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Abstract. The paper studies continuous-time Markov chains (CTMCs)
as transformers of real-valued functions on their state space, consid-
ered as generalised predicates and called observables. Markov chains
are assumed to take values in a countable state space S; observables
f: S — R may be unbounded. The interpretation of CTMCs as trans-
formers of observables is via their transition function P;: each observable
f is mapped to the observable P;f that, in turn, maps each state x to
the mean value of f at time ¢ conditioned on being in state = at time 0.
The first result is computability of the time evolution of observables,
i.e., maps of the form (¢, f) — P f, under conditions that imply existence
of a Banach sequence space of observables on which the transition func-
tion P; of a fixed CTMC induces a family of bounded linear operators
that vary continuously in time (w.r.t. the usual topology on bounded
operators). The second result is PTIME-computability of the projec-
tions t+— (P, f)(x), for each state z, provided that the rate matrix of the
CTMC X is locally algebraic on a subspace containing the observable f.
The results are flexible enough to accommodate unbounded observ-
ables; explicit examples feature the token counts in stochastic Petri nets
and sub-string occurrences of stochastic string rewriting systems. The
results provide a functional analytic alternative to Monte Carlo simu-
lation as test bed for mean-field approximations, moment closure, and
similar techniques that are fast, but lack absolute error guarantees.

1 Introduction

Stochastic processes are currently a very active research topic in computer
science and they have been studied avidly in mathematics, even prior to
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Kolmogorov’s axiomatic approach to probability. For the special case of
continuous-time Markov chains (CTMCs), we shall study how they act on func-
tions from their state space to the reals, which we call observables, alluding to
measurement of observable quantities of states. In analogy to predicate trans-
former semantics [Koz83], observables are considered as generalised predicates
that Markov chains transform over time, thus leading to observations that evolve
continuously in time. The principal question is how to compute the time evolu-
tion of observables.

On computability of time-dependent observations. The following scenario intro-
duces the basic concepts and leads to the core questions of computability. Sup-
pose, we want to compute the mean E[f(X})] of an observable f on a CTMC X,
with denumerable state space. However, initially, we are given only a specifi-
cation of its dynamics, say, by a finite model that determines the transition
function Py, i.e., the matrix of probabilities p; », to jump from state z to state
y during a time interval of length ¢; the initial distribution, i.e., the distribution
7 of Xg, will be available only much later.

As we do not know the initial distribution in advance, we want to split
the computation of the mean E[f(X¢)] = >,  7(2)ptqyf(y) into a first phase
in which we compute conditional means E,(f(X;)) = E[f(X;) | Xo = 2] =
Zy Droyf(y) for a sufficiently large, but finite set of possible initial states x
and a second phase for integration w.r.t. the initial distribution 7. The two core
questions for an approximation of the mean E[f(X})] to desired precision € > 0
using the described two phase approach are: Is it actually possible to restrict to
a finite set of initial states x that we need to consider? If so, can we compute
the conditional means E,(f(X:)) = >_, Pt.oyf(y) w.r.t. these states to sufficient
precision?

We want to condense these two questions into a single computability ques-
tion. For this, we first congregate the conditional means E,(f(X};)) into a single
observable P;f with P.f(x) = E,(f(X})); then, fixing a suitable Banach space
of observables, it makes sense to ask for an approximation of P;f to precision
€. Finally, employing the framework of type 2 theory of effectivity, we can sim-
ply ask if the observable P, f is computable. We go one step further and study
computability of the time evolution of these observables.

Ezxamples. For motivation, we give two paradigmatic examples of transient
means of the form E[f(X;)]. The first example of a stochastic process of the
form f(X;), i.e., a pair of a CTMC X; and an observable f, is the classic CTMC
model of a set of chemical reactions where states are multisets over a finite set
of species with the count of a certain chemical species as observable; thus, we
are interested in the time evolution of the mean count of a certain species.

An example native to computer science is the stochastic interpretation of
any string rewriting system as a CTMC X;. An obvious class of observables for
string rewriting are functions that count the occurrence of a certain word as sub-
string in each state of the CTMC X;; note that this is different from counting
“molecules” as there is always only a single word! For example, consider the
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string rewriting system with the single rule a — aba and initial state a: the
mean occurrence count of the letter a grows as the exponential function e while
the mean occurrence count of the word aa is zero at all times; adding the rule
ba — ab does not change the mean a-count but renders the mean count of the
word aa non-trivial.

Note that these two classes of models are only the most basic types of rule-
based models, besides more powerful examples such as Kappa models [DFF+10]
and stochastic graph transformation [HLMO06].! The results of this paper are
independent of any particular modelling language for CTMCs.

