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Abstract. We generalize the recursive path order (RPO) to higher-
order terms without A-abstraction. This new order fully coincides with
the standard RPO on first-order terms also in the presence of curry-
ing, distinguishing it from previous work. It has many useful properties,
including well-foundedness, transitivity, stability under substitution, and
the subterm property. It appears promising as the basis of a higher-order
superposition calculus.

1 Introduction

Most automatic reasoning tools are restricted to first-order formalisms, even
though many proof assistants and specification languages are higher-order.
Translations bridge the gap, but they usually have a cost. Thus, a recurrent
question in our field is, Which first-order methods can be gracefully extended to
a higher-order setting? By “gracefully,” we mean that the higher-order exten-
sion of the method is as powerful as its first-order counterpart on the first-order
portions of the input.

The distinguishing features of higher-order terms are that (1) they support
currying, meaning that an n-ary function may be applied to fewer than n argu-
ments, (2) variables can be applied, and (3) A-abstractions, written Az.t,, can
be used to specify anonymous functions z — t,. Iterated applications are writ-
ten without parentheses or commas, as in fab. Many first-order proof calculi
have been extended to higher-order logic, including resolution and tableaux, but
so far there exists no sound and complete higher-order version of superposition
[29], where completeness is considered with respect to Henkin semantics [4,18].
Together with CDCL(T) [17], superposition is one of the leading proof calculi
for classical first-order logic with equality.

To prune the search space, superposition depends on a term order, which
is fixed in advance of the proof attempt. For example, from p(a) and - p(z) V
p(f(z)), resolution helplessly derives infinitely many clauses of the form p(f'(a)),
whereas for superposition the literal p(f(z)) is maximal in its clause and blocks
all inferences. To work with superposition, the order must fulfill many require-
ments, including compatibility with contexts, stability under substitution, and
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totality on ground (variable-free) terms. The lexicographic path order (LPO)
and the Knuth-Bendix order (KBO) [3] both fulfill the requirements. LPO is a
special case of the recursive path order (RPO), which also subsumes the multiset
path order [38]. Suitable generalizations of LPO and KBO appear to be crucial
ingredients of a future higher-order superposition prover.

A simple technique to support currying and applied variables is to make all
symbols nullary and to represent application by a distinguished binary symbol
@. Thus, the higher-order term f(zf) is translated to ©(f, @(z,f)), which can
be processed by first-order methods. We call this the applicative encoding. As
for A-abstractions, in many settings they can be avoided using A-lifting [21] or
SK combinators [36]. A drawback of the applicative encoding is that argument
tuples cannot be compared using different methods for different function sym-
bols. The use of an application symbol also weakens the order in other ways
[25, Sect.2.3.1]. Hybrid schemes have been proposed to strengthen the encod-
ing: If a function f always occurs with at least k arguments, these can be passed
directly in an uncurried style—e.g., @(f(a, b), z). However, this relies on a closed-
world assumption—namely, that all terms that will ever be compared arise in
the input problem. This is at odds with the need for complete higher-order proof
calculi to synthesize arbitrary terms during proof search [4], in which a symbol f
may be applied to fewer arguments than anywhere in the problem. A scheme by
Hirokawa et al. [19] circumvents this issue but requires additional symbols and
rewrite rules.

Versions of RPO tailored for higher-order terms are described in the liter-
ature, including Lifantsev and Bachmair’s LPO on A-free higher-order terms
[27], Jouannaud and Rubio’s higher-order RPO (HORPO) [23], Kop and van
Raamsdonk’s iterative HORPO [26], the HORPO extension with polynomial
interpretation orders by Bofill et al. [12], and the computability path order by
Blanqui et al. [10], also a variant of HORPO. All of these combine uncurrying
and currying: They distinguish between functional arguments, which are passed
directly as a tuple to a function, and applicative arguments, which are optional.
Coincidence with the standard RPO on first-order terms is achieved only for
uncurried functions. Techniques to automatically curry or uncurry functions have
been developed, but they rely on the closed-world assumption. Moreover, the
orders all lack totality on ground terms; the HORPO variants also lack the sub-
term property, and only their (noncomputable) transitive closure is transitive.

We introduce a new “graceful” order >p, for untyped A-free higher-order
terms (Sect.3). It generalizes the first-order RPO along two main axes: (1) It
relies on a higher-order notion of subterm; (2) it supports terms with applied
variables—e.g., x b >, x a if b > a according to the underlying precedence > on
symbols. The order is parameterized by a family of abstractly specified extension
operators indexed by function symbols, allowing lexicographic, multiset, and
other extension operators. An optimized variant, >, coincides with >, under
a reasonable assumption on the extension operator. For comparison, we also
present the first-order RPO >¢, and its composition >,, with the applicative
encoding, both recast to our abstract framework.
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The A-free fragment is useful in its own right and constitutes a stepping
stone towards full higher order. Our new order operates exclusively on curried
functions while coinciding with the standard RPO on first-order terms. This was
considered impossible by Lifantsev and Bachmair [27]:

Pairs, or more generally tuples, allow one to compare the arguments of
different functions with greater flexibility. For instance, the arguments of
one function may be compared lexicographically, whereas in other cases
comparison may be based on the multisets of arguments. ... But since
function symbols are much more decoupled from their arguments in a
higher-order setting than in a first-order setting, the information needed
for different argument-comparison methods would be lost if one, say, just
curried all functions.

