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Abstract. This work introduces a notion of approximate probabilistic
trace equivalence for labelled Markov chains, and relates this new con-
cept to the known notion of approximate probabilistic bisimulation. In
particular this work shows that the latter notion induces a tight upper
bound on the approximation between finite-horizon traces, as expressed
by a total variation distance. As such, this work extends correspond-
ing results for exact notions and analogous results for non-probabilistic
models. This bound can be employed to relate the closeness in satis-
faction probabilities over bounded linear-time properties, and allows for
probabilistic model checking of concrete models via abstractions. The
contribution focuses on both finite-state and uncountable-state labelled
Markov chains, and claims two main applications: firstly, it allows an
upper bound on the trace distance to be decided for finite state sys-
tems; secondly, it can be used to synthesise discrete approximations to
continuous-state models with arbitrary precision.

1 Introduction

Often in formal verification one is interested in approximations of concrete mod-
els. Models are often built from experimental data that are themselves approx-
imate, and taking approximations can reduce the size and complexity of the
state space. Markov models in particular can be defined either syntactically as
a transition structure (with states and matrices), or semantically as a random
process whose trajectory satisfy the Markov property. Each representation gives
rise to its own notions of approximation [1]: “the transition matrices have similar
numbers and/or structure” vs “the trajectories have similar probability distribu-
tions”, respectively. While the syntactic representation is used for computations
and model checking with concrete numbers, often one is interested in results in
terms of the semantics, e.g. “what is the probability of reaching a failure state
within 100 steps”. This gives practical value to studying how approximations in
terms of transition matrices translate into approximations in terms of traces of
the random process.
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In this paper we build on the notion of ε-approximate probabilistic bisimu-
lation, introduced in [13] as a natural extension to exact probabilistic bisimula-
tion [12]. There, the notion of ε-approximate probabilistic bisimulation (or just
ε-bisimulation) is defined in terms of the transition structure, and given ε the
maximal ε-bisimulation relation can be computed for finite state systems with
n states in O(n7) time [13].

It is on the other hand of interest to explore what ε-bisimulation means
in terms of trajectories. While ε-bisimulation does have characterizations (on
countable state spaces) in terms of logics and games [12], this logic is branching
in nature, and does not directly relate to the trajectory of the model as it leaks
information about the state space (similarly to the difference between CTL and
LTL), as illustrated in Fig. 1.

Fig. 1. Branching vs Linear Time Behaviour. In the Labelled Markov Chain
below (cf. Sect. 2 for the LMC model), the states s1, s2 both emit traces 〈{a}, {a}, {b}〉
and 〈{a}, {a}, {c}〉 with probability 0.5 each, and hence s1, s2 have the same lin-
ear time behaviour. However, s1, s2 have different branching behaviour, since exclu-
sively s1 satisfies the PCTL formula P=1 [ X P=0.5 [ X b ] ]. Conversely, only s2 satisfies
P=0.5 [ X P=1 [ X b ] ].

In this paper, we investigate what ε-approximate probabilistic bisimulation
means in terms of trajectories. We will prove that for Labelled Markov Chains
(over potentially uncountable state spaces), ε-bisimulation between two states
places the tight upper bound of 1−(1−ε)k (which is ≤ kε) on the total variation
[18] between the distributions of length k+1 traces starting from those states, for
all k ∈ N. We will formulate these bounds by introducing the notion of f(k)-trace
equivalence. As such, we extend the well known result that bisimulation implies
trace equivalence in non-probabilistic systems to the context of approximate and
probabilistic models (the exact probabilistic case having been considered in [7]).

One direct repercussion of our result is that it provides a method to efficiently
bound the total variation of length k traces from two finite-state LMCs (or two
states in an LMC), since the aforementioned result in [13] can be used to decide
or to compute ε-bisimulation between two states in polynomial time. We will
also apply our results to the quantitative verification of continuous-state Markov
models [2,3,16], improving on the current class of properties approximated and
the corresponding approximation errors.
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Related Work. Literature on approximations of (finite-state) Markov models
can be distinguished into two main branches: one focusing on one-step similar-
ity, the other dealing with trace distances. One-step similarity can be studied
via the notion of probabilistic bisimulation, introduced in the context of finite-
state models by [20], and related to lumpability in [23]. [13] discusses a notion of
approximate bisimulation, related to quasi-lumpability conditions in [6,22]. From
the perspective of process algebra, [17] studies operators on probabilistic tran-
sition systems that preserve the approximate bisimulation distance. The work
in [13,21] is seminal in introducing notions of (exact) probabilistic simulation,
much extended in subsequent literature.