Finite state case. For the sake of clarity, let us describe explicitly the objects
that we would manipulate and compute in the basic case where the CTMC has
a finite state space. The dynamics of a continuous-time Markov chain on a finite
state space S is entirely captured by its ¢-matrix, which is an S x S-indexed
real matrix in which every row sums to zero and all negative entries lie on the
diagonal. Every ¢g-matrix @ induces a matrix semigroup t+— P, = e'? which is
exactly the transition function of the CTMC where €@ is the matrix exponential
of tQ). Viewing a distribution 7 on S as a row vector, the map ¢ +— 7w P, describes
the time evolution of the distribution over states at time ¢ starting from the
initial distribution 7 at time 0. In particular, if X, is distributed according to
m, the associated CTMC X, is distributed according to mP;. Dually, for any
function f: S — R (seen as a column vector), P;f is the vector of conditional
means E,(f(X;)) of f at time ¢t as a function of the initial state z. As said
before, the time evolution of observables in the CTMC with g-matrix @, i.e., the
map t+— P, f, is the main object of interest for the present paper; the principal
question is whether it is computable.

For the finite state case, computability of ¢+— P, f is trivial, assuming f is
computable and the g-matrix consists of rational entries. Here, computability
is in the sense of type 2 theory of effectivity (TTE), which for the function
t+— P,f means that there are approximation schemes for all coordinates P; f(x)
to arbitrary desired precision. Even the whole matrix P; is computable, as it is
finite dimensional in the finite state case; finally, observe that all observables on
a finite state space are necessarily bounded functions.

The general case. The characterisation of the function ¢+— P;f as the unique
solution to the initial value problem (IVP)

dy, -
dtz; :?ut (1)

will turn out to be very useful as it generalises rather naturally to arbitrary
Banach spaces [Ein52]. However, there are two points to note. While the g-matrix
(@ is a bounded linear operator on the finite-dimensional vector space of all

! In fact, stochastic string rewriting is the restriction of stochastic graph transforma-
tion [HLMOG6] to directed, connected, acyclic, edge labelled graphs with in and out
degree of nodes bounded by one, i.e., to graphs consisting of a unique maximal path.
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observables when we have a finite state space, this does not hold true for the
general case. Moreover, the observable f itself might be unbounded, which poses
an additional difficulty for solving an IVP like (1) as described in Sect. 3.3.
The first contribution of the paper consists in setting up a suitable generalisa-
tion of the initial value problem (1) in a Banach space space of observables such
that the time-dependent observable P;f, mapping a state z to the conditional
mean E,(f(Xy)), is its unique solution; for this, we heavily use the functional
analytic techniques recently developed in Refs. [Spil2,Spil5]. The main contri-
bution is Theorem 2 on computability of the function (¢, f)+— P;f under mild
additional assumptions on the g-matrix of the Markov chain, putting to use
recent results by Weihrauch and Zhong [WZ07] on computability of solutions
of initial value problems in Banach spaces. The sufficient conditions are general
enough to encompass many interesting unbounded observables. Finally, we show
that, for a fixed state x and observable f, the time evolution of the conditional
mean E,(f(X;)) is PTIME computable (Theorem 3) under conditions that are
strict enough to re-use results on linear ODEs [PG16], yet general enough to cap-
ture mean word counts in context-free stochastic string rewriting (Corollary 2).

Related work. Computability of continuous-time Markov chains as transformers
of unbounded observables is related to computation of transient means E[f(X})]
of an observable f on a CTMC X; with countable state space. Computability of
transient means, in turn, is related to first passage probabilities of a decidable
set of states U (cf. [GM84, Sect.6.2]): the latter problem can be reduced to
computing transient means by use of an indicator function that checks for states
in U and a modified dynamics of the Markov chain, disabling jumps out of U.

Adaptive uniformisation (AU) [VMS93,VMS94] allows one to compute tran-
sient means of bounded observables without further complications. However, AU
requires the initial distribution to be finite and known from the start. Our results
are not subject to these two restrictions, though we need that for each desired
precision €, there is a finite number of states to which we can restrict possible
initial distributions, which is a restriction on the dynamics of the CTMC.? The
main novelties are the focus on the observable and its time evolution, answer-
ing the question of how the dynamics a Markov chain acts on an observable,
in general and independent of the initial distribution, and its computability to
arbitrary desired precision. We even treat the case of unbounded observables,
relying on recent mathematical results [Spil2,Spil5].