The order >, enjoys many useful properties (Sect.4). One property that is
missing is compatibility with a specific type of higher-order context: If 5" >p,
s, it is still possible that §'r #h, st. For example, if g = f = b > a, then
f(ga) >no g by the subterm property, but f(ga)b <u, gb by coincidence with
the first-order RPO [35]. Nonetheless, we expect the order to be usable for A-free
higher-order superposition, at the cost of some complications [13]. The proofs
of the properties were carried out in a proof assistant, Isabelle/HOL [31], and
are publicly available [7]. Informal proofs are included in this paper and in a
technical report [8].

Beyond superposition, the order can also be employed to prove termination
of higher-order term rewriting systems. Because it treats all functions as curried,
it differs from the other higher-order RPOs on many examples (Sect. 5), thereby
enriching the portfolio of methods available to termination provers.

Conventions. We fix a set ¥ of variables with typical elements z, y. A higher-
order signature consists of a nonempty set . of (function) symbols a,b,f, g, h,....
Untyped A-free higher-order (Z-)terms s,t,u € Ty, (= T) are defined inductively
by the grammar s::=xz | f | fu. These are isomorphic to applicative terms [24].

A term of the form tu is called an application. Non-application terms /,& €
> W vV are called heads. Terms can be decomposed in a unique way as a head
applied to zero or more arguments: £ 51 ... s,. This view corresponds to the first-
order, uncurried syntax £(s1,..., Sn), except that ¢ may always be a variable.

The size |s| of a term is the number of grammar rule applications needed
to construct it. The set of variables occurring in s is written vars(s). The set of
subterms of a term s always contains s; for applications ¢ u, it also includes all
the subterms of ¢ and u.

A first-order signature 3 extends a higher-order signature by associating an
arity with each symbol belonging to X. A first-order term is a term in which
variables are unapplied and symbols are applied to the number of arguments
specified by their arity. For consistency, we will use a curried syntax for first-
order terms.
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2 Extension Orders

Orders such as RPO depend on extension operators to recurse through tuples of
arguments. The literature is mostly concerned with the lexicographic and mul-
tiset orders [3,38]. We favor an abstract treatment that formulates requirements
on the extension operators. Beyond its generality, this approach emphasizes the
complications arising from the higher-order setting.

Let A* = |J;=, A’ be the set of tuples (or finite lists) of arbitrary length whose
components are drawn from a set A. We write its elements as (ay,...,a,), where
m > 0, or simply a. The empty tuple is written (). Singleton tuples are identified
with elements of A. The number of components of a tuple a is written |a|. Given
an m-tuple @ and an n-tuple b, we denote by a- b the (m + n)-tuple consisting of
the concatenation of @ and b.

Given a function h: A — A, we let h(a) stand for the componentwise appli-
cation of & to a. Abusing notation, we sometimes use a tuple where a set or
multiset is expected, ignoring the extraneous structure. Moreover, since all our
functions are curried, we write ¢ § for a curried application ¢ s ... s, without
risk of ambiguity.

Given a relation >, we write < for its inverse (i.e., a < b < b > a) and > for
its reflexive closure (i.e., b > a < b >aV b =a). A (strict) partial order is a
relation that is irreflexive (i.e., a ¥ a) and transitive (i.e.,¢c >b A b>a = ¢ > a).
A (strict) total order is a partial order that satisfies totality (i.e., b > aV a > b).
A relation > is well founded if and only if there exists no infinite chain of the
form ag >a; > -+ .

Let > C (A*)? be a family of relations indexed by a relation > C A2. For
example, > could be the lexicographic or multiset extension of >. The following
properties are essential for all the orders defined later, whether first- or higher-
order:

X1. Monotonicity: b > a implies b > a if b >1 a implies b >, a for all a, b;
X2. Preservation of stability:

b > a implies h(b) > h(a) if b > a implies h(b) > h(a) for all a, b;
X3. Preservation of transitivity: > is transitive if > is transitive;
X4. Preservation of irreflexivity: > is irreflexive if > is irreflexive and transitive;
X5. Preservation of well-foundedness: > is well founded if > is well founded;
X6. Compatibility with tuple contexts: b> a implies ¢-b-d > ¢-a-d.

Because the relation > will depend on > for its definition, we cannot assume
outright that it is a partial order, a fine point that is sometimes overlooked [38,
Sect. 6.4.2].

The remaining properties of > will be required only by some of the orders
or for some optional properties of >:

X7. Preservation of totality: > is total if > is total;

X8. Compatibility with prepending: b > a implies a - b > a - a;

X9. Compatibility with appending: b > a implies b-a > a - a;
X10. Minimality of empty tuple: a > ().
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We now define the extension operators and study their properties. All of
them are also defined for tuples of different lengths.

Definition 1. The lexicographic extension >>'e_X of the relation > is defined
recursively by () #' a, b-b >'* (), and b-b > a-a <& b>a VvV b =
aAb>'"a.

The reverse, or right-to-left, lexicographic extension is defined analogously.
Both operators lack the essential property X5. In addition, the left-to-right ver-
sion lacks X9, and the right-to-left version lacks X8. The other properties are
straightforward to prove.

Definition 2. The length-lezicographic extension slex of the relation > is
defined by b >"*a < |b| > |a| V |b| = |a| A b >"*a.

The length-lexicographic extension and its right-to-left counterpart satisfy
all of the properties listed above. We can also apply arbitrary permutations
on same-length tuples before comparing them lexicographically; however, the
resulting operators generally fail to satisfy properties X8 and X9.

