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Abstract. Graphs are ubiquitous in Computer Science. For this reason,
in many areas, it is very important to have the means to express and
reason about graph properties. In particular, we want to be able to check
automatically if a given graph property is satisfiable. Actually, in most
application scenarios it is desirable to be able to explore graphs satisfying
the graph property if they exist or even to get a complete and compact
overview of the graphs satisfying the graph property.

We show that the tableau-based reasoning method for graph proper-
ties as introduced by Lambers and Orejas paves the way for a symbolic
model generation algorithm for graph properties. Graph properties are
formulated in a dedicated logic making use of graphs and graph mor-
phisms, which is equivalent to first-order logic on graphs as introduced
by Courcelle. Our parallelizable algorithm gradually generates a finite
set of so-called symbolic models, where each symbolic model describes a
set of finite graphs (i.e., finite models) satisfying the graph property. The
set of symbolic models jointly describes all finite models for the graph
property (complete) and does not describe any finite graph violating the
graph property (sound). Moreover, no symbolic model is already covered
by another one (compact). Finally, the algorithm is able to generate from
each symbolic model a minimal finite model immediately and allows for
an exploration of further finite models. The algorithm is implemented in
the new tool AutoGraph.

Keywords: Graph properties · Nested graph conditions · Model gener-
ation · Tableau method · Satisfiability solving · Graph transformation

1 Introduction

Graphs are ubiquitous in Computer Science. For this reason, in many areas,
it is (or it may be) very important to have the means to express and reason
about graph properties. Examples may be, (a) model-based engineering where
we may need to express properties of graphical models; (b) the verification of
systems whose states are modeled as graphs; (c) to express properties about sets
of semi-structured documents, especially if they are related by links; (d) graph
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databases, where we may want to state integrity constraints in the form of graph
properties or where we may want to be able to reason about the validity of graph
queries and, in particular, to understand why queries might be valid or not.

Let us take a closer look at the latter application field to understand how
the symbolic model generation approach for graph properties, as presented in
this paper, will support a typical usage scenario. In general, a graph query for
a graph database G (as formalized in [3] and used in extended form in [18])
formulates the search for occurrences of graph patterns of a specific form L
satisfying some additional property in G. Since such a query can become quite
complex it is important to have an intuitive query language to formulate it and
to have additional support allowing for reasoning about the query to enhance
understandability and facilitate debugging. Validity of a graph query means
that there should exist a graph database G in which we find an occurrence of
the pattern L satisfying the additional property for L encoded in the query,
see e.g. Fig. 1b depicting a graph property p1 expressing validity for a query
taken from [9,35] explained in detail in Sect. 3. First of all automatic support
to answer this validity question for a query is thus desired. Moreover, if validity
is the case, then one wants to be able to inspect a graph database G as a
concrete example, but this example should be of a manageable size. Moreover,
if there are considerably different types of graph databases being witnessed for
the validity of a query then we would like to get a finite, complete, and compact
overview S of all these graph databases. Also a flexible exploration starting from
some minimal example graph database to a bigger one still being a witness for
validity is desirable. Finally, of course one wants to see all these results within a
reasonable amount of time.

For a given graph property p, formulating more generically all requirements
occurring in this usage scenario means that we would like to have an algorithm
A returning for p a finite set of so-called symbolic models S such that

– S jointly covers each finite graph G satisfying p (complete),
– S does not cover any finite graph G violating p (sound),
– S contains no superfluous symbolic model (compact),
– S allows for each of its symbolic models the immediate extraction of a minimal

finite graph G covered (minimally representable), and
– S allows an enumeration of further finite graphs G satisfying p (explorable).

The contribution of this paper is the presentation and implementation of a
parallelizable symbolic model generation algorithm delivering a complete (pro-
vided termination), sound, compact, minimally representable, and explorable
set of symbolic models. We illustrate the algorithm w.r.t. checking validity of
some complex graph queries from [9,35]. Our algorithm takes as input graph
properties formulated in an intuitive, dedicated logic making use of graphs and
graph morphisms as first-class citizens. This logic of so-called nested graph con-
ditions was defined by Habel and Pennemann [13]. A similar approach was first
introduced by Rensink [30]. The origins can be found in the notion of graph
constraint [15], introduced in the area of graph transformation [31], in connec-
tion with the notion of (negative) application conditions [8,12], as a form to
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limit the applicability of transformation rules. These graph constraints origi-
nally had a very limited expressive power, while nested conditions have been
shown [13,26] to have the same expressive power as first-order logic (FOL) on
graphs as introduced by Courcelle [4]. Note that because we support FOL on
graphs our algorithm might in general not terminate. It is designed however
(also if non-terminating) to gradually deliver better underapproximations of the
complete set of symbolic models.

