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Abstract. Cyclic proof provides a style of proof for logics with induc-
tive (and coinductive) definitions, in which proofs are cyclic graphs rep-
resenting a form of argument by infinite descent. It is easily shown that
cyclic proof subsumes proof by (co)induction. So cyclic proof systems
are at least as powerful as the corresponding proof systems with explicit
(co)induction rules. Whether or not the converse inclusion holds is a non-
trivial question. In this paper, we resolve this question in one interesting
case. We show that a cyclic formulation of first-order arithmetic is equiv-
alent in power to Peano Arithmetic. The proof involves formalising the
meta-theory of cyclic proof in a subsystem of second-order arithmetic.

1 Introduction

Cyclic (or circular1) proof has been studied by a number of authors, see,
e.g., [1,2,4–13,17–19,21,22,24]. It is a style of proof suitable for logics with
inductive and coinductive definitions. The main idea is to allow proofs to be
given as cyclic graphs, where the cycles capture the looping nature of arguments
by induction and coinduction. For this to provide a sound method of reasoning,
a global condition needs to be satisfied by the proof structure in order to rule
out fallacious circular arguments. The global condition can be seen as defining
cyclic proof as a formalisation of the concept of proof by infinite descent.

In [4,5,10,11], Brotherston and the author studied a natural style of cyclic
proof for first-order logic extended with ordinary inductive definitions in the style
of Martin-Löf [16]. It was shown that cyclic proof subsumes proof by induction.
The question of whether the two styles of proof are equivalent in power was left
open, but conjectured to have a positive answer. In a paper appearing alongside
this one, Berardi and Tatsuta refute this conjecture [3].2 In general, cyclic proof is

This material is based upon work supported by the Air Force Office of Scientific
Research, Air Force Materiel Command, USAF under Award No. FA9550-14-1-0096.

1 We prefer cyclic for two reasons: proofs are given as cyclic graphs; and the phrase
“circular proof” is uncomfortably close to “circular argument”, which means an
argument that goes round in a circle without establishing anything.

2 Independently of [3], Stratulat announced a number of potential counterexamples to
the conjecture in [23].
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more powerful than proof by induction (as long as the latter uses only induction
principles for the inductive definitions under consideration).

In this paper, we provide a complementary result to the theorem of Berardi
and Tatsuta. We study cyclic proof for first-order arithmetic. Our main result is
that the resulting Cyclic Arithmetic coincides with Peano Arithmetic. Thus, in
the context of first-order arithmetic, there is, after all, an equivalence in power
between cyclic proof and proof by induction.

From one point of view, the study of cyclic proof is particularly apposite
in the context of arithmetic. In Sect. 2, we argue that Cyclic Arithmetic is of
intrinsic interest as a natural formalisation of the notion of proof by infinite
descent. Our theorem thus has potential philosophical value in establishing a non-
trivial equivalence between infinite descent and induction. More generally, our
result contributes to the broad programme of obtaining a better understanding
of potential methods of proof. Cyclic methods, in particular, appear to offer
a promising extension to machine-assisted formalised proof [9], particularly for
applications in computer-science-oriented logics [1,2,6–8,12,13,17–19,24].

In Sect. 3, we introduce an infinitary proof system, whose ∞-proofs are non-
well-founded trees. This is sound and complete for the first-order theory of true
arithmetic. Then in Sect. 4, we define cyclic proofs as the restriction of ∞-proofs
to regular trees — those that can be presented as finite (cyclic) graphs. Impor-
tantly, the question of whether a finite graph presents a cyclic proof is decidable.
We end Sect. 4 with the proof that cyclic proof subsumes proof by induction;
i.e., that Cyclic Arithmetic contains Peano Arithmetic.

The results thus far are all direct analogues, in the setting of arithmetic,
of results in [11] for general inductive definitions. Nevertheless, we give detailed
proofs. In the case of the completeness theorem and of the proof that cyclic proof
subsumes induction, we do so because the proofs, in the context of arithmetic,
are simpler than the corresponding proofs for inductive definitions. In the case
of the soundness and decidability results, the proofs for arithmetic are similar
to those in [11]. Nevertheless, we supply the details because they are needed in
the proof of our main result, Theorem 6, which states that Cyclic Arithmetic is
conservative over Peano Arithmetic.

Theorem 6 is proved in Sect. 5. The proof method is to formalise the sound-
ness argument for ∞-proofs in ACA0, a subsystem of second-order arithmetic,
which has been widely studied in the context of reverse mathematics [20]. The
use of second-order logic is essential for formalising soundness because of the
infinitary nature of ∞-proofs. The reason for the particular choice of the subsys-
tem ACA0 is that it is conservative over Peano Arithmetic. Once the soundness
of Cyclic Arithmetic has been established in ACA0, the conservativity of Cyclic
Arithmetic then follows from a lemma (Lemma 9) that says that ACA0 can
recognise a cyclic proof when presented with one.

Section 6 is devoted to the proof of Lemma 9. For this, we make use of
constructions and results from the theory of Büchi automata, once again for-
malised in ACA0. Our presentation builds on the recent work of [15], in which
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the fundamental complementation result for Büchi automata is studied from the
perspective of reverse mathematics.

Finally, in Sect. 7, we discuss directions for further research.

