
Almost Every Simply Typed λ-Term Has a Long
β-Reduction Sequence

Ryoma Sin’ya(B), Kazuyuki Asada, Naoki Kobayashi, and Takeshi Tsukada

The University of Tokyo, Tokyo, Japan
ryoma@kb.is.s.u-tokyo.ac.jp

Abstract. It is well known that the length of a β-reduction sequence
of a simply typed λ-term of order k can be huge; it is as large as k-fold
exponential in the size of the λ-term in the worst case. We consider the
following relevant question about quantitative properties, instead of the
worst case: how many simply typed λ-terms have very long reduction
sequences? We provide a partial answer to this question, by showing
that asymptotically almost every simply typed λ-term of order k has
a reduction sequence as long as (k − 2)-fold exponential in the term
size, under the assumption that the arity of functions and the number
of variables that may occur in every subterm are bounded above by a
constant. The work has been motivated by quantitative analysis of the
complexity of higher-order model checking.

1 Introduction

It is well known that the length of a β-reduction sequence of a simply typed
λ-term can be extremely long. Beckmann [1] showed that, for any k ≥ 0,

max{β(t) | t is a simply typed λ-term of order k and size n} = expk(Θ(n))

where β(t) is the maximum length of the β-reduction sequences of the term t,
and expk(x) is defined by: exp0(x) � x and expk+1(x) � 2expk(x). Indeed, the
following order-k term [1]:

(Twicek)nTwicek−1 · · ·Twice2(λx.a x x)c,

where Twicej is the twice function λfσj−1 .λxσj−2 .f(f x) (with σj being the
order-j type defined by: σ0 = o and σj = σj−1 → σj−1), has a β-reduction
sequence of length expk(Ω(n)).

Although the worst-case length of the longest β-reduction sequence is well
known as above, much is not known about the average-case length of the longest
β-reduction sequence: how often does one encounter a term having a very long
β-reduction sequence? In other words, suppose we pick a simply-typed λ-term
t of order k and size n randomly ; then what is the probability that t has a
β-reduction sequence longer than a certain bound, like expk(cn) (where c is
some constant)? One may expect that, although there exists a term (like the

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 53–68, 2017.
DOI: 10.1007/978-3-662-54458-7 4

54 R. Sin’ya et al.

one above) whose reduction sequence is as long as expk(Ω(n)), such a term is
rarely encountered.

In the present paper, we provide a partial answer to the above question,
by showing that almost every simply typed λ-term of order k has a reduction
sequence as long as (k − 2)-fold exponential in the term size, under a certain
assumption. More precisely, we shall show:

lim
n→∞

#
(
{[t]α ∈ Λα

n(k, ι, ξ) | β(t) ≥ expk−2(n)}
)

#(Λα
n(k, ι, ξ))

= 1

where Λα
n(k, ι, ξ) is the set of (α-equivalence classes [−]α of) simply-typed λ-

terms such that the term size is n, the order is up to k, the (internal) arity is
up to ι ≥ k and the number of variable names is up to ξ (see the next section
for the precise definition).

To obtain the above result, we use techniques inspired by the quantitative
analysis of untyped λ-terms [2–4]. For example, David et al. [2] have shown
that almost all untyped λ-terms are strongly normalizing, whereas the result is
opposite in the corresponding combinatory logic. A more sophisticated analysis
is, however, required in our case, for considering only well-typed terms, and also
for reasoning about the length of a reduction sequence instead of a qualitative
property like strong normalization.

This work is a part of our long-term project on the quantitative analysis
of the complexity of higher-order model checking [5,6]. The higher-order model
checking asks whether the (possibly infinite) tree generated by a ground-type
term of the λY-calculus (or, a higher-order recursion scheme) satisfies a given
regular property, and it is known that the problem is k-EXPTIME complete for
order-k terms [6]. Despite the huge worst-case complexity, practical model check-
ers [7–9] have been built, which run fast for many typical inputs, and have suc-
cessfully been applied to automated verification of functional programs [10–13].
The project aims to provide a theoretical justification for it, by studying how
many inputs actually suffer from the worst-case complexity. Since the problem
appears to be hard due to recursion, as an intermediate step towards the goal,
we aimed to analyze the variant of the problem considered by Terui [14]: given
a term of the simply-typed λ-calculus (without recursion) of type Bool, decide
whether it evaluates to true or false (where Booleans are Church-encoded; see
[14] for the precise definition). Terui has shown that even for the problem, the
complexity is k-EXPTIME complete for order-(2k + 2) terms. If, contrary to
the result of the present paper, the upper-bound of the lengths of β-reduction
sequences were small for almost every term, then we could have concluded that
the decision problem above is easily solvable for most of the inputs. The result
in the present paper does not necessarily provide a negative answer to the ques-
tion above, because one need not necessarily apply β-reductions to solve Terui’s
decision problem.

The present work may also shed some light on other problems on typed
λ-calculi with exponential or higher worst-case complexity. For example, despite
DEXPTIME-completeness of ML typability [15,16], it is often said that the

Almost Every Simply Typed λ-Term 55

exponential behavior is rarely seen in practice. That is, however, based on only
empirical studies. Our technique may be used to provide a theoretical justifica-
tion (or possibly unjustification).

The rest of this paper is organized as follows. Section 2 states our main result
formally. Section 3 analyzes the asymptotic behavior of the number of typed λ-
terms of a given size. Section 4 proves the main result. Section 5 discusses related
work, and Sect. 6 concludes the paper. For the space restriction, we omit formal
proofs and give only sketches instead; see the full version [17] for details.

2 Main Result

In this section we give the precise statement of our main theorem. We denote
the cardinality of a set S by #(S), and the domain and image of a function f
by Dom(f) and Im (f), respectively.

The set of (simple) types, ranged over by τ and σ, is given by: τ :: = o | σ → τ .
Let V be a countably infinite set, which is ranged over by x, x1, x2, etc. The set
of λ-terms (or terms), ranged over by t, is defined by:

t:: = x | λxτ.t | t t x:: = x | ∗

We call elements of V ∪ {∗} variables; V ∪ {∗} is ranged over by x, x1, x2, etc.
We call the special variable ∗ an unused variable. We sometimes omit type anno-
tations and just write λx.t for λxτ.t.

