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Abstract. Nominal sets are a convenient setting for languages over infi-
nite alphabets, i.e. data languages. We introduce an automaton model
over nominal sets, regular nondeterministic nominal automata (RNNA),
which have a natural coalgebraic definition using abstraction sets to cap-
ture transitions that read a fresh letter from the input word. We prove
a Kleene theorem for RNNAs w.r.t. a simple expression language that
extends nominal Kleene algebra (NKA) with unscoped name binding,
thus remedying the known failure of the expected Kleene theorem for
NKA itself. We analyse RNNAs under two notions of freshness: global
and local. Under global freshness, RNNAs turn out to be equivalent to
session automata, and as such have a decidable inclusion problem. Under
local freshness, RNNAs retain a decidable inclusion problem, and trans-
late into register automata. We thus obtain decidability of inclusion for a
reasonably expressive class of nondeterministic register automata, with
no bound on the number of registers.

1 Introduction

Data languages are languages over infinite alphabets, regarded as modeling the
communication of values from infinite data types such as nonces [23], channel
names [17], process identifiers [6], URL’s [2], or data values in XML documents
(see [27] for a summary). There is a plethora of automata models for data lan-
guages [3,16,30], which can be classified along several axes. One line of division
is between models that use explicit registers and have a finite-state description
(generating infinite configuration spaces) on the one hand, and more abstract
models phrased as automata over nominal sets [28] on the other hand. The latter
have infinitely many states but are typically required to be orbit-finite, i.e. to
have only finitely many states up to renaming implicitly stored letters. There
are correspondences between the two styles; e.g. Bojańczyk, Klin, and Lasota’s
nondeterministic orbit-finite automata (NOFA) [5] are equivalent to Kamin-
ski and Francez’ register automata (RAs) [18] (originally called finite memory
automata), more precisely to RAs with nondeterministic reassignment [20]. A
second distinction concerns notions of freshness: global freshness requires that
the next letter to be consumed has not been seen before, while local freshness
postulates only that the next letter is distinct from the (boundedly many) letters
currently stored in the registers.
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Fig. 1. Expressivity of selected data language formalisms (restricted to empty initial
register assignment). FSUBAs are properly contained in name-dropping RA.

Although local freshness looks computationally more natural, nondeterminis-
tic automata models (typically more expressive than deterministic ones [21]) fea-
turing local freshness tend to have undecidable inclusion problems. This includes
RAs (unless restricted to two registers [18]) and NOFAs [5,27] as well as vari-
able automata [16]. Finite-state unification-based automata (FSUBAs) [19] have
a decidable inclusion problem but do not support freshness. Contrastingly, ses-
sion automata, which give up local freshness in favor of global freshness, have a
decidable inclusion problem [6].

Another formalism for global freshness is nominal Kleene algebra (NKA) [13].
It has been shown that a slight variant of the original NKA semantics satisfies
one half of a Kleene theorem [21], which states that NKA expressions can be con-
verted into a species of nondeterministic nominal automata with explicit name
binding transitions (the exact definition of these automata being left implicit in
op. cit.); the converse direction of the Kleene theorem fails even for deterministic
nominal automata.

Here, we introduce regular bar expressions (RBEs), which differ from NKA
in making name binding dynamically scoped. RBEs are just regular expressions
over an extended alphabet that includes bound letters, and hence are equiva-
lent to the corresponding nondeterministic finite automata, which we call bar
NFAs. We equip RBEs with two semantics capturing global and local freshness,
respectively, with the latter characterized as a quotient of the former: For global
freshness, we insist on bound names being instantiated with names not seen
before, while in local freshness semantics, we accept also names that have been
read previously but will not be used again; this is exactly the usual behaviour
of α-equivalence, and indeed is formally defined using this notion. Under global
freshness, bar NFAs are essentially equivalent to session automata.

We prove bar NFAs to be expressively equivalent to a nondeterministic nom-
inal automaton model with name binding, regular nondeterministic nominal
automata (RNNAs). The states of an RNNA form an orbit-finite nominal set;
RNNAs are distinguished from NOFAs by having both free and bound transi-
tions and being finitely branching up to α-equivalence of free transitions. This
is equivalent to a concise and natural definition of RNNAs as coalgebras for a
functor on nominal sets (however, this coalgebraic view is not needed to under-
stand our results). From the equivalence of bar NFAs and RNNAs we obtain
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(i) a full Kleene theorem relating RNNAs and RBEs; (ii) a translation of NKA
into RBEs, hence, for closed expressions, into session automata; and (iii) decid-
ability in parametrized PSpace of inclusion for RBEs, implying the known
ExpSpace decidability result for NKA [21].

Under local freshness, RNNAs correspond to a natural subclass of RAs
(equivalently, NOFAs) defined by excluding nondeterministic reassignment and
by enforcing a policy of name dropping, which can be phrased as “at any time,
the automaton may nondeterministically lose letters from registers” – thus free-
ing the register but possibly getting stuck when lost names are expected to be
seen later. This policy is compatible with verification problems that relate to
scoping, such as ‘files that have been opened need to be closed before termi-
nation’ or ‘currently uncommitted transactions must be either committed or
explicitly aborted’. Unsurprisingly, RNNAs with local freshness semantics are
strictly more expressive than FSUBAs; the relationships of the various models
are summarised in Fig. 1. We show that RNNAs nevertheless retain a decidable
inclusion problem under local freshness, again in parametrized PSpace, using an
algorithm that we obtain by varying the one for global freshness. This is in spite
of the fact that RNNAs (a) do not impose any bound on the number of registers,
and (b) allow unrestricted nondeterminism and hence express languages whose
complement cannot be accepted by any RA, such as ‘some letter occurs twice’.

