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Abstract. We study multi-player turn-based games played on a directed
graph, where the number of players and vertices can be infinite. An out-
come is assigned to every play of the game. Each player has a preference
relation on the set of outcomes which allows him to compare plays. We
focus on the recently introduced notion of weak subgame perfect equilib-
rium (weak SPE), a variant of the classical notion of SPE, where players
who deviate can only use strategies deviating from their initial strategy
in a finite number of histories. We give general conditions on the struc-
ture of the game graph and the preference relations of the players that
guarantee the existence of a weak SPE, which moreover is finite-memory.

1 Introduction

Games played on graphs have a large number of applications in theoretical com-
puter science. One particularly important application is reactive synthesis [21],
i.e. the design of a controller that guarantees a good behavior of a reactive sys-
tem evolving in a possibly hostile environment. One classical model proposed
for the synthesis problem is the notion of two-player zero-sum game played on a
graph. One player is the reactive system and the other one is the environment;
the vertices of the graph model their possible states and the edges model their
possible actions. Interactions between the players generate an infinite play in the
graph which model behaviors of the system within its environment. As one can-
not assume cooperation of the environment, the objectives of the two players are
considered to be opposite. Constructing a controller for the system then means
devising a winning strategy for the player modeling it. Reality is often more
subtle and the environment is usually not fully adversarial as it has its own
objective, meaning that the game should be non zero-sum. Moreover instead
of two players, we could consider the more general situation of several players
modeling different interacting systems/environments each of them with its own
objective.
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The concept of Nash equilibrium (NE) [20] is central to the study of multi-
player non zero-sum games. A strategy profile is an NE if no player has an
incentive to deviate unilaterally from his strategy, i.e., he cannot strictly improve
the outcome of the strategy profile by changing his strategy only. However in the
context of games played on graphs, which are sequential by nature, it is well-
known that NEs present a serious drawback: they allow for non-credible threats
that rational players should not carry out [23]. Thus the notion of NE has been
strengthened into the notion of subgame perfect equilibrium (SPE) [24]: a strategy
profile is an SPE if it is an NE in each subgame of the original game. This notion
behaves better for sequential games and excludes non-credible threats.

Variants of SPE, weak SPE and very weak SPE, have been recently intro-
duced in [5]. While an SPE must be resistant to any unilateral deviation of
one player, a weak (resp. very weak) SPE must be resistant to such deviations
where the deviating strategy differs from the original one on a finite number
of histories only (resp. on the initial vertex only). The latter class of deviating
strategies is a well-known notion that for instance appears in the proof of Kuhn’s
theorem [16] with the one-step deviation property. Weak SPEs and very weak
SPEs are equivalent, but there are games for which there exists a weak SPE but
no SPE [5,26]. The notion of weak SPE is important for several reasons (more
details are given in the related work discussed below). First, for the large class
of games with upper-semicontinuous payoff functions and for games played on
finite trees, the notions of SPE and weak SPE are equivalent. Second, it is a cen-
tral technical ingredient used to reason on SPEs as shown in [5,12]. Third, being
immune to strategies that finitely deviate from the initial strategy profile may
be sufficient from a practical point of view. Indeed ruling out infinite deviations
can be achieved by letting a meta-agent punish every one-shot deviation with a
(low) fixed probability. A player using an infinitely-deviating strategy will thus
be punished by the meta-agent with probability one. Protocols like BitTorrent
use similar ideas: every deviant user is temporarily denied suitable bandwidth
(see Chapter Bandwidth Trading as Incentive in [25] for details).

In this paper, we provide the following contributions. First, we identify gen-
eral conditions to guarantee the existence of a weak SPE (Theorem 1). The
result identifies a large class of multi-player non zero-sum games such that an
outcome is assigned to every play of the game and each player has a preference
relation on the set of play outcomes which allows him to compare plays. This
class covers game graphs that may have infinitely many vertices and infinitely
many players. Notice that such models are relevant for systems where the play-
ers can join or leave the game dynamically, and the number of players is finite
yet unbounded overtime: the users in the Internet are a typical example since
there is no (clear) bound on the number of possible users. The proof of our result
relies on transfinite induction and additionally provides a weak SPE using finite-
memory strategies for all players. Second, starting from this general existence
result, we prove the existence of a weak SPE:
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– for games with a finite number of outcomes (Theorem 2);
– for games with a finite underlying graph and a prefix-independent outcome

function (Theorem 4).

Additionally, in the second result, we identify conditions on the players’ outcome
preferences that guarantee the existence of a weak SPE composed of uniform
memoryless strategies only (Theorem 5).

Related work. The concept of SPE has been first introduced and studied by
the game theory community. Kuhn proves in [16] the existence of SPEs in games
played on finite trees. This result has been generalized in several ways. Games
with a continuous real-valued outcome function and a finitely branching tree
always have an SPE [19] (the case with finitely many players is first established
in [14]). In [12] (resp. [22]), the authors prove that there always exists an SPE for
games with a finite number of players and with a real-valued outcome function
that is upper-semicontinuous (resp. lower-semicontinuous) and of finite range.
The result of [22] is extended to an infinite number of players in [13]. In [19], it
is proved using Borel determinacy that all two-player games with antagonistic
preferences over finitely many outcomes and a Borel-measurable outcome func-
tion have an SPE. In [18], Le Roux shows that all games where the preferences
over finitely many outcomes are free of some “bad pattern” and the outcome
function is Δ0

2 measurable (a low level in the Borel hierarchy) have an SPE.
In part of the former work, the equivalence between SPEs and very weak

SPEs is implicitly used as a proof technique: in a finite setting in [16], continuous
setting in [14], and lower-semicontinuous setting in [12]. In the latter reference,
the authors implicitly prove that all games with a finite range real-valued out-
come function have a weak SPE (which is an SPE when the outcome function is
additionally lower-semicontinuous). Inspired by this result and its proof, we here
generalize it to an infinite number of players using a simpler proof technique:
our algorithm discards outcomes instead of discarding plays.