Terms of our syntax can be translated to usual λ-terms by regarding elements
in V ∪{∗} as usual variables. We define the notions of free variables, closed terms,
and α-equivalence ∼α through this identification. The α-equivalence class of a
term t is written as [t]α. In this paper, we do not consider a term as an α-
equivalence class, and we always use [−]α explicitly. For a term t, we write
FV(t) for the set of all the free variables of t.

For a term t, we define the set V(t) of variables (except ∗) in t by:

V(x) � {x} V(λxτ.t) � {x} ∪ V(t) V(λ∗τ.t) � V(t) V(t1t2) � V(t1) ∪ V(t2).

Note that neither V(t) nor even #(V(t)) is preserved by α-equivalence. For
example, t = λx1.(λx2.x2)(λx3.x1) and t′ = λx1.(λx1.x1)(λ∗.x1) are α-
equivalent, but #(V(t)) = 3 and #(V(t′)) = 1.

A type environment Γ is a finite set of type bindings of the form x : τ such
that if (x : τ), (x : τ ′) ∈ Γ then τ = τ ′; sometimes we regard an environment
also as a function. Note that (∗ : τ) cannot belong to a type environment; we
do not need any type assumption for ∗ since it does not occur in terms. We give
the typing rules as follows:

x : τ � x : τ

Γ1 � t1 : σ→τ Γ2 � t2 : σ

Γ1 ∪ Γ2 � t1t2 : τ

Γ ′ � t : τ Γ ′ = Γ or Γ ′ = Γ ∪ {x : σ} x /∈ Dom(Γ)
Γ � λxσ.t : σ→τ

56 R. Sin’ya et al.

The above typing rules are equivalent to the usual ones for closed terms, and if
Γ � t : τ is derivable, then the derivation is unique. Moreover, if Γ � t : τ then
Dom(Γ) = FV(t). Below we consider only well-typed λ-terms. A pair 〈Γ ; τ〉 of Γ
and τ is called a typing. We use θ as a metavariable for typings. When Γ � t : τ
is derived, we call 〈Γ ; τ〉 a typing of a term t, and call t an inhabitant of 〈Γ ; τ〉
or a 〈Γ ; τ〉-term.

Definition 1 (size, order and internal arity of a term). The size of a term
t, written |t|, is defined by:

|x| � 1 |λxτ.t| � |t| + 1 |t1t2| � |t1| + |t2| + 1.

The order and internal arity of a type τ , written ord(τ) and iar(τ), are defined
respectively by:

ord(o) � 0 iar(o) � 0

ord(τ1 → · · · → τn → o) � max{ord(τi) + 1 | 1 ≤ i ≤ n} (n ≥ 1)

iar(τ1 → · · · → τn → o) � max({n} ∪ {iar(τi) | 1 ≤ i ≤ n}) (n ≥ 1).

For a 〈Γ ; τ〉-term t, we define the order and internal arity of Γ � t : τ written
ord(Γ � t : τ) and iar(Γ � t : τ) by:

ord(Γ � t : τ) � max{ord(τ ′) | (Γ ′ � t′ : τ ′) occurs in Δ}
iar(Γ � t : τ) � max{iar(τ ′) | (Γ ′ � t′ : τ ′) occurs in Δ}

where Δ is the (unique) derivation tree for Γ � t : τ .

Note that the notions of size, order, internal arity, and β(t) (defined in the
introduction) are well-defined with respect to α-equivalence.

Definition 2 (terms with bounds on types and variables). Let δ, ι, ξ ≥ 0
and n ≥ 1 be integers. We denote by Types(δ, ι) the set of types {τ | ord(τ) ≤
δ, iar(τ) ≤ ι}. For Γ and τ we define:

Λα
n(〈Γ ; τ〉, δ, ι, ξ) � {[t]α | Γ � t : τ, |t| = n, min

t′∈[t]α
#(V(t′)) ≤ ξ,

ord(Γ � t : τ) ≤ δ, iar(Γ � t : τ) ≤ ι}
Λα(〈Γ ; τ〉, δ, ι, ξ) �

⋃

n≥1

Λα
n(〈Γ ; τ〉, δ, ι, ξ).

Also we define:

Λα
n(δ, ι, ξ) �

⋃

τ∈Types(δ,ι)

Λα
n(〈∅; τ〉, δ, ι, ξ) Λα(δ, ι, ξ) �

⋃

n≥1

Λα
n(δ, ι, ξ).

Our main result is the following theorem, which will be proved in Sect. 4.

Theorem 1. Let δ, ι, ξ ≥ 2 be integers and let k = min{δ, ι}. Then,

lim
n→∞

#
(
{[t]α ∈ Λα

n(δ, ι, ξ) | β(t) ≥ expk−2(n)}
)

#(Λα
n(δ, ι, ξ))

= 1.

Almost Every Simply Typed λ-Term 57

Remark 1. Note that in the above theorem, the order δ, the internal arity ι
and the number ξ of variables are bounded above by a constant, independently
of the term size n. It is debatable whether the assumption is reasonable, and a
slight change of the assumption may change the result, as is the case for strong
normalization of untyped λ-term [2,4]. When λ-terms are viewed as models of
functional programs, our rationale behind the assumption is as follows. The
assumption that the size of types (hence also the order and the internal arity) is
fixed is sometimes assumed in the context of type-based program analysis [18].
The assumption on the number of variables comes from the observation that a
large program usually consists of a large number of small functions, and that
the number of variables is bounded by the size of each function.

3 Analysis of Λα
n(δ, ι, ξ)

To prove our main theorem, we first analyze some formal language theoretic
structure and properties of Λα(δ, ι, ξ): in Sect. 3.1, we construct a regular tree
grammar such that there is a size preserving bijection between its tree language
and Λα(δ, ι, ξ); in Sect. 3.2, we show that the grammar has two important prop-
erties: irreducibility and aperiodicity. Thanks to those properties, we can obtain
a simple asymptotic formula for #(Λα

n(δ, ι, ξ)) using analytic combinatorics [19].
The irreducibility and aperiodicity properties will also be used in Sect. 4 for
adjusting the size and typing of a λ-term.

