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Abstract. Variational systems are ubiquitous in many application areas
today. They use features to control presence and absence of system func-
tionality. One challenge in the development of variational systems is their
formal analysis and verification. Researchers have addressed this prob-
lem by designing aggregate so-called family-based verification algorithms.
Family-based model checking allows simultaneous verification of all vari-
ants of a system family (variational system) in a single run by exploiting
the commonalities between the variants. Yet, the computational cost of
family-based model checking still greatly depends on the number of vari-
ants. In order to make it computationally cheaper, we can use variability
abstractions for deriving abstract family-based model checking, where
the variational model of a system family is replaced with an abstract
(smaller) version of it which preserves the satisfaction of LTL properties.
The variability abstractions can be combined with different partitionings
of the set of variants to infer various verification scenarios for the varia-
tional model. However, manually finding an optimal verification scenario
is hard since it requires a good knowledge of the family and property,
while the number of possible scenarios is very large.

In this work, we present an automatic iterative abstraction refinement
procedure for family-based model checking. We use Craig interpolation to
refine abstract variational models based on the obtained spurious coun-
terexamples (traces). The refinement procedure works until a genuine
counterexample is found or the property satisfaction is shown for all
variants in the family. We illustrate the practicality of this approach for
several variational benchmark models.

1 Introduction

Software Product Line Engineering (SPLE) [9] is a popular methodology for
building a family of related systems. A large number of related systems (variants)
are developed by systematically reusing common parts. Each variant is specified
in terms of features (statically configured options) selected for that particular
variant. Due to the popularity of SPLs in embedded and critical system domain
(e.g. cars, phones, avionics), they require rigourous verification and analysis.
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Model checking is a well-known technique for automatic verification of sys-
tems against properties expressed in temporal logic [1]. Model checking families
of systems is more difficult than model checking single systems, since the number
of possible variants is exponential in the number of features. Hence, the sim-
plest enumerative variant-by-variant approach, that applies single-system model
checking to each individual variant of a system family, is very inefficient. Indeed,
a given execution behaviour is checked as many times as the number of variants
that are able to execute it. In order to address this problem, new dedicated
family-based model checking algorithms have been introduced [7,8,10]. They
rely on using compact mathematical structures (so called variational models or
featured transition systems) for modelling variational systems, which take the
commonality within the family into account, and on which specialized family-
based (variability-aware) model checking algorithms can be applied. Each execu-
tion behaviour in a variational model is associated with the exact set of variants
able to produce it. Therefore, the family-based algorithms check an execution
behaviour only once, regardless of how many variants can produce it. In this
way, they are able to model check all variants of a family simultaneously in a
single step and pinpoint those variants that violate properties. In order to further
speed-up family-based model checking, a range of variability abstractions can be
introduced [13,14]. They give rise to abstract family-based model checking. The
abstractions are applied at the variability level and aim to reduce the expo-
nential blowup of the number of configurations (variants) to something more
tractable by manipulating the configuration space of the family. Abstractions
can be combined with partitionings of the set of all variants to generate various
verification scenarios. Still, suitable verification scenarios are currently chosen
manually from a large set of possible combinations. This often requires a user
to have a considerable knowledge of a variational system and property. In order
for this approach to be used more widely in industry, automatic techniques are
needed for generating verification scenarios.

Abstraction refinement [4,5,10] has proved to be one of the most effective
techniques for automatic verification of systems with very large state spaces. In
this paper, we introduce a purely variability-specific (state-independent) app-
roach to abstraction refinement, which is used for automatic verification of LTL
properties over variational models. In general, each variability abstraction com-
putes an over-approximation of the original model, in a such a way that if some
property holds for the smaller abstract model then it will hold for the original
one. However, if the property does not hold in the abstract model, the found
counterexample may be the result of some behaviour in the over-approximation
which is not present in the original model. In this case, it is necessary to refine
the abstraction so that the behaviour which caused the spurious counterexam-
ple is eliminated. The verification procedure starts with the coarsest variability
abstraction, and then the obtained abstract model is fed to a model checker. If no
counterexample is found, then all variants satisfy the given property. Otherwise,
the counterexamples are analysed and classified as either genuine, which corre-
spond to execution behaviours of some variants in the original model, or spurious,
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which are introduced due to the abstraction. If a genuine counterexample exist,
the corresponding variants do not satisfy the given property; otherwise a spuri-
ous counterexample is used to refine the abstract models. The procedure is then
repeated on the refined abstract variational model only for variants for which
no conclusive results have been found. We use Craig interpolation [18,27] to
extract from a spurious counterexample (i.e. the unsatisfiable feature expression
associated with it) the relevant information which needs to be known in order
to show the unsatisfiability of the associated feature expression. This informa-
tion is used to compute refined abstract models for the next iteration. The main
contribution of this paper is an efficient automatic abstraction refinement proce-
dure for family-based model checking, which uses variability-aware information
obtained from spurious counterexamples to guide the verification process. When
the employed variability abstractions give rise to abstract models verifiable by
a single-system model checker, we obtain a completely automatic alternative to
a dedicated family-based model checker. The experiments show that the pro-
posed abstraction refinement procedure combined with the single-system model
checker SPIN achieves performance gains compared to the family-based model
checker SNIP when applied to several benchmark variational systems for some
interesting properties.

