
Inter-model Consistency Checking Using Triple
Graph Grammars and Linear Optimization

Techniques

Erhan Leblebici1(B), Anthony Anjorin2, and Andy Schürr1

1 Technische Universität Darmstadt, Darmstadt, Germany
{erhan.leblebici,andy.schuerr}@es.tu-darmstadt.de

2 Universität Paderborn, Paderborn, Germany
anthony.anjorin@uni-paderborn.de

Abstract. An important task in Model-Driven Engineering (MDE) is
to check consistency between two concurrently developed yet related mod-
els. Practical approaches to consistency checking, however, are scarce in
MDE. Triple Graph Grammars (TGGs) are a rule-based technique to
describe the consistency of two models together with correspondences.
While TGGs seem promising for consistency checking with their precise
consistency notion and explicit traceability information, the substantial
search space involved in determining the “optimal” set of rule applica-
tions in a consistency check has arguably prevented mature tool support
so far. In this paper, we close this gap by combining TGGs with lin-
ear optimization techniques. We formulate decisions between single rule
applications of a consistency check as integer inequalities, which serve
as input for an optimization problem used to detect maximum consis-
tent portions of two models. To demonstrate our approach, we provide
an experimental evaluation of the tool support made feasible by this
formalization.

Keywords: Consistency check · Traceability · Linear optimization

1 Introduction and Motivation

Models are used in Model-Driven Engineering (MDE) to represent abstractions
of a system with respect to a certain perspective. In a typical MDE process,
especially when different disciplines are involved, there are often models con-
taining related information but maintained by different engineers concurrently
giving rise to consistency challenges. A crucial task in MDE is thus to perform
a consistency check, i.e., to determine if, or to what extent, two models are con-
sistent, before applying any consistency restoration. We discuss in this paper
consistency checking with Triple Graph Grammars (TGGs) [25], a rule-based
language for specifying a consistency relation between two modeling languages.

The basic idea of TGGs is to specify a set of rules (a grammar) describing how
consistent model pairs are constructed together with a correspondence model
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 191–207, 2017.
DOI: 10.1007/978-3-662-54494-5 11

192 E. Leblebici et al.

representing explicit traceability information. Given such a specification and two
models, the goal of a consistency check is to determine whether the models can
be constructed by the grammar and, if so, to create a respective correspondence
model. If the model pair is not completely consistent, we propose to determine
a partial correspondence model referencing consistent subparts of the models.

Establishing consistency checking with TGGs is crucial as practical solutions
to consistency checking are currently scarce in MDE. QVT-R [22] (in particular
its checkonly mode) is the only available standard for consistency checking in
MDE. The QVT-R implementation candidate Medini QVT [20], however, is able
to check consistency only if one of the models is generated by the tool itself via
model transformation and auxiliary traces are already available. Consistency
checking for models developed concurrently (in independent environments by
different developers) where traces are not available beforehand is not addressed
so far. Our goal is to tackle this general consistency challenge in concurrent MDE
activities by clearing the last obstacles for the applicability of TGGs.

The pioneer work for consistency checking with TGGs is [4] which derives con-
sistency checking rules from a TGG. How to conclude consistency (or inconsis-
tency) of two models with these rules, however, remains open due to the substan-
tial state space regarding decisions among possible rule applications. Finding the
best partial correspondence model between two inconsistent models (e.g., relating
as many elements as possible) is consequently also an open issue. We close this gap
by formulating a linear optimization problem for choices among rules, and discuss
the respective tool support made feasible by this novel formalization. While we
discuss relating a maximum number of model elements as a general objective fort
the optimization problem, our approach can be extended with custom objectives
reflecting case-specific policies for handling inconsistency (e.g., covering as many
elements as possible of a certain type, model, or property).

class List
{

void remove (Object obj){…}

void remove (int index){…}
}

List

remov e(obj : Object)
remov e(index: int)

Fig. 1. A consistent model pair

As a running example, we consider consis-
tency between Java code and UML class dia-
grams throughout the paper. Note that many
UML tools generate Java code from UML class
diagrams (or vice versa) in a consistent way
but no practical solution exists to check consis-
tency between these artifacts if they are devel-
oped concurrently (similar to the shortcomings of QVT-R implementations as
discussed above). The excerpt we focus on in our running example is a one-to-one
mapping between Java and UML classes, methods, and parameters but already
reveals the complexity of consistency checking. The challenging part of our case
study arises from overloaded methods: Determining the corresponding pairs of
methods belonging to the same class and sharing the same name can require a
careful decision making. Consider, for example, the consistent Java and UML
class pair in Fig. 1. The dashed lines represent correct decisions of corresponding
remove methods (and consequently corresponding parameters), while the dotted
lines represent wrong decisions. In fact, such local decisions while relating two
models are not specific to this example and wrong decisions can be chosen by a

Inter-model Consistency Checking Using Triple Graph Grammars 193

TGG-based consistency check. In this case, our consistent model pair would be
identified erroneously as inconsistent (due to incompatible parameters of mis-
takenly corresponding methods). Our experiments with HenshinTGG [8], the
only TGG tool we are aware of with consistency checking support, showed that
consistency checking indeed fails in cases where such decisions are necessary.

Our approach considers alternative steps of a consistency check and uses
logical dependencies between single steps to calculate a correct subset. This
corresponds to creating all lines together in Fig. 1, solving a suitable optimiza-
tion problem to maximize the number of related elements, and eliminating the
dotted lines in retrospect. Intuitively, the dashed and dotted lines in Fig. 1 are
alternatives where the dashed ones relate a larger number of elements.