3.1 Λα(δ, ι, ξ) as a Regular Tree Language

We first recall some basic definitions for regular tree grammars. A ranked alphabet
Σ is a mapping from a finite set of symbols to the set of natural numbers. For
a symbol a ∈ Dom(Σ), we call Σ(a) the rank of a. A Σ-tree is a tree composed
from symbols in Σ according to their ranks: (i) a is a Σ-tree if Σ(a) = 0,
(ii) a(T1, · · · , TΣ(a)) is a Σ-tree if Σ(a) ≥ 1 and Ti is a Σ-tree for each i ∈
{1, . . . , Σ(a)}. We use the meta-variable T for trees. The size of T , written as
|T |, is the number of nodes and leaves of T . We denote the set of all Σ-trees
by TΣ .

A regular tree grammar is a triple G = (Σ,N ,R) where (i) Σ is a ranked
alphabet; (ii) N is a finite set of non-terminals; (iii) R is a finite set of rewriting
rules of the form N −→ a(N1, · · · , NΣ(a)) where a ∈ Dom(Σ), N ∈ N and
Ni ∈ N for every i ∈ {1, . . . , Σ(a)}. A (Σ ∪ N)-tree T is a tree composed from
symbols in Σ ∪ N according to their ranks where the rank of every symbol in
N is zero (thus non-terminals appear only in leaves of T). For a tree grammar
G = (Σ,N ,R) and a non-terminal N ∈ N , the language L (G, N) of N is
defined by L (G, N) � {T ∈ TΣ | N −→∗

G T} where −→∗
G denotes the reflexive

and transitive closure of the rewriting relation −→G . We also define Ln (G, N) �
{T ∈ TΣ | N −→∗ T, |T | = n}. We often omit G and write N −→∗ N ′, L (N), and
Ln (N) for N −→∗

G N ′, L (G, N), and Ln (G, N) respectively, if G is clear from
the context. We say that N ′ is reachable from N if there exists a (Σ ∪N)-tree T

58 R. Sin’ya et al.

such that N −→∗ T and T contains N ′ as a leaf. A grammar G is unambiguous
if, for every pair of a non-terminal N and a tree T , there exists at most one
leftmost reduction sequence from N to T .

Definition 3 (grammar of Λα(δ, ι, ξ)). Let δ, ι, ξ ≥ 0 be integers and Xξ =
{x1, · · · , xξ} be a subset of V . The regular tree grammar G(δ, ι, ξ) is defined as
(Σ(δ, ι, ξ),N (δ, ι, ξ),R(δ, ι, ξ)) where:

Σ(δ, ι, ξ) � {x → 0 | x ∈ Xξ} ∪ {@ → 2}
∪ {λxτ → 1 | x ∈ {∗} ∪ Xξ, τ ∈ Types(δ − 1, ι)}

N (δ, ι, ξ) � {N〈Γ ;τ〉 | τ ∈ Types(δ, ι),Dom(Γ) ⊆ Xξ, Im (Γ) ⊆ Types(δ − 1, ι),
Γ � t : τ for some t }

R(δ, ι, ξ) � {N〈{xi:τ};τ〉 −→ xi} ∪ {N〈Γ ;σ→τ〉 −→ λ∗σ(N〈Γ ;τ〉)}
∪ {N〈Γ ;σ→τ〉 −→ λxσ

i (N〈Γ∪{xi:σ};τ〉) | i = min{j ≥ 1 | xj /∈ Dom(Γ)},

#(Γ) < ξ} ∪ {N〈Γ ;τ〉 −→ @(N〈Γ1;σ→τ〉, N〈Γ2;σ〉) | Γ = Γ1 ∪ Γ2}

Here, the special symbol @ ∈ Dom(Σ(δ, ι, ξ)) corresponds to application. For
a technical convenience, the above definition excludes from N (δ, ι, ξ) typings
which have no inhabitant. Note that Σ(δ, ι, ξ), N (δ, ι, ξ) and R(δ, ι, ξ) are finite.
To see the finiteness of N (δ, ι, ξ), notice that Xξ and Types(δ − 1, ι) are finite,
hence so is {Γ | Dom(Γ) ⊆ Xξ, Im (Γ) ⊆ Types(δ − 1, ι)}. The finiteness of
R(δ, ι, ξ) follows immediately from that of N (δ, ι, ξ).

Example 1. Let us consider the case where δ = ι = ξ = 1. The grammar G(1, 1, 1)
consists of the following.

Σ(1, 1, 1)={x1,@, λxo
1, λ∗o} N (1, 1, 1) = {N〈∅;o→o〉, N〈{x1:o};o〉N〈{x1:o};o→o〉}

R(1, 1, 1)=

⎧
⎪⎨

⎪⎩

N〈∅;o→o〉 −→ λxo
1(N〈{x1:o};o〉)

N〈{x1:o};o〉 −→ x1|@(N〈{x1:o};o→o〉, N〈{x1:o};o〉)|@(N〈∅;o→o〉, N〈{x1:o};o〉)
N〈{x1:o};o→o〉 −→ λ∗o(N〈{x1:o};o〉).

There is the obvious embedding e(δ,ι,ξ) (e for short) from trees in TΣ(δ,ι,ξ)

into λ-terms. For N〈Γ ;τ〉 ∈ N (δ, ι, ξ) we define

π
(δ,ι,ξ)
〈Γ ;τ〉 � [−]α ◦ e : L

(
N〈Γ ;τ〉

)
→ Λα(〈Γ ; τ〉, δ, ι, ξ).

We sometimes omit the superscript and/or the subscript.

Proposition 1. For δ, ι, ξ ≥ 0, π〈Γ ;τ〉 is a size-preserving bijection, and
G(δ, ι, ξ) is unambiguous.

The former part of Proposition 1 says that G(δ, ι, ξ) gives a complete repre-
sentation system of the α-equivalence classes. For [t]α ∈ Λα(〈Γ ; τ〉, δ, ι, ξ), we

define ν
(δ,ι,ξ)
〈Γ ;τ〉 ([t]α) (or ν([t]α) for short) as e(δ,ι,ξ) ◦

(
π
(δ,ι,ξ)
〈Γ ;τ〉

)−1

([t]α). The func-
tion ν normalizes variable names. For example, t = λx.x(λy.λz.z) is normalized
to ν([t]α) = λx1.x1(λ∗.λx1.x1).

Almost Every Simply Typed λ-Term 59

Due to technical reasons, we restrict the grammar G(δ, ι, ξ) to G∅(δ, ι, ξ),
which contains only non-terminals reachable from N〈∅;σ〉 for some σ (see the full
version [17] for details).