On the other hand, there are a few papers studying the total variation dis-
tance over traces. [9] presents an algorithm for approximating the total variation
of infinite traces of labelled Markov systems and prove the problem of deciding
whether it exceeds a given threshold to be NP-hard. [8] shows that the undis-
counted bisimilarity pseudometric is a (non-tight) upper bound on the total
variation of infinite traces (like ε-bisimulation, the bisimilarity pseudometric is
defined on the syntax of the model and there are efficient algorithms for comput-
ing it [8,10,24]). The contribution in this paper, focusing on finite traces rather
than infinite traces, is that the total variation of finite traces is much less con-
servative, and moreover allows manipulating models under specific error bounds
on length k traces, as we will show in Sect. 5.

[14] studies notions based on the total variation of finite and infinite traces:
employing a different notion of ε-bisimulation than ours, it proves error bounds
on trace distances, which however depend on additional properties of the struc-
ture of the transition kernel (as shown in Sect. 7 the error bound on reacha-
bility probabilities could go to 1 in two steps, for any ε > 0). Finite abstrac-
tions of continuous-state Markov models can be synthesised by notions that are
variations of the ε-bisimulation in this work [1,3,16]. Tangential to our work,
[11] shows that the total variation of finite traces can be statically estimated
via repeated observations. [26] investigates ways of compressing Hidden Markov
Models by searching for a smaller model that minimises the total variation of
length-k traces of the two models.

Structure of this article. In Sect. 2, we introduce the reference model (labelled
Markov chains – LMC – over general state spaces) and provide a definition of
ε-bisimulation for LMCs. In Sect. 3, we introduce the notion of approximate
probabilistic trace equivalence (and the derived notion of probabilistic trace
distance), and discuss how it relates to bounded linear time properties, and to the
notion of distinguishability. In Sect. 4, we present the main result: we will derive a
tight upper bound on the probabilistic trace distance between ε-bisimilar states.
In Sect. 5, we show how these results can be used to approximately model check
continuous state systems, and Sect. 6 discusses a case study. In Sect. 7, we discuss
an alternative notion of approximate probabilistic bisimulation that appears in
literature and show that it cannot be used to effectively bound probabilistic
trace distance.
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In this work we offer sketches of the proof of some theorems, and omit the
proof of other results: the complete proofs, as well as the details on the imple-
mentation of the Case Study, can be found in the Appendix of [4].

2 Preliminaries

2.1 Labelled Markov Chains

We will work with discrete-time Labelled Markov Chains (LMCs) over general
state spaces. Known definitions of countable- or finite-state LMCs represent
special instances of the general models we introduce next.

Definition 1 (LMC syntax). A Labelled Markov Chain (LMC) is a structure
M = (S,Σ, τ, L) where:

– S is a (potentially uncountable) set of states.
– Σ ⊆ P(S) is a Σ-algebra over S representing the set of measurable subsets

of S.
– τ : S × Σ → [0, 1] is a transition kernel. That is, for all s ∈ S, τ(s, ·) is a

probability measure on the measure space (S,Σ), and for all A ∈ Σ we require
τ(·, A) to be Σ-measurable.

– L : S → O labels each state s ∈ S with a subset of atomic propositions from
AP, where O = 2AP. L is required to be Σ-measurable, and we will assume
AP to be finite.

L(s) captures all the observable information at state s ∈ S: this drives our notion
relating pairs of states, and we characterise properties over the codomain of this
function.

Definition 2 (LMC semantics). Let M = (S,Σ, τ, L) be a LMC. Given an
initial distribution p0 over S, the state of M at time t ∈ N is a random variable
M p0

t over S, such that

P [M p0
0 ∈ A0] = p0(A0),

P [M p0
0 ∈ A0, · · · ,M p0

k ∈ Ak] =
∫

y0∈A0

p0(dy0)

·
∫

y1∈A1

τ(y0,dy1) · · ·
∫

yk−1∈Ak−1

τ(yk−2,dyk−1) · τ(yk−1, Ak),

for all k ∈ N\{0}, Ak ∈ Σ, where of course τ(yk−1, Ak) =
∫

yk∈Ak
τ(yk−1,dyk).

Models in related work. A body of related literature works with labelled
MDPs, which are more general models allowing a non-deterministic choice u ∈
U (for some finite U) of the transition kernel τu at each step. This choice is
made by a “policy” that probabilistically selects u based on past observations
of the process. Whilst we will ignore non-determinism and work with LMCs for
simplicity, our results can be adapted to labelled MDPs by quantifying over all
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policies, or over all choices u for properties like ε-bisimulation, in order to remove
the non-determinism. The seminal work on bisimulation and ε-bisimulation dealt
with models known as LMPs [12]. LMPs allow for non-determinism (like labelled
MDPs) but their states are unlabelled and at each step they have a probability
of halting. For the study of bisimulation in this work, LMPs can be considered
as a simplification of labelled MDPs to the case O = {∅, {halted}}.