2 Proof by Infinite Descent

The aim of this section is to motivate Cyclic Arithmetic informally as providing
a natural style of number-theoretic proof by infinite descent. We begin with a
standard example of a proof by infinite descent, establishing that

√
2 is irrational.

Since we work in the language of arithmetic, we express this as: there are no
natural numbers x0, x1 such that x0 > 0 and x2

0 = 2x2
1.

Suppose, for contradiction, that we have x0, x1 such that x0 > 0 and x2
0 =

2x2
1. It then follows that x0 > x1 > 0. Since 2 is a prime factor of x2

0 it must
be a prime factor of x0 itself. So x0 = 2x2 for some x2. So 4x2

2 = 2x2
1, hence

x2
1 = 2x2

2.
We have now gone round in a circle back to the start of the proof, but

with x1, x2 in place of x0, x1. By repeating the argument for x1, x2 we discover
that x1 > x2 > 0 and x2

2 = 2x2
3 for some x3. Continuing, x2 > x3 > 0 and

x2
3 = 2x2

4; whence x3 > x4 > 0, etc. So, starting from our initial assumptions
that x0 > 0 and x2

0 = 2x2
1, we produce an infinite strictly descending sequence

x0 > x1 > x2 > x3 > . . . of positive integers. Since no such sequence exists, we
have obtained the desired contradiction.

Figure 1 presents this proof as an infinite proof tree of sequents. The steps
labelled (�) and (†) are not intended to be atomic proof steps. Rather (�) is
the main number-theoretic lemma used in the proof, and (†) chains together
a few simple steps of arithmetical and logical reasoning (including a cut). The
ellipsis at the top right represents the continuation of the argument via an infi-
nite sequence of repetitions of the visible proof pattern, but with the variables
changed appropriately at each repetition.

(�)
0<x0, x2

0 = 2x2
1 ⇒ 0<x1<x0 ∧ ∃x2. x0 =2x2

···
0<x1, x2

1 = 2x2
2 ⇒ ⊥

x1 <x0, 0<x1, 4x2
2 = 2x2

1 ⇒ ⊥
(†)

0<x0, x2
0 = 2x2

1 ⇒ ⊥

Fig. 1. Infinite descent proof of the irrationality of
√

2

The proof tree in its entirety is an infinite tree, with one growing up to the
right. Going up this branch, the variables x0, x1, x2, . . . , once introduced, never
change their value. Moreover, we pass through an infinite sequence of underlined
statements x1 <x0, x2 <x1, x3 <x2 each appearing as an antecedent (i.e., left-
hand formula) in a sequent. It is this fact that makes the argument a valid proof
by infinite descent.
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x=0 ⇒ A(x,y,y+1)

···
(A)⇒ ∃z.A(x−1,1,z)

x>0, y=0 ⇒ ∃z.A(x,y,z)

···
(B)⇒ ∃z.A(x,y−1,z)

···
(C)⇒ ∃z.A(x−1,y′,z)

⇒ ∃z, y′. A(x,y−1,y′)∧A(x−1,y′,z)

x, y>0 ⇒ ∃z. A(x,y,z)

x>0 ⇒ ∃z.A(x,y,z)

⇒ ∃z.A(x,y,z)

Fig. 2. Infinite descent proof of the totality of the Ackermann-Péter function.

We present one more example of a proof in a similar style. Let A(x, y, z) be
a ternary relation on natural numbers satisfying:

A(x, y, z) ⇔ (x = 0 ∧ z = y + 1)
∨ (x > 0 ∧ y = 0 ∧ A(x − 1, 1, z))
∨ (x, y > 0 ∧ ∃w.A(x, y − 1, w) ∧ A(x − 1, w, z))

This formula defines A to be the graph of the well-known 2-argument
Ackermann-Péter function. Using standard techniques of definition, one can
encode A(x, y, z) by a Σ0

1-formula in the language of arithmetic satisfying the
equivalence above.

Figure 2 presents a proof by infinite descent of the totality of the Ackermann-
Péter function. As before, the individual rules are not atomic steps, but contain
arithmetical and logical reasoning, including manipulation of the defining prop-
erty of A(x, y, z) above. This time, the full infinite proof is built by repeating
the basic pattern three times, once each at (A), (B) and (C), ad infinitum. In
doing this, variables are substituted by the terms specified in each case. Note
that infinitely many variables y, y′, y′′, . . . appear in the infinite proof.

The proof in Fig. 2 presents a correct argument by infinite descent for the
following reason. By the local soundness of all rules in the proof, any x, y provid-
ing a counterexample to the concluding sequent will generate an infinite branch
together with assignments to all variables such that all sequents along the branch
are false. There are now two cases to consider.

– If the infinite branch passes through sequents in positions (A) or (C) infinitely
often then the value of the number supplied in the x position of A(x, y, z) is
decremented infinitely often even though it remains positive along the path.

– Otherwise, the branch must eventually reach a point after which it avoids (A)
and (C). Thus all subsequent repetitions are attained via (B). In this case, the
number appearing in the y position, at the point in question, is decremented
infinitely often, although it again remains positive.
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In either case, we have the desired contradiction.
Thus far, we have been describing proofs by infinite descent as infinite proofs.