N ∅(δ, ι, ξ) � {Nθ ∈ N (δ, ι, ξ) | Nθ is reachable from some N〈∅;σ〉 ∈ N (δ, ι, ξ)}
R∅(δ, ι, ξ) � {Nθ −→ T ∈ R(δ, ι, ξ) | Nθ ∈ N ∅(δ, ι, ξ)}
G∅(δ, ι, ξ) � (Σ(δ, ι, ξ),N ∅(δ, ι, ξ),R∅(δ, ι, ξ)).

For Nθ ∈ N ∅(δ, ι, ξ), clearly L
(
G∅(δ, ι, ξ), Nθ

)
= L (G(δ, ι, ξ), Nθ). Through the

bijection π, we can show that, for any N〈Γ ;τ〉 ∈ N (δ, ι, ξ), N〈Γ ;τ〉 also belongs
to N ∅(δ, ι, ξ) if and only if there exists a term in Λα(δ, ι, ξ) whose derivation
contains a type judgment of the form Γ � t : τ .

3.2 Irreducibility and Aperiodicity

We discuss two important properties of the grammar G∅(δ, ι, ξ) where δ, ι, ξ ≥ 2:
irreducibility and aperiodicity [19].1

Definition 4 (irreducibility and aperiodicity). Let G = (Σ,N ,R) be a
regular tree grammar. We say that G is:

– non-linear if R contains at least one rule of the form N −→ a(N1, · · · , NΣ(a))
with Σ(a) ≥ 2,

– strongly connected if for any pair of non-terminals N1, N2 ∈ N , N1 is reachable
from N2,

– irreducible if G is both non-linear and strongly connected,
– aperiodic if for any non-terminal N ∈ N there exists an integer m > 0 such

that #(Ln (N)) > 0 for any n > m.

Proposition 2. G∅(δ, ι, ξ) is irreducible and aperiodic for any δ, ι, ξ ≥ 2.

The following theorem is a minor modification of Theorem VII.5 in [19],
which states the asymptotic behavior of an irreducible and aperiodic context-free
specification (see the full version [17] for details). Below, ∼ means the asymptotic
equality, i.e., f(n) ∼ g(n) ⇐⇒ limn→∞ f(n)/g(n) = 1.

Theorem 2 ([19]). Let G = (Σ,N ,R) be an unambiguous, irreducible and ape-
riodic regular tree grammar. Then there exists a constant γ(G) > 1 such that,
for any non-terminal N ∈ N , there exists a constant CN (G) > 0 such that

#(Ln (N)) ∼ CN (G)γ(G)nn−3/2.

As a corollary of Proposition 2 and Theorem 2 above, we obtain:

#(Λα
n(δ, ι, ξ)) ∼ Cγnn−3/2 (1)

where C > 0 and γ > 1 are some real constants determined by δ, ι, ξ ≥ 2. For
proving our main theorem, we use a variation of the formula (1) above, stated
as Lemma 1 later.
1 In [19], irreducibility and aperiodicity are defined for context-free specifications. Our

definition is a straightforward adaptation of the definition for regular tree grammars.

60 R. Sin’ya et al.

4 Proof of the Main Theorem

We give a proof of Theorem 1 in this section. In the rest of the paper, we denote
by log(2)(n) the 2-fold logarithm: log(2)(n) � log log n. All logarithms are base
2. The outline of the proof is as follows. We prepare a family (tn)n∈N of λ-terms
such that tn is of size Ω(log(2)(n)) and has a β-reduction sequence of length
expk(Ω(|tn|)), i.e., expk−2(Ω(n)). Then we show that almost every λ-term of
size n contains tn as a subterm. The latter is shown by adapting (a parameterized
version of) the infinite monkey theorem2 for words to simply-typed λ-terms.

To clarify the idea, let us first recall the infinite monkey theorem for words.
Let A be an alphabet, i.e., a finite non-empty set of symbols. For a word w =
a1 · · · an, we write |w| = n for the length of w. As usual, we denote by An the
set of all words of length n over A, and by A∗ the set of all finite words over A:
A∗ =

⋃
n≥0 An. For two words w,w′ ∈ A∗, we say w′ is a subword of w and write

w′ � w if w = w1w
′w2 for some words w1, w2 ∈ A∗. The infinite monkey theorem

states that, for any word w ∈ A∗, the probability that a randomly chosen word
of size n contains w as a subword tends to one if n tends to infinity.

To prove our main theorem, we need to extend the above infinite monkey
theorem to the following parameterized version3, and then further extend it
for simply-typed λ-terms instead of words. We give a proof of the following
proposition, because it will clarify the overall structure of the proof of the main
theorem.

Proposition 3. (parameterized infinite monkey theorem). Let A be an
alphabet and (wn)n be a family of words over A such that |wn| = �log(2)(n)�.
Then, we have:

lim
n→∞

#({w ∈ An | wn � w})
#(An)

= 1.

Proof. Let p(n) be 1 − #({w ∈ An | wn � w}) /#(An), i.e., the probability that
a word of size n does not contain wn. We write s(n) for �log(2)(n)� and c(n) for
�n/s(n)�. Given a word w = a1 · · · an ∈ An, let us partition it to subwords of
length s(n) as follows.

w = a1 · · · as(n)︸ ︷︷ ︸
1-st subword

· · · a(c(n)−1)s(n)+1 · · · ac(n)s(n)︸ ︷︷ ︸
c(n)-th subword

ac(n)s(n)+1 · · · an

Then,

p(n) ≤ “the probability that none of the i-th subword is w′′
n

=
(

#(As(n)\{wn})
#(As(n))

)c(n)

=
(

#(As(n))−1

#(As(n))

)c(n)

=
(
1 − 1

#(A)s(n)

)c(n)

.

2 It is also called as “Borges’s theorem” (cf. [19, p. 61, Note I.35]).
3 Although it is a simple extension, we are not aware of literature that explicitly

states this parameterized version.