This paper is structured as follows: In Sect. 2 we give an overview over related
work. In Sect. 3 we introduce our running example and we reintroduce the key
notions of the tableau-based reasoning method that our symbolic model genera-
tion algorithm is based on. In Sect. 4 we present our algorithm and its formaliza-
tion and in particular show that it fulfills all requirements. In Sect. 5 we describe
the algorithm implementation in the new tool AutoGraph. We conclude the
paper in Sect. 6 together with an overview of future work. A more elaborate
presentation including further evaluation and proofs is given in the technical
report [33].

2 Related Work

Instead of using a dedicated logic for graph properties, one can define and reason
about graph properties in terms of some existing logic and reuse its associated
reasoning methods. In particular, Courcelle [4] studied systematically a graph
logic defined in terms of first-order (or monadic second-order) logic. In that app-
roach, graphs are defined axiomatically using predicates node(n), asserting that
n is a node, and edge(n1, n2) asserting that there is an edge from n1 to n2.
Such a translation-based approach for finding models of graph-like properties is
followed, e.g., in [10], where OCL properties are translated into relational logic,
and reasoning is then performed by Kodkod, a SAT-based constraint solver for
relational logic. In a similar vein, in [1] reasoning for feature models is being
provided based on a translation into input for different general-purpose reason-
ers. Analogously, in [34] the Alloy analyzer is used to synthesize in this case
large, well-formed and realistic models for domain-specific languages. Reasoning
for domain specific modeling is addressed also in [16,17] using the FORMULA
approach taking care of dispatching the reasoning to the state-of-the-art SMT
solver Z3. In [32] another translation-based approach is presented to reason with
so-called partial models expressing uncertainty about the information in the
model during model-based software development. In principle, all the previously
exemplarily presented approaches from the model-based engineering domain rep-
resent potential use cases for our dedicated symbolic model generation approach
for graph-like properties. Since we are able to generate symbolic models being
complete (in case of termination), sound, compact, minimally representable, and
explorable in combination, we believe that our approach has the potential to
enhance considerably the type of analysis results, in comparison with the results
obtained by using off-the-shelf SAT-solving technologies.

Following this idea, in contrast to the translation-based approach it is pos-
sible, e.g., to formalize a graph-like property language such as OCL [29] by
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a dedicated logic for graph properties [13] and apply corresponding dedicated
automated reasoning methods as developed in [20,23–25]. The advantage of such
a graph-dedicated approach as followed in this paper is that graph axioms are
natively encoded in the reasoning mechanisms of the underlying algorithms and
tooling. Therefore, they can be built to be more efficient than generic-purpose
methods as demonstrated e.g. in [24–26], where such an approach outperforms
some standard provers working over encoded graph conditions. Moreover, the
translation effort for each graph property language variant (such as e.g. OCL)
into a formal logic already dedicated to the graph domain is much smaller than
a translation into some more generic logic, which in particular makes translation
errors less probable. As most directly related work [24,26] presents a satisfiabil-
ity solving algorithm for graph properties as employed in this paper [13]. This
solver attempts to find one finite model (if possible), but does not generate a
compact and gradually complete finite set of symbolic models allowing to inspect
all possible finite models including a finite set of minimal ones. In contrast to
[24,26] our symbolic model generation algorithm is interleaved directly with a
refutationally complete tableau-based reasoning method [20], inspired by rules
of a proof system presented previously in [25], but in that work the proof rules
were not shown to be refutationally complete.

3 Preliminaries

In this section we first introduce our running example and then recall definitions
and results from [20] simplified for their application in subsequent sections.

We consider as an example two social network queries as described in the
Social Network Benchmark developed by the Linked Data Benchmark Council [9,
35]. The form of social networks to be queried is given by the type graph in
Fig. 1a. Moreover, we forbid parallel edges of the same type. The first considered
graph query (a variant of query 8 from [3]) looks for pairs of Persons and Tags
such that in such a pair a Tag is new in some Post by a friend of this Person.
To be a Post of a friend, the Post must be from a second Person the Person
knows. In order to be new, the Tag must be linked in the latest Post of the
second Person (and thus in a Post that has no successor Post) and there has to
be no former Post by any other or the same friend that is not her last one and
where the same Tag has been already used. In both cases only Tags that are not
simply inherited from a linked Post should be considered. This query is valid if
there is a graph database G in which such a Person and Tag pair can be found
at least once. The corresponding graph property p1 is depicted in Fig. 1b. The
graph property p2 for a variant of query 10 [9,35] is given in Fig. 1c.