This is in keeping with the idea that a proof by infinite descent should construct
infinite sequences, but it is not compatible with the idea of a proof as a finite
representation of an argument. Nonetheless, a very natural restriction on infinite
proofs can be imposed to achieve such a finite representation. One simply asks
for the infinite proof tree to be regular, namely for it to have only finitely many
distinct subtrees. Any such regular infinite proof tree can be presented as a finite
cyclic graph. For example, consider the version below of the proof from Fig. 1, in
which a substitution rule is used to make all subtrees rooted at sequents labelled
(∗) identical. The full proof tree is thus presented by the finite cyclic graph
obtained by identifying the nodes labelled (∗).

0<x0, x2
0 = 2x2

1 ⇒ 0<x1<x0 ∧ ∃x2. x0 =2x2

···
0<x0, x2

0 = 2x2
1

(∗)⇒ ⊥
(Sub)

0<x1, x2
1 = 2x2

2 ⇒ ⊥
x1 <x0, 0<x1, 4x2

2 = 2x2
1 ⇒ ⊥

0<x0, x2
0 = 2x2

1
(∗)⇒ ⊥

It is similarly possible to convert Fig. 2 to a regular infinite proof.
In Sect. 3, we give a precise definition of ∞-proof that formalises the notion

of infinite proof by infinite descent described informally above, and we show
that ∞-proofs are sound and complete for the first-order theory of true arith-
metic. Since the notion of proof is infinitary, the completeness result is unsur-
prising. For example, a similar completeness property is well known to hold
for ω-proofs, obtained by adding the infinitary ω-rule to (for example) sequent
calculus. Nonetheless, there is an important mathematical distinction between ω-
proofs and ∞-proofs. The former are given as infinitely-branching well-founded
trees. In contrast, ∞-proofs are finitely branching (potentially) non-well-founded
trees.

It is an advantage of ∞-proofs that they possess a naturally identifiable sub-
class of finitely presentable proofs, the regular ones, which we introduce as cyclic
proofs in Sect. 4. Our main result, the coincidence of cyclic proof for arithmetic
with Peano Arithmetic, thus establishes that finitary proof by infinite descent is
equivalent to proof by induction.

3 ∞-proofs

We formulate arithmetic using first-order logic with equality, with signature
(0, s,+, ·, <), where s is the successor function. The strict order relation < is
included as primitive because it is used in the definition of ∞-proof below.

We give a sequent calculus presentation of our proof calculus. For our pur-
poses, a sequent Γ ⇒ Δ is a pair of finite sets Γ,Δ of formulas. We use standard
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notational conventions for sequents, such as omitting set delimiters when writ-
ing sets, and using comma ‘,’ for union. We write Γ [θ] for the result of applying
the same substitution θ (mapping finitely many variables to associated terms)
to every formula in Γ . We also write Γ [t1, . . . , tk], for terms t1, . . . , tk, to mean
Γ [t1/x1, . . . , tk/xk], where x1, . . . , xk are distinct variables left implicit. In such
cases, a parallel mention of Γ [u1, . . . , uk] always means Γ [u1/x1, . . . , uk/xk] for
the same variables x1, . . . , xk.

Our proof system is built from three sets of rules manipulating sequents.
Rules for the logical constants (including equality) are presented in Fig. 3. Struc-
tural rules, including (Cut), are given in Fig. 4. Finally, basic arithmetic proper-
ties are axiomatised, in Fig. 5, by a list of 11 axiom sequents, together with one
further inference rule. The axioms and rule of Fig. 5 implement a finitely axioma-
tised theory of arithmetic corresponding to a natural expansion of Robinson’s
system Q with < as a primitive relation. As motivated in Sect. 2, our ∞-proofs
are infinite trees, where locally each node of the tree is given by an application of
one of the rules or axioms in Figs. 3, 4 and 5. We call such a tree a pre-∞-proof.
In order to qualify as an actual proof, such a tree will need to satisfy a further
condition, whose formulation requires the following definition.

Γ ∩ Δ �= ∅
Γ ⇒ Δ

Γ ⇒ A, Δ

Γ, ¬A ⇒ Δ

Γ, A ⇒ Δ

Γ ⇒ ¬A, Δ

Γ, A, B ⇒ Δ

Γ, A ∧ B ⇒ Δ

Γ ⇒ A, Δ Γ ⇒ B, Δ

Γ ⇒ A ∧ B, Δ

Γ, A ⇒ Δ Γ, B ⇒ Δ

Γ, A ∨ B ⇒ Δ

Γ ⇒ A, B, Δ

Γ ⇒ A ∨ B, Δ

Γ, A[t/x] ⇒ Δ

Γ, ∀x A ⇒ Δ

Γ ⇒ A[y/x], Δ
y fresh

Γ ⇒ ∀x A, Δ

Γ, A[y/x] ⇒ Δ
y fresh

Γ, ∃x A ⇒ Δ

Γ ⇒ A[t/x], Δ

Γ ⇒ ∃x A, Δ

Γ [u1, u2] ⇒ Δ[u1, u2]

Γ [u2, u1], u1 = u2 ⇒ Δ[u2, u1] Γ ⇒ t = t, Δ

Fig. 3. Cut-free sequent calculus with equality

Γ ⇒ Δ
(Wk)

Γ, Γ ′ ⇒ Δ′, Δ

Γ, A ⇒ Δ Γ ⇒ A, Δ
(Cut)

Γ ⇒ Δ

Γ ⇒ Δ
(Sub)

Γ [θ] ⇒ Δ[θ]