Almost Every Simply Typed λ-Term 61

Since
(
1 − 1

#(A)s(n)

)c(n)

=
(

1 − 1

#(A)�log(2)(n)�

)n/�log(2)(n)��
tends to zero (see

the full version [17]) if n tends to infinity, we have the required result. ��

To prove an analogous result for simply-typed λ-terms, we consider below
subcontexts of a given term instead of subwords of a given word. To con-
sider “contexts up to α-equivalence”, in Sect. 4.1 we introduce the set Uν

n(δ, ι, ξ)
of “normalized” contexts (of size n and with the restriction by δ, ι and ξ),
where Uν

s(n)(δ, ι, ξ) corresponds to As(n) above, and give an upper bound of
#(Uν

n(δ, ι, ξ)). A key property used in the above proof was that any word of
length n can be partitioned to sufficiently many subwords of length log(2)(n).
Section 4.2 below shows an analogous result that any term of size n can be decom-
posed into sufficiently many subcontexts of a given size. Section 4.3 constructs a
family of contexts Explkn (called “explosive contexts”) that have very long reduc-
tion sequences; (Explkn)n corresponds to (wn)n above. Finally, Sect. 4.4 proves
the main theorem using an argument similar to (but more involved than) the
one used in the proof above.

4.1 Normalized Contexts

We first introduce some basic definitions of contexts, and then we define the
notion of a normalized context, which is a context normalized by the function ν
given in Sect. 3.1.

The set of contexts, ranged over by C, is defined by

C:: = [] | x | λxτ.C | CC

The size of C, written |C|, is defined by:

|[]| � 0 |x| � 1 |λxτ.C| � |C| + 1 |C1C2| � |C1| + |C2| + 1.

We call a context C an n-context (and define hn(C) � n) if C contains n occur-
rences of []. We use the metavariable S for 1-contexts. A 0/1-context is a term
t or a 1-context S and we use the metavariable u to denote 0/1-contexts. The
holes in C occur as leaves and we write []i for the i-th hole, which is counted in
the left-to-right order.

For C, C1, . . . , Chn(C), we write C[C1] . . . [Chn(C)] for the context obtained
by replacing []i in C with Ci for each i ≤ hn(C). For C and C ′, we write C[C ′]i
for the context obtained by replacing the i-th hole []i in C with C ′. As usual,
these substitutions may capture variables; e.g., (λx.[])[x] is λx.x. We say that
C is a subcontext of C ′ and write C � C ′ if there exist C ′′, 1 ≤ i ≤ hn(C ′′) and
C1, · · · , Chn(C) such that C ′ = C ′′[C[C1] · · · [Chn(C)]]i.

The set of context typings, ranged over by κ, is defined by: κ:: = θ1 · · · θk⇒θ
where k ∈ N and θi is a typing of the form 〈Γi; τi〉 for each 1 ≤ i ≤ k (recall that
we use θ as a metavariable for typings). A 〈Γ1; τ1〉 · · · 〈Γk; τk〉⇒〈Γ ; τ〉-context is
a k-context C such that Γ � C : τ is derivable from Γi � []i : τi. We identify a
context typing ⇒θ with the typing θ, and call a θ-context also a θ-term.

62 R. Sin’ya et al.

From now, we begin to define normalized contexts. First we consider contexts
in terms of the grammar G∅(δ, ι, ξ) given in Sect. 3.1. Let δ, ι, ξ ≥ 0. For κ =
θ1 · · · θn⇒θ such that Nθ1 , . . . , Nθn

, Nθ ∈ N (δ, ι, ξ), a (κ-)context-tree is a tree T̂

in TΣ(δ,ι,ξ)∪N (δ,ι,ξ) such that there exists a reduction Nθ −→∗ T̂ and the occur-
rences of non-terminals in T̂ (in the left-to-right order) are exactly Nθ1 , . . . , Nθn

.
We use T̂ as a metavariable for context-trees. We write L (κ, δ, ι, ξ) for the set
of all κ-context-trees. For θ1 · · · θn⇒θ-context-tree T̂ and θi

1 · · · θi
ki

⇒θi-context-
trees T̂i (i = 1, . . . , n), we define the substitution T̂ [T̂1] · · · [T̂n] as the
θ11 · · · θ1k1

· · · θn
1 · · · θn

kn
⇒θ- context-tree obtained by replacing Nθi

in T̂ with T̂i.
The set Cν(κ, δ, ι, ξ) of normalized κ-contexts is defined by:

Cν(κ, δ, ι, ξ) � e(δ,ι,ξ)κ (L (κ, δ, ι, ξ))

where e
(δ,ι,ξ)
κ is the obvious embedding from κ-context-trees to κ-contexts that

preserves the substitution (i.e., e
(δ,ι,ξ)
κ (T [T ′]) = e

(δ,ι,ξ)
κ (T)[e(δ,ι,ξ)κ (T ′)]). Further,

the sets Uν(δ, ι, ξ) and Uν
n(δ, ι, ξ) of normalized 0/1-contexts are defined by:

Uν(δ, ι, ξ) �
(⋃

Nθ∈N ∅(δ,ι,ξ)

Cν(θ, δ, ι, ξ)
) ⋃ (⋃

Nθ,Nθ′ ∈N ∅(δ,ι,ξ)

Cν(θ⇒θ′, δ, ι, ξ)
)

Uν
n(δ, ι, ξ) � {u ∈ Uν(δ, ι, ξ) | |u| = n}.

In our proof of the main theorem, the set Uν
s(n)(δ, ι, ξ) plays a role corre-

sponding to As(n) in the word case explained above. Note that in the word case
we calculated the limit of some upper bound of p(n); similarly, in our proof, we
only need an upper bound of #(Uν

n(δ, ι, ξ)), which is given as follows.

Lemma 1. (upper bound of #(Uν
n(δ, ι, ξ))). For any δ, ι, ξ ≥ 2, there exists

some constant γ(δ, ι, ξ) > 1 such that #(Uν
n(δ, ι, ξ)) = O(γ(δ, ι, ξ)n).

Proof Sketch. Given an unambiguous, irreducible and aperiodic regular tree
grammar, adding a new terminal of the form aN and a new rule of the form
N −→ aN for each non-terminal N does not change the unambiguity, irreducibil-
ity and aperiodicity. Let G∅

(δ, ι, ξ) be the grammar obtained by applying this
transformation to G∅(δ, ι, ξ). We can regard a tree of G∅

(δ, ι, ξ) as a normalized
context, with aNθ

considered a hole with typing θ. Then, clearly we have

#(Uν
n(δ, ι, ξ)) ≤ #

(
∪N∈N ∅(δ,ι,ξ)Ln

(
G∅

(δ, ι, ξ), N
))

.