Model-checking of continuous-time Markov chains typically concern prop-
erties of sample paths of CTMCs relative to a labeling function on states
[BHHKO3]. In the present paper we neither have a labeling function nor do
we rely on sample paths, explicitly. However, it may be that the methods of the
present paper can be adapted to the labeled case.

Structure of the paper. The paper starts out with the detailed description of the
motivating examples, namely string rewriting and stochastic Petri nets. Then

2 Specifically, all CTMCs that fail to be Feller processes [RR72] are problematic.
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we review the mathematical preliminaries, in particular continuous-time Markov
chains on a countable state space and the basic concepts of transition functions
and g-matrices. The generalisation of the initial value problem (1) and the char-
acterisation of the continuous-time observation transformation ¢+— P;f of an
observable f by the transition function P, of a CTMC (Theorem 1) are given
in Sect.4. The main result (Theorem2) on computability of the continuous-
time transformation of observables by CTMCs is presented in Sect. 5. In Sect. 6,
we show PTIME-computability of the time evolution of the conditional mean
E.(f(X:)), for all states x, under assumptions that allow to restrict to a finite-
dimensional space (Theorem 3) and its direct consequence for string rewriting
(Corollary 2). Finally, we conclude with a summary of results and directions for
future work.

2 Two Motivating Examples of CTMCs with Observables

We illustrate our constructions with: (i) chemical reaction networks (CRN), aka
stochastic Petri nets, and (ii) stochastic string rewriting as a simple example of
(rule-based) modelling. In both cases, the construction of the g-matrix implied
by a model is readily done, and so is the definition of a natural set of unbounded
observables with clear relevance to the dynamics of a model: word occurrence
counts for stochastic string rewriting (Definition 2) and multiset inclusions for
Petri nets (Definition 3).

2.1 Stochastic String Rewriting and Word Occurrences

Stochastic string rewriting can be thought of as never ending, fair competition
between all redexes of rules, “racing” for reduction; the formal definition is as
follows, in perfect analogy to Ref. [HLMO06] which covers the case of graphs.

Definition 1 (Stochastic string rewriting). Let p=1—-r € Xt x X1 be
a rule. The g-matrix of p, denoted by Q,, is the g-matriz Q, = (5, )u vex+ ON
the state space of words X+ with off-diagonal entries

T = |{(w,w’) €XtxX” | uw=wlh', v= wrwl}|

for each pair of words u,v € X1 such that u # v, and diagonal entries q°,, =

- q?., for all w € Xt. For a finite set of rules R C Xt x YT, we define
Zv;éu uv

Qr = ZpG'R Q,p, and with additional choices of rate constants k: R — QF, we

define Qrx = ZpER koQp-

For a given rule set R, each entry ¢% of the g-matrix corresponds to the propen-
sity to rewrite: it is just the number of ways in which u can be rewritten to v.
We shall usually work without rate constants for the sake of readability. Note
that the use of X'+ for the left and right hand side of rules is convenient to get
string rewriting as a special case of graph transformation in a straightforward
manner.

The occurrence counting function of a word as sub-string in the state of the
CTMC of R is as follows.
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Definition 2 (Word counting functions). Let w € Y be a word. The
w-counting function, denoted by f,,: Xt — Rso, maps each word x € X+ to
fw(x) = {(u,v) € 2% x X* | © = uwv}|.

2.2 Stochastic Petri Nets and Sub-multiset Occurrences

We recall the definition of stochastic Petri nets and occurrence counting of a
multisets. Note that for the purposes of the present paper, places and species
are synonymous.

Definition 3 (Multisets and multiset occurrences). A multiset over a
finite set P of places is a function x: P — N that maps each place to the
number of tokens in that place. Given a multiset, x € NP, the z-occurrence
counting function 4, : N¥ — N is defined by

tix(y)={(yy!”)! v

0 otherwise

where 2! =[], cp 2(p)! is the multiset factorial for all = € NP.

Definition 4 (Stochastic Petri net). Let P be a finite set of places. A
stochastic Petri net over P is a set

T C NP xRy x NP

where N7 is the set of multisets over P, which are called markings of the net;
elements of the set T are called transitions. The g-matriz Q. on the set of
markings for a transition (I,k,r) =1 —* r € T has off-diagonal entries

JR = kE-fi(z) #i(x)>0,y=axz—1+r
e 0 otherwise

where addition and subtraction is extended pointwise to NP . The q-matriz of T

is QT = Z(l,k,r)eT Quk,r-

3 Preliminaries

For the remainder of the paper, we fix an at most countable set S as state space.

