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Abstract. We consider average-energy games, where the goal is to
minimize the long-run average of the accumulated energy. While sev-
eral results have been obtained on these games recently, decidability of
average-energy games with a lower-bound constraint on the energy level
(but no upper bound) remained open; in particular, so far there was no
known upper bound on the memory that is required for winning strate-
gies.

By reducing average-energy games with lower-bounded energy to
infinite-state mean-payoff games and analyzing the density of low-
energy configurations, we show an almost tight doubly-exponential upper
bound on the necessary memory, and prove that the winner of average-
energy games with lower-bounded energy can be determined in doubly-
exponential time. We also prove EXPSPACE-hardness of this problem.

Finally, we consider multi-dimensional extensions of all types of
average-energy games: without bounds, with only a lower bound, and
with both a lower and an upper bound on the energy. We show that the
fully-bounded version is the only case to remain decidable in multiple
dimensions.

1 Introduction

Quantitative two-player games of infinite duration provide a natural framework
for synthesizing controllers for reactive systems with resource restrictions in an
antagonistic environment (see e.g., [1,23]). In such games, player P0 (who rep-
resents the system to be synthesized) and player P1 (representing the antago-
nistic environment) construct an infinite path by moving a pebble through a
graph, which describes the interaction between the system and its environment.
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The objective, a subset of the infinite paths that encodes the controller’s specifi-
cation, determines the winner of such a play. Quantitative games extend this clas-
sical model by weights on edges for modeling costs, consumption, or rewards, and
by a quantitative objective to encode the specification in terms of the weights.
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Fig. 1. Simple weighted game.

As an example, consider the game in Fig. 1:
we interpret negative weights as energy con-
sumption and correspondingly positive weights
as recharges. Then, P0 (who moves the pebble
at the circular states) can always maintain an
energy level (the sum of the weights seen along
a play prefix starting with energy zero) between
zero and six using the following strategy: when
at state s0 with energy level at least two, go to
state s1, otherwise go to state s2 in order to sat-
isfy the lower bound. At state s1, always move to s0. It is straightforward to
verify that the strategy has the desired property when starting at the initial
state s0 with initial energy zero. Note that this strategy requires memory to be
implemented, as its choices depend on the current energy level and not only on
the state the pebble is currently at.

Formally, the energy objective requires P0 to maintain an energy level within
some (lower and/or upper) bounds, which are either given as input or exis-
tentially quantified. In the example above, P0 has a strategy to win for the
energy objective with lower bound zero and upper bound six. Energy objec-
tives [3,11,18,19] and their combinations with parity objectives [9,11] have
received significant attention in the literature.

However, a plain energy (parity) objective is sometimes not sufficient to ade-
quately model real-life systems. For example, consider the following specification
for the controller of an oil pump, based on a case study [7]: it has to keep the
amount of oil in an accumulator within given bounds (an energy objective with
given lower and upper bounds) while keeping the average amount of oil in the
accumulator below a given threshold in the long run. The latter requirement
reduces the wear and tear of the system, but cannot be expressed as an energy
objective nor as a parity objective. Constraints on the long-run average energy
level (which exactly represents the amount of oil in our example) can be specified
using the average-energy objective [5]. As seen in this example, they are typically
studied in conjunction with bounds on the energy level.

Recall the example in Fig. 1. The aforementioned strategy for P0 guarantees
a long-run average energy level, i.e., average-energy, of at most 11/4 (recall we
want to minimize it): the outcome with worst average-energy is

(
s0s2(s0s1)3

)ω,
with energy levels (4, 6, 4, 4, 2, 2, 0, 0)ω .