After reviewing basic TGG theory in Sect. 2, we formalize in Sect. 3 choices
between alternative decisions in a consistency check as integer inequalities. Our
basic formal result in Theorem 1 states that any choice satisfying these inequal-
ities leads to some consistent portions of models. Subsequently, we state a suffi-
cient (Corollary 1) as well as a sufficient and necessary (Corollary 2) condition for
consistency by maximizing these portions. Section 4 evaluates our tool support.
Section 5 discusses related work, and Sect. 6 concludes the paper.

2 Preliminaries

: P2P

: M2M

: C2C
: JClass

name == "List"

: JMethod
name == "remove"

: JParameter
name == "obj"

: UMLClass
name == "List"

: UMLMethod
name == "remove"

: UMLParameter
name == "obj"

method

parameter parameter

method

Fig. 2. A triple graph

In line with the algebraic formalization of graph
grammars [6], we represent models as graphs. We
then introduce triples of graphs (Fig. 2) as we shall
be dealing with source, target, and correspondence
models (denoted with S, T, or C prefix, respec-
tively). The notion of triple graphs provides a
precise means for describing correspondences as
graph patterns that are amenable to mature graph
transformation tools. We provide our formaliza-
tion without type and attribute information in graphs for brevity. The formal-
ization can be extended compatibly to attributed typed graphs with inheritance
according to [6].

Definition 1 (Graph, Triple Graph). A graph G = (V,E, s, t) consists of
a set V of vertices, a set E of edges, and two functions s, t : E → V assigning
to each edge a source and target vertex, respectively. elements(G) denotes the
union V ∪E where each e ∈ elements(G) is an element of G. A graph morphism
f : G → G′, with G′ = (V ′, E′, s′, t′), is a pair of functions fV : V → V ′,
fE : E → E′ such that fV ◦ s = s′ ◦ fE ∧ fV ◦ t = t′ ◦ fE. f is a monomorphism
iff fV and fE are injective.

A triple graph G = GS
γS← GC

γT→ GT consists of graphs GS, GC , GT , and
graph morphisms γS : GC → GS and γT : GC → GT . elements(G) denotes the
union elements(GS)∪ elements(GC)∪ elements(GT). A triple morphism f : G →
G′ with G′ = G′

S

γ′
S← G′

C

γ′
T→ G′

T , is a triple f = (fS , fC , fT) of graph morphisms

194 E. Leblebici et al.

where fX : GX → G′
X and X ∈ {S,C, T}, fS◦γS = γ′

S◦fC and fT ◦γT = γ′
T ◦fC .

f is a triple monomorphism iff fS , fC , and fT are monomorphisms.

A TGG comprises monotonic (i.e., non-deleting) triple rules that generate
and thus define the language of consistent source and target graphs.

Definition 2 (Triple Rule and Derivation). A triple rule r :

m m'
r

PO

G G '
g

L RL → R is a triple monomorphism. A direct derivation via a
triple rule r, denoted as G

r@m===⇒ G′, is constructed, as depicted
to the right, by a pushout over r and a triple monomorphism
m : L → G where m is called match. A derivation D : G

r1@m1====⇒
G1

r2@m2====⇒ . . .
rn@mn====⇒ Gn (short D : G

∗=⇒ Gn) is a sequence
of direct derivations. We refer to the set D = {d1, . . . , dn} of direct derivations
included in D as the underlying set of D.

Example 1. Figure 3 depicts four TGG rules for our running example where
created elements of a rule (i.e., elements in R but not in L) are depicted green
with a ++-markup. Context elements (L) are depicted black. Triple rule r1
creates a Java class and a UML class together with a correspondence. Triple
rule r2 does the same with additional inheritance links on both sides. Triple rule
r3 creates a corresponding pair of Java and UML methods, while triple rule r4
creates parameters. The attribute constraints (e.g., jc.name == uc.name in r1)
enforce name equality of corresponding classes, methods, and parameters.

r1 r2

r3 r4 p : P2P

++

m :
M2M

jm :
JMethod

um :
UMLMethod

jp :
JParameter

++
up :

UMLParameter

++

jp.name == up.name

++parameter ++ parameter

++ ++
m :

M2M

++

c :
C2C

jc :
JClass

uc :
UMLClass

jm :
JMethod

++
um :

UMLMethod

++

jm.name == um.name

++method

++++

++ method

c1 :
C2C

c2 :
C2C

++
jc2 :

JClass

++
uc2 :

UMLClass

++

jc1 :
JClass

uc1 :
UMLClass

jc2.name == uc2.name

++
superClass

++
superClass

++++

c :
C2C

++
jc :

JClass

++
uc :

UMLClass

++

jc.name == uc.name

++++

Fig. 3. TGG rules describing how consistent models are constructed

Definition 3 (Triple Graph Grammar and Consistency). A triple graph
grammar TGG : R consists of a set R of triple rules. The generated language

Inter-model Consistency Checking Using Triple Graph Grammars 195

L(TGG) is defined as follows: L(TGG) = {G∅}∪{G | ∃D : G∅
r1@m1====⇒ G1

r2@m2====⇒
. . .

rn@mn====⇒ Gn = G}, where G∅ is the empty triple graph and, ∀i ∈ {1, . . . , n},
ri ∈ R. A source graph GS and a target graph GT are consistent with respect to
TGG iff ∃G ∈ L(TGG) with G = GS ← GC → GT .

Finally, we define consistency rules derived from the original triple rules.
They mark source and target elements that would be created by the original
TGG rules. This way, it can be determined whether a given pair of source and
target graphs can be constructed by applying the original triple rules of a TGG.

Definition 4 (Consistency Rule and Marking Elements).