Thus the required result follows from Theorem 2. ��

4.2 Decomposition

As explained in the beginning of this section, to prove the parameterized infi-
nite monkey theorem for terms, we need to decompose a λ-term into suf-
ficiently many subcontexts of the term. Thus, in this subsection, we will

Almost Every Simply Typed λ-Term 63

define a decomposition function Φ̂m (where m is a parameter) that decom-
poses a term t into (i) a (sufficiently long) sequence P of 0/1-subcontexts of t
such that every component u of P satisfies |u| ≥ m, and (ii) a “second-order”
context E (defined later), which is a remainder of extracting P from t. Figure 1
illustrates how a term is decomposed by Φ̂3. Here, the symbols [[]] in the second-
order context on the right-hand side represents the original position of each
subcontext (λy.[])x, λz.λ∗.z, and (λ∗.y)λz.z.

x

@

@

@

z
zy

@

+

Second-order context

Sequence of 0/1-subcontexts

λz

λ∗

λx

λy

λ∗

λ∗ λz

λx

λ∗

(λy.[])x · λz.λ∗.z · (λ∗.y)λz.z

Φ3

Fig. 1. Example of a decomposition

In order to define Φ̂m, let us give a precise definition of second-order contexts.
The set of second-order contexts, ranged over by E, is defined by:

E:: =[[]]θ1···θk⇒θ
n [E1] · · · [Ek] (n ∈ N) | x | λxτ.E | E1E2.

Intuitively, the second-order context is an expression having holes of the form[[]]κn
(called second-order holes). In the second-order context [[]]θ1···θk⇒θ

n [E1] · · · [Ek],
[[]]θ1···θk⇒θ

n should be filled with a θ1 · · · θk⇒θ-context of size n, yielding a term
whose typing is θ. We use the metavariable P for sequences of contexts. For a
sequence of contexts P = C1 · C2 · · · C and i ≤ �, we write #(P) for the length
�, and P �i for the i-th component Ci.

We define |[[]]κn| � n. We write shn(E) for the number of the second-
order holes in E. For i ≤ shn(E), we write E�i for the i-th second-order
hole (counted in the depth-first left-to-right pre-order). For a context C and
a second-order hole [[]]κn, we write C : [[]]κn if C is a κ-context of size n. For E and
P = C1 · C2 · · · · Cshn(E), we write P : E if Ci : E�i for each i ≤ shn(E). We dis-
tinguish between second-order contexts with different annotations; for example,
[[]]〈{x:o};o〉⇒〈{x:o};o〉

0 [x], [[]]〈{x:o};o〉⇒〈{x:o};o〉
2 [x] and [[]]〈{x:o→o};o→o〉⇒〈{x:o→o};o→o〉

2 [x]
are different from each other. Note that every term can be regarded as a second-
order context E such that shn(E) = 0.

64 R. Sin’ya et al.

The bracket [−] in a second-order context is just a syntactical representation
rather than the substitution operation of contexts. Given E and C such that
shn(E) ≥ 1 and C : E�1, we write E[[C]] for the second-order context obtained by
replacing the leftmost second-order hole of E (i.e., E�1) with C (and by interpret-
ing the syntactical bracket [−] as the substitution operation). For example, we
have: ((λx.[[]][x][x])[[]])[[λy.y[][]]] = (λx.(λy.y[][])[x][x])[[]] = (λx.λy.yxx)[[]]. Below
we actually consider only second-order contexts whose second-order holes are of
the form [[]]θn or [[]]θ

′⇒θ
n .

We are now ready to define the decomposition function Φ̂m. We first prepare
an auxiliary function Φm(t) = (E, u, P) such that (i) u is an auxiliary 0/1-
subcontext, (ii) E[[u · P]] = t, and (iii) the size of each context in P is between m
and 2m − 1. It is defined by induction on the size of t as follows:
If |t| < m, then Φm(t) � ([[]], t, ε).
If |t| ≥ m, then:

Φm(λxτ.t1) �
{

(E1, λxτ.u1, P1) if |λxτ.u1| < m

([[]][E1], [], (λxτ.u1) · P1) if |λxτ.u1| = m

where (E1, u1, P1) = Φm(t1).

Φm(t1t2) �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

([[]][(E1[[u1]])(E2[[u2]])], [], P1 · P2) if |ti| ≥ m (i = 1, 2)
(E1, u1t2, P1) if |t1| ≥ m, |t2| < m, |u1t2| < m

([[]][E1], [], (u1t2) · P1) if |t1| ≥ m, |t2| < m, |u1t2| ≥ m

(E2, t1u2, P2) if |t1| < m, |t1u2| < m

([[]][E2], [], (t1u2) · P2) if |t1| < m, |t1u2| ≥ m

where (Ei, ui, Pi) = Φm(ti) (i = 1, 2).

Above, we have omitted the context-typing/size annotations of second-order
holes for simplicity (see the full version [17] for details). The decomposition
function Φ̂m is then defined by Φ̂m(t) � (E[[u]], P) where (E, u, P) = Φm(t).

In the rest of this subsection, we show key properties of Φ̂m. We say that a
0/1-context u is good for m if u is either (i) a λ-abstraction where |u| = m; or
(ii) an application u1u2 where |uj | < m for each j = 1, 2. By the definition of
Φ̂m(t) = (E,P), every component u of P is good for m.

For m ≥ 2, E and 1 ≤ i ≤ shn(E), we define Ûm
E�i(δ, ι, ξ), Λm

E (δ, ι, ξ), and
Bm

n (δ, ι, ξ) by:

Ûm
E�i(δ, ι, ξ) � {u ∈ Uν(δ, ι, ξ) | u : E�i and u is good for m}
Λm

E (δ, ι, ξ) � {[E[[u1 · · · ushn(E)]]]α | ui ∈ Ûm
E�i(δ, ι, ξ) for 1 ≤ i ≤ shn(E)}

Bm
n (δ, ι, ξ) � {E | (E,P) = Φ̂m(ν([t]α)) for some [t]α ∈ Λα

n(δ, ι, ξ)}.

Intuitively, Ûm
E�i(δ, ι, ξ) is the set of good contexts that can fill E.i, Λm

E (δ, ι, ξ)
is the set of terms obtained by filling the second-order holes of E with good
contexts, and Bm

n (δ, ι, ξ) is the set of second-order contexts that can be obtained

Almost Every Simply Typed λ-Term 65

by decomposing a term of size n. The following lemma states the key properties
of Φ̂m.