2.2 Exact and Approximate Probabilistic Bisimulations

The notion of approximate probabilistic bisimulation (in this work just
ε-bisimulation) is a structural notion of closeness, based on the stronger notion of
exact probabilistic bisimulation [12]. We discuss both next. Considering a binary
relation R over set X, we say that a subset S̃ ⊆ X is R-closed if S̃ contains its
own image under R. That is, if R(S̃) := {y ∈ X | x ∈ S̃, xR y} ⊆ S̃.

Definition 3 (Exact probabilistic bisimulation). Let M = (S,Σ, τ, L) be
a LMC. For ε ∈ [0, 1], an equivalence relation R ⊆ S × S over the state space is
an exact probabilistic bisimulation relation if

∀(s1, s2) ∈ R, we have that L(s1) = L(s2),

∀(s1, s2) ∈ R, ∀T̃ ∈ Σ s.t. T̃ is R-closed, we have that τ(s1, T̃ ) = τ(s2, T̃ ).

A pair of states s1, s2 ∈ S are said to be (exactly probabilistically) bisimilar if
there exists an exact probabilistic bisimulation relation R such that s1R s2.

Note that since R is an equivalence relation, R-closed sets are exactly the unions
of whole equivalence classes.

Next, we adapt the notion of ε-bisimulation (as discussed in [13] for LMPs
over countable state spaces) to LMCs over general spaces.

Definition 4 (ε-bisimulation). Let M = (S,Σ, τ, L) be a LMC. For ε ∈
[0, 1], a symmetric binary relation Rε ⊆ S × S over the state space is an ε-
approximate probabilistic bisimulation relation (or just ε-bisimulation relation) if

∀T ∈ Σ, we have Rε(T ) ∈ Σ, (1)
∀(s1, s2) ∈ Rε, we have L(s1) = L(s2), (2)
∀(s1, s2) ∈ Rε, ∀T ∈ Σ, we have τ(s2, Rε(T )) ≥ τ(s1, T ) − ε. (3)

Two states s1, s2 ∈ S are said to be ε-bisimilar if there exists an ε-bisimulation
relation Rε such that s1Rεs2.

The condition raised in (3) could be understood intuitively as “for any move
that s1 can take (say, into set T ), s2 can match it with higher likelihood over the
corresponding set Rε(T ), up to ε tolerance.” Notice that (1) is not a necessary
requirement for countable state models, but for uncountable state models it is
needed to ensure that Rε(T ) is measurable and τ(s2, Rε(T )) is defined in (3).
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[13] showed that in countable state spaces, 0-approximate probabilistic bisim-
ulation corresponds to exact probabilistic bisimulation. On uncountable state
spaces, not every exact probabilistic bisimulation relation is a 0-bisimulation
relation because of the additional measurably requirement, but we still have
that 0-bisimulation implies exact probabilistic bisimulation.

Theorem 1. Let M = (S,Σ, τ, L) be a LMC, and let s1, s2 ∈ S. If s1, s2 are
0-bisimilar, then they are (exactly, probabilistically) bisimilar.

Although above s1, s2 are required to belong to the state space of a given
LMC, the notions of exact- and ε-bisimulation can be extended to hold over
pairs of LMCs by combining their state spaces, as follows.

Definition 5 (ε-bisimulation of pairs of LMCs). Consider two LMCs
M1 = (S1, Σ1, τ1, L1) and M2 = (S2, Σ2, τ2, L2). Without loss of generality,
assume that their state spaces S1, S2 are disjoint. The direct sum M1 ⊕ M2 of
M1 and M2 is the LMC formed by combining the state spaces of M1 and M2.
Formally, M1 ⊕ M2 = (S1 
 S2, σ (Σ1 × Σ2) , τ1 ⊕ τ2, L1 
 L2), where:

– S1 
 S2 is the union of S1 and S2 where we have assumed wlog (by relabelling
if necessary) that S1, S2 are disjoint;

– σ (Σ1 × Σ2) is the smallest σ-algebra containing Σ1 × Σ2;

– τ1 ⊕ τ2 (s, T ) :=

{
τ1(s, T ∩ S1) if s ∈ S1

τ2(s, T ∩ S2) if s ∈ S2

fors ∈ S1 
 S2, T ∈ σ (Σ1 × Σ2) ;

– L1 
 L2(s) :=

{
L1(s) if s ∈ S1

L2(s) if s ∈ S2

fors ∈ S1 
 S2.