Given a triple rule r : L → R
with L = LS ← LC → LT

and R = RS ← RC →
RT , the respective consis-
tency rule cr : CL → CR
is constructed, as depicted to
the right, such that CL is a pushout of L and RS ← ∅ → RT over LS ← ∅ → LT ,
and CR = R (cr : CL → CR is induced as the universal property of the pushout).
An element e ∈ elements(RS)∪elements(RT) is referred to as a marking element
of cr iff �e′ ∈ elements(LS) ∪ elements(LT) with rS(e′) = e or rT (e′) = e.

p : P2P

++

m :
M2M

jm :
JMethod

um :
UMLMethod

jp :
JParameter

up :
UMLParameter

jp.name == up.name

parameter

++

parameter

++

☑ ☑

☑ ☑
cr4

Fig. 4. Consistency rule cr4 derived from
r4 in Fig. 3

Example 2. The consistency rule cr4
derived from the original triple rule
r4 is depicted to the right together
with its marking elements. Intuitively,
a consistency rule marks exactly those
source and target elements that are
created by the original triple rule (++-
markup is replaced by a gray checked
box on the source and target side),
and creates the same correspondences.
Consistency rules cr1, cr2, and cr3 for
the respective triple rules r1, r2, and r3 are derived analogously.

3 Choices Between Markings as an Optimization Problem

Our goal in this section is to check consistency for a given model pair GS and GT

with respect to a TGG, i.e., to find a triple graph G′
S ← GC → G′

T ∈ L(TGG)
where G′

S and G′
T refer to the consistent portions of GS and GT , respectively

(G′
S = GS and G′

T = GT if GS and GT are consistent). Direct derivations via
consistency rules represent the single steps of such a consistency check. Markings
simulate the creation of GS and GT by the original triple rules and correspon-
dences (GC) are created in the process serving as traceability information. As
we have discussed in Sect. 1, however, this process can result in wrong markings
and correspondence creations if it is not suitably controlled.

196 E. Leblebici et al.

In the following, we consider derivations with consistency rules that possibly
mark model elements multiple times and thus represent a superset of correct
markings. We consider each direct derivation of such a derivation as an inte-
ger between 0-1 and formulate integer inequalities for exclusion and implica-
tion dependencies between direct derivations which were discussed in previous
work [17]. In sum, we combine two techniques: Graph pattern matching (via con-
sistency rules) is performed on triple graphs and logical constraints over matched
patterns are solved. While the first reduces the search space via structural pat-
terns (as compared to purely constraint-based solutions such as [18,19]), the
latter leads to a final choice between matchings.

Moreover, we handle the logical constraints as an optimization problem to
address consistency and inconsistency in a unified manner. This allows us to
use an objective function that governs the process to find a best choice among
collected direct derivations, which is especially crucial in case of inconsistency.
In this paper, we only focus on maximizing the number of related elements as
the objective while our approach can be extended by further custom objectives
reflecting case-specific consistency policies (e.g., marking as many UML elements
as possible while marking Java elements is not of uppermost priority). The main
idea is depicted schematically in Fig. 5 based on our exemplary model pair.

Fig. 5. A schematic overview of our approach with consistent models

Inter-model Consistency Checking Using Triple Graph Grammars 197

In the upper left part of Fig. 5, a derivation of seven direct derivations
{d1, . . . , d7} with consistency rules marks the source and target model elements.
Every source and target model element is annotated with its marking direct
derivations. Similarly, each correspondence is annotated with its creating direct
derivation. Without taking a decision, for instance, all overloaded remove meth-
ods are marked twice due to multiple options. Sets of constraints then state
logical dependencies between direct derivations. For example, both d2 and d3
mark the same remove method on the Java side as alternatives and thus cannot
be chosen together, leading to d2 + d3 ≤ 1 (highlighted with a gray shading in
Fig. 5). Furthermore, d2 creates a correspondence and marks source and target
elements used by d4 as context to mark obj parameters. Hence, d4 can only be
chosen if d2 is chosen (leading to d4 ≤ d2). Finally, an objective function max-
imizes the number of marked elements while satisfying the inequalities (each
direct derivation is weighted with the number of its marked elements). This
forms a linear optimization problem and can be appropriately handled with
Integer Linear Programming (ILP) techniques in practice (in fact, a special case
of ILP with 0-1 integers). The model pair in Fig. 5 is identified to be consistent
as the outcome of the optimization problem marks each model element exactly
once (as they would be if created by the original TGG rules).

To formalize this idea, we first define sets of marked, required, and created
elements of a direct derivation, which are decisive for formulating constraints.

Definition 5 (Marked, Required, and Created Elements). For a direct
derivation d : G

cr@cm====⇒ G′ via a consistency rule cr : CL → CR with G = GS ←
GC → GT and G′ = GS ← G′

C → GT , we define the following sets:

– marks(d) = {e ∈ elements(GS) ∪ elements(GT) | ∃e′ ∈ elements(CL) with
cm(e′) = e where e′ is a marking element of cr}

– requiresSrcTrg(d) = {e ∈ elements(GS) ∪ elements(GT) | ∃e′ ∈ elements(CL)
with cm(e′) = e where e′ is not a marking element of cr}

– requiresCorr(d) = {e ∈ elements(GC) | ∃e′ ∈ elements(CL) with cm(e′) = e}
– creates(d) = elements(G′

C) \ elements(GC).

Given a model pair G0 = GS ← ∅ → GT , a derivation constraint is a set
of integer inequalities representing exclusions and implications between direct
derivations collected in a consistency check process starting from G0.