3.1 Transition Functions and g-Matrices

We first recall the basic definitions of transition functions and ¢-matrices. We
make the usual assumptions [And91] one needs to work comfortably: namely
that g-matrices are stable and conservative and that transition functions are
standard and also minimal as described at the end of Sect. 3.1.

With these assumptions in place, transition functions and g-matrices deter-
mine each other, and one can freely work with one or the other as is most
convenient.
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Definition 5 (Standard transition function [And91, p. 5f]). A transition
function on S is a family {P;}ier., of S x S-matrices Py = (Pt zy)zyes with
non-negative, real entries p; , such that

1. limp\ o Ptz =1 for allx € S;

2. limy o Pray = 0 for all x,y € S such that y # x;

3. Poys= PP, = (ZZES ps’mpmy)m’yes for all s,t € R>g; and
4o D egPtaz <1 forallz €S andt € Rxg.

Thus, each row of a transition function corresponds to a sub-probability measure,
and transition functions converge entry-wise to the identity matrix at time zero.

Taking entry-wise derivatives of a transition function at time 0 is possible
[Kol51, Aus55] and gives a g-matrix.

Definition 6 (g-matrix). A g-matrix on S is an S X S-matriz Q = (¢uy)z,yes
with real entries quy such that qzy > 0 (if T # Y), que <0, and Y gqz. =0
forall xz,y € S.

Conversely, for each g-matrix, there exists a unique entry-wise minimal transition
function that solves Eq. (2) [And91, Theorem 2.2],

d P,=QP, Ph=1 (2)
dt t — [2) 0 —

which is called the transition function of . From now on, we assume that all
transition functions are minimal solutions to Eq. (2) for some g-matrix @ (see
[Nor98, p. 69]).

3.2 The Abstract Cauchy Problem for P;f

Abstract Cauchy problems (ACPs) in Banach spaces [Ein52] are the classic gen-
eralisation of finite-dimensional initial value problems (see also Refs. [ABHN11,
ENO00)). Specifically, we want to obtain P, f as unique solution w; of the following
generalisation of our earlier IVP (1):

%Ut = Q’Z,Lt (t Z O)

g (ACP)

where f is an observable and Q is a linear operator which plays the role of
the ¢g-matrix. ACPs that allow for unique differentiable solutions are intimately
related to strongly continuous semigroups (SCSGs) and their generators (see,
e.g., [EN0O, Proposition I1.6.2]).

Definition 7. Let B be a real Banach space with norm ||-||. A strongly contin-
uous semigroup on B is a family {P;}ier-, of bounded linear operators P, on B
satisfying (i) Py = Ig (the identity on B); (ii) Piys = PiPs, for all s,t € Rso;
and (i1t) impo ||Prf — f|] = 0, for all f € B. The infinitesimal generator Q
of a strongly continuous semigroup P; on B is the linear operator defined by
Qf = limp~ o Yr(Pof — f) for all f € B that belong to the domain of definition
dom(Q) = {f e B ’ The limit limp~ o Yn(Pyf — f) exists.} .
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There are a few points worth noting on how to pass from the IVP (1) to
a corresponding ACP. First, the topological vector space of all observables RS
cannot be equipped with a suitable complete norm to turn it into a Banach
space. Therefore, one has to look for a subspace B C RS wherein to interpret
the above equation. Second, as P;f = u; is the desired solution, and Py = I, it
follows that %Pt flt=0 = Qf. If this derivative does not exist, Qf is simply not
defined. In fact, as is clear from the examples in Sect.2, we can only expect Q
to be partially defined as it is not a bounded operator, in general.?

On the positive side, if we know that P, is an SCSG on B, meaning
limp\o Prf = f for all f € B, we can take Q to be its generator, i.e., the
linear operator defined on g € B by Qg := %Ptgh:o whenever this limit exists,
and obtain P;f as unique solution of (ACP) [ENO0O, PropositionII.6.2]. Even
better, in this case, not only does (ACP) have P.f as unique solution, but we
get an explicit approximation scheme:

Pf = lim ethn f (3)

where 6 is a constant of the SCSG such that nl — Q is invertible for n > 0 and
the operators A,, = nQ(nI—Q)~!, known as Yosida approzimants, are bounded.

Yosida approximants are the cornerstone of the generation theorems for
SCSGs [EN00, Corollary 3.6] that allow one to pass from the generator Q to
the corresponding SCSG. The constant 6 also bounds the growth of the SCSG
in norm, namely ||P;|| < Me? for some M. This should already make clear
that Eq. (3) is crucial to obtain error bounds for results on the computability of
SCSGs. In fact, it is the starting point of the proof of the main result on the
computability of SCSGs [WZ07, Theorem 5.4.2, p. 521].