Fig. 4. Weakening, cut and substitution rules

Definition 1 (Precursor, trace, progress). Let (Γi ⇒ Δi)i≥0 be an infinite
branch through a pre-proof. For terms t, t′, we say that t′ is a precursor of t at
i if one of the following holds.
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t < u, u < v ⇒ t < v

t < u, u < t ⇒
⇒ t < u, t = u, u < t

t < 0 ⇒
t < u ⇒ s(t) < s(u)

⇒ t < s(t)

t < u, u < s(t) ⇒
⇒ t + 0 = t

⇒ t + s(u) = s(t + u)

⇒ t · 0 = 0

⇒ t · s(u) = (t · u) + t

Γ, t = s(x) ⇒ Δ
x fresh

Γ, 0 < t ⇒ Δ

Fig. 5. Axioms and rules for basic arithmetic

– Γi ⇒ Δi is the conclusion of an application of (Sub), and t = θ(t′) where θ is
the substitution used in the rule application.

– Γi ⇒ Δi is the conclusion of an (u1 =u2)-left rule, and it is possible to write
t′ and t as u[u1, u2] and u[u2, u1] respectively, for some term u.

– Γi ⇒ Δi is the conclusion of one of the other rules, and t′ = t.

We say that a term t occurs in a sequent Γ ⇒ Δ if it appears within some formula
in Γ,Δ (possibly as a subterm of another term). A trace along (Γi ⇒ Δi)i≥0 is a
sequence (ti)i≥N , for some N ≥ 0, such that, for every i ≥ N , the term ti occurs
in Γi ⇒ Δi, and also one of the following holds.

– Either ti+1 is a precursor of ti at i,
– or there exists (ti+1 < t) ∈ Γi+1 such that t is a precursor of ti at i.

When the latter case holds, we say that the trace progresses at i + 1.

Definition 2 (∞-proof). An ∞-proof is a pre-∞-proof that satisfies the fol-
lowing trace condition.

Along every infinite branch (Γi ⇒ Δi)i there exist N ≥ 0 and a trace
(ti)i≥N that progresses at infinitely many i.

Modulo the expansion of the depicted rules into combinations of primitive
rules from Figs. 3, 4 and 5, the proofs in Figs. 1 and 2 are both ∞-proofs,
for the reasons explained in Sect. 2. (E.g., the required trace in Fig. 1 is
x0, x1, x1, x2, x2, . . . .)

Semantically, we will be interested only in the standard interpretation in the
natural numbers N. We write N |=ρ A to say that formula A is true in N under
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an environment ρ that interprets the free variables of A as natural numbers. We
write N |=ρ Γ ⇒ Δ to mean: if N |=ρ A for all A ∈ Γ then there exists B ∈ Δ
such that N |=ρ B. We define N |= Γ ⇒ Δ to mean: N |=ρ Γ ⇒ Δ for all
N-environments ρ.

Theorem 3 (Soundness for ∞-proofs). If Γ ⇒ Δ has an ∞-proof then
N |= Γ ⇒ Δ.

Proof. We suppose, for contradiction, that we have an ∞-proof of Γ0 ⇒ Δ0, but
that N �|= ρ0 Γ0 ⇒ Δ0.

We first construct an infinite branch (Γi ⇒ Δi)i, together with an associated
sequence (ρi)i of environments, such that N �|= ρi Γi ⇒ Δi for all i. To do this,
Γi+1 ⇒ Δi+1 and ρi+1 are constructed from Γi ⇒ Δi and ρi as follows. Since
N �|= ρi Γi ⇒ Δi, the sequent Γi ⇒ Δi must be the conclusion of an inference
rule. If this rule is an instance of (Sub) then define ρi+1 = ρi ◦ θ, where θ is
the substitution in the rule. Otherwise define ρi+1 = ρi. By the soundness of
inference rules, at least one premise of the rule is a sequent Γ ′ ⇒ Δ′ for which
N �|= ρi+1 Γ ′ ⇒ Δ′. We define Γi+1 ⇒ Δi+1 to be a chosen such premise.

By the trace condition, the infinite branch has a trace (ti)i≥N that progresses
infinitely often. Consider the associated sequence of numbers (tρi

i )i≥N . Since
N �|= ρi Γi ⇒ Δi, we have that N |= ρi A for every A ∈ Γi. So, using the definitions
of precursor and of ρi+1, if ti+1 is a precursor of t then ti+1

ρi+1 = t ρi . Therefore,

– t
ρi+1
i+1 = tρi

i , if ti+1 is a precursor of ti; and
– t

ρi+1
i+1 < tρi

i , if (ti+1 < t) ∈ Γi+1 and t is a precursor of ti.

By the trace condition, the second case applies infinitely often. Thus (tρi

i )i≥N is
an infinite non-increasing sequence of natural numbers that decreases infinitely
often, which gives the desired contradiction. ��

Due to their infinitary nature, ∞-proofs are complete. Indeed, completeness
holds even for proofs that contain no instances of (Wk) and (Sub), and in which
(Cut) occurs only in cases in which the cut formula A is atomic. We call such
proofs atomic cut ∞-proofs.

Theorem 4 (Atomic-cut completeness for ∞-proofs). If N |= Γ ⇒ Δ
then there exists an atomic-cut ∞-proof of Γ ⇒ Δ.