The concept of SPE and other solution concepts for multi-player non zero-
sum games have been recently studied by the theoretical computer community,
see [2] for a survey. In [27], the existence of SPEs (and thus weak SPEs) is proved
for games with a finite number of players and Borel Boolean objectives. We here
generalize the existence of weak SPEs to games with infinitely many players.
In [5], weak SPEs are introduced as a technical tool for showing the existence
of SPEs in quantitative reachability games played on finite weighted graphs. An
algorithm is also provided for the construction of a (finite-memory) weak SPE
that appears to be an SPE for this particular class of games. We here give several
existence results that are orthogonal to the results of [5] as they are concerned
with possibly infinite graphs or prefix-independent outcome functions.

Other refinements of NE are studied. Let us mention the secure equilibria for
two players first introduced in [7] and then used for reactive synthesis in [10].
These equilibria are generalized to multiple players in [11] or to quantitative
objectives in [6], see also a variant called Doomsday equilibrium in [8]. Like
NEs, they are subject to possible non-credible threats. Other refinements of NE



148 V. Bruyère et al.

are provided by the notion of admissible strategy introduced in [1], with com-
putational aspects studied in [4], and potential for synthesis studied in [3]. Note
that these notions are immune, as (weak) SPEs, of non-credible threats. Finally,
in [17], the authors introduce the notion of cooperative and non-cooperative
rational synthesis as a general framework where rationality can be specified by
either NE, or SPE, or the notion of dominating strategies. In all cases except [6]
and [11], the proposed solution concepts are not guaranteed to exist, hence results
concern mostly algorithmic techniques to decide their existence and not general
conditions for existence as in this paper.

2 Preliminaries

In this section, we consider multi-player turn-based games such that an outcome
is assigned to every play. Each player has a preference relation on the set of play
outcomes which allows him to compare plays.

Games. A game is a tuple G = (Π,V, (Vi)i∈Π , E,O, μ, (≺i)i∈Π) where (i) Π is
a set of players, (ii) V is a set of vertices and E ⊆ V × V is a set of edges,
such that w.l.o.g. each vertex has at least one outgoing edge, (iii) (Vi)i∈Π is a
partition of V such that Vi is the set of vertices controlled by player i ∈ Π, (iv) O
is a set of outcomes and μ : V ω → O is an outcome function, and (v) ≺i ⊆ O×O
is a preference relation for player i ∈ Π. In this definition the underlying graph
(V,E) can be infinite (that is, of arbitrarily cardinality), as well as the set Π of
players and the set O of outcomes.

A play of G is an infinite (countable) sequence ρ = ρ0ρ1 . . . ∈ V ω of vertices
such that (ρi, ρi+1) ∈ E for all i ∈ N. Histories of G are finite sequences h =
h0 . . . hn ∈ V + defined in the same way. We often use notation hv to mention
the last vertex v ∈ V of the history. Usually histories are non empty, but in
specific situations it will be useful to consider the empty history ε. The set of
plays is denoted by Plays and the set of histories (ending with a vertex in Vi)
by Hist (resp. by Histi).1 A prefix (resp. suffix ) of a play ρ = ρ0ρ1 . . . is a
finite sequence ρ≤n = ρ0 . . . ρn (resp. infinite sequence ρ≥n = ρnρn+1 . . .). We
use notation h < ρ when a history h is prefix of a play ρ. When an initial
vertex v0 ∈ V is fixed, we call (G, v0) an initialized game. In this case, plays
and histories are supposed to start in v0, and we use notations Plays(v0) and
Hist(v0). In this article, we often unravel the graph of the game (G, v0) from
the initial vertex v0, which yields an infinite tree rooted at v0.

The outcome function μ assigns an outcome μ(ρ) ∈ O to each play ρ ∈ V ω. It
is prefix-independent if μ(hρ) = μ(ρ) for all histories h and play ρ. A preference
relation ≺i ⊆ O × O is an irreflexive and transitive binary relation. It allows
for player i to compare two plays ρ, ρ′ ∈ V ω with respect to their outcome:
μ(ρ) ≺i μ(ρ′) means that player i prefers ρ′ to ρ. In this paper we restrict to
linear preferences. (It is w.l.o.g. since the preference properties that we use are
preserved by linear extension). We write o �i o′ when o ≺i o′ or o = o′; notice

1 Indexing PlaysG or HistG with G allows to recall the related game G.
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that o ⊀i o′ if and only if o′ �i o. We sometimes use notation ≺v instead of ≺i

when vertex v ∈ Vi is controlled by player i.

Example 1. Let us mention some classical classes of games where the set of
outcomes O is a subset of (R ∪ {+∞,−∞})Π , and for all player i ∈ Π, ≺i

is the usual ordering < on R ∪ {+∞,−∞} on the outcome i-th components.
In other words, each player i has a real-valued payoff function μi : Plays →
R∪{+∞,−∞}. The outcome function of the game is then equal to μ = (μi)i∈Π ,
and for all i ∈ Π, μ(ρ) ≺i μ(ρ′) whenever μi(ρ) < μi(ρ′).

Games with Boolean objectives are such that μi : Plays → {0, 1} where 1
(resp. 0) means that the play is won (resp. lost) by player i. Classical objectives
are Borel objectives including ω-regular objectives, like reachability, Büchi, par-
ity, also [15]. Prefix-independence of μi holds in the case of Büchi and parity
objectives, but not for reachability objective.

We have quantitative objectives when μi : Plays → R ∪ {+∞,−∞} replaces
μi : Plays → {0, 1}. Usually, such a μi is defined from a weight function wi :
E → R that assigns a weight to each edge. Classical examples of μi are limsup
and mean-payoff functions [9]2: (i) limsup: μi(ρ) = lim supk→∞ wi(ρk, ρk+1),
(ii) mean-payoff : μi(ρ) = lim supn→∞

∑n
k=0

wi(ρk,ρk+1)
n .