2 Abstract Family-Based Model Checking

We now introduce featured transition systems (FTSs) [8] for modelling varia-
tional systems, fLTL temporal formulae [8] for specifying properties of variational
systems, and variability abstractions [13,14] for defining abstract FTSs.

2.1 Featured Transition Systems

Let F = {A1, . . . , An} be a finite set of Boolean variables representing the fea-
tures available in a variational system. A specific subset of features, k ⊆ F, known
as configuration, specifies a variant (valid product) of a variational system. The
set of all valid configurations (variants) is defined as: K ⊆ 2F. An alternative
representation of configurations is based upon propositional formulae. Each con-
figuration k ∈ K can be represented by a formula: k(A1) ∧ . . . ∧ k(An), where
k(Ai) = Ai if Ai ∈ k, and k(Ai) = ¬Ai if Ai /∈ k for 1 ≤ i ≤ n. We will
use both representations interchangeably. The set of valid configurations is typ-
ically described by a feature model [22], but in this work we disregard syntactic
representations of the set K.

The behaviour of individual variants is given with transition systems.

Definition 1. A transition system (TS) is a tuple T = (S,Act, trans, I, AP,L),
where S is a set of states; Act is a set of actions; trans ⊆ S × Act × S is
a transition relation1; I ⊆ S is a set of initial states; AP is a set of atomic
propositions; and L : S → 2AP is a labelling function.

1 We often write s1
λ−→ s2 when (s1, λ, s2) ∈ trans.
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– An execution (behaviour) of T is a nonempty, infinite sequence ρ =

s0λ1s1λ2 . . . with s0 ∈ I such that si
λi+1−→ si+1 for all i ≥ 0. The semantics of

the TS T , denoted as [[T ]]TS, is the set of its executions.

The combined behaviour of a whole system family is compactly represented
with featured transition systems [8]. They are TSs where transitions are also
labelled with feature expressions, FeatExp(F), which represent propositional
logic formulae defined over F as: ψ ::= true | A ∈ F | ¬ψ | ψ1 ∧ ψ2. The fea-
ture expression ψ ∈ FeatExp(F) indicates for which variants the corresponding
transition is enabled.

Definition 2. An featured transition system (FTS) represents a tuple F =
(S,Act, trans, I, AP,L,F,K, δ), where S,Act, trans, I, AP , and L are defined as
in TS; F is the set of available features; K is a set of valid configurations; and
δ : trans → FeatExp(F) is a total function labelling transitions with feature
expressions. We write [[δ(t)]] to denote the set of variants that satisfy δ(t), i.e.
k ∈ [[δ(t)]] iff k |= δ(t). Moreover:

– The projection of an FTS F to a variant k ∈ K, denoted as πk(F), is the TS
(S,Act, trans′, I, AP,L), where trans′ = {t ∈ trans | k |= δ(t)}.

– The projection of an FTS F to a set of variants K
′ ⊆ K, denoted as πK′(F),

is the FTS (S,Act, trans′, I, AP,L,F,K′, δ), where trans′ = {t ∈ trans | ∃k ∈
K

′.k |= δ(t)}.
– The semantics of an FTS F , denoted as [[F ]]FTS, is the union of behaviours

of the projections on all variants k ∈ K, i.e. [[F ]]FTS = ∪k∈K[[πk(F)]]TS.
– The size of an FTS F is defined as [8]: |F| = |S| + |trans| + |expr| + |K|,

where |expr| is the size of all feature expressions bounded by O(2|F| · |trans|).
Example 1. Throughout this paper, we will use a beverage vending machine
as a running example [8]. The VendingMachine family has five features:
VendingMachine (denoted by v) for purchasing a drink which is a mandatory
root feature enabled in all products; Tea (denoted by t) for serving tea; Soda
(denoted by s) for serving soda; CancelPurchase (denoted by c) for canceling
a purchase after a coin is entered; and FreeDrinks (denoted by f) for offer-
ing free drinks. The FTS of VendingMachine is shown in Fig. 1a. The feature
expression label of a transition is shown next to its label action, separated by a
slash. The transitions enabled by the same feature are colored in the same way.

For example, the transition 3© soda/s−→ 5© is enabled for variants that contain the
feature s. By combining various features, a number of variants of this Vending-

Machine can be obtained. In Fig. 1b is shown the basic version of VendingMa-

chine that only serves soda, which is described by the configuration: {v, s} (or,
as formula v ∧s∧¬t∧¬c∧¬f). It takes a coin, returns change, serves soda, opens
a compartment so that the customer can take the soda, before closing it again.
We can obtain the basic vending machine in Fig. 1b by projecting the FTS in
Fig. 1a to the configuration {v, s}. The set of all valid configurations of Vend-

ingMachine can be obtained by combining the above features. For example, we
can have K = {{v, s}, {v, s, t, c, f}, {v, s, c}, {v, s, c, f}}. ��
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Fig. 1. The VendingMachine variational system.

2.2 fLTL Properties

The model checking problem consists of determining whether a model satisfies
a given property expressed as LTL (linear time logic) temporal formula [1].