Definition 3. The multiset extension >™ of the relation > is defined by b ™S
a< WXDAYCbAha=b-Y)WXAVxeX JycY y> x, where X,V
range over multisets, the tuples @, b are implicitly converted to multisets, and &
denotes multiset sum (the sum of the multiplicity functions).

The multiset extension, due to Dershowitz and Manna [16], satisfies all prop-
erties except X7. Huet and Oppen [20] give an alternative formulation that is
equivalent for partial orders > but exhibits subtle differences if > is an arbitrary
relation. In particular, the Huet—Oppen order does not satisfy property X3.

Finally, we consider the componentwise extension of relations to pairs of
tuples of the same length. For partial orders >, this order underapproximates
any extension that satisfies properties X3 and X6. It also satisfies all properties
except X7.

Definition 4. The componentwise extension > of the relation > is defined so
that (b1,...,b,) > (a1,...,ay,) ifand only if m =n, by > a1, ..., by > ay, and
b; > a; for some i € {1,...,m}.

3 Term Orders

This section presents four orders: the standard first-order RPO (Sect.3.1), the
applicative RPO (Sect. 3.2), our new A-free higher-order RPO (Sect. 3.3), and an
optimized variant of our new RPO (Sect. 3.4).
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3.1 The Standard First-Order RPO

The following definition is close to Zantema’s formulation [38, Definition 6.4.4]
but adapted to our setting. With three rules instead of four, it is more concise
than Baader and Nipkow’s formulation of LPO [3, Definition 5.4.12] and lends
itself better to a higher-order generalization.

Definition 5. Let = be a well-founded total order on %, and let >f C (7%)2 be
a family of relations indexed by > C T2 and by f € ¥ and satisfying properties
X1-X6. The induced recursive path order >g on first-order X-terms is defined
inductively so that t >, s if any of the following conditions is met, where t = g :

Fl. ¢ >¢ s for some term ¢’ € f;
F2. s =15, g~ f, and chkargs(t, 3);
F3. s=f5 f=g, r>f 5 and chkays(t, 5).

The auxiliary predicate cikarys(t, 5) is true if and only if  >¢, s’ for all terms s € 5.
The inductive definition is legitimate by the monotonicity of >f (property X1).

RPO is a compromise between two design goals. On the one hand, rules F2
and F3, which form the core of the order, attempt to perform a comparison of
two terms by first looking at their heads, proceeding recursively to break ties.
On the other hand, rule F1 ensures that terms are larger than their proper
subterms and, transitively, larger than terms smaller than these. The chkargs
predicate prevents the application of F2 and F3 when F1 is applicable in the
other direction, ensuring irreflexivity.

The more recent literature defines RPO somewhat differently: Precision is
improved by replacing recursive calls to >¢, with a nonstrict quasiorder =, and
by exploiting a generalized multiset extension [14,33]. These extensions are useful
but require substantial duplication in the definitions and the proofs, without
yielding much new insight into orders for higher-order terms.

3.2 The Applicative RPO

Applicative orders are built by encoding applications using a binary symbol @
and by employing a first-order term order. For RPO, the precedence > must be
extended to consider @. A natural choice is to make @ the least element of >.
Because @ is the only symbol that may be applied, >© is the only member
of the > family that is relevant. This means that it is impossible to use the
lexicographic extension for some functions and the multiset extension for others.

Definition 6. Let ¥ be a higher-order signature, and let ¥’ = X & {@} be a
first-order signature in which all symbols belonging to ¥ are assigned arity 0
and @ is assigned arity 2. The applicative encoding [] : Ts — Tx/ is defined
recursively by the equations [{] = ¢ and [s#] = @ [s] [7].

Assuming that @ has the lowest precedence, the composition of the first-order
RPO with the encoding [ ] can be formulated directly as follows.
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Definition 7. Let = be a well-founded total order on %, and let > C (7*)? be
a family of relations indexed by > C 72 and satisfying properties X1-X6. The
induced applicative recursive path order >,, on higher-order ¥-terms is defined
inductively so that t >, s if any of the following conditions is met:

Al. t=1 1o and either t; >,, s or f2 >,, s (or both);

A2. t=g>f=y;

A3. =g, s = 51 52, and chKkargs(t, 51, 52);

Ad. =1 ta, § = §1 S92, (ll,tg) >ap (Sl,SQ), and Cﬁ@l?ys(l, Sl,SQ).

The predicate chkargs(t, s1, s2) is true if and only if £ >,, 51 and ¢ >,p s2.

3.3 A Graceful Higher-Order RPO

Our new “graceful” higher-order RPO is much closer to the first-order RPO than
the applicative RPO. It reintroduces the symbol-indexed family of extension
operators and consists of three rules H1-H3 corresponding to F1-F3.

The order relies on a mapping ghd from variables to nonempty sets of possible
ground heads that may arise when instantiating the variables. This mapping is
extended to symbols f by taking ghd(f) = {f}. A substitution o : ¥V — Tis
said to respect the ghd mapping if for all variables z, we have ghd({) C ghd(x)
whenever zo = ¢ 5. This mapping allows us to restrict instantiations, typically
based on a typing discipline, and thereby increase the applicability of rules H2
and especially H3. Precedences > are extended to variables by taking y > =z <
Vg € ghdly), f € ghd(z). g = f.