Definition 6 (Constraints for Consistency Check Derivations). Given
a triple graph G0 : GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via
consistency rules with the underlying set D of direct derivations. For each direct
derivation d1, . . . , dn ∈ D, we define respective integer variables δ1, . . . , δn with
0 ≤ δ1, . . . , δn ≤ 1. A constraint C for D is a conjunction of linear inequalities
which involve δ1, . . . , δn. A set D′ ⊆ D fulfills C, denoted as D′ � C, iff C is
satisfied for variable assignments δi = 1 if di ∈ D′ and δi = 0 if di /∈ D′.

Our first constraint markedAtMostOnce(G0) requires that each source and
target element of a model pair G0 be marked at most once, i.e., a choice between

198 E. Leblebici et al.

alternative markings of the same element(s) is enforced. As a result of a consis-
tency check, an element can either remain unmarked (due to inconsistency) or
it can be marked once. Definition 7 introduces the sum of alternative markings
of the same element and Definition 8 restricts it to 0–1 as a constraint.

Definition 7 (Sum of Alternative Markings for an Element). Given a
triple graph G0 = GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via con-
sistency rules with the underlying set D of direct derivations. For each element
e ∈ elements(G0), let E = {d ∈ D | e ∈ marks(d)}. The integer markersSum(e)
denotes the sum of variables for each d ∈ E as follows:
If E = ∅, markersSum(e) = 0. If E = {d1}, markersSum(e) = δ1.
If E = {d1, . . . , dn}, markersSum(e) = δ1 + . . . + δn.

Definition 8 (Constraint 1: Marking Each Element at Most Once).
Given a triple graph G0 = GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via
consistency rules with the underlying set D of direct derivations. The constraint
markedAtMostOnce(G0) denotes

∧

e∈elements(G0)

markersSum(e) ≤ 1.

The next constraint context(D) defines dependencies as implications between
direct derivations due to their required context: A direct derivation is either
not chosen, or its required source and target elements must be marked and its
required correspondences must be created by some other chosen direct deriva-
tions. This is necessary as each chosen marking should be traced back to a deriva-
tion by the original TGG rules, where the context must always be provided.

Definition 9 (Constraint 2: Providing Context for Markings). Given
a triple graph G0 = GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via
consistency rules with the underlying set D of direct derivations. For each direct
derivation di ∈ D, we define the following constraints:
contextSrcTrg(di) =

∧

e∈requiresSrcTrg(di)

δi ≤ markersSum(e), contextCorr(di) =
∧

dj∈D,requiresCorr(di)∩creates(dj) �=∅
δi ≤ δj,

The constraint context(D) denotes
∧

di∈D
contextSrcTrg(di) ∧ contextCorr(di).

Example 3. In Fig. 5, the constraints markedAtMostOnce(G0) and context(D) are
depicted (after some logical simplifications) for our example.

The constraint context(D) ensures that the context for each chosen direct
derivation is supplied but cycles must still be avoided. Intuitively, two chosen
direct derivations may not provide context for each other (also not transitively)
as such derivations cannot be sequenced in terms of the underlying TGG.

Definition 10 (Cyclic Markings). Let D : G0
∗=⇒ Gn be a derivation via

consistency rules with the underlying set D of direct derivations. We define a
relation � ⊆ D × D between two direct derivations di, dj ∈ D as follows: di � dj

iff requiresSrcTrg(di) ∩ marks(dj) �= ∅ or requiresCorr(di) ∩ creates(dj) �= ∅.
A sequence cy ⊆ D with cy = {d1, . . . , dn} of direct derivations is a cycle iff
d1 � . . . � dn � d1.

Inter-model Consistency Checking Using Triple Graph Grammars 199

Definition 11 (Constraint 3: Eliminating Cycles). Given a triple graph
G0 = GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via consistency rules
with the underlying set D of direct derivations and let CY be the set of all cycles
cy ⊆ D. We define a constraint acyclic(D) as follows:
acyclic(D) =

∧

cy∈CY,
cy={d1,...,dn}

δ1 + . . . + δn < |cy| where |cy| is the cardinality of cy.

Example 4. The derivation depicted in Fig. 5 exhibits no cycles. In Fig. 6, how-
ever, two direct derivations (d2 and d3, both via the consistency rule cr2 derived
from r2) mark each others required elements (d2 � d3 and d3 � d2).

: C2C

: C2C

: JClass
name == "List"

: JClass
name == "Queue"

: UMLClass
name == "List"

: UMLClass
name == "Queue"

: C2C

superClass

superClass

superClass

superClass

d1

d3

d2d2

d3d2 d2

d2

d1,d3 d1,d3

d3

Fig. 6. Cyclic markings of d2 and d3

Given two classes List and Queue with
cyclic inheritance relation on both sides,
d2 marks the Queue classes and requires
List classes, and conversely for d3.
Although d2 and d3 mark the model pair
entirely (without being alternatives to
each other for any element), they can-
not be chosen together as they cannot be
sequenced in terms of the original gram-
mar. In fact, these models are inconsistent
(they just exhibit the same type of inconsistency on both sides) as our TGG (in
particular the triple rule r2) cannot create cyclic inheritance relations.

Our constraints so far enforce that (i) each element is marked at most once,
(ii) chosen direct derivations completely satisfy their context with other direct
derivations, and (iii) direct derivations do not provide context in a cyclic manner
to each other. Theorem 1 in the following states that, given a model pair G0 =
GS ← ∅ → GT and a derivation D via consistency rules, each subset of direct
derivations in D satisfying these constraints leads to a triple graph representing a
consistent portion of GS and GT . The consistent triple graph consists of elements
marked and created by the chosen subset of direct derivations.