Technically, we express graph properties as a special case of nested graph
conditions that are formulated over a graph C and satisfied by monomorphisms
(monos for short) [13]. In particular, a graph property satisfied by a graph G is
a graph condition over the empty graph ∅ satisfied by the unique mono ∅ ↪−→ G.
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Fig. 1. Graph properties for queries from the Social Network Benchmark [9,35].

Definition 1 (condition, property). We define conditions inductively:

– ∃(m, c) is a condition over a graph C, if m : C ↪−→ D is a mono and c is a
condition over D,

– ¬c is a condition over C, if c is a condition over C, and
– ∧(c1, . . . , ck) is a condition over C, if c1, . . . , ck are conditions over C.

A graph property is a condition over the empty graph ∅.
Note, the empty conjunction ∧() serves as a base case for the inductive defi-
nition. Without extending expressiveness of the conditions, we define the fol-
lowing operators: ∨(c1, . . . , ck):=¬ ∧ (¬c1, . . . ,¬ck), true:=∧(), false:=∨(), and
∀(m, c):=¬∃(m,¬c). Finally, we also use ∧(S) if S is a finite set instead of a list.
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Definition 2 (satisfaction). A graph mono q : C ↪−→ G satisfies a condition
∃(m, c) where m : C ↪−→ D is a mono and where c is a condition over D, written
q |= ∃(m, c), if there is a mono q′ : D ↪−→ G such that q′◦m = q and q′ |= c. The
satisfaction relation |= is defined on the other connectives as expected. Finally,
if G is a graph, p is a graph property, and the unique mono i : ∅ ↪−→ G satisfies
p, then G satisfies p, written G |= p.

Note that we reintroduced these definitions for graphs, but our results can
be generalized to variants of graphs such as, e.g., typed attributed graphs, Petri
nets, or even algebraic specifications, since they belong to an M-adhesive cat-
egory [6,19] satisfying some additional categorical properties that the tableau-
based reasoning method [20] requires. This is another advantage as opposed to
using encodings as referred to in related work, since each kind of graph structure
would otherwise need a different encoding.

Our symbolic model generation method will operate on the subset of con-
ditions in conjunctive normal form (CNF), simplifying the corresponding rea-
soning. For example, ∧(∨()) = ∧(false) is a condition in CNF equivalent to
false. We therefore assume an operation [·], similarly to operations in [20,25,26],
translating conditions into equivalent conditions in CNF. This operation applies,
besides the expected equivalences, like the equivalence for removal of universal
quantification mentioned before Definition 2, an equivalence for the removal of
literals with isomorphisms (e.g., ∃(i : A ∼−→ B,∃(m : B ↪−→ C, true)) is replaced
by ∃((m ◦ i) : A ↪−→ C, true) by moving the isomorphism i into the literals of the
next nesting level). In particular, a negative literal in CNF is trivially satisfi-
able by the identity morphism, a property that will be exploited heavily in our
symbolic model generation algorithm. Note, skolemization, which removes exis-
tential quantification in FOL SAT-reasoning, is not needed for graph conditions
[26, p. 100]; we employ CNF-conversion on quantified subconditions separately.

Definition 3 (CNF). A literal � is either a positive literal ∃(m, c) or a nega-
tive literal ¬∃(m, c) where m is no isomorphism and c is in CNF. A clause is a
disjunction of literals. A conjunction of clauses is a condition in CNF.

The tableau-based reasoning method as introduced in [20] is based on so-
called nested tableaux. We start with reintroducing the notion of a regular
tableau for a graph condition, which was directly inspired by the construction
of tableaux for plain FOL reasoning [14]. Intuitively, provided a condition in
CNF, such an iteratively constructed tableau represents all possible selections
(computed using the extension rule in the following definition) of precisely one
literal from each clause of the condition (note, a condition is unsatisfiable if it
contains an empty clause). Such a selection is given by a maximal path in the
tableau, which is called branch. In this sense, we are constructing a disjunctive
normal form (DNF) where the set of nodes occurring in a branch of the resulting
tableau corresponds to one clause of this DNF. Then, to discover contradictions
in the literals of a branch and to prepare for the next step in the satisfiability
analysis we merge (using the lift rule in the following definition) the selected
literals into a single positive literal (note, if no positive literal is available the
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condition is always satisfiable), which is called opener. Note that the lift rule is
based on a shifting translating a condition over a morphism into an equivalent
condition [7,13].

Definition 4 (tableau, tableau rules, open/closed branches). Given a
condition c in CNF over C. A tableau T for c is a tree whose nodes are conditions
constructed using the rules below. A branch in a tableau T for c is a maximal
path in T . Moreover, a branch is closed if it contains false; otherwise, it is open.
Finally, a tableau is closed if all of its branches are closed; otherwise, it is open.