Definition 8. Let = be a well-founded total order on %, let »>f C (7%)2 be a
family of relations indexed by > C 72 and by f € ¥ and satisfying properties
X1-X6 and X8, and let ghd : ¥V — P(X) — {0@}. The induced graceful recursive
path order >p, on higher-order Y-terms is defined inductively so that ¢t >y, s if
any of the following conditions is met, where s = ¢ 5 and t = ¢ F:

H1. t =t t5 and either 1 >}, s Or t3 >ho s (0r both);
H2. &> ¢, vars(t) D vars({), and chksubs(t, s);
H3. ¢ =¢, t>f_ 5 for all symbols f € ghd(¢), and chksubs(t, s).

The predicate ciksubs(t, s) is true if and only if term s is a head or an application
of the form s1 so with 7 >0 51 and ¢ >y, $2.

There are two main novelties compared with >¢. First, rule H1 and the
chksubs predicate traverse subterms in a genuinely higher-order fashion. Second,
rules H2 and H3 can compare terms with variable heads.

Property X8, compatibility with prepending, is necessary to ensure stability
under substitution: If z b >, x a, we want f5b >, f5a to hold as well.

Example 9. It is instructive to contrast our new order with the applicative
order by studying a few small examples. Let h = g > f = b > a, let > be
the length-lexicographic extension (which degenerates to the plain lexicographic
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extension for >,,), and let ghd{x) = X for all variables z. Sect. 1 already presented
a case where >n, and >,, disagree: gb >h, f(ga)b but gb <, f(ga)b. Other
disagreements include

gf>ho fgf gf>ho fg(fg) g£g8>ho fgg g (fh) >no fh(fh)

and ggg (f(g(ggg))) > g(ggg) (ggg). For all of these, the core rules H2 and
H3 are given room for maneuver, whereas >,, must consider subterms using Al.
In the presence of variables, some terms are comparable only with >, or only
with >,p:

gr > fra gxr > frg fry>pzy zf(zf)>pfa

To apply rule A4 on the first example, we would need (g, z) >>'ae; (fz,z), but
the term g cannot be larger than fz since it does not contain z. The last two
examples reveal that the applicative order tends to be stronger when either side
is a variable applied to some arguments—at least when ghd is not restricting the
variable instantiations.

3.4 An Optimized Variant of the Graceful Higher-Order RPO

The higher-order term f a b has four proper subterms: a, b, f, and f a. In contrast,
the corresponding first-order term, traditionally written f(a,b), has only the
arguments a and b as proper subterms. In general, a term of size k has up to
k —1 distinct proper subterms in a higher-order sense but only half as many in a
first-order sense. By adding a reasonable requirement on the extension operator,
we can avoid this factor-of-2 penalty when computing the order.

Definition 10. Let = be a well-founded total order on %, let >f C (7%)? be a
family of relations indexed by > C 72 and by f € ¥ and satisfying properties
X1-X6, X8, and X10, and let ghd : ¥V — P(X) — {0}. The induced optimized
graceful recursive path order >, on higher-order Y-terms is defined inductively
so that t >y, s if any of the following conditions is met, where s = sand t = & +¢:

Ol. ¢ >op s for some term ¢ € 1
02. & = ¢, vars(t) 2 wvars({), and chkargs(t, 5);
03. ¢ =¢, t>f, 5 for all symbols f € ghd({), and chkarys(t, 5).

The predicate chikarys(z,s) is true if and only if ¢ >4, s for all terms s’ € 5.

The optimized >., depends on the same parameters as >, except that it
additionally requires minimality of the empty tuple (property X10). In con-
junction with compatibility with prepending (X8), this property ensures that
a-a>"a. As aresult, f5s is greater than its subterm f §, relieving rule O1 from
having to consider such subterms.

Syntactically, the definition of >,, generalizes that of the first-order >f,.
Semantically, the restriction of >,, to first-order terms coincides with >.
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The requirements X8 and X10 on > can be made without loss of generality
in a first-order setting.

The quantification over f € ghd({) in rule O3 can be inefficient in an imple-
mentation, when different symbols in ghd(¢) disagree on which > to use. We could
generalize the definition of >, further to allow underapproximation, but some
care would be needed to ensure transitivity. A simple alternative is to enrich all
sets ghd({) that disagree on > with a distinguished symbol for which the com-
ponentwise extension is used. Since this extension operator is more restrictive
than any other ones, whenever it is present in a set ghd({) there is no need to
compute the other ones.

4 Properties

We now state and prove the main properties of our RPO. We focus on the general
variant >, and show that it is equivalent to the optimized variant >., (assuming
property X10). Many of the proofs are adapted from Baader and Nipkow [3] and
Zantema [38].

Lemma 11. If t >4, 5, then vars(t) D vars(s).

As a consequence of Lemma 11, the condition wvars(r)
could be written equivalently (but less efficiently) as vars(r)

D wars({) of rule H2
D vars(s).

Theorem 12 (Transitivity). If u >no t and t >po s, then u >pe s.

Proof. By well-founded induction on the multiset {|s|, |t
the multiset extension of > on N.

If u >, t was derived by rule H1, we have u = uy us and u; >po t for some k.
Since t >ho s by hypothesis, u; >po s follows either immediately (if ux = 7) or by
the induction hypothesis (if ux >ho ). We get u >po s by rule H1.

Otherwise, u >, t was derived by rule H2 or H3. The cfiksubs condition ensures
that u is greater than any immediate subterms of 7. We proceed by case analysis
on the rule that derived ¢ >}, s.