Strategies. Let (G, v0) be an initialized game. A strategy σ for player i in
(G, v0) is a function σ : Histi(v0) → V assigning to each history hv ∈ Histi(v0)
a vertex v′ = σ(hv) such that (v, v′) ∈ E. A strategy σ of player i is positional
if it only depends on the last vertex of the history, i.e. σ(hv) = σ(v) for all
hv ∈ Histi(v0). It is a finite-memory strategy if σ(hv) only needs finite memory
of the history hv (recorded by a Moore machine3 with a finite number of memory
states). These definitions of (positional, finite-memory) strategy are given for an
initialized game (G, v0). We call uniform every positional strategy σ of player i
defined for all hv ∈ Histi (instead of Histi(v0)), that is, when σ is a positional
strategy in all initialized games (G, v), v ∈ V .

A play ρ is consistent with a strategy σ of player i if ρn+1 = σ(ρ≤n) for
all n such that ρn ∈ Vi. A strategy profile is a tuple σ̄ = (σi)i∈Π of strategies,
where each σi is a strategy of player i. It is called positional (resp. finite-memory
with memory size bounded by c, uniform) if all σi, i ∈ Π, are positional (resp.
finite-memory with memory size bounded by c, uniform). Given an initial vertex
v0, such a strategy profile induces a unique play of (G, v0) consistent with all
the strategies, denoted by 〈σ̄〉v0 . We say that σ̄ has outcome μ(〈σ̄〉v0).

Let σ̄ be a strategy profile. When all players stick to their own strategy
except player i that shifts from σi to σ′

i, we denote by (σ′
i, σ̄−i) the derived

strategy profile, and by 〈σ′
i, σ̄−i〉v0 the induced play in (G, v0). We say that σ′

i

is a deviating strategy from σi. When σi and σ′
i only differ on a finite number

of histories (resp. on v0), we say that σ′
i is a finitely-deviating (resp. one-shot

deviating) strategy from σi. One-shot deviating strategies is a well-known notion

2 The limit inferior can be used instead of the limit superior.
3 Moore machines are usually defined for finite sets V . We here allow infinite sets V .
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that for instance appears in the proof of Kuhn’s theorem [16] with the one-step
deviation property. Finitely-deviating strategies have been introduced in [5].

Variants of subgame perfect equilibria. Let us first recall the classical
notion of Nash equilibrium (NE). Informally, a strategy profile σ̄ in an initialized
game (G, v0) is an NE if no player has an incentive to deviate (with respect to
his preference relation), if the other players stick to their strategies.

Definition 1. Given an initialized game (G, v0), a strategy profile σ̄ = (σi)i∈Π

of (G, v0) is a Nash equilibrium if for all players i ∈ Π, for all strategies σ′
i of

player i, we have μ(〈σ̄〉v0) ⊀i μ(〈σ′
i, σ̄−i〉v0).

When μ(〈σ̄〉v0) ≺i μ(〈σ′
i, σ̄−i〉v0), we say that σ′

i is a profitable deviation for
player i w.r.t. σ̄.

The notion of subgame perfect equilibrium (SPE) is a refinement of NE. To
define it, we introduce the following concepts. Given a game G = (Π,V, (Vi)i∈Π ,
E, μ, (≺i)i∈Π) and a history h ∈ Hist, we denote by G|h the game (Π,V, (Vi)i∈Π ,
E, μ|h, (≺i)i∈Π) where μ|h(ρ) = μ(hρ) for all plays of G|h4, and we say that G|h is
a subgame of G. Given an initialized game (G, v0) and a history hv ∈ Hist(v0),
the initialized game (G|h, v) is called the subgame of (G, v0) with history hv.
In particular (G, v0) is a subgame of itself with history hv0 such that h = ε.
Given a strategy σ of player i in (G, v0), the strategy σ|h in (G|h, v) is defined
as σ|h(h′) = σ(hh′) for all h′ ∈ Histi(v). Given a strategy profile σ̄ in (G, v0),
we use notation σ̄|h for (σi|h)i∈Π , and 〈σ̄|h〉v is the induced play in the subgame
(G|h, v).

Now a strategy profile is an SPE in an initialized game if it induces an NE in
each of its subgames. Two variants of SPE, called weak SPE and very weak SPE,
are proposed in [5] such that no player has an incentive to deviate in any subgame
using finitely deviating strategies and one-shot deviating strategies respectively
(instead of any deviating strategy).

Definition 2. Given an initialized game (G, v0), a strategy profile σ̄ of (G, v0)
is a (weak, very weak resp.) subgame perfect equilibrium if for all histories
hv ∈ Hist(v0), for all players i ∈ Π, for all (finitely, one-shot resp.) deviating
strategies σ′

i from σi|h of player i in the subgame (G|h, v), we have μ(〈σ̄|h〉v) ⊀i

μ(〈σ′
i, σ̄−i|h〉v).

Every SPE is a weak SPE, and every weak SPE is a very weak SPE. The next
proposition states that weak SPE and very weak SPE are equivalent notions, but
this is not true for SPE and weak SPE (see also Example 2 below).

Proposition 1 ([5]). Let σ̄ be a strategy profile in (G, v0). Then σ̄ is a weak
SPE iff σ̄ is a very weak SPE. There exists an initialized game (G, v0) with a
weak SPE but no SPE.