Definition 3. An LTL formula φ is defined as: φ ::= true | a ∈ AP | ¬φ |
φ1 ∧ φ2 | ©φ | φ1Uφ2.

– Satisfaction of a formula φ for an infinite execution ρ = s0λ1s1λ2 . . . (we write
ρi = siλi+1si+1 . . . for the i-th suffix of ρ) is defined as:

ρ |= true, ρ |= a iff a ∈ L(s0),
ρ |= ¬φ iff ρ 
|= φ, ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2,

ρ |= ©φ iff ρ1 |= φ

ρ |= φ1Uφ2 iff ∃k ≥ 0. ρk |= φ2 and ∀j ∈ {0, . . . , k − 1}. ρj |= φ1

– A TS T satisfies a formula φ, denoted as T |= φ, iff ∀ρ ∈ [[T ]]TS . ρ |= φ.

Note that other temporal operators can be defined as well: ♦φ = trueUφ (even-
tually) and �φ = ¬♦¬φ (always). When we consider variational systems, we
sometimes want to define properties with a modality that specifies the set of
variants for which they hold.

Definition 4.

– An feature LTL (fLTL) formula is defined as: [χ]φ, where φ is an LTL formula
and χ ∈ FeatExp(F) is a feature expression.
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– An FTS F satisfies an fLTL formula [χ]φ, denoted as F |= [χ]φ, iff ∀k ∈
K ∩ [[χ]]. πk(F) |= φ. An FTS F satisfies an LTL formula φ iff F |= [true]φ.

Note that F |= [χ]φ iff π[[χ]](F) |= φ. Therefore, for simplicity in the following
we focus on verifying only LTL properties φ.

Example 2. Consider the FTS VendingMachine in Fig. 1a. Suppose that states
5© and 6© are labelled with the proposition selected, and the state 8© with
the proposition open. An example property φ is: �(selected =⇒ ♦open),
which states that after selecting a beverage, the machine will eventually open
the compartment to allow the customer to take his drink. The basic vending
machine satisfies this property: π{v,s}(VendingMachine) |= φ, but the entire
variational system does not satisfy it: VendingMachine 
 |= φ. For example, if
the feature f (FreeDrinks) is enabled, a counter-example where the state 8© is
never reached is: 1© → 3© → 5© → 7© → 1© → . . .. The set of violating products
is {{v, s, t, c, f}, {v, s, c, f}} ⊆ K. However, we have that VendingMachine |=
[¬f ]φ. Therefore, we can conclude that the feature f is responsible for violation
of the property φ. ��

2.3 Variability Abstractions

We now define variability abstractions [13,14] for decreasing the sizes of FTSs,
in particular for reducing the number of features, the configuration space, and
the size of feature expressions. The goal of variability abstractions is to weaken
feature expressions, in order to make transitions in FTSs available to more vari-
ants. We define variability abstractions as Galois connections for reducing the
Boolean complete lattice of propositional formulae over F: (FeatExp(F)/≡, |=
,∨,∧, true, false). Elements of FeatExp(F)/≡ are equivalence classes of proposi-
tional formulae ψ ∈ FeatExp(F) obtained by quotienting by the semantic equiv-
alence ≡. The pre-order relation |= is defined as the satisfaction relation from
propositional logic, whereas the least upper bound operator is ∨ and the great-
est lower bound operator is ∧. Furthermore, the least element is false, and the
greatest element is true. Subsequently, we will lift the definition of variability
abstractions to FTSs.

The join abstraction, αjoin, confounds the control-flow of all variants, obtain-
ing a single variant that includes all executions occurring in any variant. The
information about which transitions are associated with which variants is lost.
Each feature expression ψ defined over F is replaced with true if there exists at
least one configuration from K that satisfies ψ. The new abstract set of features
is empty: αjoin(F) = ∅, and the abstract set of valid configurations is a singleton:
αjoin(K) = {true} if K 
= ∅. The abstraction αjoin : FeatExp(F) → FeatExp(∅)
and concretization functions γjoin : FeatExp(∅) → FeatExp(F) are:

αjoin(ψ) =

{
true if ∃k ∈ K.k |= ψ

false otherwise
γjoin(true) = true
γjoin(false) =

∨
k∈2F\K k
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The proposed abstraction-concretization pair is a Galois connection2 [13,14].
The feature ignore abstraction, αfignore

A , ignores a single feature A ∈ F by
confounding the control flow paths that only differ with regard to A, but keeps
the precision with respect to control flow paths that do not depend on A. Let
ψ be a formula into negation normal form (NNF). We write ψ[lA �→ true] to
denote the formula ψ where the literal of A, that is A or ¬A, is replaced with
true. The abstract sets of features and configurations are: αfignore

A (F) = F\{A},
and αfignore

A (K) = {k[lA �→ true] | k ∈ K}. The abstraction and concretization
functions between FeatExp(F) and FeatExp(αfignore

A (F)), which form a Galois
connection [13,14], are defined as:

αfignore
A (ψ) = ψ[lA �→ true] γfignore

A (ψ′) = (ψ′ ∧ A) ∨ (ψ′ ∧ ¬A)

where ψ and ψ′ are in NNF.
The sequential composition α2 ◦ α1 runs two abstractions α1 and α2

in sequence (see [13,14] for precise definition). In the following, we will
simply write (α, γ) for any Galois connection 〈FeatExp(F)/≡, |= 〉 −−−→←−−−

α

γ

〈FeatExp(α(F))/≡, |=〉 constructed using the operators presented in this section.
Given a Galois connection (α, γ) defined on the level of feature expressions,

we now induce a notion of abstraction between FTSs.

