GTS Families for the Flexible Composition
of Graph Transformation Systems

Steffen Zschaler!®™) and Francisco Durén?

! Department of Informatics, King’s College London, London WC2R 2LS, UK
szschaler@acm.org
2 Dpto. de Lenguajes y Ciencias de la Computacién,
University of Mélaga, Mélaga, Spain
duran@lcc.uma.es

Abstract. Morphisms between graph-transformation systems (GTSs)
have been successfully used for the refinement, reuse, and composition
of GTSs. All these uses share a fundamental problem: to be able to define
a morphism, source and target GTSs need to be quite similar in their
structure (in terms of both the type graphs and the set of rules and their
respective structures). This limits the applicability of these approaches
by excluding a wide range of mappings that would intuitively be accepted
as meaningful, but that cannot be captured formally as a morphism.
Some researchers have attempted to introduce some flexibility, but these
attempts either focus only on the type graphs (e.g., Kleisli morphisms
between type graphs) or only support specific forms of deviation (e.g.,
supporting sub-typing in type graphs through clan morphisms). In this
work, we introduce the notion of GTS families, which provide a general
mechanism for explicitly expressing the amount of acceptable adaptabil-
ity of the involved GTSs so that the intended morphisms can be defined.
On this basis, we demonstrate how GTS families that are extension pre-
serving can be used to enable flexible GTS amalgamation.

1 Introduction

Graph transformation systems (GTSs) were proposed in the late seventies as
a formal technique for the rule-based specification of the dynamic behaviour
of systems [1]. Since then, GTSs have been used in different contexts in com-
puter science, including the formalisation of systems, programming languages
and model-driven engineering.

In the many contexts in which GTSs have been used, a key ingredient for
exploiting their power is that of GTS morphisms. GTS morphisms have been
used for different purposes in system specification, for instance, to characterise
the relationship between a system and views of it [2], for expressing refinements
[3,4], or for modelling import and export interfaces of modules [5]. Recent uses of
GTSs in the context of Model-Driven Engineering (MDE) have gone one step fur-
ther, proposing practical uses of different forms of parametric GTSs for reusing
model transformations, and reusing and composing domain specific language
© Springer-Verlag GmbH Germany 2017

M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 208-225, 2017.
DOI: 10.1007/978-3-662-54494-5_12

GTS Families for the Flexible Composition 209

(DSL) definitions. In [6], de Lara and Guerra proposed the use of transforma-
tion templates, typed by a graph, that they call concept, which can then be
instantiated by binding the concept to a concrete graph. Durdn et al. proposed
in [7,8] what they call parameterised GTSs, where the parameter is not just a
type graph, but a complete GTS, and where composition of GTSs is based on a
GTS amalgamation construction. In the same way concepts gather the structural
requirements, the set of rules of parameter GTSs are behavioural requirements
over the concrete GTSs used in the instantiation. In each of these cases, using
GTS morphisms enables useful syntactic or semantic guarantees to be given.
For example, in [6] the use of morphisms means that transformations can be
guaranteed to be syntactically reusable. In the case of [8], the use of suitable
morphisms enables guarantees on behaviour protection of amalgamated GTSs.

For reuse and composition, the main difficulty is the flexibility of the mech-
anisms available. In specific domains, ad hoc definitions of GTS morphisms
have been proposed. For example, an alternative notion of refinement relation is
given for transactional graph transformation systems in [9], where a graph typ-
ing mechanism induces a distinction between stable and unstable graph items
and where implementation morphisms map single productions to whole transac-
tions so that morphisms define simulations. Taentzer [10] uses a subset of UML
extended by reconfiguration and import/export view facilities, represented as
embedding morphisms, to propose a formal framework for visual modeling of
distributed object systems. Component composition is defined by only allowing
embedding morphisms between import and export rules where each two rules
connected by an embedding morphism are named equally. These specialised solu-
tions do not easily extend to the general setting. The use of GTSs in MDE
introduces even more challenges, as we need to consider more complex graphs
including attributes and node-type inheritance [11].

The need for a mechanism for relating different GTSs, or their type graphs,
that is more flexible than direct morphisms—to broaden opportunities for GTS
reuse—has been recognised before: In the case of models, represented as graphs,
this has been resolved more or less pragmatically by supporting a specific, fixed
set of adaptations to be applied prior to applying the morphism (see, e.g., [6,11-
13]). For example, Diskin et al. [12] propose using Kleisli categories for relating
models. De Lara and Guerra extended their work on concepts in [13] by using
adapters to allow heterogeneities between the concept and the concrete graph.
Each of these works “hard wires” a specific set of flexibilities.

To support complete GTSs, rules must also be related in a flexible manner.
In [4,14], GroBe-Rhode et al. introduce temporal and spatial refinement rela-
tions. In a spatial refinement, each rule is refined by an amalgamation (i.e., a
parallel composition with sharing) of rules, while in a temporal refinement it is
refined by a sequential composition. Engels et al. [5] present a framework for
classifying and systematically defining GTS morphisms. Different types of mor-
phisms are characterised by their relationship between the behaviours of source
and target GTSs. For instance, refinements are a case of behaviour-preserving
morphisms, while views are a case of behaviour-reflecting morphisms. Duran
et al. [8] similarly introduce different behaviour-aware GTS morphisms.

210 S. Zschaler and F. Durdn

These solutions are, however, far from satisfactory. Even though the intro-
duction of derived attributes and links as in [12] or [13], and the behavioural
relations provided for GTS morphisms as in [8] improve the chances of defining
the required morphisms, structural mismatch remains a problem. Often even
where there is an intuitive match, no morphism can be established. This sub-
stantially limits the reuse potential of these approaches. In many cases, a simple
restructuring of the GTSs involved could easily allow a valid mapping to be
established. However, there is currently no support for capturing such restruc-
turings, and in particular for capturing exactly the set of restructurings the
designer of a GTS would consider valid and meaningful.