4 In this article, we will always use notation μ(hρ) instead of μ|h(ρ).
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v0 v1v2 v3

Fig. 1. An initialized game (G, v0) with
a (very) weak SPE and no SPE.

v1 v2

v3v4

l1 l2

l3l4

Fig. 2. Game G4

Example 2 ([5]). Consider the two-player game (G, v0) in Fig. 1 such that
player 1 (resp. player 2) controls vertices v0, v2, v3 (resp. vertex v1). The set O of
outcomes is equal to {o1, o2, o3}, and the outcome function is prefix-independent
such that μ((v0v1)ω) = o1, μ(vω

2 ) = o2, and μ(vω
3 ) = o3. The preference relation

for player 1 (resp. player 2) is o1 ≺1 o2 ≺1 o3 (resp. o2 ≺2 o3 ≺2 o1).
It is known that this game has no SPE [26]. Nevertheless the strategy profile

σ̄ depicted with thick edges is a very weak SPE, and thus a weak SPE by
Proposition 1. Let us give some explanation. Due to the simple form of the
game, only two cases are to be treated. Consider first the subgame (G|h, v0)
with h ∈ (v0v1)∗, and the one-shot deviating strategy σ′

1 from σ1|h such that
σ′
1(v0) = v2. Then 〈σ̄|h〉v0 = v0v1v

ω
3 and 〈σ′

1, σ2|h〉v0 = v0v
ω
2 with respective

outcomes o3 and o2, showing that σ′
1 is not a profitable deviation for player 1

in (G|h, v0). Now in the subgame (G|h, v1) with h ∈ (v0v1)∗v0, the one-shot
deviating strategy from σ2|h such that σ′

2(v1) = v0 is not profitable for player 2
in (G|h, v1) because 〈σ̄|h〉v1 = v1v

ω
3 and 〈σ1|h, σ′

2〉v1 = v1v0v1v
ω
3 with the same

outcome o3.
Notice that σ̄ is not an SPE. Indeed the strategy σ′

2 such that σ′
2(hv1) = v0

for all h, is infinitely deviating from σ2, and is a profitable deviation for player 2
in (G, v0) since 〈σ1, σ

′
2〉v0 = (v0v1)ω with outcome o1.

3 General Conditions for the Existence of Weak SPEs

In this section, we propose general conditions to guarantee the existence of weak
SPEs. In the next section, from this result, we will derive two interesting large
families of games always having a weak SPE.

Theorem 1. Let (G, v0) be an initialized game with a subset L ⊆ V of vertices
called leaves with only one outgoing edge (l, l) for all l ∈ L. Suppose that:

1. for all v ∈ V , there exists a play ρ = hlω for some h ∈ Hist(v) and l ∈ L,
2. for all plays ρ = hlω with h ∈ Hist(v) and l ∈ L, μ(ρ) = μ(lω),
3. the set of outcomes OL = {μ(lω) | l ∈ L} is finite.
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Then there always exists a weak SPE σ̄ in (G, v0). Moreover, σ̄ is finite-memory
with memory size bounded by |OL|.

Let us comment the hypotheses. The first condition means that from each
vertex v of the game there is a leaf reachable from v; in particular L is not empty.
The second condition expresses a prefix-independence of the outcome function
restricted to plays eventually looping in a leaf l ∈ L. The last condition means
that even if there is an infinite number of leaves, the set of outcomes assigned by
μ to plays eventually looping in L is finite. The next example describes a family
of games satisfying the conditions of Theorem1.

Example 3. For each natural number n ≥ 3, we build a game Gn with n players,
2n vertices, 3n edges, and n+1 outcomes. The set of players is Π = {1, 2, . . . , n}
and the set of vertices is V = {v1, . . . , vn, l1, . . . ln} such that Vi = {vi, li} for
all i ∈ Π. The edges are (v1, v2), (v2, v3), . . . , (vn, v1), and (vi, li), (li, li) for all
i ∈ Π. The game G4 is depicted in Fig. 2. The set O of outcomes is equal
to {o1, . . . , on,⊥}, and the outcome function is prefix-independent such that
μ((v1v2 . . . vn)ω) = ⊥ and μ(lωi ) = oi for all i ∈ Π. Each player i has a preference
relation ≺i satisfying ⊥ ≺i oi−1 ≺i oi ≺i oj for all j ∈ Π\{i − 1, i} (with the
convention that o0 = on).

Each game (Gn, v1) satisfies the hypotheses of Theorem 1 with L =
{l1, . . . , ln} and thus has a finite-memory weak SPE. Such a strategy profile
σ̄ is depicted in Fig. 3 for n = 4 (see the thick edges on the unravelling of
G4 from the initial vertex v1) and can be easily generalized to every n ≥ 3.
One verifies that this profile is a very weak SPE, and thus a weak SPE by
Proposition 1. For all i ∈ Π, the strategy σi of player i is finite-memory with a
memory size equal to n − 1. Intuitively, along (v1 . . . vn)ω, player i repeatedly
produces one move (vi, li) followed by n− 2 moves (vi, vi+1). Hence the memory
states of the Moore machine for σi are counters from 1 to n − 1.

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1

l1 l2 l3 l4 l1 l2 l3 l4 l1 l2 l3 l4 l1

Fig. 3. Weak SPE in (G4, v1)

Let us now proceed to the proof of Theorem 1. Recall that it is enough to
prove the existence of a very weak SPE by Proposition 1. The proof idea is
the following one. Initially, for each vertex v, we accept all plays ρ = hlω with
h ∈ Hist(v) and l ∈ L as potential plays induced by a very weak SPE in the
initialized game (G, v). We thus label each v by the set of outcomes μ(lω) for
such leaves l (recall that μ(ρ) = μ(lω) by the second condition of Theorem1).
Notice that this labeling is finite (resp. not empty) by the third (resp. first)
condition of the theorem. Step after step, we are going to remove some outcomes
from the vertex labelings by a Remove operation followed by an Adjustoperation.
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The Remove operation removes an outcome o from the labeling of a given vertex
v when there exists an edge (v, v′) for which o ≺v o′ for all outcomes o′ that
label v′. Indeed o cannot be the outcome of a play induced by a very weak SPE
since the player who controls v will choose the move (v, v′) to get a preferable
outcome o′. Now it may happen that for another vertex u having o in its labeling,
all potential plays induced by a very weak SPE from u with outcome o necessarily
cross vertex v. As o has been removed from the labeling of v, these potential
plays do no longer survive and o will also be removed from the labeling of u
by the Adjust operation. Repeatedly applying these two operations converge
to a fixpoint for which we will prove non-emptiness (this is the difficult part
of the proof, non-emptiness will be obtained by maintaining three invariants,
see Lemma 1). From this fixpoint, for each vertex v and each outcome o of the
resulting labeling of v, there exists a play ρv,o = hlω with outcome o for some
h ∈ Hist(v) and l ∈ L. We can thus build a very weak SPE σ̄ in (G, v0) as
follows. The construction of σ̄ is done step by step: (i) initially σ̄ is partially
defined such that 〈σ̄〉v0 = ρv0,o0 for some o0; (ii) then in the subgame (G|h, v)
such that 〈σ̄|h〉v = ρv,o, if the player who controls v chooses the move (v, v′) in a
one-shot deviation, then there exists ρv′,o′ such that o ⊀v o′ by definition of the
fixpoint, and we thus extend the construction of σ̄ such that 〈σ̄|hv〉v′ = ρv′,o′ .