Further Related Work. A Kleene theorem for deterministic nominal
automata and expressions with recursion appears straightforward [21]. Kurz
et al. [24] introduce regular expressions for languages over words with scoped
binding, which differ technically from those used in the semantics of NKA and
regular bar expressions in that they are taken only modulo α-equivalence, not
the other equations of NKA concerning scope extension of binders. They satisfy
a Kleene theorem for automata that incorporate a bound on the nesting depth
of binding, rejecting words that exceed this depth.

Data languages are often represented as products of a classical finite alphabet
and an infinite alphabet; for simplicity, we use just the set of names as the
alphabet. Our unscoped name binders are, under local semantics, similar to the
binders in regular expressions with memory, which are equivalent to unrestricted
register automata [25].

Automata models for data languages, even models beyond register automata
such as fresh-register automata [33] and history-register automata [15], often
have decidable emptyness problems, and their (less expressive) deterministic
restrictions then have decidable inclusion problems. Decidability of inclusion
can be recovered for nondeterministic or even alternating register-based models
by drastically restricting the number of registers, to at most two in the nonde-
terministic case [18] and at most one in the alternating case [10]. The complexity
of the inclusion problem for alternating one-register automata is non-primitive
recursive. Unambiguous register automata have a decidable inclusion problem
and are closed under complement as recently shown by Colcombet et al. [8,9].
RNNAs and unambiguous RAs are incomparable: Closure under complement
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implies that the language L = ‘some letter occurs twice’ cannot be accepted
by an unambiguous RA, as its complement cannot be accepted by any RA [4].
However, L can be accepted by an RNNA (even by an FSUBA). Failure of the
reverse inclusion is due to name dropping.

Data walking automata [26] have strong navigational capabilities but no reg-
isters, and are incomparable with unrestricted RAs; we do not know how they
relate to name-dropping RAs. Their inclusion problem is decidable even under
nondeterminism but at least as hard as Petri net reachability, in particular not
known to be elementary.

2 Preliminaries

We summarise the basics of nominal sets; [28] offers a comprehensive introduc-
tion.

Group Actions. Recall that an action of a group G on a set X is a map
G × X → X, denoted by juxtaposition or infix ·, such that π(ρx) = (πρ)x and
1x = x for π, ρ ∈ G, x ∈ X. A G-set is a set X equipped with an action of G.
The orbit of x ∈ X is the set {πx | π ∈ G}. A function f : X → Y between
G-sets X,Y is equivariant if f(πx) = π(fx) for all π ∈ G, x ∈ X. Given a G-set
X, G acts on subsets A ⊆ X by πA = {πx | x ∈ A}. For A ⊆ X and x ∈ X, we
put

fixx = {π ∈ G | πx = x} and FixA =
⋂

x∈A fixx.

Note that elements of fixA and FixA fix A setwise and pointwise, respectively.

Nominal Sets. Fix a countably infinite set A of names, and write G for the
group of finite permutations on A. Putting πa = π(a) makes A into a G-set.
Given a G-set X and x ∈ X, a set A ⊆ A supports x if FixA ⊆ fixx, and
x has finite support if some finite A supports x. In this case, there is a least
set supp(x) supporting x. We say that a ∈ A is fresh for x, and write a # x, if
a /∈ supp(x). A nominal set is a G-set all whose elements have finite support. For
every equivariant function f between nominal sets, we have supp(fx) ⊆ supp(x).
The function supp is equivariant, i.e. supp(πx) = π(supp(x)) for π ∈ G. Hence
�supp(x1) = �supp(x2) whenever x1, x2 are in the same orbit of a nominal set
(we use � for cardinality). A subset S ⊆ X is finitely supported (fs) if S has finite
support with respect to the above-mentioned action of G on subsets; equivariant
if πx ∈ S for all π ∈ G and x ∈ S (which implies supp(S) = ∅); and uniformly
finitely supported (ufs) if

⋃
x∈S supp(x) is finite [32]. We denote by Pfs(X) and

Pufs(X) the sets of fs and ufs subsets of a nominal set X, respectively. Any ufs
set is fs but not conversely; e.g. the set A is fs but not ufs. Moreover, any finite
subset of X is ufs but not conversely; e.g. the set of words an for fixed a ∈ A

is ufs but not finite. A nominal set X is orbit-finite if the action of G on it has
only finitely many orbits.
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Lemma 2.1 ([12], Theorem 2.29). If S is ufs, then supp(S) =
⋃

x∈S supp(x).

Lemma 2.2. Every ufs subset of an orbit-finite set X is finite.

For a nominal set X we have the abstraction set [11]

[A]X = (A × X)/∼
where ∼ abstracts the notion of α-equivalence as known from calculi with name
binding, such as the λ-calculus: (a, x) ∼ (b, y) iff (c a) · x = (c b) · y for any fresh
c. This captures the situation where x and y differ only in the concrete name
given to a bound entity that is called a in x and b in y, respectively. We write
〈a〉x for the ∼-equivalence class of (a, x). E.g. 〈a〉{a, d} = 〈b〉{b, d} in [A]Pω(A)
provided that d /∈ {a, b}.