Let s1 ∈ S1, s2 ∈ S2. We say that s1, s2 are ε-bisimilar iff s1, s2 are ε-bisimilar
as states in the direct sum LMC M1 ⊕ M2.

Other Notions of ε-Bisimulation in Literature. There is an alternative,
more direct, extension of exact probabilistic bisimulation in literature [1,3,14],
which simply requires |τ(s1, T̃ ) − τ(s2, T̃ )| ≤ ε instead of the conditions in Def-
inition 4. However, this requirement alone is too weak to guarantee properties
that we later discuss (cf. Sect. 7).

3 Approximate Probabilistic Trace Equivalence for LMCs

In this section we introduce the concept of approximate probabilistic trace equiv-
alence (or just f(k)-trace equivalence) to represent closeness of observable linear
time behaviour. Based on the likelihood over traces of a given LMC, this notion
depends on its operational semantics (cf. Definition 2), rather than on the struc-
ture of its transition kernel (as in the case of approximate bisimulation). The
notion can alternatively be thought of inducing a distance among traces, as
elaborated below.
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Definition 6 (Trace likelihood). Let M = (S,Σ, τ, L) be an LMC, s0 ∈ S,
and k ∈ N. Let TRACE denote a set of traces (each of length k + 1), taking
values in time over 2AP, so that TRACE ⊆ Ok+1. Denote with Pk(s0,TRACE)
the probability that the LMC M , given an initial state s0, generates any of the
runs 〈α0, · · · , αk〉 ∈ TRACE, namely

Pk(s0,TRACEk) =
∑

〈α0,··· ,αk〉
∈TRACEk

P
[
M s0

0 ∈ L−1({α0}), · · · ,M s0
k ∈ L−1({αk})

]
,

where M s0
t is the state of M at step t, with a degenerate initial distribution p0

that is concentrated on point s0 (cf. Definition 2).

As intuitive, we consider traces of length k +1 (rather than of length k) because
a length k + 1 trace is produced by one initial state and precisely k transitions.
Notice that the set of sequences of states generating TRACE is measurable,
being defined via a measurable map L over a finite set of traces.

Definition 7 (Total variation [15]). Let (Z,G) be a measure space where G is
a σ-algebra over Z, and let μ1, μ2 be probability measures over (Z,G). The total
variation between μ1, μ2 is dTV(μ1, μ2) := supA∈G |μ1(A) − μ2(A)|.
Definition 8 (f(k)-trace equivalence). Let M = (S,Σ, τ, L) be a LMC. For
a non-decreasing function f : N → [0, 1], we say that states s1, s2 ∈ S are f(k)-
approximate probabilistic trace equivalent if for all k ∈ N,

dTV

(
Pk(s1, ·) , Pk(s2, ·)

) ≤ f(k),

or alternatively if over TRACE ⊆ Ok+1,

|Pk(s1,TRACE) − Pk(s2,TRACE)| ≤ f(k).

The condition on monotonicity follows from the requirement on the total vari-
ation distance, which is defined over a product output space and necessarily
accumulates over time. The notion of f(k)-trace equivalence can be used to
relate states from two different LMCs, much in the same way as ε-bisimulation.

One can introduce the notion of probabilistic trace distance between pairs of
states s1, s2 as

min{f(k) ≥ 0 | s1 is f(k)-trace equivalent to s2} = dTV

(
Pk(s1, ·) , Pk(s2, ·)

)
.

Notice that the RHS is clearly a pseudometric. We discuss the development of
tight bounds on the probabilistic trace distance in Sect. 4.

3.1 Interpretation and Application of ε-Trace Equivalence

The notion of ε-trace equivalence subsumes closeness of finite-time traces, and
can be interpreted in two different ways. Firstly, ε-trace equivalence leads to
closeness of satisfaction probabilities over bounded-horizon linear time proper-
ties, e.g. bounded LTL formulae, as follows.
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Theorem 2. Let M = (S,Σ, τ, L) be an LMC, and let s1, s2 ∈ S be ε-trace
equivalent. Let ψ be any bounded LTL property over a k-step time horizon,
defined within the LTL fragment φ = φ1U≤tφ2 | a | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ1

for t ≤ k. Then,
∣∣∣ P [s1 |= ψ] − P [s2 |= ψ]

∣∣∣ ≤ f(k),

where P [s |= ψ] is the probability that starting from state s, the LMC satisfies
property ψ.

Proof. Formula ψ is satisfied by a specific set of length k + 1 traces. ��
Alternatively, via its connection to the notion of total variation, ε-trace distance
leads to the notion of distinguishability of the underlying LMC, namely the
ability (of an agent external to the model) to distinguish a model by observing
its traces.