In this work, we propose the use of GTS transformers to refactor GTSs
with the goal of resolving the structural mismatches between source and target
GTSs so that GTS morphisms can be defined. In fact, GTS transformers may
be seen as re-factoring mechanisms, which provide a general setting for defining
adaptations. GTS transformers are functions, and can successively be applied
to our source GTS to find the one on which the morphism can be defined.
To systematise this, we introduce the notion of GTS families. Given a set of
transformers 7', the T-family of a GTS GTS is the set of GTSs reachable from
GTS using the transformers in 7'. The problem of defining a mapping morphism
between a GTS GTS, and a target GTS GTS; then amounts to finding a GTS
in the family of GT'S¢ from which the morphism can be defined. This way, the
problem becomes a model-based search problem [15].

Of course, any mechanisms enabling more flexibility must balance this
against the required level of control so that suitable semantic properties can
be guaranteed. We provide different transformers and prove that they preserve
extensions [16] between GTSs. As a result, we show how these transformers can
be used to enable flexible composition of GTSs.

The remainder of this paper is structured as follows. In Sect. 2, we introduce
a running example and motivate the limitations of GT'S morphisms and the need
for more flexibility. After providing some formal background on typed attributed
graphs, GTSs, and their morphisms in Sect. 3, Sect. 4 introduces the notions of
GTS transformers and GTS families as well as three example GTS transformers.
In Sect. 4.3, we show that these transformers are extension preserving and can,
thus, be used to compose GTSs using the mechanism from [16]. We wrap up in
Sect. 5 with some conclusions and lines of future research.

2 Running Example

Let us consider a simple production-line system (PLS) GTS, part of which is
depicted in Fig. 1. This GTS models a PLS for making hammers out of hammer
heads and handles. In the type graph TG prgs in Fig. 1la we find different types
of machines, different types of parts, and different containers of parts.! The
behaviour of such systems is defined through a number of graph-transformation
rules, like the one in Fig. 1b, which models the polishing of a part by a polishing

! 'We use the hollow-arrow notation from UML to denote inheritance relationships.

GTS Families for the Flexible Composition 211

parts
LHS |t : Tray |<i|p : Polisherlﬂtﬂc : Conveyor|

RHS

—
|Po|isher| |Generator|
parts

Assemble)
|Hammer| |Handle| |t : Tray |<£|p : Polisherl&tlc : Conveyorl

|GenHead| |GenHandIe| |Head|

(b) Polisher transformation rule
(a) PLS type graph

|:GenHead |$t|:00nveyor::|.>{

out out ‘Tray |<1| :Assemble Iu—uﬂ :Conveyor |3l_i>l| ‘Tray |<1| :Polisher Iﬂﬂ :Conveyor |3$| :Tray|
[:GenHandle}5{:Conveyor

(c) Sample typed graph
Fig. 1. Production line system

Q elts El n elts)
| T o= | | q1: Queue |<£| s : Server |O—Ut>| g2 : Queue |

in Tout LHS

| Server | | Input | | Output | RHS

elts

| q1: Queue |<L| s : Server |O—Ut>| g2 : Queue |

(b) Process transformation rule

(a) Server type graph

Fig. 2. Server tracking system

machine. Other actions, like the generation of head and handle parts in generator
machines, the assembling of hammers out of hammer heads and handles, the
moving of parts along conveyors, or the collection of parts from final trays is
modelled by corresponding rules. A sample graph conforming to such type graph,
providing an instance of the system, is shown in Fig. lc. In it, we can see how
machines take parts from input trays and put their outputs in corresponding
conveyors, which move parts towards trays.

Let us suppose now that we wanted to keep track of the elements polished in
our production line system. Instead of modifying our PLS GTS, we may use the
mechanism in [16] to compose it with a generic tracker system, the Tracker GTS
defined in Fig. 2. Its type graph TG prqcker is depicted in Fig. 2a. It describes the
concepts related to servers that process elements taken from input queues into
resulting elements that are placed in output queues. The action of processing an
input element is then modelled by the transformation rule in Fig.2b. The made
association allows servers to keep track of all processed instances.

To compose the Tracker and the PLS GTSs following the construction in [16],
we take the Tracker GTS as a parameterized GTS. The Server GTS, shown in
Fig. 3, defines a generic behaviour, the structural and behavioural requirements
the Tracker GTS builds on. Note that we can easily establish an inclusion g to

212 S. Zschaler and F. Durdn

in elt . Im:;tt
[server =3 Queue ——[Element]
out /\

LHS | q1: Queue |<L| s : Server Io—m>| q2 : Queue |

RHS o : Output
elts

| q1: Queue |<L| s : Server Io—u'>| g2 : Queue |

(b) Process transformation rule

(a) Server type graph

Fig. 3. Server system parameter GTS

the Tracker GTS. Then, we can compose the Tracker GTS with the PLS GTS
so that polisher machines would keep track of the parts it processes:

GTS, —~ @18,

g V_q

GTS, - — = GTS

where GTSy is the parameter GTS Server, GTS; is the parameterized GTS
Tracker, and GTS5 is the PLS GTS used in the instantiation.