Lemma 2. (decomposition). Let δ, ι, ξ ≥ 0 and 2 ≤ m ≤ n.

1. Λα
n(δ, ι, ξ) is the disjoint union of Λm

E (δ, ι, ξ)’s, i.e., Λα
n(δ, ι, ξ) =

⊎
E∈Bm

n (δ,ι,ξ) Λm
E (δ, ι, ξ). Moreover, Φ̂m(E[[P]]) = (E,P) holds for any P ∈

∏
1≤i≤shn(E) Ûm

E�i(δ, ι, ξ).
2. m ≤ |E�i| < 2m (1 ≤ i ≤ shn(E)) for every E ∈ Bm

n (δ, ι, ξ).
3. shn(E) ≥ n/4m for every E ∈ Bm

n (δ, ι, ξ).

The second and third properties say that Φ̂m decomposes each term into suffi-
ciently many contexts of appropriate size.

4.3 Explosive Context

Here, we show that each Ûm
E�i(δ, ι, ξ) contains at least one context that has a

very long reduction sequence. To this end, we first prepare a special context
Explmk that has a long reduction sequence, and shows that at least one element
of Ûm

E�i(δ, ι, ξ) contains Explmk as a subcontext.
We define a “duplicating term” Dup � λxo.(λxo.λ∗o.x)xx, and Id � λxo.x.

For two terms t, t′ and integer n ≥ 1, we define the “ n-fold application” opera-
tion ↑n as t ↑0 t′ � t′ and t ↑n t′ � t(t ↑n−1 t′). For an integer k ≥ 2, we define an
order-k term

2k � λfτ(k)→τ(k).λxτ(k).f(fx)

where τ(i) is defined by τ(2) � o and τ(i + 1) � τ(i)→τ(i).

Definition 5. (explosive context). Let m ≥ 1 and k ≥ 2 be integers and let

t � ν
(
λxo.

(
(2k ↑m 2k−1)2k−2 · · · 22 Dup(Id x†)

))

where x† is just variable x but we put † to refer to the occurrence. We define
the explosive context Explkm (of m-fold and order k) as the 1-context obtained
by replacing the “normalized” variable x1

† in t with [].

We state key properties of Explkm below. The proof of Item 3 is the same as
that in [1]. The other items follow by straightforward calculation.

Lemma 3 (explosive).

1. ∅ � Explkm[x1] : o→o is derivable.
2. |Explkm| = 8m + 8k − 3.
3. ord(Explkm[x1]) = k, iar(Explkm[x1]) = k and #(V(Explkm)) = 2.
4. Explkm ∈ Uν(δ, ι, ξ) if δ, ι ≥ k and ξ ≥ 2.
5. If a term t satisfies Explkm � t, then β(t) ≥ expk(m) holds.

We show that at least one element of Ûm
E�i(δ, ι, ξ) contains Explkm′ as a sub-

context.

66 R. Sin’ya et al.

Lemma 4 Let δ, ι, ξ ≥ 2 be integers and k = min{δ, ι}. There exist inte-
gers b, c ≥ 2 such that, for any n ≥ 1, m′ ≥ b, E ∈ Bcm′

n (δ, ι, ξ) and
i ∈ {1, . . . , shn(E)}, Û cm′

E�i (δ, ι, ξ) contains u′ such that Explkm′ � u′.

Proof Sketch. We pick u′′ ∈ Û cm′
E�i (δ, ι, ξ) and construct u′ by replacing some

subcontext u0 of u′′ with a 0/1-context of the form S◦[Explkm′ [u◦]]. Here S◦ and
u◦ adjust the context typing and size of Explkm′ and these can be obtained by
using Proposition 2. The subcontext u0 is chosen so that the goodness of u′′ is
preserved by this replacement. ��

4.4 Proof Sketch of Theorem1

We are now ready to prove the main theorem; see the full version [17] for details.
For readability, we omit the parameters (δ, ι, ξ), and write Λα

n,Uν
n , Λm

E , Ûm
E�i and

Bm
n for Λα

n(δ, ι, ξ),Uν
n(δ, ι, ξ), Λm

E (δ, ι, ξ), Ûm
E�i(δ, ι, ξ) and Bm

n (δ, ι, ξ) respectively.
Let p(n) be the probability that a randomly chosen normalized term t in

Λα
n does not contain Explk�log(2)(n)� as a subcontext. By Item 3 of Lemma 3, it

suffices to show limn→∞ p(n) = 0. Let b and c be the constants in Lemma 4 and
let n ≥ 22

b
, m′ = �log(2)(n)� and m = cm′. Then m′ ≥ log(2)(n) ≥ b.

By Lemma 2, Λα
n can be represented as the disjoint union �E∈Bm

n
Λm

E . Let Λ
m

E

be the subset of Λm
E that does not contain Explkm′ as a subcontext. By Lemma 4,

each of Ûm
E�i contains at least one element that has Explkm′ as a subcontext.

Furthermore, since m ≤ |E�i| < 2m, we have #
(
Ûm

E�i
)

≤ #
(
Uν
2m+d

)
for some

constant d (see the full version [17]). Thus, we have

#
(
Λ

m

E

)

#(Λm
E)

≤
∏

1≤i≤shn(E)

⎛

⎝1 − 1

#
(
Ûm

E�i
)

⎞

⎠ ≤
(

1 − 1
#

(
Uν
2m+d

)

)shn(E)

≤
(

1 − 1
#

(
Uν
2m+d

)

) n
4m

(∵ Item 3 of Lemma 2).

Let q(n) be the rightmost expression. Then we have

p(n) =

∑
E∈Bm

n
#

(
Λ

m

E

)

∑
E∈Bm

n
#(Λm

E)
≤

∑
E∈Bm

n
(q(n)#(Λm

E))
∑

E∈Bm
n

#(Λm
E)

=
q(n)

∑
E∈Bm

n
#(Λm

E)
∑

E∈Bm
n

#(Λm
E)

= q(n) ≤
(

1 − 1
c′γ(δ, ι, ξ)2m

) n
4m

(∵ Lemma 1)

for sufficiently large n. Finally, we can conclude that

p(n) ≤
(

1 − 1
c′γ(δ, ι, ξ)2c�log(2)(n)�

) n
4c�log(2)(n)� −→ 0 (as n −→ ∞)

(see the full version [17] for the last convergence) as required. ��

Almost Every Simply Typed λ-Term 67

5 Related Work

As mentioned in Sect. 1, there are several pieces of work on probabilistic prop-
erties of untyped λ-terms [2–4]. David et al. [2] have shown that almost all
untyped λ-terms are strongly normalizing, whereas the result is opposite for
terms expressed in SK combinators.