It remains to see whether we can exhibit Banach spaces to build ACPs that
accomodate interesting (specifically unbounded) observables.

3.3 Banach Space Wanted!

Table 1 gives an overview of initial value problems for transient distributions
(first row) and transient conditional means (second row). Transient distribu-
tions are summable sequences, and transition functions form SCSGs [Reu57] and
therefore allow for a well-posed corresponding ACP. But the classic example of
a Banach space to reason about conditional means [RR72] is the space Cy(S) of
functions vanishing at infinity, i.e., functions f: S — R such that for all € > 0,
the set {x € S| f(x) > €} is finite, equipped with the supremum norm. The cor-
responding processes are called Feller transition functions [And91, Sect. 1.5] and
verify a principle of finite velocity of information flow (for all ¢, y, the function
Z+— Py oy vanishes as x goes to infinity).

3 Even when Qf is defined, one has to check Qf = QFf, that is to say:
Yn(Pnf — f) converges to @Qf in the Banach space norm. But this will turn out
to be easy compared to finding sufficient conditions for Qf to be defined.
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Table 1. Transition functions acting on Banach spaces: state of the art

solution generalisation
(finite S) (countably infinite S)
VP ]
transient ai’t = ™Q T = et T =mh
distributions To =T P, SCSG on L'(8S), in general
SUP;cs —Qii < 00 SUp;cg —¢ii = OO
Ivp 4oy = Qu or Feller not Feller
transient dtut B 7 Flug = e@tf uy = P f [Spil2, Theorem 6.3]
conditional means 0= P; SCSG on or
L>=(S) or Co(8S) open problem

4 Spieksma’s Theorem

A solution is provided by a result of Spieksma [Spil2, Theorem 6.3], giving a
class of candidate Banach spaces B for a given ¢g-matrix ) and an observable f
of interest such that P; forms an SCSG on B (Theorem 1.1). As a consequence,
we are led to ACPs generalising the IVP (1) in which the operator Q is the
generator of the transition function P; (seen as an SCSG on B) and is a restriction
of the g-matrix @, i.e., Qf = Qf for all f € dom(Q). Moreover, we obtain a
characterization of part of the the domain dom(Q) (Proposition 1). The results
of this section set the mathematical stage for the main results.

4.1 Weighted Cp-Spaces and Drift Functions

The Banach spaces that we shall work with are weighted variants of Cy(S) such
that functions vanish at infinity relative to a chosen weight function on states.

Definition 8 (Weighted Co(S)-spaces). Let S be a set and let W: S — Ry
be a positive real-valued function, referred to as a weight. The Banach space
Co(S, W) consists of functions f: S — R such that f/w wvanishes at infinity,
where (f/w)(z) = f@)/w). The norm ||-|lw on such functions [ is ||f||lw =
Sup,eg |/ @)/w ().

As Cp(S, W) is isometric to Cy(S) it is indeed a Banach space. It is also a
closed subspace of L (S, W), the set of functions such that f/w is bounded. We
shall use later the fact that:

Lemma 1. Finite linear combinations of indicator functions,* form a dense
subset of Cy(S).

Spieksma’s theorem [Spil2, Theorem 6.3] will be in terms of so-called drift
functions, which intuitively are functions whose mean w.r.t. a given CTMC grows
with at most constant rate.

4 The indicator function 1, is defined as usual as 1 (y) = Guy.
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Definition 9 (Drift function). Let Q be a g-matriz on S, and let ¢ € R.
A function W: S — Ry is called a c-drift function for Q if for all x € S

(Q@W)(x) := 2 es Gy W (y) < W ().

We shall say that W is a drift function for @ if there exists ¢ € R such that it
is a c-drift function for Q. One can show that P,WW < e“W in this case. Thus,
drift functions control their own growth under the transition function.

4.2 Transition Functions as Stronlgy Continuous Semigroups

The crux of Spieksma’s theorem [Spil2, Theorem 6.3] is a pair of positive drift
functions V, W for @ such that V' € Cy(S, W), i.e., such that the quotient V/w
vanishes at infinity. Intuitively, qua drift function, their growth is at most expo-
nential in mean; moreover V is negligible compared to W at infinity, and thus
functions on the order of V are as good as functions vanishing at infinity, in anal-
ogy to the case of Feller processes [RR72], which is exactly the class of CTMCs
whose transition functions induce SCSGs on Cy(S). Hence, the following result
is a first step towards a theory of weighted Feller processes.

Theorem 1. Let P; be a transition function on the state space S with g-matrix
Q and let V,W: S — R+ be drift functions for Q. Then the following hold.