If t >ho s was derived by H1, we have t = f; o and #; >p, s for some j. We
already noted that u >po ; thanks to chAksubs(u,t). In conjunction with £ >, s,
we derive u >po s either immediately or by the induction hypothesis.

Otherwise, t >, s was derived by rule H2 or H3. The chAksubs condition ensures
that ¢ is greater than any immediate subterms of s. We derive u >y, s by applying
H2 or H3. We first prove chksubs(u, s). The only nontrivial case is s = 51 s2. Using
U >no t, We get u >n, 51 and u >po s2 by the induction hypothesis.

If both u >po t and t >, s were derived by rule H3, we apply H3 to derive
U >ho 5. This relies on the preservation by >f  of transitivity (property X3) on
the set consisting of the argument tuples of s, ¢, u. Transitivity of >, on these
tuples follows from the induction hypothesis. Finally, if either u >p, t or f >0 s
was derived by rule H2, we apply H2, relying on the transitivity of > and on
Lemma 11. a

u|} with respect to

s
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Theorem 13 (Irreflexivity). s ¥, s.

Proof. By strong induction on |s|. We assume s >, s and show that this leads
to a contradiction. If s >, s was derived by rule H1, we have s = s1 so with
Si ~ho § for some i. Since a term cannot be equal to one of its proper subterms,
the comparison is strict. Moreover, we have s >, s; by rule H1. Transitivity
yields s; >ho s;, contradicting the induction hypothesis. If s >, s was derived
by rule H2, the contradiction follows immediately from the irreflexivity of >.
Otherwise, s >, s was derived by rule H3. Let s = ¢'5. We have § >>{]o s for all
f € ghd({) # 0. Since > preserves irreflexivity for transitive relations (property
X4) and >p, is transitive (Theorem 12), there must exist a term s’ € § such that
s’ >po 8. However, this contradicts the induction hypothesis. O

By Theorems 12 and 13, >}, is a partial order. In the remaining proofs, we
will often leave applications of these theorems (and of antisymmetry) implicit.

Theorem 14 (Subterm Property). Ifs is a proper subterm of t, then t >po .
Proof. By structural induction on ¢, exploiting rule H1 and transitivity of >,,. O

The first-order RPO satisfies compatibility with Y-operations. A slightly
more general property holds for >pe:

Theorem 15 (Compatibility with Functions). Ift >, t, then st u >p,
stu.

Proof. By induction on the length of #. The base case, u = (), follows from rule
H3, compatibility of > with tuple contexts (property X6), and the subterm
property (Theorem 14). The step case, i = &’ - u, also follows from rule H3 and
compatibility of >f with contexts. The chksubs(st' @ u, st @' u) condition follows
from the induction hypothesis and the subterm property. a

A related property, compatibility with arguments, is useful to rewrite sub-
terms such as fa in fab using a rewrite rule f x — 7,. Unfortunately, >, does
not enjoy this property: s’ >, s does not imply s’ ¢ >, s . Two counterexamples
follow:

1. Given g > f, we have fg >, g by rule H1, but fgf <,, g f by rule H2.
2. Let f = b > a, and let > be the lexicographic extension. Then fa >y, f by
rule H3, but fa b <, fb also by rule H3.

The second counterexample and similar ones involving rule H3 can be excluded
by requiring that > is compatible with appending (property X9), which holds
for the length-lexicographic and multiset extensions. But there is no way to
rule out the first counterexample without losing coincidence with the first-order
RPO.

Theorem 16 (Compatibility with Arguments). Assume that >f is com-
patible with appending (property X9) for every symbol f € X. If s’ >po s is
derivable by rule H2 or H3, then s’ t >po st.
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Proof. If s’ >pe s is derivable by rule H2, we apply H2 to derive st >, st.
To show chksubs(s' t, s t), we must show that s't >, s and s’ ¢ >, ¢. Both are
consequences of the subterm property (Theorem 14), together with s" >y, s.

If s’ >, s is derivable by rule H3, we apply H3 to derive s’ t >, st. The
condition on the variables of the head of s’ ¢ can be shown by exploiting the
condition on the variables of the head of s’. The chksubs condition is shown as
above. The condition on the argument tuples follows by property X9. O

Theorem 17 (Stability under Substitution). If >y, s, then to- >ho so for
any substitution o that respects the mapping ghd.

Proof. By well-founded induction on the multiset {|s|, |¢|} with respect to the
multiset extension of > on N.

If t >ho 5 was derived by rule H1, we have t = #; £, and t; >}, s for some j.
By the induction hypothesis, tjo >y, so. Hence, to- >, so by rule HI.

If t >h s was derived by rule H2, we have s = 5§, r = &1, € = £, and
chksubs(t, s). We derive to- >h, so- by applying H2. Since o respects ghd, we have
o > (0. From t >h, s, we have wars(t) 2 wars(s) by Lemma 11 and hence
vars(tor) 2 vars(so”) D wars(é0). To show chksubs(to, so), the nontrivial cases are
s =z and is s = 51 s9. If s = z, then s must be a subterm of r by Lemma 11,
and therefore so is a subterm of to~. Thus, we have fo- >, so by the subterm
property (Theorem 14), from which it is easy to derive ciksubs(to, so), as desired.
If s = 5152, we get t >ho 51 and t >po 52 from chiksubs(z, s). By the induction
hypothesis, to >y, 510 and t >y, s207, as desired.