Definition 5. Let F = (S,Act, trans, I, AP,L,F,K, δ) be an FTS, and
(α, γ) be a Galois connection. We define α(F) = (S,Act, trans, I, AP,L,
α(F), α(K), α(δ)), where α(δ) : trans → FeatExp(α(F)) is defined as: α(δ)(t) =
α(δ(t)).

Example 3. Consider the FTS F = VendingMachine in Fig. 1a with the set
of valid configurations K = {{v, s}, {v, s, t, c, f}, {v, s, c}, {v, s, c, f}}. We show
αjoin(π[[f ]](F)) and αjoin(π[[¬f ]](F)) in Fig. 2. We do not show transitions labelled
with the feature expression false and unreachable states. Also note that both
αjoin(π[[f ]](F)) and αjoin(π[[¬f ]](F)) are ordinary TSs, since all transitions are
labeled with the feature expression true.

For αjoin(π[[f ]](F)) in Fig. 2a, note that K ∩ [[f ]] = {{v, s, t, c, f}, {v, s, c, f}}.
So, transitions annotated with ¬f are not present in αjoin(π[[f ]](F)).

For αjoin(π[[¬f ]](F)) in Fig. 2b, note that K ∩ [[¬f ]] = {{v, s}, {v, s, c}}, and
so transitions annotated with the features t and f (Tea and FreeDrinks) are
not present in αjoin(π[[¬f ]](F)). ��

Abstract FTSs have interesting preservation properties [13,14].

Theorem 1 (Soundness). Let (α, γ) be a Galois connection and F be an
FTS. If α(F) |= φ, then F |= φ.

2 〈L, ≤L〉 −−−→←−−−
α

γ 〈M, ≤M 〉 is a Galois connection between complete lattices L and M
iff α and γ are total functions that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m) for
all l ∈ L, m ∈ M . Here �L and �M are the pre-order relations for L and M ,
respectively.
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Fig. 2. Various abstractions of VendingMachine.

The family-based model checking problem given in Definition 4 can be
reduced to a number of smaller problems by partitioning the set of variants.

Proposition 1. Let the subsets K1,K2, . . . ,Kn form a partition of the set K.
Then: F |= φ, if and only if, πK1(F) |= φ, . . . , πKn

(F) |= φ.

Corollary 1. Let K1,K2, . . . ,Kn form a partition of K, and (α1,γ1), . . . , (αn,γn)
be Galois connections. If α1(πK1(F)) |= φ, . . . , αn(πKn

(F)) |= φ, Then F |= φ.

In other words, correctness of abstract FTSs implies correctness of the con-
crete FTS. Note that verification of abstract FTSs can be drastically (even
exponentially) faster. However, if abstract FTSs invalidate a property then the
concrete FTS may still satisfy the property, i.e. the found counterexample in
abstract FTSs may be spurious. In this case, we need to refine the abstract
FTSs in order to eliminate the spurious counterexample.

Example 4. Recall the formula φ = �(selected =⇒ ♦ open) from Exam-
ple 2, and αjoin(π[[f ]](VendingMachine)) and αjoin(π[[¬f ]](VendingMachine)) shown in
Fig. 2. First, we can successfully verify that αjoin(π[[¬f ]](VendingMachine)) |= φ,
which implies that all valid variants from K that do not contain the fea-
ture f (those are {v, s} and {v, s, c}) satisfy the property φ. On the other
hand, we have αjoin(π[[f ]](VendingMachine))not |= φ with the counterexample:
1© → 3© → 5© → 7© → 1© → . . .. This counterexample is genuine for
the variants from K that contain the feature f (those are {v, s, t, c, f} and
{v, s, c, f}). In this way, the problem of verifying the FTS VendingMach. against
φ can be reduced to verifying whether two TSs, αjoin(π[[¬f ]](VendingMach.)) and
αjoin(π[[f ]](VendingMach.)), satisfy φ. ��

3 Abstraction Refinement

We now describe the abstraction refinement procedure (ARP), which uses spuri-
ous counterexamples to iteratively refine abstract variational models until either
a genuine counterexample is found or the property satisfaction is shown for each
variant in the family. Thus, the ARP determines for each variant whether or not
it satisfies a property, and provides a counterexample for each variant that do
not satisfy the given property.
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The ARP for checking F |= φ, where F = (S,Act,trans,I,AP,L,F,K, δ), is
illustrated in Fig. 3. We apply an initial abstraction α, thus obtaining an ini-
tial abstract variational model α(F). If the initial abstract model satisfies the
given property, then all variants satisfy it and we stop. Otherwise, the model
checker returns a counterexample. Let ψ be the feature expression computed
by conjoining feature expressions labelling all transitions that belong to this
counterexample in F . There are two cases to consider.