1. The transition function P, induces an SCSG on Co(S, W) iff V € Co(S,W).
2. If Ve Co(S, W), for all f € Co(S,W) and t € R>q, P.f is given by Eq. (3)
in the Banach space Co(S, W) where Q is the generator of P;.

The first part of the theorem is proved in [Spil2, Theorem 6.3]; the second part
follows from the general theory of ACPs. Note that f does not need to be in the
domain of Q, in which case we only obtain a mild solution to the ACP [ENOO,
DefinitionI1.6.3], i.e., a solution to its integral form which is not everywhere
differentiable. In fact, the solution is differentiable if and only if f belongs to the
domain of the generator [EN0O, Proposition I1.6.2].

4.3 On the Domain of the Generator

One difficulty in working with SCSGs is to find a useful description of the domain
of their generator. However, the graph of the infinitesimal generator of an SCSG
is completely determined by the restriction to any dense subset. The follow-
ing characterisation of subsets of the domains of generators of SCSGs that are
obtained via Theorem 1 is a corrected weakening [Spil6] of the second part of
Theorem 6.3 of Ref. [Spil2], naturally generalising the classic result for Feller
processes [RR72, Theorem 5].

Proposition 1. Let P; be a transition function on S with g-matriz Q@ and let
V,W: S — Ryg be positive drift functions for Q such that V € Co(S,W). Let Q
be the generator of the SCSG P, on Co(S,W) (cf. Theorem 1).
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For all f € Co(S,W) that satisfy || f|lv < oo and Qf € dom(Q), we have
QfZQfZI}biif})l/h(Ptf—f% (4)

i.e., the latter limit exists in Co(S, W) and in particular f € dom(Q).

We have now covered the mathematical ground needed to characterise the
transformation of observations by transition functions of CTMCs as solutions of
an ACP, generalising the finite state case of IVP (1). This, however, does not
immediately yield an algorithm for computing transient means. Even transient
conditional distributions can fail to be computable [AFR11]! Before we proceed
to the question of computability, let us return to our two classes of examples.

4.4 Applications: String Rewriting and Petri Nets

We now give examples of drift functions for stochastic string rewriting and Petri
nets. The former case is well-behaved since the mean letter count grows at most
exponentially. The case of Petri nets will be more subtle and we shall give an
example of an explosive Petri net such that we can nevertheless reason about
conditional means of unbounded observables.

For string rewriting, we have canonical drift functions.

Lemma 2 (Powers of length are drift functions). Let R C Xt x X be a
finite string rewriting system and let n € N* be a positive natural number. There
ezists a constant ¢, € Rsq such that ||": X+ — Rxq is a ¢, -drift function.

Now, we can apply Spieksma’s method to get a Banach space for reasoning about
conditional means and moments of word counting functions.

Corollary 1 (Stochastic string rewriting). Let R be a finite string rewrit-
ing system, let n € N\{0}, and let |_|: T = N be the word length function. The
transition function Py of q-matriz Qg is an SCSG on Co(X7T,||").

Thus, all higher conditional moments of word counting functions can be accom-
modated in a suitable Banach space. The case of Petri nets is more subtle, since,
in general, the (weighted) token count is not a drift function.

Example 1. Consider the Petri net with single transition 24 —! 3A and with
one place A. The token count f 4 is not a drift function. In fact, the corresponding
CTMC is explosive (by Theorem 2.1 of Ref. [Spil5]).

Our final example is an extension of the previous explosive CTMC with a new
species whose count can nevertheless be treated using Theorem 1.

Ezample 2 (Unobserved explosion). Consider the Petri net with transitions

{24 —' 34, B —' 2B}.
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The underlying CTMC is explosive, and we cannot apply Theorem 1 to compute
the transient conditional mean of the A-count for the exact same reason as in
Example 1. However, we can do so for the B-count, using the weight function
W = tp? and observable f = tiz. Putting V = f allows one to apply Spieksma’s
recipe (ruling out states with B-count 0 for convenience). The conditional mean
Esa+p(f5(X:)) can be best understood by adding a coffin state, on which both
the A- and B-count are zero and in which the Markov chain resides after (the
first and only) explosion.

5 Computability

We follow the school of type-2 theory of effectivity. A real number z is com-
putable iff there is a Turing machine that on input d € N (the desired precision),
outputs a rational number 7 with |r — z| < 279, Next, a function g: R — R is
computable if there is a Turing machine that, for each x € R, takes an arbitrary
Cauchy sequence with limit « as input and generates a Cauchy sequence that
converges to g(x)—where convergence has to be sufficiently rapid, e.g., by using
the dyadic representation of the reals.