3 Strings and Languages with Name Binding

As indicated in the introduction, we will take a simplified view of data languages
as languages over an infinite alphabet; we will use the set A of names, introduced
in Sect. 2, as this alphabet, so that a data language is just a subset A ⊆ A∗. Much
like nominal Kleene algebra (NKA) [13], our formalism will generate data words
from more abstract strings that still include a form of name binding. Unlike in
NKA, our binders will have unlimited scope to the right, a difference that is in
fact immaterial at the level of strings but will be crucial at the level of regular
expressions. We write a bound occurrence of a ∈ A as a, and define an extended
alphabet Ā by

Ā = A ∪ { a | a ∈ A}.

Definition 3.1. A bar string is a word over Ā, i.e. an element of Ā∗. The set
Ā∗ is made into a nominal set by the letter-wise action of G. The free names
occurring in a bar string w are those names a that occur in w to the left of any
occurrence of a. A bar string is clean if its bound letters a are mutually distinct
and distinct from all its free names. We write FN(w) for the set of free names
of w, and say that w is closed if FN(w) = ∅; otherwise, w is open. We define
α-equivalence ≡α on bar strings as the equivalence (not : congruence) generated
by w av ≡α w bu if 〈a〉v = 〈b〉u in [A]Ā∗ (Sect. 2). We write [w]α for the α-
equivalence class of w. For a bar string w, we denote by ub(w) ∈ A∗ (for unbind)
the word arising from w by replacing all bound names a with the corresponding
free name a.

The set FN(w) is invariant under α-equivalence, so we have a well-defined notion
of free names of bar strings modulo ≡α. Every bar string is α-equivalent to a
clean one.

Example 3.2. We have [ab cab]α �= [ab aab]α = [ab ccb]α �= [ap ccp]α where
FN(ab cab) = FN(ab aab) = {a, b}. The bar string ab aab is not clean, and an
α-equivalent clean one is ab ccb.
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Definition 3.3. A literal language is a set of bar strings, and a bar language is
an fs set of bar strings modulo α-equivalence, i.e. an fs subset of

M̄ := Ā∗/≡α. (1)

A literal or bar language is closed if all bar strings it contains are closed.

Bar languages capture global freshness; in fact, the operator N defined by

N(L) = {ub(w) | w clean, [w]α ∈ L} ⊆ A∗ (2)

is injective on closed bar languages. Additionally, we define the local freshness
semantics D(L) of a bar language L by

D(L) = {ub(w) | [w]α ∈ L} ⊆ A∗. (3)

That is, D(L) is obtained by taking all representatives of α-equivalence classes in
L and then removing bars, while N takes only clean representatives. Intuitively,
D enforces local freshness by blocking α-renamings of bound names into names
that have free occurrences later in the bar string. The operator D fails to be
injective; e.g. (omitting notation for α-equivalence classes) D({ a b, aa}) = A2 =
D({ a b}). This is what we mean by our slogan that local freshness is a quotient
of global freshness.

Remark 3.4. Again omitting α-equivalence classes, we have D({ a b}) = A2

because a b ≡α a a. On the other hand, D({ a ba}) = {cdc ∈ A3 | c �= d}
because a ba �≡α a aa. We see here that since our local freshness semantics is
based on α-equivalence, we can only insist on a letter d being distinct from a
previously seen letter c if c will be seen again later. This resembles the process
of register allocation in a compiler, where program variables are mapped to
CPU registers (see [1, Sect. 9.7] for details): Each time the register allocation
algorithm needs a register for a variable name ( v), any register may be (re)used
whose current content is not going to be accessed later.

Remark 3.5. In dynamic sequences [14], there are two dynamically scoped con-
structs 〈a and a〉 for dynamic allocation and deallocation, respectively, of a name
a; in this notation, our a corresponds to 〈aa.

4 Regular Bar Expressions

Probably the most obvious formalism for bar languages are regular expressions,
equivalently finite automata, over the extended alphabet Ā. Explicitly:

Definition 4.1. A nondeterministic finite bar automaton, or bar NFA for short,
over A is an NFA A over Ā. We call transitions of type q

a−→ q in A free transitions
and transitions of type q

a−→ q bound transitions. The literal language L0(A) of A
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is the language accepted by A as an NFA over Ā. The bar language Lα(A) ⊆ M̄
(see (1)) accepted by A is defined as

Lα(A) = L0(A)/≡α.

Generally, we denote by L0(q) the Ā-language accepted by the state q in A and
by Lα(q) the quotient of L0(q) by α-equivalence. The degree deg(A) of A is the
number of names a ∈ A that occur in transitions q

a−→ q′ or q
a−→ q′ in A.

Similarly, a regular bar expression is a regular expression r over Ā; the literal
language L0(r) ⊆ Ā∗ defined by r is the language expressed by r as a regular
expression, and the bar language defined by r is Lα(r) = L0(r)/≡α. The degree
deg(r) of r is the number of names a occurring as either a or a in r.

Example 4.2. We have Lα(ac + cd) = {ac} ∪ [ cd]α. Under local freshness
semantics, this bar language contains for example ad, bd, and cd but not dd.
D(Lα

(
(a+ a)∗)) is the same language as D(Lα( a∗)), even though (a+ a)∗ and

a∗ define different bar languages.