– initialization rule: a tree with a single root node true is a tableau for c.
– extension rule: if T is a tableau for c, B is a branch of T , and ∨(c1, . . . , cn) is

a clause in c, then if n > 0 and c1, . . . , cn are not in B, then extend B with
n child nodes c1, . . . , cn or if n = 0 and false is not in B, then extend B with
false.

– lift rule: if T is a tableau for c, B is a branch of T , ∃(m, c′) and � are literals
in B, �′ = ∃(m, [c′ ∧ shift(m, �)]) is not in B, then extend B with �′.

The operation shift(·, ·) allows to shift conditions over morphisms preserving
satisfaction in the sense that m1 ◦ m2 |= c iff m1 |= shift(m2, c) (see [20,
Lemma 3]). Semi-saturated tableaux are the desired results of the iterative con-
struction where no further rules need to be applied.

Definition 5 (semi-saturation, hook of a branch). Let T be a tableau for
condition c over C. A branch B of T is semi-saturated if it is either closed or

– B is not extendable with a new node using the extension rule and
– if E = {�1, . . . , �n} is nonempty and the set of literals added to B using the

extension rule, then there is a positive literal � = ∃(m, c′) in E such that the
literal in the leaf of B is equivalent to ∃(m, c′ ∧�′∈(E−{�}) shift(m, �′)). Also,
we call � the hook of B.

Finally, T is semi-saturated if all its branches are semi-saturated.

In fact, a condition c is satisfiable if and only if the leaf condition of some open
branch of a corresponding semi-saturated tableau is satisfiable. Hence, the next
analysis step is required if there is a leaf ∃(m : C ↪−→ C ′, c′) of some open branch
for which satisfiability has to be decided. That is, the next analysis step is to
construct a tableau for condition c′. The iterative (possibly non-terminating)
execution of this procedure results in (possibly infinitely many) tableaux where
each tableau may result in the construction of a finite number of further tableaux.
This relationship between a tableau and the tableaux derived from the leaf lit-
erals of open branches results in a so called nested tableau (see Fig. 2 for an
example of a nested tableau).

Definition 6 (nested tableau, opener, context, nested branch, semi-
saturation). Given a condition c over C and a poset (I,≤, i0) with minimal
element i0. A nested tableau NT for c is for some I ′ ⊆ I a family of triples
{〈Ti, j, ci〉}i∈I′ constructed using the following rules.
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Fig. 2. Nested tableau (consisting of tableau T0, . . . , T5) for graph property

. In the middle branch
false is obtained because ¬ ∨ L2 is reduced to false because ∨L2 is reduced to true
because L2 contains due to shifting, which is reduced by [·] to true because of the
used isomorphism. We extract from the nested branches ending in T4, T5, and T3 the

symbolic models , , and . Here

is a refinement of and, hence, would be removed by compaction as explained
in Sect. 4.4.

– initialization rule: If Ti1 is a tableau for c, then the family containing only
〈Ti1 , i0, true〉 for some index i1 > i0 is a nested tableau for c and C is called
context of Ti1 .

– nesting rule: If NT is a nested tableau for c with index set I ′, 〈Tn, k, ck〉 is in
NT for index n, the literal � = ∃(mn : An ↪−→ Aj , cn) is a leaf of Tn, � is not
the condition in any other triple of NT, Tj is a tableau for cn, and j > n is
some index not in I ′, then add the triple 〈Tj , n, �〉 to NT using index j, � is
called opener of Tj, and Aj is called context of Tj.

A nested branch NB of the nested tableau NT is a maximal sequence of branches
Bi1 , . . . , Bik , Bik+1 , . . . of tableaux Ti1 , . . . , Tik , Tik+1 , . . . in NT starting with a
branch Bi1 in the initial tableau Ti1 of NT, such that if Bik and Bik+1 are
consecutive branches in the sequence then the leaf of Bik is the opener of Tik+1 .
NB is closed if it contains a closed branch; otherwise, it is open. NT is closed if
all its nested branches are closed. Finally, NT is semi-saturated if each tableau
in NT is semi-saturated.

It has been shown in [20] that the tableau based reasoning method using
nested tableaux for conditions c is sound and refutationally complete. In partic-
ular, soundness means that if we are able to construct a nested tableau where all
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its branches are closed then the original condition c is unsatisfiable. Refutational
completeness means that if a saturated tableau includes an open branch, then
the original condition is satisfiable. In fact, each open finite or infinite branch
in such a tableau defines a finite or infinite model of the property, respectively.
Informally, the notion of saturation requires that all tableaux of the given nested
tableau are semi-saturated and that hooks are selected in a fair way not post-
poning indefinitely the influence of a positive literal for detecting inconsistencies
leading to closed nested branches.