Fig. 3. The abstraction refinement procedure (ARP)

First, if ψ is satisfiable and K ∩ [[ψ]] 
= ∅, then the found counterexample
is genuine for variants in K ∩ [[ψ]]. For the other variants from K ∩ [[¬ψ]], the
found counterexample cannot be executed (i.e. the counterexample is spurious
for K∩ [[¬ψ]]). Therefore, we call the ARP again to verify π[[¬ψ]](F) with updated
set of valid configurations K ∩ [[¬ψ]].

Second, if ψ ∧ (
∨

k∈K
k) is unsatisfiable (i.e. K ∩ [[ψ]] = ∅), then the found

counterexample is spurious for all variants in K (due to incompatible feature
expressions). Now, we describe how a feature expression ψ′ used for constructing
refined abstract models is determined by means of Craig interpolation [27] from
ψ and K. First, we find the minimal unsatisfiable core ψc of ψ∧(

∨
k∈K

k), which
contains a subset of conjuncts in ψ∧(

∨
k∈K

k), such that ψc is still unsatisfiable
and if we drop any single conjunct in ψc then the result becomes satisfiable. We
group conjuncts in ψc in two groups X and Y such that ψc = X ∧ Y = false.
Then, the interpolant ψ′ is such that: (1) X =⇒ ψ′, (2) ψ′ ∧ Y = false,
(3) ψ′ refers only to common variables of X and Y . Intuitively, we can think
of the interpolant ψ′ as a way of filtering out irrelevant information from X.
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In particular, ψ′ summarizes and translates why X is inconsistent with Y in
their shared language. Once the interpolant ψ′ is computed, we call the ARP to
check π[[ψ′]](F) |= φ for variants in K ∩ [[ψ′]], and π[[¬ψ′]](F) |= φ for variants in
K∩[[¬ψ′]]. By construction, we guarantee that the found spurious counterexample
does not occur neither in π[[ψ′]](F) nor in π[[¬ψ′]](F).

Note that, in Step 1, the initial abstraction can be chosen arbitrarily. This
choice does not affect correctness and termination of the ARP, but it allows
experimentation with different heuristics in concrete implementations. For exam-
ple, if we use the initial abstraction αjoin, then as an abstract model we obtain
an ordinary TS where all feature expressions associated with transitions of F
occurring in some valid variant are replaced with true. Therefore, the verifica-
tion step can be performed using a single-system model checker (e.g. SPIN).
Also note that we call the ARP until there are no more counterexamples or the
updated set of valid configurations K becomes empty.

Example 5. Let F be VendingMachine of Fig. 1a with configurations K =
{{v, s}, {v, s, t, c, f}, {v, s, c}, {v, s, c, f}}. Let αjoin be the initial abstraction.

We check F |= φ, where φ = �(selected =⇒ ♦ open) using the ARP. We
first check αjoin(F) |= φ? The following spurious counterexample is reported:

1© pay−→ 2© change−→ 3© tea−→ 6© serveTea−→ 7© take−→ 1© . . .. The associated feature expres-
sion in F is: (v ∧ ¬f) ∧ v ∧ t ∧ f . The minimal unsatisfiable core is: (v ∧ ¬f) ∧ f ,
and the found interpolant is ¬f . In this way, we have found that the feature f is
responsible for the spuriousness of the given counterexample. Thus, in the next
iteration we check αjoin(π[[¬f ]](F)) |= φ and αjoin(π[[f ]](F)) |= φ, which give
conclusive results for all variants from K as explained in Example 4.

Consider the property φ′ = �♦ open. The following counterexample
is found in αjoin(F): 1© pay−→ 2© change−→ 3© cancel−→ 4© return−→ 1© . . .. The
associated feature expression in F is: v ∧ ¬f ∧ c, so this is a genuine
counterexample for the variant {v, s, c} ∈ K. In the next iteration, we
check αjoin(π[[¬(v∧¬f∧c)]](F)) |= φ′ for variants K\{v, s, c}. We obtain the

counterexample: 1© free−→ 3© cancel−→ 4© return−→ 1© . . ., with associated feature expres-
sion f ∧ c, realizable for variants {v, s, t, c, f} and {v, s, c, f}). In the final iter-
ation, we check αjoin

(
π[[¬(f∧c)]](π[[¬(v∧¬f∧c)]](F))

)
|= φ′ for the variant {v, s}.

The property holds, so φ′ is satisfied by {v, s}. ��

Theorem 2. The ARP terminates and is correct.

Proof. At the end of an iteration, the ARP either terminates with answer ‘yes’,
or finds a genuine counterexample and updates K into K

′, or finds a spurious
counterexample and updates K into K1 and K2. Given that K

′ ⊂ K (the coun-
terexample is genuine for some non-empty subset of K), and K1 ⊂ K, K2 ⊂ K

(by def. K1 
= ∅, K2 
= ∅, K1 ∪ K2 = K), the number of possible updates and
calls to the ARP are finite. Therefore, the number of iterations is also finite.