Remark 4.3. Up to the fact that we omit the finite component of the alphabet
often considered in data languages, a session automaton [6] is essentially a bar
NFA (where free names a are denoted as a↑, and bound names a as a�). It
defines an A-language and interprets bound transitions for a as binding a to
some globally fresh name. In the light of the equivalence of global freshness
semantics and bar language semantics in the closed case, session automata are
thus essentially the same as bar NFAs; the only difference concerns the treatment
of open bar strings: While session automata explicitly reject bar strings that fail
to be closed (well-formed [6]), a bar NFA will happily accept open bar strings.
Part of the motivation for this permissiveness is that we now do not need to insist
on regular bar expressions to be closed; in particular, regular bar expressions are
closed under subexpressions.

Example 4.4. In terms of A-languages, bar NFAs under global freshness
semantics, like session automata, can express the language “all letters are dis-
tinct” (as a∗) but not the universal language A∗ [6].

Example 4.5. The bar language L = {ε, ba, ba ab, ba ab ba, ba ab ba ab . . . }
(omitting equivalence classes) is defined by the regular bar expression
( ba ab)∗(1+ ba) and accepted by the bar NFA A with four states s, t, u, v, where
s is initial and s and u are final, and transitions s

b−→ t
a−→ u

a−→ v
b−→ s. Under

global freshness, the closed bar language aL defines the language of odd-length
words over A with identical letters in positions 0 and 2 (if any), and with every
letter in an odd position being globally fresh and repeated three positions later.
Under local freshness, aL defines the A-language consisting of all odd-length
words over A that contain the same letters in positions 0 and 2 (if any) and
repeat every letter in an odd position three positions later (if any) but no ear-
lier ; that is, the bound names are indeed interpreted as being locally fresh. The
reason for this is that, e.g., in the bar string a ba ab, α-renaming of the bound
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name b into a is blocked by the occurrence of a after b; similarly, the second
occurrence of a cannot be renamed into b.

Example 4.6. The choice of fresh letters may restrict the branching later: The
language D(Lα( a(c + dd))) = {ac, dc, add, cdd | a ∈ A\{c, d}} contains neither
bbb nor cc.

We will see in the sequel that bar NFAs and regular bar expressions are expres-
sively equivalent to several other models, specifically

– under both semantics, to a nominal automaton model with name binding that
we call regular nondeterministic nominal automata;

– under local freshness, to a class of nondeterministic orbit finite automata [5];
and consequently to a class of register automata.

Nominal Kleene Algebra. We recall that expressions r, s of nominal Kleene
algebra (NKA) [13], briefly NKA expressions, are defined by the grammar

r, s::=0 | 1 | a | r + s | rs | r∗ | νa. r (a ∈ A).

Kozen et al. [21,22] give a semantics of NKA in terms of ν-languages. These are
fs languages over words with binding, so called ν-strings, which are either 1 or
ν-regular expressions formed using only names a ∈ A, sequential composition,
and name binding ν, taken modulo the equational laws of NKA [13], including
α-equivalence and laws for scope extension of binding. In this semantics, a binder
νa is just interpreted as itself, and all other clauses are standard. It is easy to
see that the nominal set of ν-strings modulo the NKA laws is isomorphic to the
universal bar language M̄ ; one converts bar strings into ν-strings by replacing
any occurrence of a with νa.a, with the scope of the binder extending to the end
of the string. On closed expressions, ν-language semantics is equivalent to the
semantics originally defined by Gabbay and Ciancia [13,22], which is given by
the operator N defined in (2) (now applied also to languages containing open bar
strings). Summing up, we can see NKA as another formalism for bar languages.
We will see in the next section that regular bar expressions are strictly more
expressive than NKA; the crucial difference is that the name binding construct
νa of NKA has a static scope, while bound names a in regular bar expressions
have dynamic scope.

Remark 4.7. On open expressions, the semantics of [13] and [21,22] differ as
N may interpret bound names with free names appearing elsewhere in the
expression; e.g. the NKA expressions a + νa. a and νa. a have distinct bar lan-
guage semantics {a, a} and { a}, respectively, which are both mapped to A

under N . For purposes of expressivity comparisons, we will generally restrict to
closed expressions as well as “closed” automata and languages in the sequel. For
automata, this typically amounts to the initial register assignment being empty,
and for languages to being equivariant subsets of Ā∗.
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5 Regular Nondeterministic Nominal Automata

We proceed to develop a nominal automaton model that essentially introduces a
notion of configuration space into the picture, and will turn out to be equivalent
to bar NFAs. The deterministic restriction of our model has been considered in
the context of NKA [21].

Definition 5.1. A regular nondeterministic nominal automaton (RNNA) is a
tuple A = (Q,→, s, F ) consisting of

– an orbit-finite set Q of states, with an initial state s ∈ Q;
– an equivariant subset → of Q× Ā ×Q, the transition relation, where we write

q
α−→ q′ for (q, α, q′) ∈ →; transitions of type q

a−→ q′ are called free, and those
of type q

a−→ q′ bound ;
– an equivariant subset F ⊆ Q of final states

such that the following conditions are satisfied:

– The relation → is α-invariant, i.e. closed under α-equivalence of transitions,
where transitions q

a−→ q′ and p
b−→ p′ are α-equivalent if q = p and 〈a〉q′ =

〈b〉p′.
– The relation → is finitely branching up to α-equivalence, i.e. for each state q

the sets {(a, q′) | q
a−→ q′} and {〈a〉q′ | q

a−→ q′} are finite (equivalently ufs, by
Lemma 2.2).

The degree deg(A) = max{�supp(q) | q ∈ Q} of A is the maximum size of
supports of states in A.