4 Symbolic Model Generation

In this section we present our symbolic model generation algorithm. We first
formalize the requirements from the introduction for the generated set of sym-
bolic models, then present our algorithm, and subsequently verify that it indeed
adheres to these formalized requirements. In particular, we want our algorithm
to extract symbolic models from all open finite branches in a saturated nested
tableau constructed for a graph property p. This would be relatively straightfor-
ward if each saturated nested tableau would be finite.

However, in general, as stated already at the end of the previous section
this may not be the case. E.g., consider the conjunction p0 = ∧(p1, p2, p3) of
the conditions p1 = (there is a node which has no pre-
decessor), p2 = (every node has a successor), and p3 =

(no node has two predecessors), which is only satisfied by
the infinite graph G∞ =

Thus, in order to be able to find a complete set of symbolic models without
knowing beforehand if the construction of a saturated nested tableau terminates,
we introduce the key-notions of k-semi-saturation and k-termination to reason
about nested tableaux up to depth k, which are in some sense a prefix of a
saturated tableau. Note, the verification of our algorithm, in particular for com-
pleteness, is accordingly based on induction on k. Informally, this means that by
enlarging the depth k during the construction of a saturated nested tableau, we
eventually find all finite open branches and thus finite models. This procedure
will at the same time guarantee that we will be able to extract symbolic mod-
els from finite open branches even for the case of an infinite saturated nested
tableau. E.g., we will be able to extract ∅ from a finite open branch of the infinite
saturated nested tableau for property p4 = .

4.1 Sets of Symbolic Models

The symbolic model generation algorithm A should generate for each graph
property p a set of symbolic models S satisfying all requirements described in
the introduction. A symbolic model in its most general form is a graph condition
over a graph C, where C is available as an explicit component. A symbolic
model then represents a possibly empty set of graphs (as defined subsequently
in Definition 10). A specific set of symbolic models S for a graph property p
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satisfies the requirements soundness, completeness, minimal representability, and
compactness if it adheres to the subsequent formalizations of these notions.

Definition 7 (symbolic model). If c is a condition over C according to
Definition 1, then 〈C, c〉 is a symbolic model.

Based on the notion of m-consequence we relate symbolic models subsequently.

Definition 8 (m-consequence on conditions). If c1 and c2 are conditions
over C1 and C2, respectively, m : C1 ↪−→ C2 is a mono, and for all monos
m1 : C1 ↪−→ G and m2 : C2 ↪−→ G such that m2 ◦ m = m1 it holds that m2 |= c2
implies m1 |= c1, then c1 is an m-consequence of c2, written . We can
state the existence of such an m by writing . We also omit m if it is
the identity or clear from the context. Finally, conditions c1 and c2 over C are
equivalent, written c1 ≡ c2, if and .

We define coverage of symbolic models based on the notion of m-refinement,
which relies on an m-consequence between the contained conditions.

Definition 9 (m-refinement of symbolic model). If 〈C1, c1〉 and 〈C2, c2〉
are symbolic models and m : C1 ↪−→ C2 is a mono, and , then 〈C2, c2〉
is an m-refinement of 〈C1, c1〉, written . The set of all such
symbolic models 〈C2, c2〉 is denoted by refined(〈C1, c1〉).
We define the graphs covered by a symbolic model as follows.

Definition 10 (m-covered by a symbolic model). If 〈C, c〉 is a symbolic
model, G is a finite graph, m : C ↪−→ G is a mono, and m |= c then G is an m-
covered graph of 〈C, c〉. The set of all such graphs is denoted by covered(〈C, c〉).
For a set S of symbolic models covered(S) = ∪s∈Scovered(s).

Based on these definitions, we formalize the first four requirements from Sect. 1
to be satisfied by the sets of symbolic models returned by algorithm A.

Definition 11 (sound, complete, minimally representable, compact).
Let S be a set of symbolic models and let p be a graph property. S is sound
w.r.t. p if covered(S) ⊆ {G | G |= p ∧ G is finite}, S is complete w.r.t. p if
covered(S) ⊇ {G | G |= p∧G is finite}, S is minimally representable w.r.t. p if
for each 〈C, c〉 ∈ S: C |= p and for each G ∈ covered(〈C, c〉) there is a mono m :
C ↪−→ G, and S is compact if all (s1 �= s2) ∈ S satisfy covered(s1) � covered(s1).