Theorem 1 (Consistent Portions of Source and Target Graphs). Given
a TGG : (TG,R) with the set CR of respective consistency rules and a triple
graph G0 = GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via rules in
CR with the underlying set D of direct derivations. For any set D′ ⊆ D with
D′ � markedAtMostOnce(G0) ∧ context(D) ∧ acyclic(D), we get a triple graph
G′ = G′

S ← G′
C → G′

T such that G′ ∈ L(TGG), elements(G′
S) ⊆ elements(GS),

elements(G′
T) ⊆ elements(GT), and elements(G′) =

⋃

d∈D′
(marks(d) ∪ creates(d)).

Proof. For each direct derivation d in D′, the required source and target ele-
ments are marked and the required correspondences are created by some other
direct derivations in D′ (context(D)). Furthermore, direct derivations in D′ pro-
vide context for each other in an acyclic manner (acyclic(D)). Hence, all direct
derivations in D′ can be sequenced to a derivation D′ via rules in CR. Marked

200 E. Leblebici et al.

and created elements of each direct derivation in D′ are equal to created ele-
ments by the respective original triple rule (cf. consistency rule construction
in Definition 4). Consequently, the union of marked and created elements of
D′ leads to a triple graph G′ = G′

S ← G′
C → G′

T ∈ L(TGG). Moreover, G′
S

and G′
T are composed by picking each element of GS and GT at most once

as markedAtMostOnce(G0) holds, i.e., we get elements(G′
S) ⊆ elements(GS) and

elements(G′
T) ⊆ elements(GT). ��

In practice, when applying Theorem 1, we employ an ILP solver together
with an objective maximizing the number of marked elements as depicted in
Fig. 5. Consistency of two models can be concluded if the maximally marked
portions in Theorem 1 are equal to the entire models.

Corollary 1 (A Sufficient Condition for Consistency). Given a TGG :
(TG,R) with the set CR of respective consistency rules and a triple graph
G0 : GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation via rules in CR with
the underlying set D of direct derivations. GS and GT are consistent if a set
D′ ⊆ D exists with D′ � markedAtMostOnce(G0) ∧ context(D) ∧ acyclic(D) and⋃

d∈D′
marks(d) = elements(G0).

Proof. This is a special case of Theorem 1 where elements marked and created
by direct derivations in D′ result in GS ← GC → GT ∈ L(TGG). ��
Example 5. In Fig. 5, two models GS and GT are given together with a derivation
that marks some model elements multiple times. A subset of direct derivations
satisfying the constraints is then determined leading to a triple graph GS ←
GC → GT , i.e., GS and GT are marked entirely.

Corollary 1 is a sufficient condition for consistency and already useful to con-
clude consistency from arbitrarily collected markings. If no subset of markings
in a derivation D is found that satisfies constraints and marks all elements, how-
ever, it is unclear if the models are really inconsistent or if there are some further
markings that were not collected in D. We thus characterize final derivations
with consistency rules providing all possible markings, and lift our result to a
sufficient and necessary condition for consistency. We restrict ourselves in the
following to TGGs whose consistency rules mark at least one element (called
progressive TGGs). Consistency rules that only create correspondences but do
not contribute any markings are excluded as it is unclear how often to apply
such rules for collecting a complete set of markings. This restriction does not
have any significant consequence in practice according to our experience, and is
fulfilled by all industrial and academic case studies we have worked on so far.

Definition 12 (Progressive TGG). A TGG : (TG,R) with the set CR of
respective consistency rules is progressive iff each cr ∈ CR has at least one
marking element.

Inter-model Consistency Checking Using Triple Graph Grammars 201

Definition 13 (Final Derivations with Consistency Rules). Given a pro-
gressive TGG : (TG,R) with the set CR of respective consistency rules and
a triple graph G0 : GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a derivation
via rules in CR with the underlying set D of direct derivations. D is final iff

∀dn+1 : Gn
crn+1@cmn+1=========⇒ Gn+1 with crn+1 ∈ CR, ∃di : Gi−1

cri@cmi=====⇒ Gi where
di ∈ D, cri = crn+1, and cmi = cmn+1.

Remark 1. An interesting issue is the existence of a final derivation for a given
TGG and a model pair. In some cases, the search for a final derivation does not
terminate when consistency rules create new matches for each other in a cyclic
manner (e.g., in case of a cyclic inheritance in our example as depicted in Fig. 6,
direct derivations via cr2 continuously create new correspondences and thus new
matches for each other). The problem is similar to the termination problem of
graph grammars which is in general undecidable [23]. In practice, such cycles
can either be detected and aborted at runtime, or additional restrictions for the
model pair or for the TGG can be imposed. For example, a TGG can be specified
in the style of a Layered Graph Grammar [5,24] whose termination with distinct
matches is shown in [5], or models can be constrained to avoid cyclic matches
(cyclic inheritance must be prohibited in our concrete case). We leave it to future
work to explore a restricted yet sufficiently expressive class of TGGs (statically)
guaranteeing the existence of a final derivation.

A final derivation provides all possible markings. In this case, inconsistency
can be concluded if a subset of direct derivations satisfying our constraints and
marking all elements does not exist. Corollary 2 in the following thus extends our
result from Corollary 1 to a sufficient and necessary condition for final derivations
via consistency rules of progressive TGGs.

Corollary 2 (A Sufficient and Necessary Condition for Consistency).
Given a progressive TGG : (TG,R) with the set CR of respective consistency
rules, and a triple graph G0 : GS ← ∅ → GT , let D : G0

∗=⇒ Gn be a final
derivation via rules in CR with the underlying set D of direct derivations. GS

and GT are consistent iff a set D′ ⊆ D exists with D′ � markedAtMostOnce(G0)∧
context(D) ∧ acyclic(D) and

⋃

d∈D′
marks(d) = elements(G0).