For this to work, we need to establish a GT'S morphism between the Server
GTS (the parameter) and the PLS GTS. Intuitively, the PLS GTS might be
seen as a concrete interpretation of the Server GTS—e.g., polishing of parts
can be seen as particular case of the server processing. A morphism between
the two GT'Ss would be the formal expression of this. Let us first focus on the
type graphs. At first sight, it may seem quite reasonable to define a binding
between TG gerper and TG prs by mapping Server into Polisher, and Queue into
Container,? with the in and out associations going to the corresponding ones in
the PLS system type graph. However, in TG prs input and output “queues” are
represented by two different types: Tray and Conveyor, respectively. As a result,
we cannot establish a valid morphism. Whether source and target queues are
of the same type is not actually relevant to our specification of Server nor to
the definition of tracking. We would like to be able to express the intuition that
this particular mapping should be considered valid. Even where we can establish
a morphism between the type graphs, there may still be problems establishing
morphisms between the rule sets.

In this paper, we introduce the notions of GTS transformers and GTS families
and show how they can be used to automatically rewrite the Server and Tracker
GTSs in sync to find the GTS depicted in Fig. 4, for which a morphism to the PLS
GTS can straightforwardly be defined. Thus, GTS families enable expressing the
above intuition about what GTS mappings we would like to allow.

2 Notice that although we use Queue to name the device in which input and output
elements are placed, no specific order is assumed on its elements in the server GTS.

GTS Families for the Flexible Composition 213

elts

LHS|q1 : Queue1 |<in—|s : Serverlﬂﬂqz : Queue2|

RHS o : Output

elts

|q1 : Queue1 |<in—|s : Serverlﬂﬂqz : Queue2|

(b) Modified process rule

(a) Type graph with added subclasses

Fig. 4. Modified GTS

3 Preliminaries on GTSs, Clans, and Clan Morphisms

We focus on the double pushout (DPO) approach to graph transformation [3]. In
this section, we introduce some of the basic definitions concerning typed graphs
and the algebraic approaches to the rewriting of typed graphs, and provide
background definitions underpinning our discussion throughout this paper. The
notation and most of the definitions in this section follow very closely those in,
e.g., [3,8,13,17].

3.1 Graph Transformation Systems

Given some category of graphs and graph morphisms Graph, and given a dis-
tinguished graph TG, called type graph, a TG-typed graph (G,gc), or simply
typed graph if TG is known, consists of a graph G and a typing homomorphism
gc : G — TG associating with each vertex and edge of G its type in TG. To
enhance readability, we will use simply g to denote a typed graph (G, g¢), and
when the typing morphism gg can be considered implicit, we will often refer to a
typed graph (G, g¢) just as G. A TG-typed graph morphism between T'G-typed
graphs (G;,g; : G; — TG), with i = 1,2, denoted f: (G1,91) — (G2, 92), is a
graph morphism f: G; — G2 which preserves types; that is, go o f = ¢1.

A graph transformation rule® p is of the form L L K T R with graphs L,
K, and R, called, resp., left-hand side, interface, and right-hand side, and some
kind of monomorphisms (typically inclusions) ! and 7.

In the DPO approach to graph transformation, the application of a trans-

formation rule p = L LKL Rtoa graph G via a match m: L — G is
constructed as two gluings (1) and (2), which are pushouts in the corresponding

graph category, leading to a direct transformation G 22 H.
L <t K—"—>R

m{ M | @

G=—D——H

3 As a simplification, we do not consider application conditions (cf., e.g., [8]).

214 S. Zschaler and F. Durdn

A graph transformation system (GTS) over a type graph TG is a triple
(TG, P,m) where P is a set of rule names and 7 is a function mapping each rule

name p into a rule L LKLR typed over TG.

Since we are interested in relating GTSs over different type graphs, we need
to move graphs and graph morphisms along morphisms. Assuming Graph
the category of T'G-typed graphs and T'G-typed graph morphisms, a graph
morphism f: TG — TG’ induces forward and backward retyping functors f> :
Graph, — Graphg and f<: Graph . — Graph ;. Since, as said above,
we refer to a TG-typed graph G — TG just by its typed graph G, leaving TG
implicit, given a morphism f: TG — TG’, we may refer to the corresponding
TG -typed graph by f~(G). Since we can retype graphs and graph morphisms,
we can retype rules. Given a rule p over a type graph TG and a graph morphism
f: TG — TG', we will write things like f<(p) and f~(p) denoting, respectively,
the backward and forward retyping of rule p.

3.2 Morphisms Between Graph Transformation Systems

Although the mechanisms presented in the following sections may be applicable
to most notions of GTS morphisms defined in the literature, to simplify the pre-
sentation we will focus on a specific type of rule morphism and GTS morphism.
We begin with rule morphisms, relating two graph-transformation rules.*

Definition 1. Given rules p; = L; L K; =5 Ry, fori=0,1, a rule morphism
fipo—p1is a tuple f = (fr, fx, fr) of graph monomorphisms fr: Lo— L1,
fr: Ko— K1, and fr: Ry— Ry such that the squares with the span morphisms
lo, l1, 70, and r1 are pullbacks, as in the diagram below.

l
Po : Lo-%oKogRo
A A A
P1 : L1<l7K1T>R1
1

We are now ready to introduce GTS morphisms.®

Definition 2. Given GTSs GTS; = (TG, P;,m;), fori = 0,1, a GTS morphism
f: GTSo— GTSy, with f = (fra, fp, fr), is given by a morphism frg: TGo—
TG, a surjective mapping fp: Py — Py between the sets of rule names, and a
family of rule morphisms f, = {fP: f7a(mo(fr(p))) — T (P)}pep -

A special kind of GTS morphism is a GTS extension, which is essentially an
inclusion such that everything being added to the rules of the extended GTS is
typed by elements also added to the type graph.

