498-1_4

6. Chandra, S., Gordon, C.S., Jeannin, J.-B., Schlesinger, C., Sridharan, M., Tip,
F., Choi, Y.-I.: Type inference for static compilation of JavaScript. In: Proceed-
ing ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (2016)

7. Facebook. Flow (2016). http://flowtype.org/
8. Feldthaus, A., Møller, A.: Checking correctness of TypeScript interfaces for

JavaScript libraries. In: Proceeding ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (2014)

9. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Proceed-
ing 16th International Static Analysis Symposium (2009)

10. Lehtosalo, J., et al.: Mypy (2016). http://www.mypy-lang.org/
11. Lerner, B.S., Politz, J.G., Guha, A., Krishnamurthi, S.: TeJaS: retrofitting type

systems for JavaScript. In: Proceeding 9th Symposium on Dynamic Languages
(2013)

12. ‘Matz’ Matsumoto, Y.: RubyConf 2014 – opening keynote (2014). http://confreaks.
tv/videos/rubyconf2014-opening-keynote

13. Microsoft. TypeScript language specification, February 2015. https://github.com/
Microsoft/TypeScript/blob/master/doc/spec.md

14. Padioleau, Y., Lawall, J.L., Hansen, R.R., Muller, G.: Documenting and automat-
ing collateral evolutions in Linux device drivers. In: Proceeding EuroSys Confer-
ence. ACM (2008)

15. Pottier, F.: A framework for type inference with subtyping. In: Proceeding 3rd
ACM SIGPLAN International Conference on Functional Programming (1998)

16. Rastogi, A., Chaudhuri, A., Hosmer, B.: The ins and outs of gradual type infer-
ence. In: Proceeding 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (2012)

17. Rastogi, A., Swamy, N., Fournet, C., Bierman, G.M., Vekris, P.: Safe & efficient
gradual typing for TypeScript. In: Proceeding 42nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (2015)

18. Richards, G., Zappa Nardelli, F., Vitek, J.: In: Proceeding 29th European Confer-
ence on Object-Oriented Programming (2015)

19. Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., Tip, F.: Correlation tracking for
points-to analysis of JavaScript. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313,
pp. 435–458. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31057-7_20

http://dx.doi.org/10.1007/978-3-662-49498-1_4
http://flowtype.org/
http://www.mypy-lang.org/
http://confreaks.tv/videos/rubyconf2014-opening-keynote
http://confreaks.tv/videos/rubyconf2014-opening-keynote
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
http://dx.doi.org/10.1007/978-3-642-31057-7_20

Inference and Evolution of TypeScript Declaration Files 115

20. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceeding 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (1996)

21. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed
Scheme (2008)

22. Vekris, P., Cosman, B., Jhala, R.: Refinement types for TypeScript. In: Proceeding
37th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (2016)

23. Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of gradual
typing for Python. In: Proceeding 10th ACM Symposium on Dynamic Languages
(2014)

	Inference and Evolution of TypeScript Declaration Files
	1 Introduction
	2 Motivating Examples
	3 tsinfer: Inference of Initial Type Declarations
	3.1 The Snapshot Phase
	3.2 The Static Analysis Phase
	3.3 The Emitting Phase

	4 tsevolve: Evolution of Type Declarations
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