Proof. The main observation required is that the sequent calculus ω-rule:

Γ [0] ⇒ Δ[0] Γ [s(0)] ⇒ Δ[s(0)] Γ [s(s(0))] ⇒ Δ[s(s(0))] . . . . . . . . .

Γ [t] ⇒ Δ[t]

is simulated by the ∞-proof below (we combine multiple rules into single steps).



Cyclic Arithmetic Is Equivalent to Peano Arithmetic 291

Γ [0] ⇒ Δ[0]

t=0, Γ [t] ⇒ Δ[t]

Γ [s(0)] ⇒ Δ[s(0)]

x1=0, Γ [s(x1)] ⇒ Δ[s(x1)]

Γ [s(s(0))] ⇒ Δ[s(s(0))]

···
x2 >0, Γ [s(s(x2))] ⇒ Δ[s(s(x2))]

x2 <x1 , Γ [s(s(x2))] ⇒ Δ[s(s(x2))]

x1=s(x2), Γ [s(x1)] ⇒ Δ[s(x1)]

x1 >0, Γ [s(x1)] ⇒ Δ[s(x1)]

x1 <t , Γ [s(x1)] ⇒ Δ[s(x1)]

t=s(x1), Γ [t] ⇒ Δ[t]

t>0, Γ [t] ⇒ Δ[t]

Γ [t] ⇒ Δ[t]

To apply the above, we plug in an ∞-proof for each premise Γ [n] ⇒ Δ[n].
The resulting pre-∞-proof has just one additional infinite branch, the rightmost
branch. Along this branch, the sequence t, t, t, x1, x1, x1, x2, x2, x2, . . . is an infi-
nitely progressing trace. (The progress points are underlined.) ��

4 Cyclic Arithmetic

A (possibly infinite) tree is said to be regular if it has only finitely many distinct
subtrees. Equivalently, a tree is regular if it can be defined as an unfolding of a
finite directed (possibly cyclic) graph.

We shall be interested in regular ∞-proofs; that is, in ∞-proofs whose under-
lying pre-∞-proofs are regular trees. For this, we consider a regular pre-∞-proof
to be presented by a finite graph of the following form. Each vertex v of the
graph is labelled with an instance rule(v) of one of the rules in Figs. 3, 4 and
5. We write conc(v) for the sequent that is the conclusion of the rule instance,
and premi(v) for the sequent that is the i-th premise. (Axioms are considered as
rules with 0 premises.) When a vertex v has label rule(v) with n premises, the
graph must contain exactly n edges e1v, . . . , en

v with source v. Moreover, for each
i = 1, . . . , n, it must hold that premi(v) = conc(vi), where vi is the target vertex
of ei

v. Finally, there is a distinguished vertex ε, which represents the conclusion
of the pre-∞-proof; i.e., conc(ε) is the conclusion sequent.

It is straightforward to see how each such finite graph presentation unfolds
to a regular pre-∞-proof, and conversely how each regular pre-∞-proof can be
given such a presentation; see [11] for a detailed treatment.

We next establish the decidability of the global trace condition for regular
pre-∞-proofs, for which we follow analogous arguments in [11,21]. Although the
relatively simple construction does not provide a practical decision procedure, it
has the advantage of facilitating the proofs in Sect. 6 below.

Recall that a (nondeterministic) Büchi automaton over an alphabet Σ is
just a nondeterministic finite automaton over Σ with an acceptance condition
defined for infinite words as follows. An accepting run of a Büchi automaton B
is an infinite sequence of consecutive transitions, starting from an initial state,
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that passes through an accepting state infinitely often. An infinite word X ∈ Σω

is accepted by B if there exists an accepting run labelled by X.

Theorem 5. It is decidable whether a regular pre-∞-proof, presented as a finite
directed graph, is an ∞-proof.

Proof. Let Σ be the alphabet whose symbols are the edges in the finite graph
G that presents the proof. We construct a Büchi automaton Bt over Σ that
recognises those infinite paths through G that possess an infinitely progressing
trace. The states of Bt are of the form:

– (v) where v is a vertex in G.
– (v, t) where v is a vertex in G and t is a term in conc(v).
– (v, t,�) where v is a vertex in G and t is a term in conc(v).

The transitions are of the form:

– (v)
ei
v−→(v′) and (v)

ei
v−→(v′, t′) whenever v′ is the target of ei

v.

– (v, t)
ei
v−→(v′, t′) and (v, t,�)

ei
v−→(v′, t′) whenever v′ is the target of ei

v and t′ is
a precursor of t for rule(v).

– (v, t)
ei
v−→(v′, t′,�) and (v, t,�)

ei
v−→(v′, t′,�) whenever v′ is the target of ei

v and
(t′ < t′′) is an antecedent of conc(v′) for some precursor t′′ of t for rule(v).

The accepting states are those with a � component. The start state is ε. It is
clear that an ω-word is accepted if and only if it defines an infinite path through
the pre-∞-proof that possess an infinitely progressing trace.

We also need a Büchi automaton Bp that recognises the language of all
infinite paths through the pre-∞-proof. The construction of this is trivial, hence
omitted.

The pre-∞-proof is an ∞-proof if and only if there is an inclusion of ω-
languages L(Bp) ⊆ L(Bt). Such inclusions are decidable. ��

Since regular ∞-proofs are presented as finite cyclic graphs, we call such
proofs cyclic proofs, following the terminology of [11]. Similarly, we call the first-
order theory consisting of all sentences A such that the sequent ⇒ A has a cyclic
proof Cyclic Arithmetic (CA).