Theorem 3. Let s1, s2 be two states of an LMC. Suppose one of them is selected
by a secret fair coin toss. An external agent guesses which one has been selected
by observing a trace of length k + 1 emitted from the unknown state. Then, an
optimal agent guesses correctly with probability

1
2

+
1
2
f(k),

with f(k) = dTV

(
Pk(s1, ·) , Pk(s2, ·)

)
being the probabilistic trace distance.

4 ε-Probabilistic Bisimulation Induces Approximate
Probabilistic Trace Equivalence

In this section we present the main result: we show that ε-bisimulation induces
a tight upper bound on the probabilistic trace distance, quantifiable as (1 −
(1 − ε)k). This translates to a guarantee on all the properties implied by ε-trace
equivalence, such as closeness of satisfaction probabilities for bounded linear time
properties. In addition, since for finite state LMPs the maximal ε-bisimulation
relation can be computed in O(|S|7) time [13], this result allows to establish an
upper bound on the probabilistic trace distance with the same time complexity.

Theorem 4 (ε-bisimulation implies (1 − (1 − ε)k)-trace equivalence).
Let M = (S,Σ, τ, L) be a LMC. If s1, s2 ∈ S are ε-bisimilar, then s1, s2 are
(1 − (1 − ε)k)-trace equivalent.

Proof (Sketch). The full proof, developed for LMCs over uncountable state
spaces, can be found in Appendix C of [4]. Here we offer a sketch of proof,
employing the finite-state LMP in Fig. 2 as an illustrating example (where for
simplicity we have omitted the labels for internal states, which can as well be
labelled with ∅ ∈ O).
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Fig. 2. LMC for the proof of Theorem 4.

The maximal (i.e. coarsest) ε-bisimulation relation Rε is obtained by pairs
of states within the sets

{t1, t2, u1}, {t2, t3, u2}, {s1, s2}, {v}, {w}, {z}.

We would like to prove that these ε-bisimilar states are also ε-trace equivalent.
In the full proof, we will show this by induction on the length of the trace, for
all ε-bisimilar states at the same time. In this sketch proof, we aim to illustrate
the induction step by showing how to bound

∣∣P3

(
s1,♦≤3a

) − P3

(
s2,♦≤3a

)∣∣ ,

where ♦≤ka is the set of traces of length k + 1, which reach a state labelled with
a (which in this case is just state v). The idea is to match each of the outgoing
transitions from s1 to an outgoing transition from s2 and to an ε-bisimilar state.
Specifically, we explicitly write

P3

(
s1,♦≤3a

)
=

1
3
P2

(
t1,♦≤2a

)
+

1
6
P2

(
t2,♦≤2a

)

+
1
6
P2

(
t2,♦≤2a

)
+

1
3
P2

(
t3,♦≤2a

)
,

(4)

and respectively

P3

(
s2,♦≤3a

)
= (

1
3

− 3ε

10
)·P2

(
u1,♦≤2a

)
+

1
6
P2

(
u1,♦≤2a

)

+
1
6
P2

(
u2,♦≤2a

)
+ (

1
3

− 7ε

10
)·P2

(
u2,♦≤2a

)
.

(5)

We then match-off the terms in the expansions for P3

(
s1,♦≤3a

)
and

P3

(
s2,♦≤3a

)
, one term at a time. We use the induction hypothesis to argue
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that the probabilities in the matched terms are (1 − (1 − ε)k)-close to each other
(here k = 1), since they concern ε-bisimilar states. That is,∣∣P2

(
t1,♦≤2a

) − P2

(
u1,♦≤2a

)∣∣ ≤ 1 − (1 − ε)k

∣∣P2

(
t2,♦≤2a

) − P2

(
u1,♦≤2a

)∣∣ ≤ 1 − (1 − ε)k

· · ·
The total amount of difference between the matching coefficients is no more
than ε. It can be shown (Lemma 1 in Appendix C of [4]) that these conditions
guarantee the required bound on

∣∣P3

(
s1,♦≤3a

) − P3

(
s2,♦≤3a

)∣∣.
The main difficulty is choosing a suitable decomposition of P3

(
s1,♦≤3a

)
and

P3

(
s2,♦≤3a

)
. This is non-trivial since in (4), the 1/3 probability of transitioning

into t2 had to be broken up into two terms with 1/6 probability each. However,
we can tackle this issue using an extension of Hall’s Matching Theorem [5] (cf.
Appendix C of [4]). It is then relatively straight forward to adapt this proof to
LMCs on uncountable state spaces by converging on integrals with simple func-
tions. ��

We now show that the expression for the induced bound on probabilistic
trace distance proved in Theorem 4, namely (1 − (1 − ε)k), is tight, in the sense
that for any k and ε, the bound can be attained by some pair of ε-bisimilar
states in some LMC. In other words, it is not possible to provide bounds on
the induced approximation level for traces, that are smaller than the expression
discussed above and that are valid in general.