If the ARP terminates with answer that a property is satisfied (resp., property
is not satisfied) by a variant, then the answer is correct by Theorem 1, since any
abstraction constructs an over-approximated model for a given set of variants. ��
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4 Evaluation

In this section, we describe our implementation of the ARP, and present the
results of experiments carried out on several variational models. We use exper-
iments to evaluate in which cases and to what extent our ARP technique out-
performs the family-based model checking algorithms of FTS [7,8] implemented
in SNIP3.

Implementation. It is difficult to use FTSs directly to model large varia-
tional systems. Therefore, SNIP uses the high-level languages fPromela and
TVL for modeling variational systems and their configuration sets, respectively.
fPromela is an extension of Promela, the language of the SPIN model
checker [19], adding feature variables, F, and a new guarded-by-features state-
ment, “gd”. The “gd” is a non-deterministic statement similar to Promela’s
“if”, except that only feature expressions can be used as guards. Actually, this
is the only place where features may be used. Thus, “gd” plays the same role
in fPromela as “#ifdef” in the C Preprocessor [24]. TVL [6] is a textual
modelling language for describing the set of valid configurations, K, for an
fPromela model along with all available features, F. It has been shown in
[13,14] that variability abstractions and projections can be implemented as syn-
tactic source-to-source transformations of fPromela and TVL models, which
enable an effective computation of abstract models syntactically from high-level
modelling languages. More precisely, let M and T be fPromela and TVL mod-
els, and let [[M ]]T represent the FTS obtained by their compilation. Since vari-
ability abstractions affect only variability-specific aspects of a system, for any
abstraction α we can define α(M) and α(T ) as syntactic transformations such
that α([[M ]]T ) = [[α(M)]]α(T ). That is, the abstract model obtained by applying α
on the FTS [[M ]]T coincides with the FTS obtained by compiling α(M) and α(T ).
The same applies for projections π[[ψ]]. The fPromelaReconfigurator tool
[13,14] syntactically calculates the transformations corresponding to abstrac-
tions and projections. This is important for two reasons. First, it allows to eas-
ily implement our technique based on abstractions and projections. Second, we
avoid the need for intermediate storage in memory of the concrete full-blown
FTSs. In our implementation of the ARP, we use αjoin as the initial abstraction.
Hence, after applying αjoin on fPromela and TVL models M and T , we obtain
an ordinary Promelamodel and we call SPIN to check [[α(M)]]α(T ) |= φ? If a
counterexample trace is returned, we inspect the error trace in detail by using
SPIN’s simulation mode. We replay the error trace through α(M) and M simul-
taneously, and we find the feature expression ψ that characterizes this trace in
M . In order to do this, we use the fact that α(M) and M have the same control
structures (same number of lines and statements), except that “gd” statements
in M are replaced with “if” statements in α(M) by the corresponding trans-
formations that affect only their guards.
3 The project on development of the SNIP tool (https://projects.info.unamur.be/fts/)

is independent of SPIN. SNIP has been implemented from scratch. We put a line
over SNIP to make the distinction from SPIN clearer.

https://projects.info.unamur.be/fts/
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Experimental setup. For our experiments, we use: a warm-up example to demon-
strate specific characteristics of our ARP, and the MinePump [25] variational
system whose fPromela model was created as part of the SNIP project. We ver-
ify a range of properties by using (1) the ARP with αjoin as the initial abstraction
and SPIN as the verification tool (denoted ARP+SPIN), and by using (2) plain
family-based model checking with SNIP. The reported performance numbers
constitute the average runtime of five independent executions. For each experi-
ment, we measure: Time which is the time to verify in seconds; and Space which
is the number of explored states plus the number of re-explored states (this is
equivalent to the number of transitions fired). For the ARP, along with the total
time the ARP takes to complete we also report in parentheses the time taken
by SPIN to perform the actual model checking tasks. The rest of the total time
the ARP uses to calculate abstractions, projections, analyze error traces, etc.
We only measure the times to generate a process analyser (pan) for SPIN and to
execute it. We do not count the time for compiling pan, as it is due to a design
decision in SPIN rather than its verification algorithm. All experiments were
executed on a LUbunutuVM 64-bit Intel�CoreTM i7-4600U CPU running at
2.10 GHz with 4 GB memory. The implementation, benchmarks, and all results
obtained from our experiments are available from: http://www.itu.dk/people/
adim/arp.html.

Warm-up example. Consider the fPromela model F given in Fig. 4a. After
declaring feature variables, A1 . . . An, the process foo() is defined. The first gd
statement specifies that i++ is available for variants that contain the feature
A1, and skip for variants with ¬A1. The following gd statements are similar,
except that their guards are the features from A2 to An. We want to check the
assertion, i ≥ k, where k is a meta-variable that can be replaced with different
values: 0, 1, ..., n. The corresponding TVL model specifies that all features are
optional and unconstrained, which means that all possible 2n configurations are
valid. We use two approaches to check the above assertions: ARP+SPIN and the
family-based model checker SNIP. The initial abstract model αjoin(F) used in
the ARP is shown in Fig. 4b. Since there are valid variants where Aj is enabled

Fig. 4. An fPromela model and the corresponding αjoin abstract model.

http://www.itu.dk/people/adim/arp.html
http://www.itu.dk/people/adim/arp.html
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and valid variants where Aj is disabled (for any j ∈ {1, . . . , n}), we have that both
statements i++ and skip become available in αjoin(F) for all “gd” statements.