The main result of this paper is that Cyclic Arithmetic coincides with Peano
Arithmetic (PA). To ease the comparison, we assume that PA is also formulated
in the language (0, s,+, ·, <).

Theorem 6 (Coincidence theorem). CA = PA.

The proposition below establishes the easier inclusion of Theorem 6. The
converse inclusion is left to Sect. 5.
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Proposition 7. PA ⊆ CA.

Proof. The axioms and rule of Figs. 3, 4 and 5 capture all of PA except for
the induction schema. Moreover, since we have the cut rule, the cyclic-provable
sentences are closed under logical consequence. We thus need only show that
every instance of induction has a cyclic proof. Such a proof is given by (we
identify the (∗) nodes):

x0=0, A[0] ⇒ A[x0]

A[0],∀y.(A[y] → A[s(y)])
(∗)⇒ A[x0]

(Sub)
A[0],∀y.(A[y] → A[s(y)]) ⇒ A[x1]

x1<x0, A[0],∀y.(A[y] → A[s(y)]) ⇒ A[s(x1)]

x0=s(x1), A[0],∀y.(A[y] → A[s(y)]) ⇒ A[x0]

x0>0, A[0],∀y.(A[y] → A[s(y)]) ⇒ A[x0]

A[0],∀y.(A[y] → A[s(y)])
(∗)⇒ A[x0]

The infinite trace is (x0 x0 x0 x1 x1 x1)ω. This indeed progresses infinitely often,
at the point underlined in the proof. ��

5 Conservativity of CA over PA

The goal of this section is to prove that CA ⊆ PA. The first step is to prove
the soundness of ∞-proofs in ACA0, a well-known subsystem of second-order
arithmetic, which enjoys the property of being conservative over PA. The use
of a second-order language allows the formalisation of concepts associated with
infinite trees and infinite paths through them, which is necessary for reasoning
about ∞-proofs.

Recall (see [20] for a detailed exposition) that the language of second-order
arithmetic extends our first-order language with: set variables X,Y,Z, . . . ; with
quantification over set variables; and with a new atomic formula t ∈ X, where t
is a first-order term and X a set variable. A formula is said to be arithmetical
if it does not contain any set quantifiers (it may contain free set variables). The
theory ACA0 contains the usual first-order axioms of arithmetic, the expected
quantifier rules for set variables, and the two principles below.

– The induction axiom:

∀X. 0 ∈ X ∧ (∀x. x ∈ X → s(x) ∈ X) → ∀x. x ∈ X.

– The arithmetical comprehension schema:

∃X.∀x. (x ∈ X ↔ φ),

where φ ranges over arithmetical formulas in which the set variable X does
not occur free.
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We assume reasonable encodings of ordered pairs, and sequences as numbers,
in which each ordered pair and sequence has a unique encoding. A set X of
natural numbers encodes a tree if:

– every x ∈ X encodes a sequence x1 . . . xk for some k ≥ 0;
– if (an encoding of) x1 . . . xkxk+1 ∈ X then also x1 . . . xk ∈ X; and
– ε ∈ X (where ε encodes the empty sequence).

A (partial) function is encoded as a set X of (codes of) ordered pairs
satisfying: if (x, y) ∈ X and (x, z) ∈ X then y = z. The domain of X is
{x | ∃y. (x, y) ∈ X}. We say that a set X encodes a labelled tree if it encodes a
function whose domain is a tree. In this case we call the elements of the domain
of X the nodes of X, and we call the result of applying the function to a node
x the label of x.

We shall encode ∞-proofs as trees labelled with Gödel numbers of instances
of rules from Figs. 3, 4 and 5. For this, we assume a reasonable Gödel numbering
of terms, formulas, sequents and rule instances.

Let X encode a labelled tree. We say that X encodes a pre-∞-proof if:

– for every (x, y) ∈ X, we have that y encodes a valid rule instance rule(x);
– if rule(x1 . . . xk) has n premises then the n sequences x1. . .xk1, . . . , x1. . .xkn

are all nodes in X, and no other sequence x1 . . . xki is a node in X; and
– if x1 . . . xki is a node in X then premi(x1 . . . xk) = conc(x1 . . . xki), where we

write premi(x) for the i-th premise of rule(x) and conc(x) for the conclusion.

An infinite branch through a tree X is given by a function Y with domain
N, such that Y (0) = ε and, for every x, it holds that Y (s(x)) is a child in X
of Y (x). A set Z encodes a sequence (ti)i≥N of terms if it is a partial function
with domain {x | x ≥ N} and, for every x ≥ N , it holds that Z(x) is the Gödel
number of a term. If X encodes a pre-∞-proof, Y is an infinite branch through
X, and Z is a sequence of terms then Definition 1 can be directly translated into
the language of second-order arithmetic to define (arithmetical) formulas that
express each of the properties:

– Z is a trace along Y in X;
– the trace Z progresses at i in the branch Y of X;
– the trace Z progresses infinitely often in the branch Y of X.

(Note that X needs to appear explicitly in the above formulas because the
labelling containing the information about which inference rules are applied is
present only in X.) One can thus directly formalize Definiton 2 to obtain a
(non-arithmetical) formula expressing:

– X is an ∞-proof.