Proof. If D′ exists, the same arguments as in Corollary 1 apply to conclude
consistency of GS and GT . We show in the following that inconsistency can be
concluded if D′ does not exist: TGG is progressive and D is final. Hence, there
does not exist any further direct derivation via consistency rules that contribute
new markings with a different match to D. If D′ does not exist, there does
not exist any derivation D′ via consistency rules whose marked and created
elements compose a triple graph GS ← GC → GT ∈ L(TGG). As a result of the
consistency rule construction (Definition 4), furthermore, for each derivation via
original triple rules in R there exists a unique derivation via consistency rules in
CR. Thus, the absence of D′ leads to the absence of a derivation via triple rules
in R, i.e., GS and GT cannot be constructed together by the grammar. ��

202 E. Leblebici et al.

Fig. 7. A further example with inconsistent models

Example 6. Figure 7 shows an example where inconsistency of two models is con-
cluded (we have less methods on the UML side). In the upper left part, we have
a final derivation consisting of four direct derivations where d2 and d4 mark the
same remove method on the UML side. The upper right part depicts a subset
of direct derivations satisfying our constraints with the maximum number of
marked elements (d2 is preferred over d4 in order to mark obj parameters with
d3). Having still unmarked elements on the Java side, however, the models are
identified to be inconsistent. Nevertheless, the retained markings and correspon-
dences refer to the maximum consistent portions of these models.

4 Experimental Evaluation

Our goal in this section is to evaluate the applicability of our tool support for
consistency checking with regard to performance. To this end, we state the fol-
lowing two research questions to be investigated with our experiments:

RQ1: Are consistency checks by combining TGGs and linear optimization
applicable to real-world model pairs?

RQ2: How is the scalability of our implementation affected by different factors
including model size and numbers of collected/chosen marking steps?

Evaluation set-up. We approach both research questions with an extended
version of our running example. We extracted Java and UML model pairs from

Inter-model Consistency Checking Using Triple Graph Grammars 203

real and synthetically generated software projects using the MoDisco tool [21]
and performed consistency checks using our TGG tool. Our TGG tool collects
alternative markings between two models and utilizes an ILP solver, namely
Gurobi [13], for a decision in retrospect (we chose Gurobi due to its performance,
available academic licence, and Java API). The TGG in our experiments has
17 rules and relates packages, types, attributes, methods, and parameters on
both sides. Method bodies in Java models are ignored as they do not have any
counterpart in UML models. In all cases, the only inconsistency detected with
our TGG was the primitive type string in UML models (which is not primitive in
Java). We repeated our measurements 15 times with Intel i5@3.30 GHz, Windows
7 (64 bit), Java 8, Eclipse Neon, and 15 GB memory, and show the median.

Evaluation results and discussion. The upper part of Table 1 shows mea-
surement results with four real software projects with diverse sizes. The number
of marked source elements is generally larger than the number of marked tar-
get elements as Java models represent the same information with more vertices
and edges as compared to UML models. Moreover, there is always a difference
between the number of all marking steps and the number of chosen marking
steps (as a result of the optimization problem) due to alternative markings of
overloaded methods as we have exemplified throughout the paper. Especially the
project modisco.java makes intensive usage of method overloading and is thus
the most noticeable one among our real software projects with respect to this
difference (ca. 3.8 K of 30 K marking steps are chosen). In all experiments with
real software projects, ILP solving requires under 1 s while collecting all mark-
ings requires between 5 s and 2.5 min depending on the model size. Removing
eliminated markings and correspondences has negligible runtime.

Table 1. Measurement results with real and synthetically generated software projects

Model size ILP problem size Runtime

src.

elts.

trg.

elts.

all

marking

steps

chosen

steps

Collect

markings

(sec)

ILP

solving

(sec)

Retain

chosen

(sec)

Total (sec)

tgg.core 8, 484 5, 594 2, 007 1, 919 5.29 0.11 0.01 5.39

modisco.java 16, 705 11, 279 29, 977 3, 791 15.28 0.94 0.12 16.34

eclipse.graphiti 33, 778 21, 778 8, 819 7, 271 63.20 0.36 0.03 63.60

eclipse.compare 53, 391 31, 912 11, 670 10, 700 143.63 0.42 0.03 144.09

Synthetic (n = 25) 2, 300 1, 081 6, 162 362 1.70 0.51 0.05 2.26

Synthetic (n = 50) 8, 950 4, 006 45, 437 1, 337 6.18 7.64 0.31 14.13

Synthetic (n = 75) 19, 975 8, 806 149, 087 2, 937 23.53 53.50 2.64 79.665

Synthetic (n = 100) 35, 375 15, 481 348, 362 5, 162 67.51 201.33 13.89 282.73

Synthetic (n = 125) 55, 150 24, 031 674, 512 8, 012 164.70 674.08 51.91 890.69

204 E. Leblebici et al.

class MyClass
{

void do(int p1)
void do(int p1, int p2)
…
void do(int p1, int p2, …, int pn)

}

In order to explore the limits of the ILP solver (which is
not challenged by real models), we furthermore generated
synthetic projects consisting of a class with n overloaded
methods including 1 to n parameters. We used the same
naming convention for all parameters as depicted to the
right. With this strategy, we get n2 possible markings for methods where n of
them must be chosen. For parameters, the number of all markings is given by
n∑

i=1

i2 and the number of chosen ones by
n∑

i=1

i. In all cases, there are 12 further

alternativeless markings for (primitive) types and packages. Measurement results
in the lower part of Table 1 show that collecting markings requires similar run-
time as in real models of similar size, while ILP solving requires more than 3 min
for n = 100 (ca. 5 K of 348 K markings are chosen) and more than 11 min for
n = 125 (ca. 8K of 674 K markings are chosen). This time, removing eliminated
markings has also observable runtime (52 s) in the largest case.