Let us now go into the details of the proof. For each l ∈ L, we denote by ol

the outcome μ(lω). Recall that for all ρ = hlω we have μ(ρ) = ol by the second
hypothesis of the theorem. For each v ∈ V , we denote by Succ(v) the set of
successors of v distinct from v, that is, the vertices v′ = v such that (v, v′) ∈ E.
Notice that the leaves l are the vertices with only one outgoing edge (l, l). Thus,
by definition, Succ(v) = ∅ for all v ∈ L and Succ(v) = ∅ for all v ∈ V \L.

The labeling λα(v) of the vertices v of G by subsets of OL is an inductive
process on the ordinal α. Initially (step α = 0), each v ∈ V is labeled by:

λ0(v) = {ol ∈ OL | there exists a play hlω with h ∈ Hist(v) and l ∈ L}.

(In particular λ0(l) = {ol} for all l ∈ L). By the first hypothesis of the theorem,
λ0(v) = ∅. Let us introduce some additional terminology. At step α, when there
is a path π from v to v′ in G, we say that π is (o, α)-labeled if o ∈ λα(u) for all
the vertices u of π. Thus initially, we have a (ol, 0)-labeled path from v to l for
each ol ∈ λ0(v). For v ∈ V , let

mα(v) = max≺v
{min≺v

λα(v′) | v′ ∈ Succ(v)}

with the convention that mα(v) = � if Succ(v) = ∅ or if λα(v′) = ∅ for all
v′ ∈ Succ(v).5 When mα(v) = �, we says that v′ ∈ Succ(v) realizes mα(v) if
mα(v) = min≺v

λα(v′). Notice that even if Succ(v) could be infinite, there are
finitely many sets λα(v′) since OL is finite. This justifies our use of max≺v

and
min≺v

operators in the definition of mα(v).

5 We suppose that o ≺v � for all o ∈ OL.
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We alternate between Remove and Adjust that remove outcomes from label-
ing λα(v) in the following way:

– For an even6 successor ordinal α + 2,
Remove operation. Test if for some v ∈ V , there exist o ∈ λα(v) and

v′ ∈ Succ(v) such that

o ≺v o′, for allo′ ∈ λα(v′).

If such a v exists, then λα+1(v) = λα(v)\{o}, and λα+1(u) = λα(u) for
the other vertices u = v. Otherwise λα+1(u) = λα(u) for all u ∈ V .

Adjust operation. Suppose that λα+1(v) = λα(v)\{o} at the previous step.
For all u ∈ V such that o ∈ λα+1(u), test if there exists a (o, α + 1)-
labeled path from u to some l ∈ L. If yes, then λα+2(u) = λα+1(u),
otherwise λα+2(u) = λα+1(u)\{o}. For all u ∈ V such that o ∈ λα+1(u),
let λα+2(u) = λα+1(u).

Suppose that λα+1(v) = λα(v) for all v ∈ V at the previous step, then
λα+2(v) = λα+1(v) for all v ∈ V .

(Thus Remove is performed at odd step α + 1, whereas Adjust is performed
at even step α + 2.)

– For a limit ordinal α, let λα(v) = ∩β<αλβ(v) for all v ∈ V .

For each v, the sequence (λα(v))α is nonincreasing (for the set inclusion),
and thus the sequence (mα(v))α is nondecreasing (for the ≺v relation). Notice
that for all leaves l ∈ L and all steps α, we have λα(l) = {ol}. The next lemma
states that we get a non empty fixpoint in the following sense:

Lemma 1. There exists an ordinal α∗ such that λα∗(v) = λα∗+1(v) = λα∗+2(v)
for all v ∈ V . Moreover, λα∗(v) = ∅ for all v ∈ V .

Proof. Each set λα(v) has size bounded by |OL|. During the inductive process,
from step α (with α even) to step α+1, Remove removes one outcome from one
of these sets, and from step α + 1 to step α + 2, Adjust can remove outcomes
from several such sets (it can remove no outcome at all). Therefore there exists
an ordinal α∗ such that λα∗(v) = λα∗+1(v) = λα∗+2(v) for all v ∈ V , and a
fixpoint is then reached.7 To prove that λα∗(v) = ∅, we consider the next three
invariants for which we will briefly explain that they are initially true and remain
true after each step α. The non emptiness of λα∗(v) will follow from the second
invariant.

INV1. For v ∈ V , we have for all v′ ∈ Succ(v) that

{o ∈ λα(v′) | mα(v) �v o} ⊆ λα(v).

In particular, when mα(v) = �, for each v′ that realizes mα(v), we have

λα(v′) ⊆ λα(v). (1)
6 Ordinal 0 and each limit ordinal are even, and each successor ordinal α + 1 is even

(resp. odd) if α is odd (resp. even).
7 When V is finite, it is reached after at most 2|OL| · |V | steps.
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INV2. For v ∈ V , λα(v) = ∅.
INV3. For v ∈ V , there exists a path from v to some l ∈ L such that for all

vertices u in this path, λα(u) ⊆ λα(v).