We wish to prove the soundness of ∞-proofs in ACA0. Thus, we would like to
show that, when we have an ∞-proof of a sequent, that sequent is true (under
any interpretation of its free variables). However, the above statement cannot be
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formulated in ACA0, because truth is a non-arithmetical property of first-order-
arithmetic formulas. We circumvent this by bounding the logical complexity of
formulas. For every n ≥ 0, there is a first-order-arithmetic formula Trn(x, y)
which holds if and only if: x is the Gödel number �A� of a Σ0

n-formula A, and
y is the encoding �ρ� an environment ρ, assigning numbers to all free variables
in A, such that N |=ρ A. (See [14, Chap. 9] for a careful construction of such a
formula.) If A is a Σ0

n-sentence then PA proves the truth-reflection schema:

Trn(�A�, �∅�) ↔ A. (1)

Lemma 8 (Formalised soundness). For every n ≥ 0 , ACA0 proves: “for
all X, if X is an ∞-proof, containing formulas of complexity at most Σ0

n, then,
for every assignment ρ of numbers to all free variables in the conclusion sequent
Γ ⇒ Δ of X, the formula

∧
Γ → ∨

Δ is Σ0
n+1-true under ρ”.

In the statement of the lemma, we use quoted sans-serif to emphasise the scope
of the formal statement proved in ACA0. Notice that this formal statement is
really a statement about encodings of ∞-proofs and Gödel numbers of sequents
and formulas. We have stated it informally for readability. Note also that the
use of the Σ0

n+1-truth predicate is appropriate because
∧

Γ → ∨
Δ is a Δ0

n+1-
formula. For convenience, we henceforth write the sequent Γ ⇒ Δ in place of the
formula

∧
Γ → ∨

Δ in order to talk directly about truth and falsity of sequents.

Proof. We formalise the proof of Theorem 3 in ACA0. So again suppose we have
an ∞-proof X of Γ0 ⇒ Δ0, but that Γ0 ⇒ Δ0 is Σ0

n+1-false under ρ0.
The main point that requires elaboration is the construction, in ACA0, of the

infinite path (Γi ⇒ Δi)i in combination with the associated sequence (ρi)i of
environments. For this, we assign, to every node x in X, an environment ρx:

– ρε = ρ0.

– ρx1...xkxk+1 =

{
ρx1...xk

if rule(x1 . . . xk) is not an instance of (Sub)
ρx1...xk

◦ θ if rule(x1 . . . xk) is a (Sub) with substitution θ

Let Y be the set (whose definition, for unbounded n, requires full arithmetical
comprehension):

{x ∈ X | for all prefixes x′ of x, the sequent conc(x′) is Σ0
n+1-false under ρx′}.

Then Y is a finitely branching tree. Moreover, by the soundness of inference
rules, every x ∈ Y has a child node x′ ∈ Y . Thus Y is infinite. Hence, by König’s
lemma (which is a theorem of ACA0 [20]), there exists an infinite branch Z
in Y . Then i �→ conc(Z(i)) defines (Γi ⇒ Δi)i and i �→ ρZ(i) defines (ρi)i.

The remainder of the proof, which argues that an infinitely progressing trace
along Z contradicts the falsity of the sequents in Z, goes through exactly as in
the proof of Theorem 3. ��

We next consider cyclic proofs. Any such is presented by a finite graph of the
kind introduced at the start of Sect. 4. We assume a sensible encoding of such
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graphs as natural numbers, and we write �G� for the number representingG. Given
�G�, we define in ACA0 the pre-∞-proof generated by G as the set unfold(�G�)
defined as:

{(x1 . . . xk, y) | there is a path ε ex1 v1 ex2 v2 . . . exk vk in G, and y = rule(vk)}.

This indeed defines a set since the defining formula is arithmetical.

Lemma 9. If G is a finite graph presentation of a regular ∞-proof then ACA0

proves “unfold(G) is an ∞-proof”.

Here, and henceforth, we write unfold(G) rather than unfold(�G�), since the
latter is the default interpretation of the former. Whenever we refer to a finite
combinatorial object within ACA0, we always do so via its numerical encoding.

We postpone the proof of Lemma 9 to Sect. 6 below. Modulo this one pending
proof, we now have all the ingredients to complete the proof of Theorem 6.

Proposition 10. CA ⊆ PA.

Proof. Suppose G is a finite graph presentation of a regular ∞-proof with con-
clusion sequent ⇒ A, where A is a sentence. Let n be such that every formula in
G is at most Σ0

n. By Lemma 9, ACA0 proves “unfold(G) is an ∞-proof”. Whence,
by Lemma 8, ACA0 proves “A is Σ0

n+1-true”. Therefore, by an application of the
reflection property (1) of the Σ0

n+1-truth predicate, ACA0 proves A. Since ACA0

is conservative over PA, it follows that PA proves A. ��
Propositions 7 and 10 together establish Theorem 6.

6 Büchi Automata in ACA0

It remains to prove Lemma 9. Our method of proof is to apply the theory of
Büchi automata as formalised in ACA0. Since a Büchi automaton B over a finite
alphabet Σ is a finite combinatorial object, it can be encoded as a natural number
�B�. We thus formalise properties of Büchi automata as properties of their codes,
but we continue with our policy of omitting explicit reference to codes. In ACA0,
an infinite word is coded as a set X defining an infinite sequence of elements
of Σ. The property:

B accepts the infinite word X

is directly expressible by a (non-arithmetical) formula in second-order arithmetic.
Using this, we formalise the following properties of Büchi automata in ACA0.