In line with our results, we conclude the following for RQ1 and RQ2:

RQ1: Our approach is applicable to realistic models, terminating in the order of
only a few minutes for large models with up to 50 K elements. ILP solving can
easily cope with our specific type of constraints and objectives if the number of
alternative markings is not exceptionally large. Collecting all markings, however,
is currently the limiting factor for applicability to larger models.

RQ2: Scalability of collecting all markings strictly depends on the model size
but not necessarily on the number of collected markings. This step shows similar
runtime behaviour for real and synthetic projects although much more markings
are collected in the latter. Apparently, searching for markings between large
models (pattern matching) is the most costly operation which we also confirmed
by profiling. Conversely, scalability of ILP solving has a strict dependency on the
number of collected markings (as they form together the optimization problem).

Finally, we believe to have come up with a consistency checking approach
which (i) is already applicable to realistic models in its current form, (ii) has
reasonable runtime even for corner cases with lots of alternative markings, and
(iii) has potential for improvements, especially with respect to pattern matching.

Threats to validity. External validity is our primary concern as generalizability
of our results requires further non-trivial case studies. We argue, nevertheless,
that our synthetically generated models address ultimately challenging cases for
their sizes. Furthermore, expectations and research interests of the authors may
be a threat to conclusion validity. We thus used real-world and randomly chosen
models to make experiments unpredictable and carefully utilized profiling tools
to draw conclusions on the scalability of individual components.

5 Related Work

We consider two groups of related work: (i) consistency checking approaches in
MDE and (ii) MDE-related applications of optimization techniques.

Inter-model Consistency Checking Using Triple Graph Grammars 205

Consistency checking approaches. QVT-R [22] proposed by OMG is the
only current standard for consistency checking and describes consistency as a
set of relations between two models. Seminal contributions to QVT-R, however,
primarily address its ambiguous semantics due to a missing formalization in
the standard. In [26], a game-theoretic approach is proposed to define seman-
tics of consistency checking with QVT-R, later extended by recursive relations
in [1]. In this setting, consistency checking is a game between a verifier and a
refuter whose interest is to satisfy or to contradict relations, respectively. In [12],
QVT-R is translated to graph constraints using similar formal foundations as for
TGGs. Due to the nature of QVT-R, however, consistency must be designed in
two directions in these formalisms (there is a forward and backward consistency
check) and direction-agnostic traceability information is not provided [26]. An
interesting approach is proposed in [18,19] defining QVT-R semantics as a con-
straint solving problem. While constraint solving is employed for entire models
in this case, our approach is in contrast rule-based and formulates only deci-
sions between rule applications as constraints. Our constraints are thus more
compact and manageable for state-of-the-art solvers. This claim is supported
by the order of processable model sizes of our approach (currently up to 50 K
elements) as compared to experimental results in [19] (hundreds of elements).
It is, nonetheless, crucial to establish benchmarks for a direct comparison of
different approaches. Considering recent work on TGGs, reusing existing mark-
ings and correspondences from former runs is proposed in [7,14] when relating
two models. Decision making for remaining parts, however, is still open and can
be tackled with our approach. Combining our approach with [7,14] could yield
performance gains via incrementality and is thus important future work.

Optimization techniques in MDE. We observe a close relation between
our work and [10] which combines search-based optimization techniques with
model transformation. Given a set of rules, input model(s), and an objective,
the idea is to calculate an “optimal” sequence of rule applications via search-
based algorithms. Interestingly, this can reverse the complexity distribution of
our approach: While we invest substantial effort in rule applications (collecting
all markings) and solve a rather simple optimization problem (at least in case
of realistic models) in retrospect, more effort is put into optimization in [10]
and necessary rule applications are determined in advance. Different MDE tasks
are addressed with search-based optimization including change detection [9] and
refactoring [11]. Further investigation is needed to understand to what extent
the same methodologies are applicable to our goals. Other applications of opti-
mization techniques in MDE include bidirectional model transformation [2] and
learning model transformation by examples [15]. Applicability to large models,
however, is again a critical limitation in these cases as the papers openly discuss.

6 Conclusion and Future Work

We presented an approach to inter-model consistency checking by combining
TGGs with linear optimization techniques. We evaluated our respective tool

206 E. Leblebici et al.

support and explored its scalability with realistic and synthetically generated
models. Our results show that the idea of combining a model transformation
engine with optimization techniques is promising and we believe that it can
be transferred to other approaches (e.g., QVT-R) to facilitate decision mak-
ing. Tasks for future work include (i) experimenting with further industrial case
studies as well as with academic non-trivial examples as collected in the bx
example repository [3], (ii) comparing our approach to hand-written solutions
of the same problem (developed with general purpose or bidirectional program-
ming languages such as [16]), (iii) utilizing novel pattern matching techniques
(e.g., [27,28]) to attain applicability to larger models, (iv) incremental consis-
tency checking by reusing results from former runs, and (v) exploring new types
of optimization problems beyond identifying maximal consistent portions and
represent case-specific policies. Finally, our contribution paves the way to bidi-
rectional model integration. Starting with two inconsistent models, consistent
parts can be detected with the current contribution. Remaining parts can be
synchronized again by TGGs (possibly after a conflict resolution).