4.2 Symbolic Model Generation Algorithm A
We briefly describe the two steps of the algorithm A, which generates for a graph
property p a set of symbolic models A(p) = S. The algorithm consists of two
steps: the generation of symbolic models and the compaction of symbolic models,
which are discussed in detail in Sects. 4.3 and 4.4, respectively. Afterwards, in
Sect. 4.5, we discuss the explorability of the obtained set of symbolic models S.
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Step 1 (Generation of symbolic models in Sect. 4.3). We apply the tableau and
nested tableau rules from Sect. 3 to iteratively construct a nested tableau. Then,
we extract symbolic models from certain nested branches of this nested tableau
that can not be extended. Since the construction of the nested tableau may not
terminate due to infinite nested branches we construct the nested tableau in
breadth-first manner and extract the symbolic models whenever possible. More-
over, we eliminate a source of nontermination by selecting the hook in each
branch in a fair way not postponing the successors of a positive literal that was
not chosen as a hook yet indefinitely [20, p. 29] ensuring at the same time refuta-
tional completeness of our algorithm. This step ensures that the resulting set of
symbolic models is sound, complete (provided termination), and minimally rep-
resentable. The symbolic models extracted from the intermediately constructed
nested tableau NT for growing k is denoted SNT ,k.

Step 2 (Compaction of symbolic models in Sect. 4.4). We obtain the final
result S from SNT ,k by the removal of symbolic model that are a refinement
of any other symbolic model. This step preserves soundness (as only symbolic
models are removed), completeness (as only symbolic models are removed that
are refinements, hence, the removal does not change the set of covered graphs),
and minimal representability (as only symbolic models are removed), and addi-
tionally ensures compactness.

4.3 Generation of SNT ,k

By applying a breadth-first construction we build nested tableaux that are for
increasing k, both, k-semi-saturated, stating that all branches occurring up to
index k in all nested branches are semi-saturated, and k-terminated, stating that
no nested tableau rule can be applied to a leaf of a branch occurring up to index
k in some nested branch.

Definition 12 (k-semi-saturation, k-terminated). Given a nested tableau
NT for condition c over C. If NB is a nested branch of length k of NT and each
branch B contained at index i ≤ k in NB is semi-saturated, then NB is k-semi-
saturated. If every nested branch of NT of length n is min(n, k)-semi-saturated,
then NT is k-semi-saturated. If NB is a nested branch of NT of length n and the
nesting rule can not be applied to the leaf of any branch B at index i ≤ min(n, k)
in NB, then NB is k-terminated. If every nested branch of NT of length n is
min(n, k)-terminated, then NT is k-terminated. If NB is a nested branch of NT
that is k-terminated for each k, then NB is terminated. If NT is k-terminated
for each k, then NT is terminated.

We define the k′-remainder of a branch, which is a refinement of the condition
of that tableau, that is used by the subsequent definition of the set of extracted
symbolic models.

Definition 13 (k′-remainder of branch). Given a tableau T for a condition
c over C, a mono q : C ↪−→ G, a branch B of T , and a prefix P of B of length
k′ > 0. If R contains (a) each condition contained in P unless it has been used
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in P by the lift rule (being ∃(m, c′) or � in the lift rule in Definition 4) and (b)
the clauses of c not used by the extension rule in P (being ∨(c1, . . . , cn) in the
extension rule in Definition 4), then 〈C,∧R〉 is the k’-remainder of B.

The set of symbolic models extracted from a nested branch NB is a set of certain
k′-remainders of branches of NB . In the example given in Fig. 2 we extracted
three symbolic models from the four nested branches of the nested tableau.

Definition 14 (extracted symbolic model). If NT is a nested tableau for
a condition c over C, NB is a k-terminated and k-semi-saturated nested branch
of NT of length n ≤ k, B is the branch at index n of length k′ in NB, B is
open, B contains no positive literals, then the k’-remainder of B is the symbolic
model extracted from B. The set of all such extracted symbolic models from k-
terminated and k-semi-saturated nested branches of NT is denoted SNT ,k.

Based on the previously introduced definitions of soundness, completeness, and
minimal representability of sets of symbolic models w.r.t. graph properties we
are now ready to verify the corresponding results on the algorithm A.

Theorem 1 (soundness). If NT is a nested tableau for a graph property p,
then SNT ,k is sound w.r.t. p.

Theorem 2 (completeness). If NT is a terminated nested tableau for a graph
property p, k is the maximal length of a nested branch in NT, then SNT ,k is
complete w.r.t. p.

As explained by the example at the beginning of Sect. 4 the algorithm may
not terminate. However, the symbolic models extracted at any point during the
construction of the nested tableau are a gradually extended underapproximation
of the complete set of symbolic models. Moreover, the openers ∃(m : G1 ↪−→
G2, c) of the branches that end nonterminated nested branches constitute an
overapproximation by encoding a lower bound on missing symbolic models in
the sense that each symbolic model that may be discovered by further tableau
construction contains some G2 as a subgraph.