If t >po s was derived by rule H3, we have s = 5, t = (¢, >>f10 s for all
f € ghd({), and chaksubs(t, s). We derive to- >, so by applying H3. Clearly, so and
to- have the same head. The chiksubs(to, so-) condition is proved as for rule H2
above. Finally, we must show that 7o >f_ 50 for all f € ghd(¢’), where (o = {'u
for some i. Since o respects ghd, we have ghd({') C ghd({); hence, f >f 5 for
all f € gad({’). By the induction hypothesis, ' >, s" implies o >, §'o for all
s, € 5§ U f. By preservation of stability (property X2), we have fo >{_ 50. By
compatibility with prepending (property X8), we get u-fo >>f]0 u-so, as required
to apply H3. a

Theorem 18 (Well-foundedness). There exists no infinite descending chain
S0 Zho 1 >ho """ -

Proof. We assume that there exists a chain sq >po §1 >ho - -+ and show that this
leads to a contradiction. If the chain contains nonground terms, we can instan-
tiate all variables by arbitrary terms respecting ghd and exploit stability under
substitution (Theorem 17). Thus, we may assume without loss of generality that
the terms sg, 51, ... are ground.

We call a ground term bad if it belongs to an infinite descending >po-chain.
Without loss of generality, we assume that sy has minimal size among all bad
terms and that s;;; has minimal size among all bad terms 7 such that s; >y, 7.

For each index i, the term s; must be of the form fu; ... u, for some
symbol f and ground terms ug,...,u,. Let U; = () if n = 0; otherwise, let
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U = {w,...,up, fur - -uy,—1}. Now let U = Uzo U;. All terms belonging to
U are good: A term from Up’s badness would contradict the minimality of sq;
and if a term u € U;y; were bad, we would have s;11 >ho, u by rule H1 and
§; >ho U by transitivity, contradicting the minimality of s;;1.

Next, we show that the only rules that can be used to derive s; >, si+1 are
H2 and H3. Suppose H1 were used. Then there would exist a good term u € U;
such that u >ho Sit1 >ho Si+2. This would imply the existence of an infinite chain
U >ho Si+2 >ho Si+3 >ho - - -, contradicting the goodness of u.

Because > is well founded and H3 preserves the head symbol, rule H2 can
be applied only a finite number of times in the chain. Hence, there must exist
an index k such that s; >po si41 is derived using H3 for all i > k. Consequently,
all terms s; for i > k share the same head symbol f.

Let s; = fu; for all i > k. Since H3 is used consistently from index k, we have
an infinite >>f]o—chain: Uy, >>‘;10 U1 >>f10 Ugt-2 >>f10 --+. But since U contains only
good terms and comprises all terms occurring in some argument tuple u;, >po is
well founded on U. By preservation of well-foundedness (property X5), >>LO is
well founded. This contradicts the existence of the above >{ _-chain. O

Theorem 19 (Ground Totality). Assume > preserves totality (property X7)
for every symbol f € 33, and let s,t be ground terms. Then eithert >po s ort <po S.

Proof. By strong induction on |s| + |¢|. If not chiksubs(z,s), then t #p, s1 and
t #ho s2 for s = 51 52. By the induction hypothesis, s1 >po f and so >y, t. Thus,
§ >po ¢t by rule H1. Analogously, if not chksubs(s,t), then ¢ >, s. Hence, we may
assume chksubs(t, s) and chiksubs(s,1). Let s =fsand r =gt. If g~ for g < f, we
have t >, s Or § >, ¢ by rule H2. Otherwise, f = g. By preservation of totality
(property X7), we have either 7 >{ 5, 7 <{ 5 or § =17 In the first two cases,
we have t >, s Or f <po s by rule H3. In the third case, we have s = t. |

Having now established the main properties of >, we turn to the correspon-
dence between >}, its optimized variant >g,, and the first-order RPO >¢,.

Lemma 20. (1) If u>on t and t >op 8, then u >op 5. (2) st >0p 5.

Theorem 21 (Coincidence with Optimized Variant). Let >,, and >op
be orders induced by the same precedence = and extension operator family >
(which must satisfy property X10 by the definition of >on). Then t >no s if and
only if t>p s.

Proof. By strong induction on |s| + |¢|. The interesting implication is # >p, s =
t >oh S.

If t >ho s was derived by rule H1, we have t = ; f; and t; >}, s for some j.
Hence #; >, s by the induction hypothesis, and ¢ >on #; by Lemma 20(2) or rule
O1. We get t >4 s either immediately or by Lemma 20(1).

If t >0 s was derived by rule H2, we derive t >, s by applying O2. We must
show that chksubs implies chikaygs. We have s = s1 59 with t >po 51 and ¢ >po so.
Let s = ¢ 5s9. We must show that 7 >o, s" for all &' € 5 U {s2}. If s’ = sq,
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we have 1 >, so immediately. Otherwise, from ¢ >, s1, we have >, s’ by
the subterm property (Theorem 14). In both cases, we get cfikargs(z,5) by the
induction hypothesis.

If t >, s was derived by rule H3, we derive t >,, s by applying O3. The
chkarygs(t, 5) condition is proved as in the H2 case. From 7 >{ 5, we derive 7 >{, §
by the induction hypothesis and monotonicity of >f (property X1). O

Corollary 22 (Coincidence with First-Order RPO). Let >,, and >¢ be
orders induced by the same precedence > and extension operator family > sat-
isfying minimality of the empty tuple (property X10). Then >po and >¢ coincide
on first-order terms.