When k = 0, the assertion i ≥ 0 is satisfied by all variants. The ARP termi-
nates in one iteration with only one call to SPIN, which reports that αjoin(F)
satisfies the assertion. When k = 1, the ARP needs two iterations to find a
(genuine) counterexample which corresponds to a single configuration where all
features are disabled, and to certify that all other variants satisfy the assertion.
When k = 2, the ARP runs in n + 1 iterations producing n + 1 erroneous vari-
ants: one variant where all features are disabled, and n variants where exactly
one feature is enabled and all others are disabled. When k = n, the ARP will
need n+1 iterations to terminate reporting that there is only one variant, where
all features are enabled, that satisfies the assertion i ≥ n. All other variants are
erroneous. This represents the worst case for our ARP, since all possible vari-
ants will be generated explicitly and checked by SPIN in a brute-force fashion.
In addition, we have the overhead of generating all intermediate projections and
abstractions as well as their verification with SPIN, for which spurious coun-
terexamples are obtained. The performance results are shown in Fig. 5. We say
that a task is infeasible when it is taking more time than the given timeout
threshold, which we set on 1 h. Notice that SNIP reports the correct results in
only one iteration for all cases. Yet, as shown in Fig. 5, for n = 25 (for which
|K| = 225 = 33, 554, 432 variants) SNIP timeouts after visiting 150 M states. On
the other hand, our ARP based approach is feasible even for very large values
of n when k is smaller (see Fig. 5). In general, the ARP aims to partition the
configuration space into subspaces that satisfy and violate the property at hand.
When k is higher, that split becomes more irregular and the ARP needs to per-
form more iterations and calls to SPIN to find it automatically. Therefore, in
those cases it takes more time to complete.

MinePump. The MinePump variational system is given by an fPromela
model with 200 LOC and a TVL model that contains 7 independent optional
features: Start, Stop, MethaneAlarm, MethaneQuery, Low, Normal, and High,
thus yielding 27 = 128 variants. The FTS of MinePump has 21,177 states. It
consists of 5 processes: a controller, a pump, a watersensor, a methanesensor,

Fig. 5. Verification of the warm-up example. Time in seconds.
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Fig. 6. Verification of MinePump properties.

and a user. When activated, the controller should switch on the pump when the
water level in the mine is high, but only if there is no methane within it.

For evaluation, we consider five interesting properties of MinePump (taken
from [8]). First, we consider three properties, ϕ1, ϕ2 and ϕ3, that are intended
to be satisfied by all variants. The property ϕ1 is the absence of deadlock; the
property ϕ2 is that under a fairness assumption (the system will infinity often
read messages of various types) the pump is never indefinitely off when the
water level is high and there is no methane; whereas the property ϕ3 is that
if the pump is switched on then the controller state is running. For all three
properties, the ARP terminates after one iteration reporting that the properties
are satisfied by all variants. Then, we have two properties, ϕ4 and ϕ5, which are
satisfied by some variants and violated by others, such that there are different
counterexamples corresponding to violating variants. The property ϕ4 (when
the water is high and there is no methane, the pump will not be switched on
at all eventually) is violated by variants that satisfy Start ∧ High (32 variants
in total). The property ϕ5 (when the water is low, then the pump will be off)
is also violated by variants satisfying Start ∧ High. For both properties, our
ARP runs in seven iterations, producing 12 different counterexamples for ϕ4

and 13 different counterexamples for ϕ5. Figure 6 shows the performance results
of verifying properties, ϕ1 to ϕ5, using our ARP with SPIN approach and the
SNIP. The ARP achieves improvements in both Time and Space in most cases,
especially for properties ϕ1 to ϕ3 satisfied by all variants which are verified in
only one iteration. Of course, the performances of the ARP will start to decline
for properties for which the ARP needs higher number of iterations and calls to
SPIN in order to complete. However, we can see that for both ϕ4 and ϕ5 the
actual verification time taken by SPIN (given in parentheses) in our ARP is still
considerable smaller than the time taken by SNIP. Still, in these cases we obtain
very long counterexamples (around thousand steps) so the ARP will need some
additional time to process them.

Discussion. In conclusion, the ARP achieves the best results when the property
to be checked is either satisfied by all variants or only a few erroneous variants
exist. In those cases, the ARP will report conclusive results in few iterations.
The worst case is when every variant triggers a different counterexample, so
our ARP ends up in verifying all variants one by one in a brute-force fashion
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(plus the overhead for generating and verifying all intermediate abstract models).
Variability abstractions weaken feature expressions used in FTSs, thus increas-
ing the commonality between the behaviours of variants. In the case of αjoin

this enables the use of (single-system) SPIN model checker. SPIN is a highly-
optimized industrial-strength tool which is much faster than the SNIP research
prototype. SPIN contains many optimisation algorithms, which are result of
more than three decades research on advanced computer aided verification. For
example, partial order reduction, data-flow analysis and statement merging are
not implemented in SNIP yet. Note that we can also implement the ARP to
work with SNIP by using αfignore instead of αjoin as the initial abstraction. The
ARP will work correctly for any choice of features to be ignored by αfignore.
However, in order the ARP to terminate faster and achieve some speedups, the
ignored features should be chosen carefully by exploiting the knowledge of the
variational system and property at hand.