The average-energy objective was first introduced by Thuijsman and Vrieze
under the name total-reward [24] (there is an unrelated, more standard, objec-
tive called total-reward, see [5] for a discussion). Recently, the average-energy
objective was independently revisited by Boros et al. [2] and by Bouyer et al. [5].
The former work studies Markov decision processes and stochastic games with
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average-energy objectives. The latter studies non-stochastic games with average-
energy objectives, with or without lower and upper bounds on the energy level;
it determines the complexity of computing the winner and the memory require-
ments for winning strategies in such games. In particular, it solves games with
average-energy objectives with both an upper and a lower bound on the energy
level by a reduction to mean-payoff games: to this end, the graph is extended
to track the energy level between these bounds (a losing sink for P0 is reached
if these bounds are exceeded). Thus, the bounds on the energy level are already
taken care of and the average-energy objective can now be expressed as a mean-
payoff objective [13], as the new graph encodes the current energy level in its
weights. This reduction yields an exponential-time decision algorithm. Moreover,
it is shown in [5] that these games are indeed EXPTIME-complete. Note that the
algorithm crucially depends on the upper bound being given as part of the input,
which implies that the graph of the extended game is still finite.

One problem left open in [5] concerns average-energy games with only a lower
bound on the energy level: computing the winner is shown to be EXPTIME-hard,
but it is not known whether this problem is decidable at all. Similarly, pseudo-
polynomial lower bounds (i.e., lower bounds that are polynomial in the values of
the weights, but possibly exponential in the size of their binary representations)
on the necessary memory to implement a winning strategy for P0 are given, but
no upper bound is known. The major obstacle toward solving these problems is
that without an upper bound on the energy, a strategy might allow arbitrarily
large energy levels while still maintaining a bounded average, by enforcing long
stretches with a small energy level to offset the large levels.

A step toward resolving these problems was taken by considering two vari-
ants of energy and average-energy objectives where (i) the upper bound on the
energy level, or (ii) the threshold on the average energy level, is existentially
quantified [21]. It turns out that these two variants are equivalent. One direction
is trivial: if the energy is bounded, then the average-energy is bounded. On the
other hand, if P0 can guarantee some upper bound on the average, then he can
also guarantee an upper bound on the energy level, i.e., an (existential) average-
energy objective can always be satisfied with bounded energy levels. This is
shown by transforming a strategy satisfying a bound on the average (but possi-
bly allowing arbitrarily high energy levels) into one that bounds the energy by
skipping parts of plays where the energy level is much higher than the threshold
on the average. However, the proof is not effective: it does not yield an upper
bound on the necessary energy level, just a guarantee that some bound exists.
Even more so, it is still possible that the average has to increase when keep-
ing the energy bounded. Hence, it does not answer our problem: does achieving
a given threshold on the average-energy require unbounded energy levels and
infinite memory?

Another potential approach toward solving the problem is to extend the
reduction presented in [5] (which goes from average-energy games with both
lower and upper bound on the energy level to mean-payoff games) to games
without such an upper bound, which results in an infinite graph. This graph
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can be seen as the configuration graph of a one-counter pushdown system, i.e.,
the stack height corresponds to the current energy level, and the average-energy
objective is again transformed into a mean-payoff objective, where the weight of
an edge is given by the stack height at the target of the edge. Hence, the weight
function is unbounded. To the best of our knowledge, such mean-payoff games
have not been studied before. However, mean-payoff games on pushdown systems
with bounded weight functions are known to be undecidable [12].

Our Contribution. We develop the first algorithm for solving games with average-
energy objectives and a lower bound on the energy level, and give an upper bound
on the necessary memory to implement a winning strategy for P0 in such games.

First, we present an algorithm for solving such games in doubly-exponential
time (for the case of a binary encoding of the weights). The algorithm is based
on the characterization of an average-energy game as a mean-payoff game on
an infinite graph described above. If the average-energy of a play is bounded
by the threshold t, then configurations with energy level at most t have to
be visited frequently. As there are only finitely many such configurations, we
obtain cycles on this play. By a more fine-grained analysis, we obtain such a
cycle with an average of at most t and whose length is bounded exponentially.
Finally, by analyzing strategies for reachability objectives in pushdown games,
we show that P0 can ensure that the distance between such cycles is bounded
doubly-exponentially. From these properties, we obtain a doubly-exponential
upper bound on the necessary energy level to ensure an average-energy of at
most t. The resulting equivalent average-energy game with a lower and an upper
bound can be solved in doubly-exponential time. Furthermore, if the weights and
the threshold are encoded in unary (or are bounded polynomially in the number
of states), then we obtain an exponential-time algorithm.