5 Examples

Although our motivation was to design a term order suitable for higher-order
superposition, we can use >p, (and >p) to show the termination of A-free higher-
order term rewriting systems or, equivalently, applicative term rewriting systems
[24]. We present a selection of examples of how this can be done, illustrating the
strengths and weaknesses of the order in this context. Many of the examples
are taken from the literature. Since >, coincides with the standard RPO on
first-order terms, we consider only examples featuring higher-order constructs.

To establish termination of a term rewriting system, a standard approach is
to show that all of its rewrite rules t — s can be oriented as t > s by a single
reduction order: a well-founded partial order that is compatible with contexts
and stable under substitutions. Regrettably, >y, is not a reduction order since
it lacks compatibility with arguments. But the conditional Theorem 16 is often
sufficient in practice. Assuming that the extension operator is compatible with
appending (property X9), we may apply H2 and H3 to orient rewrite rules.
Moreover, we may even use H1 for rewrite rules that operate on non-function
terms; supplying an argument to a non-function would violate typing. To identify
non-functions and to restrict instantiations, we assume that terms respect the
typing discipline of the simply typed A-calculus. Together, property X9 and the
restriction on the application of H1 achieve the same effect as p-saturation [19].

For simplicity, the examples are all monolithic, but a modern termination
prover would use the dependency pair framework [2] to break down a large
term rewriting system into smaller components that can be analyzed separately.
Unless mentioned otherwise, the RPO instances considered employ the length-
lexicographic extension operator. We consistently use italics for variables and
sans serif for symbols

Example 23. Consider the following term rewriting system:
insert (f n) (image f A) = image f (insert n A) square n — timesn n

Rule 1 captures a set-theoretic property: {f(n)} U f[A] = f[{n} U A]. We
can prove termination using >p.: By letting insert > image and square > times,
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both rules can be oriented by H2. In contrast, rule 2 is beyond the reach of the
applicative order >,, for the same reason that gz ¥, fz z in Example 9. The
system is also beyond the scope of the uncurrying approach of Hirokawa et al.
[19] because of the variable application f n.

Example 24. The following system specifies a map function on an ML-style
option type equipped with two constructors, None and Some:

omap f None — None omap f (Some n) = Some (f n)

To establish termination, it would appear that it suffices to apply H2 to orient
both rules, using a precedence such that omap >~ None, Some. However, a closer
inspection reveals that the cAksubs condition blocks the application of H2 to orient
rule 2: We would need omap f (Some n) >h, f n, which cannot be established
without further assumptions. With a typing discipline that distinguishes between
options and other data, f cannot be instantiated by a term having omap as its
head. Thus, we can safely restrict ghd(f) to ¥ — {omap} and assign the highest
precedence to omap. We then have omap f (Some n) >, f n by H2, as required
to orient rule 2.

The above example suggests a general strategy for coping with variables that
occur unapplied on the left-hand side of a rewrite rule and applied on the right-
hand side.

Example 25. The next system is taken from Lysne and Piris [28, Example 5],
with an additional rule adapted from Lifantsev and Bachmair [27, Example 6]:

iter f n Nil

iter f n (Cons m ms)

n sum ms iter plus 0 ms

1 3
— —
2 iterf (f nm) ms itertimes1ms — prod ms

The iter function is a general iterator on lists of numbers. Reasoning about the
types, we can safely take ghd(f) = ¥ — {iter,sum}. By letting sum > iter and
ensuring that iter is greater than any other symbol, rule 1 can be oriented by
H1, rule 2 can be oriented by H3, and rules 3 and 4 can be oriented by H2. The
application of H1 is legitimate if numbers are distinguished from functions.

Example 26. The following rules are taken from Jouannaud and Rubio [22,
Sect. 4.2]:

fmap z Nil — Nil fmap z (Cons f fs) — Cons (f z) (fmap z fs)

The fmap function applies each function from a list to a value z and returns the
list of results. The typing discipline allows us to take ghd(f) = ¥ — {fmap}. By
making fmap greater than any other symbol, both rules can be oriented by H2.

Example 27. The next system is from Toyama [35, Example 4]:

ite true xs ys L ozs filter ¢ Nil 2 Nil

ite false zs ys = ys filter ¢ (Cons z zs) — ite (q z) (Cons z (filter ¢ zs)) (filter q zs)
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The typing discipline allows us to take ghd{q) = ¥ — {filter}. Given filter > f for all
fe X, rules 1 and 2 can be oriented by H1, and rules 3 and 4 can be oriented by
H2. The application of H1 is legitimate if lists are distinguished from functions.

Example 28. Sternagel and Thiemann [32, Example 1] compare different
approaches to uncurrying on the following system:

minus0 = KO Kmn > m
minus m 0 = m map f Nil % Nil

minus m m = 0 map f (Cons m ms) — Cons (f m) (map f ms)

minus (Sm) (Sn) - minusmn

The minus function implements subtraction on Peano numbers, whereas map
applies a function elementwise to a finite list. We establish termination by
employing >, with a precedence such that minus > K,0 and map > Cons.
Rules 2, 5, and 6 are oriented by H1; rules 1, 3, and 7 are oriented by H2; and
rule 4 is oriented by H3. The application of H1 is legitimate if numbers and lists
are distinguished from functions.