Theorem 3 (minimal representability). If NT is a nested tableau for a
graph property p, then SNT ,k is minimally representable w.r.t p.

For p1 ∧ p2 from Fig. 1 we obtain a terminated nested tableau (consisting of 114
tableaux with 25032 nodes) from which we generate 28 symbolic models (with a
total number of 5433 negative literals in their negative remainders). For p from
Fig. 2 we generate 3 symbolic models, which are given also in Fig. 2. In the next
subsection we explain how to compact sets of symbolic models.

4.4 Compaction of SNT ,k into S
The set of symbolic models SNT ,k as obtained in the previous section can be
compacted by application of the following lemma. It states a sufficient condition
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for whether a symbolic model 〈A1, c1〉 refines another symbolic model 〈A2, c2〉,
which is equivalent to covered(〈A1, c1〉) ⊇ covered(〈A2, c2〉). In this case we can
remove the covered symbolic model 〈A2, c2〉 from SNT ,k without changing the
graphs covered. Since the set of symbolic models SNT ,k is always finite we can
apply the following lemma until no further coverages are determined.

Lemma 1 (compaction). If 〈A1, c1〉 and 〈A2, c2〉 are two symbolic models,
m : A1 ↪−→ A2 is a mono, and ∃(i2, c2 ∧ ¬shift(i2,∃(i1, c1))) is not satisfiable by
a finite graph, then covered(〈A1, c1〉) ⊇ covered(〈A2, c2〉).
This lemma can be applied when we determine a mono m such that ∃(i2, c2 ∧
¬shift(i2,∃(i1, c1))) is refutable. For this latter part we apply our tableau con-
struction as well and terminate as soon as non-refutability is detected, that is,
as soon as a symbolic model is obtained for the condition.

For the resulting set S of symbolic models obtained from iterated application
of Lemma 1 we now state the compactness as defined before.

Theorem 4 (compactness). If NT is a nested tableau for a graph property p,
then S ⊆ SNT ,k is compact.

For p1∧p2 from Fig. 1 we determined a single symbolic model with minimal model
(given in Fig. 1e) that is contained by the minimal models of all 28 extracted
symbolic models. However, this symbolic model covers only 2 of the other 27
symbolic models in the sense of Lemma 1. For p from Fig. 2 we removed one of
the three symbolic models by compaction ending up with two symbolic models,
which have incomparable sets of covered graphs as for the symbolic models
remaining after compaction for p1 ∧ p2 from Fig. 1.

4.5 Explorability of S
We believe that the exploration of further graphs satisfying a given property
p based on the symbolic models is often desireable. In fact, covered(S) can be
explored according to Definition 10 by selecting 〈C, c〉 ∈ S, by generating a
mono m : C ↪−→ G to a new finite candidate graph G, and by deciding m |= c.
Then, an entire automatic exploration can proceed by selecting the symbolic
models 〈C, c〉 ∈ S in a round-robin manner using an enumeration of the monos
leaving C in each case. However, the exploration may also be guided interactively
restricting the considered symbolic models and monos.

Fig. 3. Two extension candidates that include the graph G0 from Fig. 1e with obvious
monos m1 : G0 ↪−→ G1 and m2 : G0 ↪−→ G2.
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For example, consider p2 from Fig. 1c for which the algorithm A returns a
single symbolic model 〈G0, c0〉 of which the minimal model is given in Fig. 1c.
In an interactive exploration we may want to decide whether the two graphs
given in Fig. 3 also satisfy p2. In fact, because m1 |= c0 and m2 � |= c0 we derive
G1 |= p2 and G2 � |= p2 as expected.

5 Implementation

We implemented the algorithm A platform-independently using Java as our new
tool AutoGraph using xsd-based [36] input/output-format.

For p1∧p2 from Fig. 1 we computed the symbolic models using AutoGraph
in 7.4 s, 4.6 s, 3.4 s, 2.7 s, and 2.1 s using 1, 2, 3, 4, and 13 threads (machine:
256 GB DDR4, 2 × E5-2643 Xeon @ 3.4 GHz × 6 cores × 2 threads). The minimal
models derived using AutoGraph for p1, p2, and p1 ∧ p2 from Fig. 1 are given
in Fig. 1d and e. For p from Fig. 2 AutoGraph terminates in negligable time.

While some elementary constructions used (such as computing CNF, exis-
tence of monos, and pair factorization) have exponential worst case executing
time, we believe, based on our tool-based evaluation, that in many practical
applications the runtime will be acceptable. Furthermore, we optimized perfor-
mance by exploiting parallelizability of the tableaux construction (by considering
each nested branch in parallel) and of the compaction of the sets of symbolic
models (by considering each pair of symbolic models in parallel).