Acknowledgement. This work has been funded by the German Federal Ministry
of Education and Research within the Software Campus project GraTraM at TU
Darmstadt, funding code 01IS12054.

References

1. Bradfield, J., Stevens, P.: Recursive checkonly QVT-R transformations with general
when and where clauses via the modal Mu calculus. In: Lara, J., Zisman, A. (eds.)
FASE 2012. LNCS, vol. 7212, pp. 194–208. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28872-2 14

2. Callow, G., Kalawsky, R.: A satisficing bi-directional model transformation engine
using mixed integer linear programming. J. Object Technol. 12(1), 1–43 (2013)

3. Cheney, J., McKinna, J., Stevens, P., Gibbons, J.: Towards a repository of BX
examples. In: Candan, K.S., Amer-Yahia, S., Schweikardt, N., Christophides, V.,
Leroy, V. (eds.) BX 2014. CEUR Workshop Proceedings, vol. 1133, pp. 87–91
(2014). CEUR-WS.org

4. Ehrig, H., Ehrig, K., Hermann, F.: From model transformation to model integration
based on the algebraic approach to triple graph grammars. ECEASST 10, 1–15
(2008)

5. Ehrig, H., Ehrig, K., Lara, J., Taentzer, G., Varró, D., Varró-Gyapay, S.: Termina-
tion criteria for model transformation. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol.
3442, pp. 49–63. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31984-9 5

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006)

7. Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and Model Transformation -
General Framework and Applications. Monographs in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Heidelberg (2015)

8. Ermel, C., Hermann, F., Gall, J., Binanzer, D.: Visual modeling and analysis of
EMF model transformations based on triple graph grammars. ECEASST 54, 1–12
(2012)

http://dx.doi.org/10.1007/978-3-642-28872-2_14
http://dx.doi.org/10.1007/978-3-642-28872-2_14
http://www.CEUR-WS.org
http://dx.doi.org/10.1007/978-3-540-31984-9_5

Inter-model Consistency Checking Using Triple Graph Grammars 207

9. Fadhel, A.B., Kessentini, M., Langer, P., Wimmer, M.: Search-based detection of
high-level model changes. ICSM 2012, 212–221 (2012)

10. Fleck, M., Troya, J., Wimmer, M.: Marrying search-based optimization and model
transformation technology. In: Proceedings of NasBASE (2015)

11. Fleck, M., Troya, J., Wimmer, M.: Search-based model transformations with
MOMoT. In: Van Gorp, P., Engels, G. (eds.) ICMT 2016. LNCS, vol. 9765, pp.
79–87. Springer, Cham (2016). doi:10.1007/978-3-319-42064-6 6

12. Guerra, E., de Lara, J.: An algebraic semantics for QVT-relations check-only trans-
formations. Fundam. Inform. 114(1), 73–101 (2012)

13. Gurobi: (2016). http://www.gurobi.com/
14. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gottmann,

S., Engel, T.: Model synchronization based on triple graph grammars: correctness,
completeness and invertibility. Softw. Syst. Model. 14(1), 241–269 (2015)

15. Kessentini, M., Sahraoui, H., Boukadoum, M.: Model transformation as an opti-
mization problem. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-87875-9 12

16. Ko, H., Zan, T., Hu, Z.: BiGUL: a formally verified core language for putback-
based bidirectional programming. In: Erwig, M., Rompf, T. (eds.) PEPM 2016,
pp. 61–72 (2016)

17. Leblebici, E.: Towards a graph grammar-based approach to inter-model consistency
checks with traceability support. In: Anjorin, A., Gibbons, J. (eds.) BX 2016.
CEUR Workshop Proceedings, vol. 1571, pp. 35–39 (2016). CEUR-WS.org

18. Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model transformations
using alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp.
297–311. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37057-1 22

19. Macedo, N., Cunha, A.: Least-change bidirectional model transformation with
QVT-R and ATL. Softw. Syst. Model. 15(3), 783–810 (2016)

20. Medini-QVT: (2016). http://projects.ikv.de/qvt
21. MoDisco: (2016). http://www.eclipse.org/MoDisco/
22. OMG: QVT Specification, V1.2 (2015). http://www.omg.org/spec/QVT/
23. Plump, D.: Termination of graph rewriting is undecidable. Fundam. Inform. 33(2),

201–209 (1998)
24. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph

grammars. J. Vis. Lang. Comput. 8(1), 27–55 (1997)
25. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,

E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). doi:10.1007/3-540-59071-4 45

26. Stevens, P.: A simple game-theoretic approach to checkonly QVT relations. In:
Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 165–180. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02408-5 12

27. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,
Z., Varró, D.: EMF-IncQuery: an integrated development environment for live
model queries. Sci. Comput. Program. 98, 80–99 (2015)

28. Varró, G., Deckwerth, F.: A Rete network construction algorithm for incremental
pattern matching. In: Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol. 7909,
pp. 125–140. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38883-5 13

http://dx.doi.org/10.1007/978-3-319-42064-6_6
http://www.gurobi.com/
http://dx.doi.org/10.1007/978-3-540-87875-9_12
http://www.CEUR-WS.org
http://dx.doi.org/10.1007/978-3-642-37057-1_22
http://projects.ikv.de/qvt
http://www.eclipse.org/MoDisco/
http://www.omg.org/spec/QVT/
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/978-3-642-02408-5_12
http://dx.doi.org/10.1007/978-3-642-38883-5_13

	Inter-model Consistency Checking Using Triple Graph Grammars and Linear Optimization Techniques
	1 Introduction and Motivation
	2 Preliminaries
	3 Choices Between Markings as an Optimization Problem
	4 Experimental Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