4 Similar definitions of rule morphisms can be found in the literature where the squares
are pushouts instead of pullbacks, or simply commuting squares (e.g., [18]), or where
the relations are between a single rule and a collection of rules (e.g., spatial and
temporal refinements [4]). Requiring pullbacks is quite natural though: the intuition
of morphisms is that they should preserve the “structure” of objects.

5 See [5] for a systematic classification of other definitions of GTS morphisms.

GTS Families for the Flexible Composition 215

Definition 3 (GTS Extension [16]). Given GTSs GTS; = (TG;, P;,7;), for
i=0,1, a GTS morphism f: GTSy — GTS:, with [= (fre, fp, fr), is an
extension morphism if frq is a monomorphism and for eachp € Py, mo(fp(p)) =

fra(m(p).

3.3 Typed Attributed Graphs and Clan Morphisms

Our underlying graphs are attributed graphs typed over attributed type graphs
with inheritance [3,11]. In these graphs, attributes are represented as edges
between graph nodes and data nodes (captured by the notion of E-graphs in
[3]). We use symbolic graphs [19,20] to enrich graphs with a set @ of formulas
over a signature X' = (S, (2), with S a set of sorts and {2 a set of operations.
We assume that each formula is an equality between a variable and its value
(grounded symbolic graphs in [19]). For simplicity, we assume attributed graphs
on the same signature and omit a treatment of cardinalities and composition
relations, which could be given as constraints as discussed in [21]. We refer the
interested reader to [19,20] for a more general presentation of symbolic attributed
graphs.

An attributed graph ATG = (TG, ®) may be used as a type graph. As for
any type of graph, a typed attributed graph (AG,t) over an attributed type graph
ATG consists of an attributed graph AG together with an attributed morphism
t: AG — ATG. A typed attributed graph morphism f : (AG1,t1) — (AGa,t2)
is an attributed graph morphism f : AGy; — AGs such that t5 0 f = ¢;.

To deal with object-oriented systems we need some additional machinery. We
follow [11] in defining attributed type graphs with inheritance.

Definition 4. An attributed type graph with inheritance ATGI = (ATG, 1, Ab)
consists of an attributed type graph ATG = (TG,®), with an E-graph TG =
(V,E,A,D,s? tF s4 t4), a set I CV x V of inheritance relations, and a set
Ab CV of abstract nodes.

The typing of an object diagram with respect to a class diagram is typically
represented as a clan morphism [11]. Intuitively, a clan morphism f : AG —
ATGI from an attributed graph AG to an attributed type graph with inheritance
ATGI is an attributed graph morphism that takes into account the inheritance
relation and abstraction definitions of the target ATGI.

Definition 5. Let ATG;=(TG;,Parc,), withi=1,2, be attributed type graphs,
with TG; = (VTG,; vEra,,Arc,, Dra,, SITE“Gi , tJYE“Gi’ S‘%Gi , t’%Gi), and let ATGIy=
(ATGy, I, Ab) be an attributed type graph with inheritance. For each node v in
Vrg,, dan(v) = {v' € Vg, | (v',v) € I*}, with I* the reflexive and transitive
closure of I. Then, given an algebra A, a clan morphism f: ATG, — ATGI, is
an attributed graph morphism (fv, fg, fa, fp): ATGy — ATGy such that

1. Ve € Brgy fu(s56,(e) € danlsbe,(f6() and fu(the, () €
clan(t‘%GQ(fE(e))), and

216 S. Zschaler and F. Durdn

2.Va € Arc,.fa(sh, (@) € can(shg,(fa(a) and fa(the,(a) =

t7c,(fa(a)).

Definition 6. Given ATGI; = (ATG;, I;, Ab;), for i = 1,2, attributed type
graphs with inheritance, and an algebra A, a morphism f : ATGI, — ATGI4 is
a clan morphism f = (fv, fg, fa, fp) : ATGy — ATGI, that

1. preserves the inheritance relation, i.e., if (a,b) € I then (fy(a), fv (b)) € I3,

2. reflects subtyping, that is, for each (a,b) € Iy with some o' € Vi such that
fv(a') = a, there must be a b’ € Vi such that fy (V') = b and (a/,V) € IF,
where Vi is the node set of ATG1, and

3. preserves the abstraction definitions, that is, u € Aby < fp(u) € Ab,.

Ezample 1. The mapping in Sect.2 between TG gerper and TGprs does not
satisfy the conditions to be part of a clan morphism. Specifically, the mapping for
the in association fails condition 1 in Definition 5: fy (t£,,,.,(in)) = Container ¢

clan(tps(fe(in))) = {Tray}.

4 GTS Transformers and Families

Intuitively, a GTS family is a set of GTSs inductively defined from a source
GTS GTSy, capturing exactly the kind of flexibility we would like to permit
when mapping GTSg to another GTS GTS;. Given a set of transformers T,
that model the different alterations that may be applied on GTSs, we denote by
[GTSo|r the family of GTS(using T. Mappings are then formally defined by
selecting one GTS from the GTS family of GTSy, written [GTSo|r ~ GTSy,
and establishing a morphism between GTS{ and GTS;. We first introduce the
notion of GTS transformers, before using them to formally define GTS families.
We then show how extension preserving transformers can be used to enable the
flexible composition of GTSs and how individual members of a GTS family can
be identified based on a given target GTS for a mapping.

4.1 GTS Transformers

GTS transformers, and the GTS families we generate with them, generalise the
idea of adapters over transformations (also called adaptations in [13,22,23]). We
start by defining GTS transformers as transformations between GTSs.5

Definition 7 (GTS transformer). A GTS transformer t is a triple of three
inter-related transformations t = (trg,tp,tr):

tre takes GTSs to type graphs;
tp takes GTSs to sets of rule names;
tx takes GTSs to functions mapping rule names to rules.