Computability extends naturally to any Banach space B other than R. We
only need a recursively enumerable dense subset on which the norm, addition and
scalar multiplication are computable, thus making B a computable Banach space;
usually, the dense subset is induced by a basis of a dense subspace. For weighted
Co-spaces (with computable weight functions) and their duals (Co(S, W))*, we
fix an arbitrary enumeration of all rational linear combinations of indicator
functions 1,; for the Banach space of bounded linear operators on weighted
Co-spaces we use the standard construction for continuous function spaces
[WZ07, Lemma3.1]. A SCSG P; is computable if the function ¢t — P; from
the reals to the Banach space of bounded linear operators is computable.
The computable SCSGs correspond to those obtained from CTMCs through
Theorem 1.

We restrict to row- and column-finite ¢g-matrices with rational entries in our
main result, motivated by the observation that we do not lose any of the intended
applications to rule-based modelling.

Theorem 2 (Computability of CTMCs as observation transformers).
Let Q be a g-matriz on S, let W: S — Rx¢ be a positive drift function for Q
such that there exists V€ Co(S, W) that is a drift function for Q. If

— the g-matriz Q is row- and column-finite, consists of rational entries, and is
computable as a function Q: S?* — Q and the function y+— {x € S| qzy # 0}
is computable, and

- W:S — Q is computable,

the following hold.



350 V. Danos et al.

~

The SCSG P, is computable.

2. The evolution of conditional means (¢, f) — P.f is computable as partial func-
tion from R x Co(S, W) to Co(S, W) defined on R>g x Co(S, W).

3. The evolution of means (w,t, f)— 7P f is computable as partial function from

Co(S,W)* x R x Oo(S,W) to R deﬁned on CO(S,W)* X RZO X Oo(S,W)

Proof. We shall apply a result by Weihrauch and Zhong on the computability
of SCSGs [WZ07, Theorem 5.4]. Applying this result requires some extra infor-
mation:

1. the SCSG P, must be bounded in norm by et for some positive constant 6;
2. we must have a recursive enumeration of a dense subset of the graph of the
infinitesimal generator of the SCSG P;.

We first show that the constant 6, featuring in Theorem 1, i.e., the witness
that W is a #-drift function for @, satisfies || P;|| < €% (using the first part of the
proof of Theorem 6.3 of Ref. [Spil2]). Next, we obtain a recursive enumeration
of a dense subset A C dom@ of the domain of the generator Q by applying @
to all rational linear combinations of indicator functions 1,. Note that for the
latter, we use that indicator functions belong to the domain of the generator and
91, = Q1, by Proposition 1.

Now, by Theorem 5.4.2 of Ref. [WZ07], we obtain the first two computability
results, as (0, A,1) is a so-called piece of type IG-information [WZ07, p. 513].
Finally, the third point amounts to showing computability of the duality pairing

<*v *>: (CO(Sv W))* X CO(Sa W) —R.

This theorem immediately gives computability of the CTMCs and (conditional)
means for stochastic string rewriting and Petri nets discussed in Sect.4. Note
that the theorem does not assume that V itself is computable; its role is to
establish that the transition functions is an SCSG, but V plays no role in the
actual computation of the solution. Note also that the algorithms that compute
the functions t— Py, (¢, f) — P.f, and (7, t, f) — 7P, f push the responsibility to
give arbitrarily good approximations of the respective input parameters 7, ¢ and
f to the user. This however is no problem for any of our examples or rule-based
models in general: ¢ is typically rational, f is computable and even to the natural
numbers, and 7 is often finitely supported or a Gaussian.

Computability ensures existence of algorithms computing transient means,
but yields no guarantees of the efficiency of such algorithms. We now proceed to
a special case that (i) encompasses a number of well-known examples, including
context-free string rewriting, and (ii) leads to PTIME computability, by reducing
the problem of transient conditional means to solving finite linear ODEs.

6 The Finite Dimensional Case and PTIME via ODEs

We now turn to the special case where we can restrict to finite dimensional
subspaces B C RS. The prime example will be word counting functions and
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context-free string rewriting systems. Hyperedge replacement systems [DKH97],
the context-free systems of graph transformation, can be handled mutatis mutan-
dis. The main result is PTIME computability of conditional means. For conve-
nience, we extend the usage of the term locally algebraic as follows.

Definition 10 (Locally algebraic). We call a g-matriz Q on S locally alge-
braic for an observable f € RS if the set {Q™f | n € N}, containing all multiple
applications of the g-matriz Q to the observable f, is linearly dependent, i.e., if
there exists a number N € N such that the application Q™ f of the N-th power
s a linear combination 25161 a; Q' f of lower powers of Q applied to f.