5 Related Work

Family-based (lifted) analyses and verification techniques have been a topic of
considerable research recently (see [30] for a survey). Some successful examples
are lifted syntax checking [17,24], lifted type checking [23], lifted static data-flow
analysis [3,15,16,28], lifted verification [20,21,29], etc.

In the context of family-based model checking, one of the earliest attempts
for modelling variational systems is by using modal transition systems (MTSs)
[2,26]. Following this, Classen et al. present FTSs in [7,8] and show how specif-
ically designed family-based model checking algorithms (implemented in SNIP)
can be used for verifying FTSs against fLTL properties. An FTS-specific veri-
fication procedure based on counterexample guided abstraction refinement has
been proposed in [10]. Abstractions on FTSs are introduced by using existential
F-abstraction functions (as opposed to Galois connections here), and simulation
relation is used to relate different abstraction levels. There are other impor-
tant differences between the approach in [10] and our ARP. Refinement of fea-
ture abstractions in [10] is defined by simply replacing the abstract (weakened)
feature expressions occurring in transitions of the spurious counterexample by
their concrete feature expressions. In contrast, we use Craig interpolation as well
as suitable combinations of variability abstractions and projections to generate
refined abstract models. The abstractions in [10] are applied on feature pro-
gram graphs (an intermediate structure between high-level fPromelamodels
and FTSs) in SNIP. In contrast, we apply variability abstractions as preproces-
sor transformations directly on high-level fPromelamodels thus avoiding to
generate any intermediate concrete semantic model in the memory. In the case
of αjoin, this leads to generating Promelamodels and using SPIN for the ARP.
The work [12] presents an approach for family-based software model checking
of #ifdef-based second-order program families using symbolic game semantics
models [11].
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6 Conclusion

In this work we have proposed an automatic abstraction refinement procedure for
family-based model checking of variational systems. Automatic refinement gives
us an adaptive divide-and-conquer strategy for the configuration space. The
obtained tool represents a completely automatic alternative to the family-based
model checker SNIP, which is simpler, easier to maintain, and more efficient
for some interesting properties than SNIP. It automatically benefits from all
optimizations of SPIN. The overall design principle is general and can be applied
to lifting of other automatic verification tools to variational systems.
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3. Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.: SPLLIFT:
statically analyzing software product lines in minutes instead of years. In: ACM
SIGPLAN Conference on PLDI 2013, pp. 355–364 (2013)

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

5. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of
ANSI-C programs using SAT. Formal Meth. Syst. Des. 25(2–3), 105–127 (2004).
http://dx.doi.org/10.1023/B:FORM.0000040025.89719.f3

6. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature modelling:
syntax and semantics of TVL. Sci. Comput. Program. 76(12), 1130–1143 (2011).
http://dx.doi.org/10.1016/j.scico.2010.10.005

7. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Model
checking software product lines with SNIP. STTT 14(5), 589–612 (2012).
http://dx.doi.org/10.1007/s10009-012-0234-1

8. Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured
transition systems: foundations for verifying variability-intensive systems and their
application to LTL model checking. IEEE Trans. Softw. Eng. 39(8), 1069–1089
(2013). http://doi.ieeecomputersociety.org/10.1109/TSE.2012.86

9. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Reading (2001)

10. Cordy, M., Heymans, P., Legay, A., Schobbens, P., Dawagne, B., Leucker, M.:
Counterexample guided abstraction refinement of product-line behavioural mod-
els. In: Cheung, S., Orso, A., Storey, M.D. (eds.) Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE-
22), pp. 190–201. ACM (2014). http://doi.acm.org/10.1145/2635868.2635919

11. Dimovski, A.S.: Program verification using symbolic game semantics. Theor. Com-
put. Sci. 560, 364–379 (2014). http://dx.doi.org/10.1016/j.tcs.2014.01.016

12. Dimovski, A.S.: Symbolic game semantics for model checking program families. In:
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29. von Rhein, A., Thüm, T., Schaefer, I., Liebig, J., Apel, S.: Variability encoding:
from compile-time to load-time variability. J. Log. Algebr. Meth. Program. 85(1),
125–145 (2016). http://dx.doi.org/10.1016/j.jlamp.2015.06.007

30. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6
(2014). http://doi.acm.org/10.1145/2580950

http://dx.doi.org/10.1007/978-3-540-31980-1_1
http://dx.doi.org/10.1016/j.scico.2015.04.005
http://dx.doi.org/10.1016/j.jlamp.2015.06.007
http://doi.acm.org/10.1145/2580950

	Variability-Specific Abstraction Refinement for Family-Based Model Checking
	1 Introduction
	2 Abstract Family-Based Model Checking
	2.1 Featured Transition Systems
	2.2 fLTL Properties
	2.3 Variability Abstractions

	3 Abstraction Refinement
	4 Evaluation
	5 Related Work
	6 Conclusion
	References