Theorem 5. For any ε ≥ 0, there exists a LMC M = (S,Σ, τ, L) and states
s1, s2 ∈ S such that s1, s2 are ε-bisimilar, and for all k ∈ N there exists a
set TRACE of length k + 1 traces s.t. |Pk(s1,TRACE) − Pk(s2,TRACE)| =
1 − (1 − ε)k.

Proof. Select ε ≥ 0 and consider the following LMC:

Here s1, s2 are ε-bisimilar, and for all k ∈ N, Pk

(
s1,♦≤ka

)
= 0, whereas

Pk

(
s2,♦≤ka

)
=

∑k
i=1 (1 − ε)i−1

ε = 1 − (1 − ε)k. ��
The result in Theorem 4 can be viewed as an extension of the known fact that

bisimulation implies trace equivalence in non-probabilistic transition systems.
Similar to the deterministic case, the converse of Theorem 4 does not hold.

Theorem 6. (1 − (1 − ε)k)-trace equivalence does not imply ε-bisimulation.

Proof. In Fig. 1, states s1, s2 are not ε-bisimilar for any ε < 1/2, yet their prob-
abilistic trace distance is equal to 0. ��

This example shows that ε-bisimulation cannot be used to effectively estimate
the probabilistic trace distance between individual states. In particular, while the
(1 − (1 − ε)k)-bound on probabilistic trace distance discussed above is tight as
a uniform bound, it is not tight for individual pairs of states.
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5 Application to Model Checking of Continuous-State
LMCs

Suppose we are given an LMC M C =
(
SC , ΣC , τC , LC)

, which we shall refer to as
the “concrete” model, possibly over a continuous state space. We are interested
in calculating its probability of satisfying a given LTL formula, starting from
certain initial states. One approach is to construct a finite-state LMC MA =(
SA, ΣA, τA, LA)

(the “abstract model”) that can be related to M C (in a way
to be made precise shortly). Probabilistic model checking can then be run over
MA using standard tools for finite-state models such as PRISM [19], and since
MA is related to M C , this leads to approximate outcomes that are valid for
M C . The above approach has been studied in several papers [2,3,16], and the
method for constructing MA from M C is to raise smoothness assumptions on
the kernel τC of M C , and to partition the state space SC , thus obtaining SA and
τA (the sigma algebra and labels being directly inherited).

In this section we will demonstrate the application of our results. We will
employ ε-bisimulation to relate MA and M C , and use our results to bound
their trace distance. This method produces tighter error bounds, for a broader
class of properties, than are currently established in literature. The first step is
to establish simpler conditions that guarantee ε-bisimulation between M C and
MA.

Theorem 7. Let ε ∈ [0, 1], and suppose there exists a finite measurable partition
Qε = {P1, · · · , PN} of SC such that for all P ∈ Qε, s1, s2 ∈ P , we have that
LC(s1) = LC(s2) and1

max
J⊆{1,··· ,N}

∣∣∣∣∣∣τ
C

⎛
⎝s1,

⋃
j∈J

Pj

⎞
⎠ − τC

⎛
⎝s2,

⋃
j∈J

Pj

⎞
⎠

∣∣∣∣∣∣ ≤ ε.

Assume wlog Pi �= ∅, and for each i ∈ {1, · · · , N} choose a representative point
sC

i ∈ Pi. Consider the abstract model to be MA =
(
SA, ΣA, τA, LA)

formed by
merging each Pi into sC

i . Formally,

– SA = {sA
1 , · · · , sA

N}.
– ΣA = P (

SA)
.

– τA is such that τA(sA
i , {sA

j }) = τC(sC
i , Pj).

– LA(sA
i ) = LC(sC

i ).

Then, for all i ∈ {1, · · · , N}, sC ∈ Pi, we have that sC is ε-bisimilar to sA
i , and

hence 1 − (1 − ε)k-trace equivalent.

In practical terms the partition Qε can be straightforwardly constructed
in many cases. As shown in Theorem 8, the approach in [2,3,25] generates a
partition of SC satisfying the conditions of Theorem7. Thus, ε-bisimulation can
be seen as the underlying reason for the closeness of probabilities of events.
1 The left hand side is just dTV(μ1, μ2) where for i = 1, 2, for A ⊆ Qε, μi(A) :=

τC (si,
⋃

A).
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Theorem 8. Consider an LMC M C =
(
SC , ΣC , τC , LC)

where SC is a Borel
subset of Rd. Suppose that τC(s, T ) is of the form

∫
t∈T

f(s, t)dt, so that for each
state s ∈ SC, f(s, ·) : SC → R

+
0 is the probability density of the next state.