Second, from the reduction sketched above, we also obtain a doubly-
exponential upper bound on the necessary memory for P0, the first such bound.
In contrast, a certain succinct one-counter game due to Hunter [16], which
can easily be expressed as an average-energy game with threshold zero, shows
that our bound is almost tight: in the resulting game of size n, energy level
2(2

√
n/

√
n)−1 is necessary to win. Again, in the case of unary encodings, we obtain

an (almost) tight exponential bound on the memory requirements.
Third, we improve the lower bound on the complexity of solving average-

energy games with only a lower bound on the energy level from EXPTIME to
EXPSPACE by a reduction from succinct one-counter games [17].

Fourth, we show that multi-dimensional average-energy games are undecid-
able, both for the case without any bounds and for the case of only lower bounds.
Only the case of games with both lower and upper bounds turns out to be decid-
able: it is shown to be both in NEXPTIME and in coNEXPTIME. This problem
trivially inherits EXPTIME-hardness from the one-dimensional case.
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2 Preliminaries

Graph games. We consider finite turn-based weighted games played on graphs
between two players, denoted by P0 and P1. Such a game is a tuple G =
(S0, S1,E ) where (i) S0 and S1 are disjoint sets of states belonging to P0 and P1,
with S = S0 �S1, (ii) E ⊆ S × [−W ;W ]×S, for some W ∈ N, is a set of integer-
weighted edges. Given an edge e = (s, w, t) ∈ E , we write src(e) for the source
state s of e, tgt(e) for its target state t, and w(e) for its weight w. We assume
that for every s ∈ S, there is at least one outgoing edge (s, w, s′) ∈ E.

Let s ∈ S. A play from s is an infinite sequence of edges π = (ei)1≤i such that
src(e1) = s and tgt(ei) = src(ei+1) for all i ≥ 1. A play induces a corresponding
sequence of states, denoted π̂ = (sj)0≤j , such that for any ei, i ≥ 1, in π,
si−1 = src(ei) and si = tgt(ei). We write first(π) = s0 for its initial state
(here, s). A play prefix from s is a finite sequence of edges ρ = (ei)1≤i≤k following
the same rules and notations. We additionally write last(ρ) = sk = tgt(ek) for
its last state. We let εs (or ε when s is clear from the context) denote the empty
play prefix from s, with last(εs) = first(εs) = s. A non-empty prefix ρ such that
last(ρ) = first(ρ) is called a cycle. The length of a prefix ρ = (ei)1≤i≤k is its
number of edges, i.e., �(ρ) = k. For a play π, �(π) = ∞. Given a prefix ρ and a
play (or prefix) π with last(ρ) = first(π), the concatenation between ρ and π is
denoted by ρ · π.

For a play π = (ei)1≤i and 1 ≤ j ≤ k, we write π[j,k] to denote the finite
sequence (ei)j≤i≤k, which is a prefix from src(ej); we write π≤k for π[1,k]. For any
i ≥ 1 and j ≥ 0, we write πi for edge ei and π̂j for state sj . Similar notations
are used for prefixes ρ, with all indices bounded by �(ρ).

The set of all plays in G from a state s is denoted by Plays(G , s), and the set
of all such prefixes is denoted by Prefs(G , s). We write Plays(G) and Prefs(G)
for the unions of those sets over all states. We say that a prefix ρ ∈ Prefs(G)
belongs to Pi, for i ∈ {0, 1}, if last(ρ) ∈ Si. The set of prefixes that belong to Pi

is denoted by Prefsi(G), and we define Prefsi(G , s) = Prefsi(G) ∩ Prefs(G , s).