The three invariants are initially true. Consider a limit-ordinal step α. Such
a step is not explicitly removing outcomes, it is only summarizing what has been
removed for lesser ordinals. Indeed for each vertex v, since the sets λβ(v) are
finite, there is a last outcome removal occurring at some step β < α. This helps
proving that the invariants are indeed preserved at ordinal steps. The successor-
ordinal steps are the difficult ones. The detailed proof invokes many times that
the λα(v) and mα(v) are monotone with respect to α.

Consider odd step α+1 and the Remove operation. (i) Remove may remove
from λα(v) only outcomes less than mα(v), so it preserves INV1. (ii) Remove
may remove only one outcome at only one vertex, so it preserves INV2 by (1).
(iii) Remove preserves INV3. Indeed first note that Remove might only hurt
INV3 at the vertex v subject to outcome removal. Let v′ ∈ Succ(v) that realizes
mα+1(v). By INV3 at step α there is a suitable path from v′ to a leaf. Prefixing
this path with v witnesses INV3 at step α + 1, using (1).

Consider even step α + 2 and the Adjust operation. (i) One checks that
Adjust preserves INV1 by case splitting on whether λα+2(v) = λα+1(v). (ii) By
contradiction assume that λα+1(v) = {o} from which Adjust removes o. By INV3
there would be at prior step one path to a leaf labelled all along with o only.
Such labels cannot be removed, leading to a contradiction. (iii) Adjust preserves
INV3. Indeed from a vertex u1 let u1 . . . un be a suitable path at step α + 1.
If it is no longer suitable at step α + 2, some o was removed from some proper
prefix u1 . . . ui−1, i.e. o ∈ λα+2(ui) but o /∈ λα+2(ui−1), so o /∈ λα+1(ui−1) by
definition of Adjust . INV3 provides a suitable path (void of o) from ui−1 at step
α + 1. Concatenating it with u1 . . . ui−1 witnesses INV3 at step α + 2. ��

By the previous lemma, we have a fixpoint such that that λα∗(v) = ∅ for all
v ∈ V . Moreover by Adjust , for all o ∈ λα∗(v), there is a (o, α∗)-labeled path π
from v to some l ∈ L with ol = o. We denote by ρv,o the play πlω ∈ Plays(v):

ρv,o = πlω. (2)

(*) Recall that μ(ρv,o) = ol, and that ol ∈ λα∗(u) for all vertices u in ρv,o.
To get Theorem 1, it remains to explain how to build a weak SPE σ̄ from

this fixpoint that is finite-memory.

Proof (of Theorem 1). The construction of σ̄ will be done step by step thanks to
a progressive labeling of the histories by outcomes in OL and by using the plays
ρv,o. This labeling κ : Hist(v0) → OL will allow to recover from history hv the
outcome o of the play 〈σ̄|h〉v induced by σ̄ in the subgame (G|h, v).

We start with history v0 and any o0 ∈ λα∗(v0). Consider ρv0,o0 as in (2).
The strategy profile σ̄ is partially built such that 〈σ̄〉v0 = ρv0,o0 . The non empty
prefixes g of ρv0,o0 are all labeled with κ(g) = o0.

At the following steps, we consider a history h′v′ that is not yet labeled, but
such that h′ = hv has already been labeled by κ(hv) = o. The labeling of hv by
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o means that σ̄ has already been built to produce the play 〈σ̄|h〉v with outcome o
in the subgame (G|h, v), such that 〈σ̄|h〉v is suffix of ρu,o from some u. By (*) we
have o ∈ λα∗(v). By the fixpoint and in particular by Remove (with o ∈ λα∗(v)
and v′ ∈ Succ(v)), there exists o′ ∈ λα∗(v′) such that

o ⊀v o′. (3)

With ρv′,o′ as in (2), we then extend the construction of σ̄ such that 〈σ̄|h′〉v′ =
ρv′,o′ , and for each non empty prefix g of ρv′,o′ , we label h′g by κ(h′g) = o′

(notice that the prefixes of h′ have already been labeled by choice of h′). This
process is iterated to complete the construction of σ̄.

Let us show that σ̄ is a very weak SPE in (G, v0). Consider a history h′ =
hv ∈ Hist(v0) with v ∈ Vi, and a one-shot deviating strategy σ′

i from σi|h in
the subgame (G|h, v). Let v′ be such that σ′

i(v) = v′. By definition of σ̄, we have
κ(hv) = o and κ(h′v′) = o′ such that (3) holds. Let ρ = 〈σ̄|h〉v and ρ′ = 〈σ̄|h′〉v′ .
Then o = μ(hρ) and o′ = μ(hvρ′) by (*). By (3), σ′

i is not a profitable deviation
for player i. Hence σ̄ is a very weak SPE and thus a weak SPE by Proposition 1.

It remains to prove that σ̄ is finite-memory by correctly choosing the plays
ρv,o of (2). Fix o ∈ OL and consider the set Uo of vertices v such that o ∈ λα∗(v).
We choose the plays ρv,o = πlω for all v ∈ Uo, such that the set of associated finite
paths πl forms a tree. Hence having o in memory, one can produce positionally
each ρv,o with v ∈ Uo. Thus the memory-size of σ̄ is equal to OL. ��

The next corollary is an easy consequence of Theorem 1.

Corollary 1. Let (G, v0) be an initialized game with a subset L ⊆ V of leaves8

such that the underlying graph is a tree rooted at v0. If (G, v0) satisfies the first
and third conditions of Theorem1, then there is a positional weak SPE in (G, v0).

In the next sections, we present two large families of games for which there
always exists a weak SPE, as a consequence of Theorem 1 and its Corollary 1.

4 First Application

We begin with the first application of the results of the previous section (more
particularly Corollary 1): when an initialized game has an outcome function with
finite range, then it always has a weak SPE.

Theorem 2. Let (G, v0) be an initialized game such the outcome function has
finite range. Then there exists a weak SPE in (G, v0).