Suppose further that f(·, t) is uniformly K-Lipschitz continuous for all t ∈ SC.
That is, for some K ∈ R, for all s1, s2, t ∈ SC,

|f(s1, t) − f(s2, t)| ≤ K · ‖s1 − s2‖.

For A ∈ ΣC (so A ⊆ R
d), let λ(A) be the volume of A and δ(A) :=

supx1,x2∈A{‖x1 − x2‖} be the diameter of A. For any ε ∈ [0, 1], finite λ(SC),
suppose partition Q = {P1, · · · , PN} of SC is such that

max
j∈{1,··· ,N}

δ(Pj) ≤ 2ε

Kλ(SC)
.

Then, we have that Q satisfies the conditions of Theorem7 and can be used to
construct the abstract model MA.

There are a number of adaptations that could be made to this result. [16]
improves a related approach by varying the size of each partition in response
to the local Lipschitz constant, rather than enforcing a globally uniform K.
Similarly to this paper, [3] also discusses the relation of approximate proba-
bilistic bisimulation to the problem of generating the abstract model, but a
strictly weaker definition of approximate probabilistic bisimulation is employed
(cf. Sect. 7). Finally, note that using algorithms in [13], we can compute
ε-bisimulation relations on MA: this allows MA to be further compressed (at
the cost of an additional ε2 approximation), by merging the states that are
ε2-bisimilar to each other.

6 Case Study

Concrete Model. Consider the concrete model M C =
(
SC , ΣC , τC , LC)

,
describing the weather forecast for a resort. Here SC = {0, 1} × [0, 1), ΣC =
B(SC), and the state at time t is (Rt,Ht), where

– Rt ∈ {0, 1} is a random variable representing whether it rains on day t,
– Ht ∈ [0, 1) is a random variable representing the humidity after day t.

Raining on day t causes it to become more likely to rain on day t + 1, but
it also tends to reduce the humidity, which causes it to become gradually less
likely to rain in the future. The meteorological variations are encompassed by
τC , which is such that the model evolves according to

P(Rt+1 | R0, · · · , Rt,H0, · · · ,Ht) = P(Rt+1 | Rt,Ht)

∼
{

B( 14 + 3
4Ht) if Rt = 1

B( 34Ht) if Rt = 0
,

P(Ht+1 | R0, · · · , Rt,H0, · · · ,Ht, Rt+1) = P(Ht+1 | Ht, Rt+1)

∼
{

U
[
0, 1+Ht

2

)
if Rt+1 = 1

U
[

Ht

2 , 1
)

if Rt+1 = 0
,
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where B(p) is the Bernoulli distribution with probability p of producing 1, and
U [a, b) is the uniform distribution over the real interval [a, b). Finally, the states
of the model are labelled according to whether it rains on that day, namely

LC((r, h)) =

{
{RAIN} if r = 1
∅ if r = 0.

Given M C we are interested in computing the likelihood of events expressing
meteorological predictions, given knowledge of present weather conditions.

Synthesis of the Abstract Model. Notice that M C does not directly satisfy
the smoothness assumptions of Theorem 8, in view of the discrete/continuous
structure of its state space and the discontinuous probability density result-
ing from the uniform distribution. Nonetheless, we can still construct MA by
taking a sensible partition of SC and proving that it satisfies the conditions
of Theorem 7. Let Qε :=

{
Pr,h

∣∣ r ∈ {0, 1}, h ∈ {0, · · · , N − 1}}
, where

Pr,h = {r} × [h/N, h+1/N).

Theorem 9. For any ε ∈ [0, 1], by taking N ≥ 2/ε, we have that Qε satisfies
the conditions of Theorem7.

Therefore, we may construct the abstract model using Theorem7. We choose
the abstract state (rA, hA) ∈ SA := {0, 1}×{0, · · · , N −1} to correspond to the
partition PrA,hA ∈ Qε, and within each partition we select the concrete state
with the lowest Ht-coordinate to be the representative state. This produces the
abstract model MA =

(
SA, ΣA, τA, LA)

, where ΣA = P(SA), LA((r, h)) =
LC((r, h)), and

τA ((h0, r0), {(h1, r1)})=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pR1|R0(h0)· pH1|R1(h0, h1) if r0 = 1, r1 = 1(
1 − pR1|R0(h0)

) · pH1|¬R1(h0, h1) if r0 = 1, r1 = 0
pR1|¬R0(h0)· pH1|R1(h0, h1) if r0 = 0, r1 = 1(
1 − pR1|¬R0(h0)

) · pH1|¬R1(h0, h1) if r0 = 0, r1 = 0,

where

– pR1|R0(h0) = 1
4 + 3

4
h0
N , and pR1|¬R0(h0) = 3

4
h0
N ,

– pH|¬R(h0, h1) = 2
2N−h0

·max (min (h1 + 1 − h0/2, 1) , 0),
– pH|R(h0, h1) = 2

N+h0
·max

(
min

(
N+h0

2 − h1, 1
)
, 0

)
.