Their former result implies that untyped λ-terms do not satisfy the infinite
monkey theorem, i.e., for any term t, the probability that a randomly chosen
term of size n contains t as a subterm tends to zero. Bendkowski et al. [4] proved
that almost all terms in de Brujin representation are not strongly normalizing,
by regarding the size of an index i is i + 1, instead of the constant 1. The
discrepancies among those results suggest that this kind of probabilistic property
is quite fragile and depends on the definition of the syntax and the size of terms.
Thus, the setting of our paper, especially the assumption on the boundedness of
internal arities and the number of variables is a matter of debate, and it would
be interesting to study how the result changes for different assumptions.

We are not aware of similar studies on typed λ-terms. In fact, in their paper
about combinatorial aspects of λ-terms, Grygiel and Lescanne [3] pointed out
that the combinatorial study of typed λ-terms is difficult, due to the lack of (sim-
ple) recursive definition of typed terms. In the present paper, we have avoided
the difficulty by making the assumption on the boundedness of internal arities
and the number of variables (which is, as mentioned above, subject to a debate
though).

In a larger context, our work may be viewed as an instance of the studies of
average-case complexity ([20], Chap. 10), which discusses “typical-case feasibil-
ity”. We are not aware of much work on the average-case complexity of problems
with hyper-exponential complexity.

6 Conclusion

We have shown that almost every simply-typed λ-term of order k has a β-
reduction sequence as long as (k − 2)-fold exponential in the term size, under
a certain assumption. To our knowledge, this is the first result of this kind for
typed λ-terms. A lot of questions are left for future work, such as (i) whether
our assumption (on the boundness of arities and the number of variables) is
reasonable, and how the result changes for different assumptions, (ii) whether our
result is optimal (e.g., whether almost every term has a k-fold exponentially long
reduction sequence), and (iii) whether similar results hold for Terui’s decision
problems [14] and/or the higher-order model checking problem [6].

Acknowledgment. We would like to thank anonymous referees for useful comments.
This work was supported by JSPS KAKENHI Grant Number JP15H05706.

68 R. Sin’ya et al.

References

1. Beckmann, A.: Exact bounds for lengths of reductions in typed lambda-calculus.
J. Symb. Logic 66(3), 1277–1285 (2001)

2. David, R., Grygiel, K., Kozic, J., Raffalli, C., Theyssier, G., Zaionc, M.: Asymp-
totically almost all λ-terms are strongly normalizing. Logical Method Comput. Sci.
9(2) (2013)

3. Grygiel, K., Lescanne, P.: Counting and generating lambda terms. J. Funct. Pro-
gram. 23(05), 594–628 (2013)

4. Bendkowski, M., Grygiel, K., Lescanne, P., Zaionc, M.: A natural counting of
lambda terms. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 183–194. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 15

5. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy.
In: Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 205–222.
Springer, Heidelberg (2002). doi:10.1007/3-540-45931-6 15

6. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS 2006, pp. 81–90. IEEE Computer Society Press (2006)

7. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009, pp. 25–36. ACM Press (2009)

8. Broadbent, C.H., Kobayashi, N.: Saturation-based model checking of higher-order
recursion schemes. In: Proceedings of CSL 2013, vol. 23, pp. 129–148. LIPIcs (2013)

9. Ramsay, S., Neatherway, R., Ong, C.H.L.: An abstraction refinement approach to
higher-order model checking. In: Proceedings of POpPL 2014 (2014)

10. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. ACM SIGPLAN Not. 44, 416–428 (2009). ACM Press

11. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. ACM SIGPLAN Not. 46, 222–233 (2011). ACM Press

12. Ong, C.H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. ACM SIGPLAN Not. 46, 587–598 (2011). ACM Press

13. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for
higher-order programs. In: Proceedings of PEpPM 2013, pp. 53–62. ACM Press
(2013)

14. Terui, K.: Semantic evaluation, intersection types and complexity of simply typed
lambda calculus. In: 23rd International Conference on Rewriting Techniques and
Applications (RTA 2012), vol. 15, pp. 323–338. LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2012)

15. Mairson, H.G.: Deciding ML typability is complete for deterministic exponential
time. In: POPL, pp. 382–401. ACM Press (1990)

16. Kfoury, A.J., Tiuryn, J., Urzyczyn, P.: ML typability is dexptime-complete. In:
Arnold, A. (ed.) CAAP 1990. LNCS, vol. 431, pp. 206–220. Springer, Heidelberg
(1990). doi:10.1007/3-540-52590-4 50

17. Sin’ya, R., Asada, K., Kobayashi, N., Tsukada, T.: Almost every simply typed λ-
term has a long β-reduction sequence (full version). http://www-kb.is.s.u-tokyo.
ac.jp/ryoma/papers/fossacs17full.pdf

18. Heintze, N., McAllester, D.: Linear-time subtransitive control flow analysis. ACM
SIGPLAN Not. 32, 261–272 (1997)

19. Flajolet, P., Sedgewick, R.: Analytic Combinatorics, 1st edn. Cambridge University
Press, New York (2009)

20. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge
University Press, Cambridge (2008)

http://dx.doi.org/10.1007/978-3-662-49192-8_15
http://dx.doi.org/10.1007/978-3-662-49192-8_15
http://dx.doi.org/10.1007/3-540-45931-6_15
http://dx.doi.org/10.1007/3-540-52590-4_50
http://www-kb.is.s.u-tokyo.ac.jp/ryoma/papers/fossacs17full.pdf
http://www-kb.is.s.u-tokyo.ac.jp/ryoma/papers/fossacs17full.pdf

	Almost Every Simply Typed -Term Has a Long -Reduction Sequence
	1 Introduction
	2 Main Result
	3 Analysis of n(,,)
	3.1 (,,) as a Regular Tree Language
	3.2 Irreducibility and Aperiodicity

	4 Proof of the Main Theorem
	4.1 Normalized Contexts
	4.2 Decomposition
	4.3 Explosive Context
	4.4 Proof Sketch of Theorem1

	5 Related Work
	6 Conclusion
	References