Remark 5.2. For readers familiar with universal coalgebra [29], we note that
RNNAs have a much more compact definition in coalgebraic terms, and in fact
we regard the coalgebraic definition as evidence that RNNAs are a natural class
of automata; however, no familiarity with coalgebras is required to understand
the results of this paper. Coalgebraically, an RNNA is simply an orbit-finite
coalgebra γ : Q → FQ for the functor F on Nom given by

FX = 2 × Pufs(A × X) × Pufs([A]X),

together with an initial state s ∈ Q. The functor F is a nondeterministic variant
of the functor KX = 2×XA × [A]X whose coalgebras are deterministic nominal
automata [21]. Indeed Kozen et al. [21] show that the ν-languages, equivalently
the bar languages, form the final K-coalgebra.

We proceed to define the language semantics of RNNAs.

Definition 5.3. An RNNA A, with data as above, (literally) accepts a bar string
w ∈ Ā∗ if s

w−→ q for some q ∈ F , where we extend the transition notation w−→ to
bar strings in the usual way. The literal language accepted by A is the set L0(A)
of bar strings accepted by A, and the bar language accepted by A is the quotient
Lα(A) = L0(A)/≡α.
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A key property of RNNAs is that supports of states evolve in the expected way
along transitions (cf. [21, Lemma 4.6] for the deterministic case):

Lemma 5.4. Let A be an RNNA. Then the following hold.

1. If q
a−→ q′ in A then supp(q′) ∪ {a} ⊆ supp(q).

2. If q
a−→ q′ in A then supp(q′) ⊆ supp(q) ∪ {a}.

In fact, the properties in the lemma are clearly also sufficient for ufs branching.
From Lemma 5.4, an easy induction shows that for any state q in an RNNA and
any w literally accepted by A from q, we have FN(w) = supp([w]α) ⊆ supp(q).
Hence:

Corollary 5.5. Let A be an RNNA. Then Lα(A) is ufs; specifically, if s is the
initial state of A and w ∈ Lα(A), then supp(w) ⊆ supp(s).

We have an evident notion of α-equivalence of paths in RNNAs, defined analo-
gously as for bar strings. Of course, α-equivalent paths always start in the same
state. The set of paths of an RNNA A is closed under α-equivalence. However,
this does not in general imply that L0(A) is closed under α-equivalence; e.g. for
A being

s() a−→ t(a) b−→ u(a, b) (4)

(with a, b ranging over distinct names in A), where s() is initial and the states
u(−,−) are final, we have a b ∈ L0(A) but the α-equivalent a a is not in L0(A).
Crucially, closure of L0(A) under α-equivalence is nevertheless without loss of
generality, as we show next.

Definition 5.6. An RNNA A is name-dropping if for every state q in A and
every subset N ⊆ supp(q) there exists a state q|N in A that restricts q to N ;
that is, supp(q|N ) = N , q|N is final if q is final, and q|N has at least the same
incoming transitions as q (i.e. whenever p

α−→ q then p
α−→ q|N ), and as many

of the outgoing transitions of q as possible; i.e. q|N a−→ q′ whenever q
a−→ q′ and

supp(q′) ∪ {a} ⊆ N , and q|N a−→ q′ whenever q
a−→ q′ and supp(q′) ⊆ N ∪ {a}.

The counterexample shown in (4) fails to be name-dropping, as no state restricts
q = u(a, b) to N = {b}. The following lemma shows that closure under α-
equivalence is restored under name-dropping:

Lemma 5.7. Let A be a name-dropping RNNA. Then L0(A) is closed under
α-equivalence, i.e. L0(A) = {w | [w]α ∈ Lα(A)}.
Finally, we can close a given RNNA under name dropping, preserving the bar
language:

Lemma 5.8. Given an RNNA of degree k with n orbits, there exists a bar
language-equivalent name-dropping RNNA of degree k with at most n2k orbits.
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Proof (Sketch). From an RNNA A, construct an equivalent name-dropping
RNNA with states of the form

q|N := Fix(N)q

where q is a state in A, N ⊆ supp(q), and Fix(N)q denotes the orbit of q under
Fix(N). The final states are the q|N with q final in A, and the initial state is
s|supp(s), where s is the initial state of A. As transitions, we take

– q|N a−→ q′|N ′ whenever q
a−→ q′, N ′ ⊆ N , and a ∈ N , and

– q|N a−→ q′|N ′ whenever q
b−→ q′′, N ′′ ⊆ supp(q′′) ∩ (N ∪ {b}), and 〈a〉(q′|N ′) =

〈b〉(q′′|N ′′). 
�

Example 5.9. Closing the RNNA from (4) under name dropping as per
Lemma 5.8 yields additional states that we may denote u(⊥, b) (among oth-
ers), with transitions t(a) b−→ u(⊥, b); now, 〈b〉u(⊥, b) = 〈a〉u(⊥, a), so a a is
(literally) accepted.

Equivalence to Bar NFAs. We proceed to show that RNNAs are expressively
equivalent to bar NFAs by providing mutual translations. In consequence, we
obtain a Kleene theorem connecting RNNAs and regular bar expressions.