Let us comment this theorem. (i) Kuhn’s theorem [16] states that there exists
an SPE in all initialized games played on finite trees (note that in this particular
case, the existence of a weak SPE is equivalent to the existence of an SPE).

8 The existence of leaves l with a unique outgoing edge (l, l) is abusive since the graph
is a tree: it should be understood as a unique infinite play from l.
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Theorem 2 can be seen as a generalization of Kuhn’s theorem: if we keep the
outcome set finite, all initialized games (regardless of the underlying graph and
the player set) have a weak SPE.(ii) Theorem 2 guarantees the existence of a
weak SPE for games with Boolean objectives as presented in Example 1, since
their outcome function μ has finite range. It is proved in [27] that each initialized
game with a finite number of players and Borel objectives has an SPE and thus a
weak SPE. We thus here extend the existence of a weak SPE to an infinite number
of players. (iii) The next theorem is proved in [12] for outcome functions μ =
(μi)i∈Π as presented in Example 1 and has strong relationship with Theorem2.
Recall that μi : Plays → R is lower-semicontinuous if whenever a sequence of
plays (ρn)n∈N converges to play ρ = limn→∞ ρn, then lim infn→∞ μi(ρn) ≥ μi(ρ).

Theorem 3 ([12]). Let (G, v0) be an initialized game with a finite set Π of
players and an outcome function μ = (μi)i∈Π such that each μi : Plays → R has
finite range and is lower-semicontinuous. Then there exists an SPE in (G, v0).

As every weak SPE is an SPE in the case of lower-semicontinuous payoff functions
μi [5], we recover the previous result with our Theorem2, however with a set
of players of any cardinality and general outcome functions μ : Plays → O.
Even if it is not explicitly mentioned in [12], a close look at the details of the
proof shows that the authors first show the existence of a weak SPE (without
the hypothesis of lower-semicontinuity) and then show that it is indeed an SPE
(thanks to this hypothesis). The first part of their proof could be replaced by
ours which is simpler (indeed we remove outcomes from the sets λα(v) (see the
proof of Theorem 1) whereas plays are removed in the inductive process of [12]).

Intermediate results. The proofs of Theorem2 in this section and Theorem 4
in the next section require intermediate results that we now describe. We begin
with the next lemma where the set μ−1(o), with o ∈ O, is called dense in (G, v0)
if for all h ∈ Hist(v0), there exists ρ such that hρ is a play with outcome o.

Lemma 2. Let (G, v0) be an initialized game. If for some o ∈ O, the set μ−1(o)
is dense in (G, v0), then there exists a weak SPE with outcome o in (G, v0).

Lemma 2 leads to the next corollary. This corollary will provide a first step
towards Theorem 4; it is already interesting on its own right.

Corollary 2. Let G be a game such that the underlying graph is strongly con-
nected and the outcome function μ is prefix-independent.

– For all outcomes o such that o = μ(ρ) with ρ ∈ Plays(v0), there exists a weak
SPE with outcome o in (G, v0).

– There exists a uniform strategy profile σ̄ and an outcome o such that for all
v ∈ V taken as initial vertex, σ̄ is a weak SPE in (G, v) with outcome o.

We end with a last lemma which indicates how to combine different weak
SPEs into one weak SPE. It will be used in the proofs of Theorems 2 and 4.
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Lemma 3. Consider an initialized game (G, v0) and a set of vertices L ⊆ V
such that for all hl ∈ Hist(v0) with l ∈ L, the subgame (G|h, l) has a weak SPE
with outcome ohl. Consider the initialized game (G′, v0) obtained from (G, v0):

– by replacing all edges (l, v) ∈ E by one edge (l, l), for all l ∈ L,
– and with outcome function μ′ such that for all ρ′ ∈ PlaysG′(v0), μ′(ρ′) = ohl

if ρ′ = hlω with l ∈ L and μ′(ρ′) = μ(ρ′) otherwise.

If (G′, v0) has a weak SPE, then (G, v0) has also a weak SPE.

Proof of Theorem 2. We now proceed to the proof of Theorem 2. W.l.o.g. we
can suppose that the underlying graph of G is a tree rooted at v0 (by unraveling
this graph from v0). The proof idea is to apply Lemma3 the conditions of which
will be satisfied thanks to Lemma 2 (to get weak SPEs on some subgames) and
Corollary 1 (to get a weak SPE on (G′, v0)).

Proof (of Theorem 2). Let us reason on the unraveling of G from v0. By hypoth-
esis, the outcome function μ has finite range. We denote by O the finite set of
its outcomes. We are going to show how to get (*) a weak SPE in each subgame
(G|h, v) of (G, v0) (and thus in (G, v0) itself) by induction on the size of O.

The basic case of (*) is trivial since for all subgames of (G, v0), each strategy
profile is a weak SPE when μ has range one. Suppose that O has size at least two,
and that (*) holds for smaller sizes. We are going to build a set L as required
by Lemma 3 to get a weak SPE in (G, v0) and thus also in each of its subgames.

Let o ∈ O and set L′ = ∅. Consider the subgame (G|h, v) with hv ∈
HistG(v0). Then either the set μ−1

|h (o) is dense in (G|h, v), or it is not. In the first
case, there exists a weak SPE in (G|h, v) by Lemma 2. We add v to L′. In the
second case, as μ−1

|h (o) is not dense, there exists a history h′v′ in Hist(v) such
that μ|h(h′ρ) = o for all ρ ∈ Plays(v′). Therefore, in the subgame (G|hh′ , v′), as
the range of the outcome function μ|hh′ is smaller, there exists a weak SPE in
(G|hh′ , v′) by induction hypothesis. As in the first case, we add v′ to L′.