To limit memory consumption we discard parts of the nested tableau not
required for the subsequent computation, which generates the symbolic models,

Fig. 4. Implemented construction rules: � is a literal, �s is a sequence of literals, L is a
set of literals, cli is a clause, and � is the unchanged value from the input.
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as follows. The implemented algorithm operates on a queue (used to enforce the
breadth-first construction) of configurations where each configuration represents
the last branch of a nested branch of the nested tableau currently constructed
(the parts of the nested tableau not given by theses branches are thereby not
represented in memory). The algorithm starts with a single initial configuration
and terminates if the queue of configurations is empty.

A configuration contains the information necessary to continue the further
construction of the nested tableau (also ensuring fair selection of hooks) and to
extract the symbolic models whenever one is obtained.

A configuration of the implementation is a tuple containing six elements
(inp, res,neg , q-pre, q-post , cm) where inp is a condition c over C in CNF and is
the remainder of the condition currently constructed (where clauses used already
are removed), res is ⊥ or a positive literal ∃(m : C ↪−→ D, c′) into which the other
literals from the branch are lifted, neg is a list of negative literals over C from
clauses already handled (this list is emptied as soon as a positive literal has been
chosen for res), q-pre is a queue of positive literals over C from which the first
element is chosen for the res component, q-post is a queue of positive literals:
once res is a chosen positive literal ∃(m : C ↪−→ D, c′) we shift the elements from
q-pre over m to obtain elements of q-post , and cm is the composition of the
morphisms from the openers of the nested branch constructed so far and is used
to obtain eventually symbolic models (if they exist).

Given a condition c over C the single initial configuration is
(c,⊥, λ, λ, λ, idC). The implemented construction rules operating on these con-
figurations are given in Fig. 4. Given a configuration c we check the rules in the
order given for applicability and apply only the first rule found. For each rule,
applicability is determined by the conditions above the line and each rule results
in a set of configurations given below the rule.

Rule 1 stops further generation if the current result is unsatisfiable. Rule 2
ensures that hooks are selected from the queue (if the queue is not empty) to
ensure fairness of hook selection. Rule 3 if the queue can not be used to select
a hook and no clause remains, the nested branch is terminated and a symbolic
model can be extracted by taking 〈codomain(cm),∧neg〉. Rule 4 implements
the lifting rule (see Definition 4) for negative literals taken from neg . Rule 5
implements the lifting rule (see Definition 4) for positive literals taken from q-pre;
if the morphism of the resulting positive literal is an isomorphism, as forbidden
for literals in CNF, we move an equivalent condition in CNF into the current hook
(also implementing the lift rule) instead of moving the literal to the queue q-post .
Rule 6 implements the nesting rule (see Definition 6). Rule 7 deterministically
implements the extension rule (see Definition 4) constructing for each literal of
the first clause a new configuration to represent the different nested branches.

For soundness reconsider Definition 13 where the set R used in the condi-
tion ∧R recovers the desired information similarly to how it is captured in the
configurations. The separation into different elements in the configurations then
allows for queue handling and determinization.
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6 Conclusion and Outlook

We presented a symbolic model generation procedure for graph properties being
equivalent to FOL on graphs. Our algorithm is innovative in the sense that it
is designed to generate a finite set of symbolic models that is sound, complete
(upon termination), compact, minimally representable, and flexibly explorable.
Moreover, the algorithm is highly parallelizable. The approach is implemented
in a new tool, called AutoGraph.

As future work we aim at applying, evaluating, and optimizing our approach
further w.r.t. different application scenarios from the graph database domain [37]
as presented in this paper, but also to other domains such as model-driven
engineering, where our approach can be used, e.g., to generate test models
for model transformations [2,11,22]. We also aim at generalizing our approach
to more expressive graph properties able to encode, e.g., path-related proper-
ties [21,27,28]. Finally, the work on exploration and compaction of extracted
symbolic models as well as reducing their number during tableau construction
is an ongoing task.
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ICMT 2014. LNCS, vol. 8568, pp. 25–41. Springer, Cham (2014). doi:10.1007/
978-3-319-08789-4 3

http://dx.doi.org/10.1007/978-3-319-08789-4_3
http://dx.doi.org/10.1007/978-3-319-08789-4_3


242 S. Schneider et al.

12. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3/4), 287–313 (1996)

13. Habel, A., Pennemann, K.: Correctness of high-level transformation systems rela-
tive to nested conditions. MSCS 19(2), 245–296 (2009)
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