Construction 5.10. We construct an RNNA Ā from a given bar NFA A with
set Q of states, already incorporating closure under name dropping as per
Lemma 5.8. For q ∈ Q, put Nq = supp(Lα(q)). The set Q̄ of states of Ā consists
of pairs

(q, πFN ) (q ∈ Q, N ⊆ Nq)

where FN abbreviates Fix(N) and πFN denotes a left coset. Left cosets for FN

can be identified with injective renamings N → A; intuitively, (q, πFN ) restricts
q to N and renames N according to π. (That is, we construct a configuration
space, as in other translations into NOFAs [5,7]; here, we create virtual registers
according to supp(Lα(q)).) We let G act on states by π1·(q, π2FN ) = (q, π1π2FN ).
The initial state of Ā is (s, FNs

), where s is the initial state of A; a state (q, πFN )
is final in Ā iff q is final in A. Free transitions in Ā are given by

(q, πFN )
π(a)−−−→ (q′, πFN ′) whenever q

a−→ q′ and N ′ ∪ {a} ⊆ N

and bound transitions by

(q, πFN ) a−→ (q′, π′FN ′) whenever q
b−→ q′, N ′ ⊆ N∪{b}, 〈a〉π′FN ′ = 〈π(b)〉πFN ′ .

Theorem 5.11. Ā is a name-dropping RNNA with at most |Q|2deg(A) orbits,
deg(Ā) = deg(A), and Lα(Ā) = Lα(A).
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Example 5.12. The above construction converts the bar NFA A of
Example 4.5, i.e. the expression ( ba ab)∗(1 + ba), into an RNNA that is sim-
ilar to the one appearing in the counterexample to one direction of the Kleene
theorem for NKA [21] (cf. Remark 5.15): By the above description of left cosets
for FN , we annotate every state q with a list of �supp(Lα(q)) entries that are
either (pairwise distinct) names or ⊥, indicating that the corresponding name
from supp(Lα(q)) has been dropped. We can draw those orbits of the resulting
RNNA that have the form (q, πNq), i.e. do not drop any names, as

t(c, b)
s(c) u(b)

v(b, c)

cb

cb

for b �= c, with s(c), u(b) final for all b, c ∈ A,
and s(c) initial.

Additional states then arise from name dropping; e.g. for t we have additional
states t(⊥, b), t(c,⊥), and t(⊥,⊥), all with a b-transition from s(c). The states
t(⊥,⊥) and t(⊥, b) have no outgoing transitions, while t(c,⊥) has a c-transition
to u(⊥).

We next present the reverse construction, i.e. given an RNNA A we extract
a bar NFA A0 (a subautomaton of A) such that Lα(A0) = Lα(A).

Put k = deg(A). We fix a set A0 ⊆ A of size �A0 = k such that supp(s) ⊆ A0

for the initial state s of A, and a name ∗ ∈ A − A0. The states of A0 are those
states q in A such that supp(q) ⊆ A0. As this implies that the set Q0 of states in
A0 is ufs, Q0 is finite by Lemma 2.2. For q, q′ ∈ Q0, the free transitions q

a−→ q′ in
A0 are the same as in A (hence a ∈ A0 by Lemma 5.4.1). The bound transitions
q

a−→ q′ in A0 are those bound transitions q
a−→ q′ in A such that a ∈ A0 ∪ {∗}.

A state is final in A0 iff it is final in A. The initial state of A0 is s ∈ Q0.

Theorem 5.13. The number of states in the bar NFA A0 is linear in the number
of orbits of A and exponential in deg(A). Moreover, deg(A0) ≤ deg(A) + 1, and
Lα(A0) = Lα(A).

Combining this with Theorem5.11, we obtain the announced equivalence result:

Corollary 5.14. RNNAs are expressively equivalent to bar NFAs, hence to reg-
ular bar expressions.

This amounts to a Kleene theorem for RNNAs. The decision procedure for inclu-
sion (Sect. 7) will use the equivalence of bar NFAs and RNNAs, essentially run-
ning a bar NFA in synchrony with an RNNA.

Remark 5.15. It has been shown in that an NKA expression r can be trans-
lated into a nondeterministic nominal automaton whose states are the so-called
spines of r, which amounts to one direction of a Kleene theorem [21]. One can
show that the spines in fact form an RNNA, so that NKA embeds into regular
bar expressions. The automata-to-NKA direction of the Kleene theorem fails
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even for deterministic nominal automata, i.e. regular bar expressions are strictly
more expressive than NKA. Indeed, the regular bar expression ( ba ab)∗(1 + ba)
of Example 4.5 defines a language that cannot be defined in NKA because it
requires unbounded nesting of name binding [21].

6 Name-Dropping Register Automata

We next relate RNNAs to two equivalent models of local freshness, nondeter-
ministic orbit-finite automata [5] and register automata (RAs) [18]. RNNAs
necessarily only capture subclasses of these models, since RAs have an undecid-
able inclusion problem [18]; the distinguishing condition is a version of name-
dropping.

Definition 6.1. [5] A nondeterministic orbit-finite automaton (NOFA) A con-
sists of an orbit finite set Q of states, two equivariant subsets I, E ⊆ Q
of initial and final states, respectively, and an equivariant transition relation
→ ⊆ Q × A × Q, where we write q

a−→ p for (q, a, p) ∈ →. The A-language
L(A) = {w | A accepts w} accepted by A is defined in the standard way: extend
the transition relation to words w ∈ A∗ as usual, and then say that A accepts w
if there exist an initial state q and a final state p such that q

w−→ p. A DOFA is
a NOFA with a deterministic transition relation.