6 In effect, GTS transformers are a form of higher-order transformation [24].

GTS Families for the Flexible Composition 217

elts

Fig. 5. IntroSC-modified type graph

GTS transformers define functions over the set of all ATGI-typed GTSs. Given
a GTS GTSO = (TG(),P(),TI'()), t(GTSO) = (TG17P1,7T1) such that: TGl =
tra(GTSy), P = tp(GTSy), m = t-(GTSy), and for all p € Py, m1(p) is a
rule typed over TG .

Note that while the three component functions are defined to range over the
entire GTS, they each only transform one aspect of the GTS. For example, ¢t g
will only transform the type graph of the given GTS. However, we define them
to range over the entire GTS so that they can ensure consistency of the result.

Remark 1. By definition, given a valid GTS as input, a well-defined GTS trans-
former will always produce a valid GTS as output.

To make this definition more concrete, we now introduce three examples
of transformers, Hamely tlntroSCa tMvAssoc and t]’!LhU’!Lﬁd7 WhiChv respectively, add
subclasses in the inheritance hierarchy, move associations in its type graph down
in the inheritance hierarchy, and specialise rules to particular subclasses.

Definition 8. The tosc transformer modifies the type graph of a GTS by
introducing a subclass to a class. It non-deterministically chooses a class from
the type graph of the original GTS and adds a subclass with no attributes nor
associations. All other classes, attributes, and associations are maintained. The
set of rules is not changed.

Ezxample 2. By repeatedly applying ti,+0sc to the Server GTS in Fig. 3 we could
obtain, e.g., a GTS Server vl with the type graph shown in Fig.5. The set of
rules in the new GTS are identical to the rules in the original GTS.

Definition 9. Given a GTS GTSo = (TGo, Py, o), the trmnunpa transformer
produces a new GTS GTS1 with the same type graph and a rule set resulting of
modifying its Tules as follows:

1. Non-deterministically picks a class C € TGy that has a number of subclasses
SC; € TGy, i=1,...,n;

2. Non-deterministically picks a rule name p € Py s.t. mo(p) contains objects
that are typed by C;

3. Non-deterministically picks one subclass of C for every free object in wo(p)
typed by C (different subclasses may be picked for different objects);

218 S. Zschaler and F. Durdn

4. Generates a new rule mi(p) using the chosen subclasses to type the corre-
sponding objects;
5. Copies all other rules as they are.

Ezample 3. Given the Server vl GTS resulting from the application of the
tintrosc transformer as in Example 2, the application of the trhunaq trans-
former on it may result in the GTS Server v2 with the same type graph and a
rule as in Fig. 4b. All other rules remain as in the original GTS.

Definition 10. Given a GTS, the typassoc transformer produces a GTS with
all rules as in the original GTS and where the type graph is modified as follows:

1. Non-deterministically picks a class C.

2. Non-deterministically picks an association assoc that ends in C.

8. Non-deterministically picks a set SC of subclasses of C. At least every subclass
S of C' for which there is a rule in my where assoc refers to an object typed
as S will be included in SC.

4. If C and assoc are such that there are no rules that use assoc to refer to
an object typed as C, then assoc is removed from the type graph, and a new
replica of assoc with the same source as the original is created and defined to
point to each S € SC.

If the type graph modification is not possible, because the condition in Step 4
fails, tapassoc returns the original GTS.

The condition in Step 4 as well as the specific construction of the set SC' are
required to ensure that tyass0c produces a valid and well-typed GTS.

Ezxample 4. Repeatedly applying taryassoc to the Server v2 GTS produced in
Example 3, may result in a GTS Server v3 with the type graph in Fig.4a and
the rules as those of Server v2 GTS.

The three introduced transformers are just a sample of the kind of transfor-
mations we can define on GTSs. For our running example, we have used these
transformers to reflect our intuition that the specific types of input and output
queues are not important for the behaviour we want to abstract in the Server
GTS. As we have mentioned at the beginning of this section, the mismatches
may be both in the structure or in the transformation rules, and therefore more
sophisticated transformers operating on the type graph and on the rules may
be necessary in other cases. In the next subsection we introduce GTS families
as a way of packaging the transformers representing our intuition about the
behaviour we want to capture.

4.2 GTS Families

Given a set of GTS transformers, new GTSs can be derived from a GTS.

GTS Families for the Flexible Composition 219

Em
/ olts

L .
LHS{ICH : Queue1]<L{s : Servergﬂqz: Queue2]
L L L

1
R}]’S I : ,' o : Output
1 1 in 1 ou' elts
'l [q1 :,bueue1l<—|ls : Serverl—%[qz: QueueZ]
T T T
[1 1

1
[|
[
N o

parts !

\ i 3L out v, \\
LHS>[t :ﬁayl&[p : PoLfsherl—)[c : Conveyorl \
- T

1
RHS 1 I p : Part
parts

v v
[t:Trayle—p Polisher}ﬂ[c : Conveyor¢

(a) Type graph morphism (b) Rule morphism

\
\

1
1

L

Fig. 6. Sketch of the morphism between GTSs Server v3 and PLS

Definition 11. Given a GTS GTSoy and a GTS transformer t, a single-step
GTS derivation GTSy =+ GTS1 is induced iff GTS, = t(GTSy). Given a set
T = {t;li=1,...,n} of GTS transformers, a GTS derivation of GTSy over
T (GTSy =% GTS,,) is given by a, possibly empty, sequence of single-step
derivations GTS; =, GTS;41,7=0,....,m—1,t; €T.