Payoffs. Given a non-empty prefix ρ = (ei)1≤i≤n, we define the following payoffs:

– its energy level as EL(ρ) =
∑n

i=1 w(ei);
– its mean-payoff as MP(ρ) = 1

n

∑n
i=1 w(ei) = 1

nEL(ρ);
– its average-energy as AE(ρ) = 1

n

∑n
i=1 EL(ρ≤i).

These definitions are extended to plays by taking the upper limit of the respective
functions applied to the sequence of prefixes of the plays, e.g.,

AE(π) = lim supn→∞
1
n

∑n

i=1
EL(π≤i).

Example 1. We illustrate those definitions on a small example depicted in Fig. 2:
it displays two small (1-player, deterministic) weighted games, together with
the evolution of the energy level and average-energy along their unique play.
As noted in [5], the average-energy can help in discriminating plays that have
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Fig. 2. Two plays with identical mean-payoffs and total-payoffs. The left one has
average-energy 1/2, in contrast to 3/2 for the right one. Green (dotted) and blue
curves respectively represent the energy level and the average-energy over prefixes.
(Color figure online)

identical total-payoffs (i.e., the limits of high and low points in the sequence of
energy levels), in the same way that total-payoff can discriminate between plays
having the same mean-payoff. Indeed, in our example, both plays have mean-
payoff equal to zero and supremum (resp. infimum) total-payoff equal to three
(resp. −1), but they end up having different averages: the average-energy is 1/2
for the left play, while it is 3/2 for the right one.

Strategies. A strategy for Pi, with i ∈ {0, 1}, from a state s is a function
σi : Prefsi(G , s) → E satisfying src(σi(ρ)) = last(ρ) for all ρ ∈ Prefsi(G , s).
We denote by Stratsi(G , s), the set of strategies for Pi from state s. We drop G
and s when they are clear from the context.

A play π = (ej)1≤j from s is called an outcome of strategy σi of Pi if, for all
k ≥ 0 where π≤k ∈ Prefsi(G , s), we have σi(π≤k) = ek+1. Given a state s ∈ S
and strategies σ0 and σ1 from s for both players, we denote by Out(s, σ0, σ1) the
unique play that starts in s and is an outcome of both σ0 and σ1. When fixing
the strategy of only Pi, we denote the set of outcomes by

Out(s, σi) = {Out(s, σ0, σ1) | σ1−i ∈ Strats1−i(G , s)}.

Objectives. An objective in G is a set W ⊆ Plays(G). Given a game G , an initial
state sinit, and an objective W, a strategy σ0 ∈ Strats0 is winning for P0 if
Out(sinit, σ0) ⊆ W. We consider the following objectives for P0:

– The lower-bounded energy objective EnergyL = {π ∈ Plays(G) | ∀n ≥
1,EL(π≤n) ≥ 0} requires a non-negative energy level at all times.1

– Given an upper bound U ∈ N, the lower- and upper-bounded energy
objective EnergyLU (U) = {π ∈ Plays(G) | ∀n ≥ 1, EL(π≤n) ∈ [0, U ]} requires
that the energy always remains non-negative and below the upper bound U
along a play.

1 For the sake of readability, we assume the initial credit to be zero for energy objec-
tives throughout this paper. Still, our techniques can easily be generalized to an
arbitrary initial credit cinit ∈ N.
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Table 1. Complexity of deciding the winner and memory requirements for quantitative
games: MP stands for mean-payoff, EGL (resp. EGLU ) for lower-bounded (resp. lower-
and upper-bounded) energy, AE for average-energy, AEL (resp. AELU ) for average-
energy under a lower bound (resp. and upper bound) on the energy, c. for complete,
e. for easy, and h. for hard. All memory bounds are tight (except for AEL).

Objective 1-player 2-player Memory

MP PTIME[20] NP ∩ coNP [27] Memoryless [13]

EGL PTIME [3] NP ∩ coNP [3,8] Memoryless [8]

EGLU PSPACE-c. [14] EXPTIME-c. [3] Exponential [5]

AE PTIME [5] NP ∩ coNP[5] Memoryless [5]

AELU PSPACE-c. [5] EXPTIME-c. [5] Exponential [5]

AEL PSPACE-e./NP-h. [5] EXPSPACE-h. At least super-exp.