Proposition 11 (Formalised Büchi intersection). There is a computable
binary function � such that ACA0 proves: “for all Büchi automata B1, B2, it holds
that B1�B2 is a Büchi automaton satisfying:

for every infinite Σ-word X, B1�B2 accepts X ↔ B1 and B2 both accept X ′′.
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Proposition 12 (Formalised Büchi complementation). There is a com-
putable unary function (·)c such that ACA0 proves: “for every Büchi automaton
B it holds that Bc is a Büchi automaton satisfying:

for every infinite Σ-word X, Bc accepts X ↔ B does not accept X ′′.

The above propositions hold because the standard proofs are directly formalis-
able in ACA0. Complementation is the more interesting of the two cases since
its proof involves nontrivial infinite combinatorics. For example, the crucial step
in Büchi’s original proof invokes the infinite Ramsey Theorem for pairs (see,
e.g., [25]). This does not present a problem for the formalisation because the
(general) infinite Ramsey Theorem holds in ACA0 (see, e.g., [20]). A full analysis
can be found in the recent paper [15], where it is shown that Proposition 12 is
equivalent to the schema Σ0

2-IND of Σ0
2-induction, relative to the weak subsystem

of second-order arithmetic RCA0. In particular, this means that Proposition 12
is provable in RCA0+Σ0

2-IND, which is a subsystem of ACA0.
If B is a Büchi automaton, we write →∗

B for the reachability relation on states
of B (the transitive-reflexive closure of the label-erased transition relation →B).
The ternary relation “B is a Büchi automaton and y →∗

B z” is definable by a
formula in second-order arithmetic with free first-order variables x, y, z where
the parameter x supplies B via its code.

Proposition 13 (Formalised non-emptiness criterion). ACA0 proves: “for
every Büchi automaton B, there exists X ∈ Σω accepted by B if and only if there
exist states q0, q1 of B such that q0 is initial, q1 is accepting and q0 →∗

B q1 →∗
B q1”.

We omit the proof, which is once again a straightforward formalisation of the
(this time easy) standard argument.

Lemma 14. If B is a Büchi automaton recognising the empty language then
ACA0 proves: “for every infinite Σ-word X, the automaton B does not accept X”.

Proof. Suppose B recognises the empty language. By the standard non-
formalised version of Proposition 13, there do not exist states q0, q1 of B such
that q0 is initial, q1 is accepting and q0 →∗

B q1 →∗
B q1. Since B is finite, the

relation →∗
B can be encoded as a natural number �→∗

B�. Easily, ACA0 proves:
“�→∗

B� encodes a transitive, reflexive relation R that contains →B , and there do
not exist states q0, q1 of B such that q0 is initial, q1 is accepting and q0 R q1 R q1”.
Since →∗

B is the smallest transitive-reflexive relation containing →B , it follows
that ACA0 proves: “there do not exist states q0, q1 of B such that q0 is initial, q1
is accepting and q0 →∗

B q1 →∗
B q1”. Hence, by Proposition 13, ACA0 proves: “for

every infinite Σ-word X, the automaton B does not accept X”. ��
Proof (of Lemma 9). Let G be a finite graph presentation of a regular pre-∞-
proof. Consider the Büchi automata Bt and Bp defined in the proof of Theorem 5.
By the definitions of Bt and Bp, the following statements are provable in ACA0.

– “For all X, Bt accepts X if and only if X is a path through G that possesses an
infinitely progressing trace.”
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– “For all X, Bp accepts X if and only if X is an infinite path through G.”

Hence, by Propositions 11 and 12, ACA0 proves:

“unfold(G) is an ∞-proof iff there is no X such that Bt
c �Bp accepts X”. (2)

Now, assume G presents an ∞-proof. We have, as in the proof of Theorem 5,
L(Bt) ⊆ L(Bp), hence the language of the Büchi automaton Bt

c �Bp is empty.
Hence, by Lemma 14, ACA0 proves: “there is no X such that Bt

c �Bp accepts
X”. It thus follows from (2) that ACA0 proves: “unfold(G) is an ∞-proof”, as
required. ��

7 Further Work

The following are natural possible continuations of the work in this paper.

(i) Give a syntactic rewrite-based proof eliminating non-atomic cuts from ∞-
proofs. (This is done in [2,13] for different notions of cyclic proof.)

(ii) Give an explicit syntactic translation from cyclic proofs to proofs in PA.
Is there an essential blow-up in size? (Because of Solovay’s speed-up theo-
rem for ACA0 over PA, the indirect translation implicit in our proof has a
potential non-elementary blow-up.)

(iii) Understand the power of cyclic proof in the context of weaker fragments
of arithmetic. For example, what is the power of cyclic proof if restricted
to Σ0

1-sequents? The example in Fig. 2 shows that the resulting theory is
stronger than IΣ1.

(iv) If the rules and axioms in Figs. 3, 4 and 5 are changed to their intuitionistic
versions is the resulting notion of cyclic proof conservative over Heyting
Arithmetic?

(v) Understand in general terms when cyclic proof is conservative over proof by
induction (as in this paper), and when it is not (as in [3]).
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