Ezample 5. After the application of transformers trir05¢, timhUnfid, and tarmAssoc
as in Examples. 2-4, the morphism between GTSs Server v3 and PLS can now
be defined, as sketched in Fig. 6.

We call the (possibly infinite) set of all GTSs derivable from GTSq over a
set of transformers T' the T-family of GTSy.

Definition 12. Given a set of GTS transformers T = {t;]i=1,...,n}, and
a GTS GTSq, the T-family of GTSy, denoted by [GTSoly, is the (possi-
bly infinite) reflexive-transitive closure of GTS derivations of GTSo over T':
GTSq € [GTSoly & GTSo =4 GTSy,.

We will write [GTS¢], ~ GTSj to denote the selection of some GTSj from
the GTSs in [GTSo],. Note that GTSy € [GTSo] .

The GTS transformers defined above, non-deterministically select elements of
the type graph or rules to be modified. In analogy to graph-transformation rules,
we allow transformer applications to be guided by providing a (partial) match for
these elements. We will refer to the combination of a transformer and a complete
match for each of the elements it would otherwise select non-deterministically
as a specific application of a transformer.

Example 6. Consider the GTS Server vl in Example 2. It results from the
repeated application of the tr,ios¢ transformer (Definition 9). Specifically, given

220 S. Zschaler and F. Durdn

the Server GTS we may invoke the application of tz,405c on class Queue, intro-
ducing subclass Queuel, followed again by its application on class Queue to
introduce the subclass Queue2.

4.3 Extension Preserving Transformers and GTS Amalgamation

An interesting case, with direct application to parameterized GTSs, is the case of
extensions (see Definition 3). Parametrization of GTSs establishes an inclusion
between the parameter GTS (GTSy) and the full, parametrized GTS (GTS1)—
for example, see [8]. Typically, these inclusions are extensions.

To improve the possibilities of instantiating a parameterized GTS, we would
like to be able to consider as parameter GTS any of the GTSs we can reach using
a given set of transformers. In other words, we would like to be able to consider
as parameter, not a single GTS, but its entire family. To make this safe, we need
to ensure that for any path of transformers GT'Sy =4 GTS{, we can find a cor-
responding path GTS; =% GTS) such that the extension GTSy — GTS; leads
to the extension GTS| — GTS7; that is, a new parametrized GTS preserving
the extension. The easiest way of finding such a corresponding path is by con-
structing it from the same transformer applications in both cases. Transformers
for which this can be done, we will call extension-preserving transformers.

Definition 13. A transformer t preserves extensions if for any GTS extension
GTSy — GTS,, the exact same specific application of t to GTSy and GTS,
results in an extension as depicted in the following diagram, where the dotted
arrow means that the application of the transformer on GTS: is exactly the
same as the one on GTSy.

GTS; —L> GTS)

Note that it is enough to prove that each individual transformer is extension
preserving for any combination of these transformers to be extension preserv-
ing, too. In particular, to be extension preserving, a transformer needs to be
applicable both on GTS(and on GTS; without changes.

Proposition 1. The tposc transformer preserves extensions.

Proof. Given GTSs GTS; = (TG;, P;,m;), with ¢ = 0,1, and ¢ = (¢7g, tp,tr) :
GTSy — GTS, an inclusion morphism, the first observation is that if the
tmirosc transformer is applicable to GTS(, then it can also be applied to GTS,
in exactly the same way. All classes in TG are in T'G1, and specifically the class
C to which the new subclass is added. Assume that the application of t,r050
on GTSy results in a new GTS GTS| = (TG(/),P()JT()), with rules as in GTSy
and a type graph TG{ as TGy but with a new class C’ added, and declared
subclass of C. Applying tr,ro5c to GTS1 results in the introduction of the new

GTS Families for the Flexible Composition 221

class C" as a subclass of t7¢(C), with no attributes or links. This produces a
new GTS GTS} = (TG, P1,m), with the same rules as in GTS;. The inclusion
morphism v/ = (g, Up,tl) : GTS(— GTS) can trivially be defined by defining
Vre by extending ¢ p¢ for the new class and subclass relation, mapping C’ to C”,
with the same components for the rules. Notice that if 17 is an attribute type
graph morphism, then ¢/ is as well, since it preserves the inheritance relation,
reflects subtyping, and preserves the abstraction definitions. Since rules are not
changed, if ¢ is an extension, then ./ is also an extension.

Proposition 2. The tppunaq transformer preserves extensions.

Proof. Let GTSs GTSy and GTS; and inclusion GTS morphism ¢ : GTSy —
GTS1 as in Proposition 1, and let us assume it is an extension. Since the type
graph is not changed, if the transformer is applicable on GTS), it is obviously
applicable on GTS for same class C, rule p and subclasses of C. We can define
the inclusion morphism ' = (t/pg, Up, i) : GTS) — GTS] by taking the same
type graph morphism and morphisms for non-modified rules. Since the trans-
former replaces rules mo(p) and 71 (p) with rules n((p) and 7} (p), respectively
in GTSy and GTS1, with these new rules generated in exactly the same way,
given 21 17 (mo(p(p))) — mi(p) we have P 17, () (tp(p))) — 71 (p). Since ¢
is an extension, to have that ¢/ is also an extension we just need to check that
70(fp(»)) = f55(mi(p)). But this is the case, since the transformer is exactly
making the same changes.

Proposition 3. The tyassoc transformer preserves extensions.