Using local algebraicity of a g-matrix ) for an observable f, one can generate
a finite ODE with one variable for each conditional mean E[Q™ f(X}) | Xo = «]
(as detailed in the proof of Theorem 3); then, recent results from computable
analysis [PG16] entail PTIME complexity.

Theorem 3 (PTIME complexity of conditional means). Let Q be a
g-matriz on S, let x € S, let f: S — R be a function such that f(z) is a
PTIME computable real and QN f = Ziligl a;Q'f for some N € N and PTIME
computable coefficients «;.

The time evolution of the conditional mean P, f(x), i.e., the function
t— Pif(x), is computable in polynomial time.

Proof. Consider the N-dimensional ODE with one variable E, for each n €
{0,...,N — 1} with time derivative
d E,41(t) ifn<N -1
—E,(t) = N-1 e
dt Zi:O OéiEi(t) ifn=N—-1

and initial condition E, (0) = Q" f(x). Solving this ODE is in PTIME [PG16]
(even over all of R>, using the “length” of the solution curve as implicit input).
Finally, E;(t) = P,Q" f(x) is the unique solution.

Note that the linear ODE that we construct has a companion matrix as evolu-
tion operator, which allows one to use special techniques for matrix exponenti-
ation [TR03,BCO+-07].

Proposition 2 (Local algebraicity of context-free string rewriting). Let
R be a string rewriting system, let w € XF, let m € N. The q-matriz Qr of the
string rewriting system R is locally algebraic for the m-th power of w-occurrence
counting t,™ if R C X x I+,

Proof. For every product of word counting functions HT; Hwi, applying the
g-matrix Qg to this product yields the observable Qz []/~, fu:. Using previ-
ous work on graph transformation [DHHZS14, DHHZS15], restricted to acyclic,
finite, edge labelled graphs that have a unique maximal path (with at least one

edge), the observable Qg [~ i is a linear combination 2?21 a; H;Zl #uj,1 of
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word counting functions f,,;; (with all k; < m). Moreover, if R is context-free
(R C ¥ x XT), we have 317, |w;| < X7 |wi for all j € {1,...,k}. Thus,
we stay in a subspace that is spanned by a finite number of products of word
counting functions.

Corollary 2. For context-free string rewriting, conditional means and moments
of word occurrence counts are computable in polynomial time.

We conclude with a remark on lower bounds for the complexity.

Remark 1. The complexity of computing transient means, even for context-free
string rewriting, is at least as hard as computing the exponential function. This
becomes clear if we consider the rule a — aa, and the observable of a-counts f,.
Now, the time evolution of the #,-mean conditioned on the initial state to be a,
i.e., the function ¢t — E,(#,(X})), is exactly the exponential function e!. Tight
lower complexity bounds for the exponential function are a longstanding open
problem [Ahr99].

7 Conclusion

The main result is computability of transient (conditional) means of Markov
chains X; “observed” by a function f, i.e., stochastic processes of the form f(X;).
For this, we have described conditions under which a CTMC, specified by its
g-matrix, induces a continuous-time transformer P; that acts on observation
functions. In analogy to predicate transformer semantics for programs, this
could be called observation transformer semantics for CTMCs; formally, P; is a
strongly continuous semigroup on a suitable function space. Finally, motivated
by important examples of context-free systems — be it the well-known class from
Chomsky’s hierarchy or the popular preferential attachment process (covered in
previous work [DHHZS15]) — we have considered the special case of locally finite
g-matrices. For this special case, we obtain a first complexity result, namely
PTIME computability of transient conditional means.

The obvious next step is to implement our theoretical results since one cannot
expect that the general algorithms of Weihrauch and Zhong [WZ07] perform well
for every SCSG on a computable Banach space. For example, the Gauss-Jordan
algorithm for infinite Matrices [Par12] should already be more practicable for
inverting the operator nI — Q from Eq. (3) compared to the brute force approach
used by Weihrauch and Zhong [WZ07]. Computability ensures existence of algo-
rithms for computing transient means, but yields no guarantees of the efficiency
of such algorithms.

Even if it should turn out that efficient algorithms are a pipe dream — after
all, transient probabilities p; ., are a special case of transient conditional means
— we expect that already implementations that are slow but to arbitrary desired
precision will be useful for gauging the quality of approximations of the “mean-
field” of a Markov process, especially in the area of social networks [Glel3],
but possibly also for chemical systems [SSG15]. Theoretically, they are a valid
alternative to Monte Carlo simulation, or even preferable.
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