2-EXPTIME-e. At most doubly-exp.

– Given a threshold t ∈ Q, the mean-payoff objective MeanPayoff(t) = {π ∈
Plays(G) | MP(π) ≤ t} requires that the mean-payoff is at most t.

– Given a threshold t ∈ Q, the average-energy objective AvgEnergy(t) = {π ∈
Plays(G) | AE(π) ≤ t} requires that the average-energy is at most t.

For the MeanPayoff and AvgEnergy objectives, P0 aims to minimize the payoff.

Decision problem. In this paper, we focus on weighted games with a combination
of energy and average-energy objectives, by a detour via mean-payoff objectives.
The exact problem we tackle is named the AEL threshold problem and is defined
as follows: given a finite game G , an initial state sinit ∈ S, and a threshold t ∈ Q

given as a fraction t1
t2

with t1 and t2 two natural numbers given in binary, decide
whether P0 has a winning strategy from sinit for the objective AvgEnergyL(t) =
EnergyL ∩ AvgEnergy(t). As for the threshold, we consider a binary encoding
of the weights in G : we thus study the complexity of the problem with regard
to the length of the input’s binary encoding (i.e., the number of bits used to
represent the graph and the numbers involved).

Variants of this problem involving the above-mentioned payoff functions, and
combinations thereof, had been previously investigated, see Table 1 for a sum-
mary of the results. In this paper, we focus on the remaining case, namely 2-
player games with AEL objectives, for which decidability was not known, and
proving the computational- and memory complexities given in the corresponding
cells of the table.

3 Equivalence with an Infinite-State Mean-Payoff Game

Let G = (S0, S1, E) be a finite weighted game, sinit ∈ S be an initial state, and
t ∈ Q be a threshold. We define its expanded infinite-state weighted game as
G′ = (Γ0, Γ1,Δ) defined by
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– Γ0 = S0 × N, and Γ1 = S1 × N � {⊥} (where ⊥ is a fresh sink state that does
not belong to G); then Γ = Γ0 � Γ1 is the global set of states;

– Δ is composed of the following edges:
• a transition ((s, c), c′, (s′, c′)) ∈ Δ whenever there is (s, w, s′) ∈ E with

c′ = c + w ≥ 0;
• a transition ((s, c), �t
 + 1,⊥) ∈ Δ whenever there is (s, w, s′) ∈ E such

that c + w < 0;
• finally, a transition (⊥, �t
 + 1,⊥) ∈ Δ.

In this expanded game, elements of Γ are called configurations, and the initial
configuration is set to (sinit, 0).

Lemma 1. Player P0 has a winning strategy in G from state sinit for the objec-
tive AvgEnergyL(t) if, and only if, he has a winning strategy in G′ from config-
uration (sinit, 0) for the objective MeanPayoff(t).

For the rest of this paper, we fix a weighted game G = (S0, S1, E) and
a threshold t ∈ Q, and work on the corresponding expanded weighted game
G′ = (Γ0, Γ1,Δ). We write t = t1

t2
= �t� + t′

t2
, where t1, t2, t

′ ∈ N (recall they
are given in binary), and 0 ≤ t′ < t2, and �t� stands for the integral part of t.
We also let t̃ = �t� + 1 − t = 1 − t′

t2
. Hence t̃ = 1 indicates that t is an integer.

For a given threshold t ∈ Q, we consider Γ≤t = {(s, c) ∈ Γ | c ≤ t}, i.e., the set
of configurations below the threshold.