Proof. Let GTSs GTSy and GTS; and inclusion GTS morphism ¢ : GTSy —
GTS1 as in Proposition 1. The transformer just moves an association assoc from
class C' to one or more of its subclasses, requiring that there is no rule in the
source GTS using assoc on instances of C'. Assuming ¢ is an extension, then, if
trwvAssoc 1S applicable on GTS for some C, some subclass(es) of C' and rule p,
there cannot be in GT'S| a new rule, or an extension of a rule in GT'S, with such
a link (to C or any of its subclasses), and therefore the same application of the
transformer is possible on GTS;. Since the transformer is changing associations
consistently in TGy and TG4, the definition of ¢/, follows quite closely that of
t7g- Rules are left unchanged, so the definitions of /> and ¢/ are as those in ¢.
Thus, we can conclude that ¢/ is also an extension.

Let us go back to our example in Sect.2. First, notice that Tracker is an
extension of the Server GTS. A new association is added to its type graph,
and its rules are modified just by adding instances of the new elements. Then,
to apply the composition scheme from [16], we need a morphism f from the
parameter GTS Server to the PLS GTS. However, as we have seen in Sect. 2,
the morphism f cannot be established. To support this composition scenario, we
can express our server GTS as a GTS family and follow the scheme below:

222 S. Zschaler and F. Durdn

[GTSoly ~~ GTSy — > GTS,

s {v {3

[GTS1]y ~ors GTS) — — > GTS

In other words, we explicitly encode the variability we find acceptable by extend-
ing the parameter GTS GTSy into a GTS family [GTSo), providing transform-
€18 lintroSC tinhUnfid, and tywassoc i 1. By using these transformers, we can
derive a GTS GTS| (see Fig.4) for which a GTS morphism f can be estab-
lished to the PLS described in GTS5. Because all the transformers in T are
extension-preserving, we can derive a corresponding GTS] and the extension
g+ GTS, — GTS'. With these, we can finally apply the amalgamation scheme

from [16] to produce the composed GTS GTS.

4.4 Finding GTS-Family Members

Finding the appropriate representative of a GTS family for a given composition
problem is not trivial. Essentially, this requires searching through the space of
GTSs spanned by the GTS family, looking for a GTS with the right structure, if
any exists. Search-based problems have long been the subject of intense research
interest [15]. More recently, there have been proposals for tools solving search
problems in an MDE context [25-27]. Of particular interest in the context of
GTS families is the work on MOMOT by Fleck et al. [27]. Here, new candidate
solutions are found by applying a sequence of transformations to an initial model
(e.g., a GTS). The search is guided by appropriate fitness criteria (e.g., the num-
ber of matching elements that could be used to construct a suitable morphism).
Their approach keeps track of the transformation sequence at all time and thus
guarantees that it will only find solutions for which there is a transformation
sequence—a key criteria in finding representatives of GTS families.

Based on similar ideas, we have developed a basic automated search algorithm
in Maude [28]. This prototype demonstrates that automated search of suitable
GTSs in a GTS family is possible, but the prototype still suffers from inefficien-
cies. As part of our future work, we are exploring improving the implementation
based on MOMOT or similar tools.

5 Conclusions

In this paper, we have presented GTS families as a mechanism for encoding
controlled flexibility for morphisms between GTSs. This is achieved by extending
a GTS GTS to a set of GTSs that can be derived from GTSq given a set of GTS
transformers T. This set is called the GTS T-family of GTS(and is taken to
encode the full intent of what is expected to be preserved by any morphism from
GTSg. Then a direct morphism between GTSq and GTS1 is replaced by selecting
a suitable representative from the GTS family and defining the morphism from

GTS Families for the Flexible Composition 223

that representative. Thus, instead of direct morphisms GTSy — GTS| we will
use the construction [GTSo|, ~ GTS, — GTS;.

In addition to providing an explicit design mechanism for transformation
developers, GTS families as a formal concept also open up a new research agenda:
rather than relying on the pragmatic approaches taken to the definition of valid
adaptations so far, we can now begin to study the fundamental properties of
different types of GTS transformers, identifying different classes of GTS families
that can be most appropriately used in different scenarios (e.g., are there easily
checked conditions that will guarantee extension preservation?). In this paper,
we have shown how extension-preserving transformers can be used to construct
GTS families that enable flexible GTS amalgamation. As part of our future
work, we plan to study the properties required of GTS transformers to allow
flexible reuse of transformations, extending the work by de Lara et al. to semantic
transformation reuse.

Acknowledgements. This work has been partially supported by Spanish
MINECO/FEDER project TIN2014-52034-R and Univ. Mélaga, Campus de Excelencia
Internacional Andalucia Tech.

References

1. Ehrig, H.: Introduction to the algebraic theory of graph grammars. In: Claus, V.,
Ehrig, H., Rozenberg, G. (eds.) 1st Graph Grammar Workshop, vol. 73, LNCS,
pp. 1-69. Springer, Heidelberg (1979)

2. Engels, G., Heckel, R., Taentzer, G., Ehrig, H.: A combined reference model- and
view-based approach to system specification. Int. J. Software Eng. Knowl. Eng.
7(4), 457477 (1997)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006)

4. Grofle-Rhode, M., Parisi-Presicce, F., Simeoni, M.: Spatial and temporal refine-
ment of typed graph transformation systems. In: Brim, L., Gruska, J., Zlatuska,
J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 553-561. Springer, Heidelberg (1998).
doi:10.1007 /BFb0055805

5. Engels, G., Heckel, R., Cherchago, A.: Flexible interconnection of graph trans-
formation modules. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G.,
Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol.
3393, pp. 38-63. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31847-7_3

6. de Lara, J., Guerra, E.: From types to type requirements: Genericity for model-
driven engineering. SoSyM 12(3), 453-474 (2013)