Remark 6.2. A more succinct equivalent presentation of NOFAs is as orbit-
finite coalgebras γ : Q → GQ for the functor

GX = 2 × Pfs(A × X) (2 = {�,⊥})

on the category Nom of nominal sets and equivariant maps, together with an
equivariant subset of initial states.

More precisely speaking, NOFAs are equivalent to RAs with nondeterministic
reassignment [5,20]. RAs are roughly described as having a finite set of registers
in which names from the current word can be stored if they are locally fresh, i.e.
not currently stored in any register; transitions are labeled with register indices
k, meaning that the transition accepts the next letter if it equals the content
of register k. In the equivalence with NOFAs, the names currently stored in the
registers correspond to the support of states.

To enable a comparison of RNNAs with NOFAs over A (Sect. 5), we restrict
our attention in the following discussion to RNNAs that are closed, i.e. whose
initial state has empty support, and therefore accept equivariant A-languages.
We can convert a closed RNNA A into a NOFA D(A) accepting D(Lα(A)) by
simply replacing every transition q

a−→ q′ with a transition q
a−→ q′. We show that

the image of this translation is a natural class of NOFAs:

Definition 6.3. A NOFA A is non-spontaneous if supp(s) = ∅ for initial states
s, and

supp(q′) ⊆ supp(q) ∪ {a} whenever q
a−→ q′.
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(In words, A is non-spontaneous if transitions q
a−→ q′ in A create no new names

other than a in q′.) Moreover, A is α-invariant if q
a−→ q′′ whenever q

b−→ q′,
b#q, and 〈a〉q′′ = 〈b〉q′ (this condition is automatic if a#q). Finally, A is name-
dropping if for each state q and each set N ⊆ supp(q) of names, there exists a
state q|N that restricts q to N , i.e. supp(q|N ) = N , q|N is final if q is final, and

– q|N has at least the same incoming transitions as q;
– whenever q

a−→ q′, a ∈ supp(q), and supp(q′) ∪ {a} ⊆ N , then q|N a−→ q′;
– whenever q

a−→ q′, a # q, and supp(q′) ⊆ N ∪ {a}, then q|N a−→ q′.

Proposition 6.4. A NOFA is of the form D(B) for some (name-dropping)
RNNA B iff it is (name-dropping and) non-spontaneous and α-invariant.

Proposition 6.5. For every non-spontaneous and name-dropping NOFA, there
is an equivalent non-spontaneous, name-dropping, and α-invariant NOFA.

In combination with Lemma 5.7, these facts imply

Corollary 6.6. Under local freshness semantics, RNNAs are expressively equiv-
alent to non-spontaneous name-dropping NOFAs.

Corollary 6.7. The class of languages accepted by RNNAs under local freshness
semantics is closed under finite intersections.

Proof (Sketch). Non-spontaneous name-dropping NOFAs are closed under the
standard product construction. 
�
Remark 6.8. Every DOFA is non-spontaneous. Moreover, RAs are morally
non-spontaneous according to their original definition, i.e. they can read names
from the current word into the registers but cannot guess names nondeterministi-
cally [18,27]; the variant of register automata that is equivalent to NOFAs [5] in
fact allows such nondeterministic reassignment [20]. This makes unrestricted
NOFAs strictly more expressive than non-spontaneous ones [18,34]. Name-
dropping restricts expressivity further, as witnessed by the language {ab | a �= b}
mentioned above. In return, it buys decidability of inclusion (Sect. 7), while
for non-spontaneous NOFAs even universality is undecidable [5,27]. DOFAs are
incomparable to RNNAs under local freshness semantics—the language “the last
letter has been seen before” is defined by the regular bar expression ( b)∗ a( b)∗a
but not accepted by any DOFA.

Name-Dropping Register Automata and FSUBAs. In consequence of
Corollary 6.6 and the equivalence between RAs and nonspontaneous NOFAs, we
have that RNNAs are expressively equivalent to name-dropping RAs, which we
just define as those RAs that map to name-dropping NOFAs under the transla-
tion given in [5]. We spend a moment on identifying a more concretely defined
class of forgetful RAs that are easily seen to be name-dropping. We expect that
forgetful RAs are as expressive as name-dropping RAs but are currently more
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interested in giving a compact description of a class of name-dropping RAs to
clarify expressiveness.

We use the very general definition of RAs given in [5]: An RA with n registers
consists of a set C of locations and for each pair (c, c′) of locations a transition
constraint φ. Register assignments w ∈ R := (A∪{⊥})n determine the, possibly
undefined, contents of the n registers, and configurations are elements of C ×R.
Transition constraints are equivariant subsets φ ⊆ R × A × R, and (w, a, v) ∈ φ
means that from configuration (c, w) the RA can nondeterministically go to
(c′, v) under input a. Transition constraints have a syntactic representation in
terms of Boolean combinations of certain equations. The NOFA generated by an
RA just consists of its configurations.