Example 29. Lifantsev and Bachmair [27, Example 8] define a higher-order
function that applies its first argument twice to its second argument: twice f £ —
f (f z). This rewrite rule is problematic in our framework, because we cannot
rely on the typing discipline to prevent the instantiation of f by a term with
twice as its head. Indeed, twice (twice S) is a natural way to specify the function

2 S(S(S(Sx))).

Example 30. Toyama’s recursor specification [35, Example 6] exhibits the same
limitation in a more general context:

recnf0 — n recnf(Sm) — f(Sm) (recn fm)
Example 31. Let gid(f) = ghd(g) = {prod}, and consider the system
plusOm = m plus(Sm)n = plusm (Sn) fprod > f f(gm) > fmyg

These rules can be used to simplify nested prod terms; for example:
prod (prod ab) = prod b (prod a) = prod b a prod <> prod ba. The >, order can
be employed by taking >P°? to be the multiset extension and by relying on
typing to orient rule 1 with H1. The applicative order >,, fails because a combi-
nation of lexicographic and multiset extensions is needed to orient rules 2 and 4.
The uncurrying approach of Hirokawa et al. [19] also fails because of the applied
variables on the left-hand side of rule 4.

Carsten Fuhs, a developer of the AProVE termination prover, generously
offered to apply his tool to our examples, expressed as untyped applicative term
rewriting systems. Using AProVE’s web interface with a 60 s time limit, he could
establish the termination of Examples 23, 24, 28, 29, and 31. The tool timed out
for Examples 25-27 and 30. For Example 31, the tool found a complex proof
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involving several applications of linear polynomial interpretations, dependency
pairs, and 2 X 2 matrix interpretations (to cope with rule 4). Although our focus
is on superposition, it would be interesting to implement the new RPO in a
tool such as AProVE and to conduct a more systematic evaluation on standard
higher-order termination benchmarks against higher-order termination provers
such as THOR [12] and WANDA [25].

6 Discussion

Rewriting of A-free higher-order terms has been amply studied in the literature,
under various names such as applicative term rewriting [24] and simply typed
term rewriting [37]. Translations from higher-order to first-order term rewriting
systems were designed by Aoto and Yamada [1], Toyama [35], Hirokawa et al.
[19], and others. Toyama also studied S-expressions, a formalism that regards
((fa)b) and (fab) as distinct. For higher-order terms with A-abstraction, var-
ious frameworks have been proposed, including Nipkow’s higher-order rewrite
systems [30], Blanqui’s inductive data type systems [9], and Kop’s algebraic
functional systems with metavariables [25]. Kop’s thesis [25, Chapter 3] includes
a comprehensive overview.

When designing our RPO >y, we aimed at full coincidence with the first-
order case. Our goal is to gradually transform first-order automatic provers into
higher-order provers. By carefully generalizing the proof calculi and data struc-
tures, we aim at designing provers that behave like first-order provers on first-
order problems, perform mostly like first-order provers on higher-order problems
that are mostly first-order, and scale up to arbitrary higher-order problems.

The simplicity of >y, fails to do justice to the labor of exploring the design
space. Methodologically, the use of a proof assistant [31] equipped with a model
finder [6] and automatic theorem provers [5] was invaluable for designing the
orders, proving their properties, and carrying out various experiments. As one
example among many, at a late stage in the design process, we generalized the
rules H2 and O2 to allow variable heads. Thanks to the tool support, which keeps
track of what must be changed, it took us less than one hour to adapt the main
proofs and convince ourselves that the new approach worked, and a few more
hours to complete the proofs. Performing such changes on paper is a less reliable,
and less satisfying, enterprise. Another role of the formal proofs is to serve as
companions to the informal proofs, clarifying finer points. Term rewriting lends
itself well to formalization in proof assistants, perhaps because it requires little
sophisticated mathematics beyond well-founded induction and recursion. The
CoLoR library by Blanqui and Koprowski [11], in Coq, the CiME3 toolkit by
Contejean et al. [15], also in Coq, and the IsaFoR library by Thiemann and
Sternagel [34], in Isabelle/HOL, have already explored this territory, providing
formalized metatheory but also certified termination and confluence checkers.

The >p, order is in some ways less flexible than the hybrid curried—uncurried
approaches, where the currying is one more parameter that can be adjusted.
In exchange, it raises the level of abstraction, by providing a uniform view of
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higher-order terms, and it works in the open-world setting of higher-order proof
search. For example, consider the proof obligation 3g. Vz, y. gz y = fy z and
the SK combinator definitions Vz,y. Kz y = z and Vz,y,2. Sz yz =22 (y 2). A
prover will need to synthesize the witness S (K (Sf)) K, representing Az y. fy z,
for the existential variable g. A hybrid approach such as HORPO might infer
arity 2 for f based on the problem, but then the witness, in which f appears
unapplied, cannot be expressed.

An open question is whether it is possible to design an order that largely
coincides with the first-order RPO while enjoying compatibility with arbitrary
contexts. This could presumably be achieved by weakening rule H1 and strength-
ening the chksubs condition of H2 and H3 accordingly; so far, our attempts have
resulted only in a rediscovery of the applicative RPO.

For superposition, richer type systems would be desirable. These could be
incorporated either by simply ignoring the types, by encoding them in the terms,
or by generalizing the order. Support for A-abstraction would be useful but chal-
lenging. Any well-founded order enjoying the subterm property would need to
distinguish S-equivalent terms, to exclude the cycle a =4 (Az. a) (fa) > fa > a.
We could aim at compatibility with S-reduction, but even this property might be
irrelevant for higher-order superposition. It might even be preferable to avoid A-
abstractions altogether, by relying on SK combinators or by adding new symbols
and their definitions during proof search.
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