7. Durén, F., Zschaler, S., Troya, J.: On the reusable specification of non-functional
properties in DSLs. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745,
pp. 332-351. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36089-3_19

8. Durén, F., Moreno-Delgado, A., Orejas, F., Zschaler, S.: Amalgamation of domain
specific languages with behaviour. J. Log. Algebraic Methods Program. (2015)

9. Baldan, P., Corradini, A., Dotti, F.L., Foss, L., Gadducci, F., Ribeiro, L.: Towards
a notion of transaction in graph rewriting. Electr. Notes Theor. Comput. Sci. 211,
39-50 (2008)

http://dx.doi.org/10.1007/BFb0055805
http://dx.doi.org/10.1007/978-3-540-31847-7_3
http://dx.doi.org/10.1007/978-3-642-36089-3_19

224

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

S. Zschaler and F. Durdn

Taentzer, G.: A visual modeling framework for distributed object computing. In:
Jacobs, B., Rensink, A. (eds.) FMOODS 2002. IFIP, vol. 81, pp. 263—278. Springer,
Boston, MA (2002). doi:10.1007/978-0-387-35496-5_18

de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed
graph transformation with node type inheritance. Theoret. Comput. Sci. 376, 139—
163 (2007)

Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli cate-
gories. In: Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 163-177.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28872-2_12

de Lara, J., Guerra, E.: Towards the flexible reuse of model transformations: A for-
mal approach based on graph transformation. J. Log. Algebraic Methods Program.
83(5-6), 427-458 (2014)

GroBle-Rhode, M., Parisi Presicce, F., Simeoni, M.: Refinements of graph trans-
formation systems via rule expressions. In: Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 368-382. Springer, Heidel-
berg (2000). doi:10.1007/978-3-540-46464-8_26

Harman, M.: The current state and future of search based software engineering. In:
Briand, L.C., Wolf, A.L. (eds.) International Conference on Software Engineering,
ISCE 2007, Workshop on the Future of Software Engineering, FOSE 2007, 23-25
May, Minneapolis, MN, USA, 342-357. IEEE Computer Society (2007)

Durdn, F., Orejas, F., Zschaler, S.: Behaviour protection in modular rule-based
system specifications. In: Marti-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS,
vol. 7841, pp. 24-49. Springer, Heidelberg (2013). d0i:10.1007/978-3-642-37635-1_2
Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations, vol. 1: Foundations, World Scientific (1997)

Parisi-Presicce, F.: Transformations of graph grammars. In: Cuny, J., Ehrig, H.,
Engels, G., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp.
428-442. Springer, Heidelberg (1996). doi:10.1007/3-540-61228-9_103

Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transfor-
mation. ECEASST 30 (2010)

Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symbolic Comput.
46(3), 294-315 (2011)

Taentzer, G., Rensink, A.: Ensuring structural constraints in graph-based models
with type inheritance. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 64-79.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31984-9_6

Cuadrado, J.S., Guerra, E., de Lara, J.: Flexible model-to-model transformation
templates: an application to ATL. J. Object Technol. 11(2), 4:1-4:28 (2012)

Guy, C., Combemale, B., Derrien, S., Steel, J.R.H., Jézéquel, J.-M.: On model
subtyping. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Storrle, H., Kolovos, D.
(eds.) ECMFA 2012. LNCS, vol. 7349, pp. 400-415. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31491-9_30

Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order
model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-
FA 2009. LNCS, vol. 5562, pp. 18-33. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02674-4_3

Hegediis, A., Horvath, A., Réath, I., Varr6, D.: A model-driven framework for guided
design space exploration. In: Proceedings of the 26th IEEE/ACM International
Conference Automated Software Engineering (ASE 2011), pp. 173-182, November
2011

http://dx.doi.org/10.1007/978-0-387-35496-5_18
http://dx.doi.org/10.1007/978-3-642-28872-2_12
http://dx.doi.org/10.1007/978-3-540-46464-8_26
http://dx.doi.org/10.1007/978-3-642-37635-1_2
http://dx.doi.org/10.1007/3-540-61228-9_103
http://dx.doi.org/10.1007/978-3-540-31984-9_6
http://dx.doi.org/10.1007/978-3-642-31491-9_30
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.1007/978-3-642-02674-4_3

26.

27.

28.

29.

GTS Families for the Flexible Composition 225

Zschaler, S., Mandow, L.: Towards model-based optimisation: Using domain knowl-
edge explicitly. In: Proceedings of Workshop on Model-Driven Engineering, Logic
and Optimization (MELO 2016) (2016)

Fleck, M., Troya, J., Wimmer, M.: Marrying search-based optimization and model
transformation technology. In: Proceedings of the 1st North American Search Based
Software Engineering Symposium (NasBASE 2015) (2015) (Preprint). http://
martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf

Clavel, M., Durén, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude, vol. 4350. LNCS. Springer, Heidelberg (2007)

Brim, L., Gruska, J., Zlatuska, J. (eds.): MFCS 1998. LNCS, vol. 1450. Springer,
Heidelberg (1998)

http://martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf
http://martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf

	GTS Families for the Flexible Composition of Graph Transformation Systems
	1 Introduction
	2 Running Example
	3 Preliminaries on GTSs, Clans, and Clan Morphisms
	3.1 Graph Transformation Systems
	3.2 Morphisms Between Graph Transformation Systems
	3.3 Typed Attributed Graphs and Clan Morphisms

	4 GTS Transformers and Families
	4.1 GTS Transformers
	4.2 GTS Families
	4.3 Extension Preserving Transformers and GTS Amalgamation
	4.4 Finding GTS-Family Members

	5 Conclusions
	References