For w ∈ R and N ⊆ A we define w|N ∈ R by (w|N )i = wi if wi ∈ N ,
and (w|N )i = ⊥ otherwise. An RA is forgetful if it generates a non-spontaneous
NOFA and for every configuration (c, w) and every N , (c, w|N ) restricts (c, w)
to N in the sense of Definition 6.3; this property is equivalent to evident condi-
tions on the individual transition constraints. In particular, it is satisfied if all
transition constraints of the RA are conjunctions of the evident non-spontaneity
restriction (letters in the poststate come from the input or the prestate) with a
positive Boolean combination of the following:

– cmpi = {(w, a, v) | wi = a} (block unless register i contains the input)
– storei = {(w, a, v) | vi ∈ {⊥, a}} (store the input in register i or forget)
– freshi = {(w, a, v) | a �= wi} (block if register i contains the input)
– keepji = {(w, a, v) | vi ∈ {⊥, wj}} (copy register j to register i, or forget)

FSUBAs [19] can be translated into name-dropping RAs. Unlike FSUBAs,
forgetful RAs do allow for freshness constraints. E.g. the language {aba | a �= b}
is accepted by the forgetful RA c0

store1−−−→ c1
fresh1∧keep11−−−−−−−−→ c2

cmp1−−−→ c3, with c3
final. Note how store and keep will possibly lose the content of register 1 but
runs where this happens will not get past cmp1.

7 Deciding Inclusion under Global and Local Freshness

We next show that under both global and local freshness, the inclusion problem
for bar NFAs (equivalently regular bar expressions) is in ExpSpace. For global
freshness, this essentially just reproves the known decidability of inclusion for
session automata [6] (Remark 4.3; the complexity bound is not stated in [6]
but can be extracted), while the result for local freshness appears to be new.
Our algorithm differs from [6] in that it exploits name dropping; we describe it
explicitly, as we will modify it for local freshness.

Theorem 7.1. The inclusion problem for bar NFAs is in ExpSpace; more pre-
cisely, the inclusion Lα(A1) ⊆ Lα(A2) can be checked using space polynomial in
the size of A1 and A2 and exponential in deg(A2) log(deg(A1) + deg(A2) + 1).

The theorem can be rephrased as saying that bar language inclusion of NFA is
in parametrized polynomial space (para-PSpace) [31], the parameter being the
degree.
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Proof (Sketch). Let A1, A2 be bar NFAs with initial states s1, s2. We exhibit an
NExpSpace procedure to check that Lα(A1) is not a subset of Lα(A2), which
implies the claimed bound by Savitch’s theorem. It maintains a state q of A1 and
a set Ξ of states in the name-dropping RNNA Ā2 generated by A2 as described
in Construction 5.10, with q initialized to s1 and Ξ to {(s2, idFNs2

)}. It then
iterates the following:

1. Guess a transition q
α−→ q′ in A1 and update q to q′.

2. Compute the set Ξ′ of all states of Ā2 reachable from states in Ξ via α-
transitions (literally, i.e. not up to α-equivalence) and update Ξ to Ξ′.

The algorithm terminates successfully and reports that Lα(A1) �⊆ Lα(A2) if it
reaches a final state q of A1 while Ξ contains only non-final states.

Correctness of the algorithm follows from Theorem 5.11 and Lemma 5.7. For
space usage, first recall that cosets πFN can be represented as injective renamings
N → A. Note that Ξ will only ever contain states (q, πFN ) such that the image
πN of the corresponding injective renaming is contained in the set P of names
occurring literally in either A1 or A2. In fact, at the beginning, idNs2 consists
only of names literally occurring in A2, and the only names that are added
are those occurring in transitions guessed in Step 7, i.e. occurring literally in
A1. So states (q, πFN ) in Ξ can be coded using partial functions Nq ⇀ P . Since
�P ≤ deg(A1)+deg(A2), there are at most k ·(deg(A1)+deg(A2)+1)deg(A2) = k ·
2deg(A2) log(deg(A1)+deg(A2)+1) such states, where k is the number of states of A2. 
�
Remark 7.2. The translation from NKA expressions to bar NFAs
(Remark 5.15) increases expression size exponentially but the degree only lin-
early. Theorem 7.1 thus implies the known ExpSpace upper bound on inclusion
for NKA expressions [21].

We now adapt the inclusion algorithm to local freshness semantics. We denote
by � the preorder (in fact: order) on Ā∗ generated by wav � w av.

Lemma 7.3. Let L1, L2 be bar languages accepted by RNNA. Then D(L1) ⊆
D(L2) iff for each [w]α ∈ L1 there exists w′ � w such that [w′]α ∈ L2.

Corollary 7.4. Inclusion D(Lα(A1)) ⊆ D(Lα(A2)) of bar NFAs (or regular bar
expressions) under local freshness semantics is in para-PSpace, with parameter
deg(A2) log(deg(A1) + deg(A2) + 1).

Proof. By Lemma 7.3, we can use a modification of the above algorithm where
Ξ′ additionally contains states of Ā2 reachable from states in Ξ via a-transitions
in case α is a free name a. 
�

8 Conclusions

We have studied the global and local freshness semantics of regular nondetermin-
istic nominal automata, which feature explicit name-binding transitions. We have



140 L. Schröder et al.

shown that RNNAs are equivalent to session automata [6] under global fresh-
ness and to non-spontaneous and name-dropping nondeterministic orbit-finite
automata (NOFAs) [5] under local freshness. Under both semantics, RNNAs are
comparatively well-behaved computationally, and in particular admit inclusion
checking in parameterized polynomial space. While this reproves known results
on session automata under global freshness, decidability of inclusion under local
freshness appears to be new. Via the equivalence between NOFAs and register
automata (RAs), we in fact obtain a decidable class of RAs that allows unre-
stricted non-determinism and any number of registers.

Acknowledgements. We thank Charles Paperman for useful discussions, and the
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142 L. Schröder et al.

32. Turner, D., Winskel, G.: Nominal domain theory for concurrency. In: Grädel, E.,
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