We repeat this process for all hv ∈ Hist(v0). We then get the set L ⊆ L′ as
required by Lemma 3 by only keeping9 the vertices v ∈ L′ such the associated
history hv contains no vertex of L′ except v. For each subgame (G|h, v) with
v ∈ L, we thus have a weak SPE. The game (G′, v0) as defined in Lemma 3 has
also a weak SPE by Corollary 1. It thus follows by Lemma 3 that there exists a
weak SPE in (G, v0), and thus also in each of its subgames. ��

5 Second Application

In this section, we present a second large family of games with a weak SPE,
as another application of the general results of Sect. 3 (more particularly
Theorem 1). This family is constituted with all games with a finite underlying
graph and a prefix-independent outcome function.
9 L is the prefix-free subset of L′.
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Theorem 4. Let (G, v0) be an initialized game with a finite underlying graph
and a prefix-independent outcome function. Then there is a weak SPE in (G, v0).

Let us comment this theorem. (i) It guarantees the existence of a weak SPE
for classical games with quantitative objectives as presented in Example 1, such
that their outcome function is prefix-independent. This is the case of limsup
and mean-payoff functions (and their limit inferior counterparts). Recall that
Example 2 (see also Fig. 1) provides a game with no SPE, where the pay-
off functions μi can be seen as either limsup or mean-payoff (or their limit
inferior counterparts). (ii) Later in this section, we will show that under the
hypotheses of Theorem 4, there always exists a weak SPE that is finite-memory
(Corollary 3), and we will study in which cases it can be positional or even uni-
form (Theorem 5). (iii) The families of games of Theorems 2 and 4 are incom-
parable: Boolean reachability games are in the first family but not in the second
one, and mean-payoff games are in the second family but not in the first one.

The proof of Theorem 4 follows the same structure as for Theorem 2. The
idea is to apply Lemma 3 where L is the union of the bottom strongly connected
components of the graph of G. The weak SPEs required by Lemma 3 exist on the
subgames (G|h, l), l ∈ L, by Corollary 2, and on the game (G′, v0) by Theorem 1.

Discussion on the memory. First we make the statement of Theorem 4 more
precise by guaranteeing the existence of a weak SPE with finite-memory. The
necessity of memory is illustrated by the family of games Gn of Example 3.

Corollary 3. Let (G, v0) be an initialized game with a finite underlying graph
and a prefix-independent outcome function. Then there is a finite-memory weak
SPE in (G, v0) with O(m) memory size where m is the number of bottom strongly
connected components of the graph. A memory size linear in m is necessary.

Second we identify conditions on the preference relations of the players, as
expressed in the next lemma, that guarantee the existence of a uniform (instead
of finite-memory) weak SPE (see Theorem 5).

Lemma 4 (Lemma 4 of [18]). Let O be a set of outcomes. Let ≺i ⊆ O × O
be a preference relation for all i ∈ Π. The following assertions are equivalent.

– For all i, i′ ∈ Π and all o, p, q ∈ O, we have ¬(o ≺i p ≺i q ∧ q ≺i′ o ≺i′ p).
– There exist a partition {Ok}k∈K of O and a linear order < over K such that

• k < k′ implies o ≺i o′ for all i ∈ Π, o ∈ Ok and o′ ∈ Ok′ ,
• ≺i|Ok

= ≺i′ |Ok
or ≺i|Ok

= (≺i′ |Ok
)−1 for all i, i′ ∈ Π.

In this lemma, we call each set Ok a layer. The second assertion states that
(i) if k < k′ then all outcomes in Ok′ are preferred to all outcomes in Ok by
all players, and (ii) inside a layer, any two players have either the same prefer-
ence relations or the inverse ones. A set of outcomes satisfying the conditions of
Lemma 4 is called layered. In [18], the author characterizes the preference rela-
tions that always yield SPE in games with outcome functions in the Hausdorff
difference hierarchy of the open sets. One condition is that the set of outcomes
is layered.
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Theorem 5. Let G be a game with a finite underlying graph and such that the
outcome function is prefix-independent with a layered set O outcomes. Then there
exists a uniform weak SPE in (G, v), for all v ∈ V .

Example 4. Remember the class Gn of games, n ≥ 3, of Example 3, such that
O = {o1, . . . , on,⊥} and each player i has a preference relation ≺i satisfying
⊥ ≺i oi−1 ≺i oi ≺i oj for all j ∈ Π\{i − 1, i}. This set of outcomes is not
layered because the first assertion of Lemma 4 is not satisfied. Indeed we have
o2 ≺3 o3 ≺3 o1 and o1 ≺2 o2 ≺2 o3. Recall that all weak SPEs of the games
Gn require a memory size in O(n) (by Corollary 3). Hence the hypothesis of
Theorem 5 about the preference relations is not completely dispensable.
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15. Grädel, E., Ummels, M.: Solution concepts and algorithms for infinite multiplayer
games. In: New Perspectives on Games and Interaction, vol. 4, pp. 151–178. Uni-
versity Press, Amsterdam (2008)

16. Kuhn, H.W.: Extensive games and the problem of information, pp. 46–68. Classics
in Game Theory (1953)

17. Kupferman, O., Perelli, G., Vardi, M.Y.: Synthesis with rational environments.
Ann. Math. Artif. Intell. 78(1), 3–20 (2016)

18. Le Roux, S.: Infinite subgame perfect equilibrium in the Hausdorff difference. In:
Hajiaghayi, M.T., Mousavi, M.R. (eds.) TTCS 2015. LNCS, vol. 9541, pp. 147–163.
Springer, Cham (2016)

19. Le Roux, S., Pauly, A.: Infinite sequential games with real-valued payoffs. In: CSL-
LICS, pp. 62:1–62:10. ACM (2014)

20. Nash, J.F.: Equilibrium points in n-person games. In: PNAS, vol. 36, pp. 48–49.
National Academy of Sciences (1950)

21. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190. ACM Press (1989)

22. Purves, R.A., Sudderth, W.D.: Perfect information games with upper semicontin-
uous payoffs. Math. Oper. Res. 36(3), 468–473 (2011)

23. Rubinstein, A.: Comments on the interpretation of game theory. Econometrica 59,
909–924 (1991)

24. Selten, R.: Spieltheoretische Behandlung eines Oligopolmodells mit Nach-
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