Computation of Approximate Satisfaction Probabilities. Suppose that
at the end of day 0, we have R0 = 0,H0 = 0.5, and a travel agent wants to know
the risk of there being 2 consecutive days of rain over the next three days.

This probability can be computed algorithmically according to MA, and for
N = 1000, this is 0.365437 (see Appendix G of [4]). Since point (0, 500) ∈ SA

is 0.001-bisimilar with (0, 0.5) ∈ SC , this means that according M C with initial
state (0, 0.5) ∈ SC , the probability of there being two consecutive days of rain
over the next three days is 0.365437 ± 0.003.
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Analytical Validation of the Result. In this setup it is possible to evaluate
the exact result for M C analytically:

P [R1 = 1, R2 =1] = P [R1 = 1]

∫ 1

0

fH1|R1=1(h1)·P [R2 = 1 | H1 = h1, R1 = 1] dh1,

which amounts to 0.199219, and similarly P [R1 = 0, R2 = 1, R3 = 1] =
0.166626. This yields

P [Two consecutive rainy days over next 3 days]
= P [R1 = 1, R2 = 1z] + P [R1 = 0, R2 = 1, R3 = 1] = 0.365845,

which is within the error bounds guaranteed by ε-trace equivalence, as expected.

7 Other Notions of ε-Bisimulation

The following condition appears in literature [1,3,14] as the definition of approx-
imate probabilistic bisimulation. For simplicity, let us restrict our attention to
finite state spaces.

Definition 9 (Alternative notion of approximate probabilistic bisimu-
lation, adapted from [3]). Let M = (S,Σ, τ, L) be a LMC, where S is finite
and Σ = P(S). For ε ∈ [0, 1], a binary relation Rε on S satisfies Definition 9 if:

∀(s1, s2) ∈ Rε, we have L(s1) = L(s2),

∀(s1, s2) ∈ Rε, ∀T̃ ⊆ S s.t. T̃ is Rε-closed, we have
∣∣∣τ(s1, T̃ ) − τ(s2, T̃ )

∣∣∣ ≤ ε.

This is different from our notion of approximate probabilistic bisimulation
because T̃ ranges over Rε-closed sets rather than all (measurable) sets. This
definition is closer to exact probabilistic bisimulation (cf. Definition 3), but it is
too weak to effectively bound probabilistic trace distance.

Theorem 10. For any ε > 0, there exists an LMC M = (S,Σ, τ, L), a binary
relation Rε on S, and a pair of states (s1, s2) ∈ Rε, such that Rε satisfies the
conditions in Definition 9, but the 2-step reachability probabilities from s1, s2
differ by 1 for some destination states.

Proof. For ε > 0, let N ∈ Z
+, 1/N ≤ ε. Consider the following LMC. Let

Rε := {(s1, s2)} ∪ {(tk, tk+1) | k ∈ {0, · · · , N − 1}}.
The only Rε-closed sets are {s1, s2}, {t0, . . . , tN}, {u1}, {u2} and unions of

these sets, and so Rε satisfies Definition 9.
We have s1Rε s2, and yet P2

(
s1,♦≤2a

)
= 1 but P2

(
s2,♦≤2a

)
= 0, where

♦≤2a is the set of length 3 traces that reach a state labelled with a.
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As shown in [14] however, there is still some relationship between the prob-
abilities of specific traces, which hinges on additional details of the structure of
the transition kernel.

8 Conclusions and Extensions

In this paper we have developed a theory of f(k)-trace equivalence. We derived
the minimum f(k) such that ε-bisimulation implies f(k)-trace equivalence, thus
extending the well known result for the exact non-probabilistic case. By linking
error bounds on the total variation of length k traces to a notion of approximation
based on the underlying transition kernel, we provided a means of computing
upper bounds for the total variation and of synthesising abstract models with
arbitrarily small total variation to a given concrete model.

It is of interest to extend our results to allow the states of the LMC to be
labelled with bounded real-valued rewards, and then to limit the difference in
expected reward between approximately bisimilar states.

Acknowledgments. The authors would like to thank Marta Kwiatkowska for discus-
sions on an earlier version of this draft.
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