Note that G′ can be interpreted as a one-counter pushdown mean-payoff
game with an unbounded weight function. While it is well-known how to solve
mean-payoff games over finite arenas, not much is known for infinite arenas (see
Sect. 1). However, our game has a special structure that we will exploit to obtain
an algorithm. Roughly, our approach consists in transforming the AvgEnergyL(t)
objective into an equivalent AvgEnergyLU (t, U) = EnergyLU (U) ∩ AvgEnergy(t)
objective, where (the value of) U is doubly-exponential in the input by analyzing
plays and strategies in G′. In other terms, we show that any winning strategy for
AvgEnergyL(t) can be transformed into another winning strategy along which
the energy level remains upper-bounded by U .

The proof is two-fold: we first show (in Sect. 4) that we can bound the energy
level for the special case where the objective consists in reaching a finite set of
configurations of the game (with only a lower bound on the energy level). This
is achieved by a detour to pushdown games: while there are known algorithms
for solving reachability pushdown games, to the best of our knowledge, there are
no (explicit) results bounding the maximal stack height.

As a second step (in Sect. 5), we identify good cycles in winning outcomes,
and prove that they can be shown to have bounded length. The initial configu-
rations of those cycles will then be the targets of the reachability games above.
Combining these two results yields the desired upper bound on the energy levels.
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4 Bounding One-Counter Reachability Games

We focus here on a reachability objective in G′, where the target set is a sub-
set Γ ′ ⊆ Γ≤t: we aim at bounding the maximal energy level that needs to be
visited with a winning strategy.

The game G′ is a particular case of a pushdown game [26]. Hence we use
results on pushdown games, and build a new winning strategy, in which we
will be able to bound the energy level at every visited configuration. Note that
the bound M ′ in the following lemma is doubly-exponential, as we encode W ,
the largest absolute weight in G, and the threshold t, in binary. The proof of
the next lemma is based on the reformulation of the algorithm from [26] made
in [15].

Lemma 2. Fix M ∈ N. There exists M ′ = 2O(M+|S|+|E|·W+|S|·(�t	+1)) such that
for every γ = (s, c) with c ≤ M and for every Γ ′ ⊆ Γ≤t, if there is a strategy
for P0 to reach Γ ′ from γ in G′, then there is also a strategy which ensures
reaching Γ ′ from γ without exceeding energy level M ′.

5 A Doubly-Exponential Time Algorithm

Let Γ̃ ⊆ Γ be a set of configurations of G′, and ρ be a play prefix. We define

d(Γ̃ , ρ) =
|{1 ≤ i ≤ �(ρ) | ρ̂i ∈ Γ̃}|

�(ρ)
,

which denotes the proportion (or density) of configurations belonging to Γ̃
along ρ. Observe that the initial configuration ρ̂0 is not taken into account:
this is because d(Γ̃ , ρ) will be strongly linked to the mean-payoff, as we now
explain.

5.1 Analyzing Winning Plays

In this section, we analyze winning plays in G′, and prove that they must contain
a cycle that is “short enough” and has mean-payoff less than or equal to t.

To achieve this, we observe that if the mean-payoff of a play π is less than t,
then there must exist a configuration γ ∈ Γ≤t that appears frequently enough
along π. Applying a sequence of elementary arguments, we can even give a
uniform lower bound on the density of γ along arbitrarily far and arbitrarily
long segments of π. More precisely, we show:

Lemma 3. Let π be a play in G′ from (sinit, 0) with MP(π) ≤ t. There exists
γ ∈ Γ≤t such that for any n ∈ N, there are infinitely many positions n′ ≥ n for
which

d({γ}, π[n,n′]) ≥ t̃

4(t + 1)2|S| .
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Next we say that a cycle of G′ is good whenever it starts in Γ≤t and its
mean-payoff is bounded by t. Since γ appears frequently along π, we shall argue
that it is not possible that all cycles along π delimited by γ are bad (i.e., not
good), otherwise the global mean-payoff of π could not be bounded by t.

Hence we obtain that π contains a good cycle delimited by γ. It remains to
argue that such a minimal-length good cycle (i.e., with no good nested sub-cycle)
cannot be too long. We write C for a minimal-length good cycle delimited by γ.
This part of the proof appeals to a second density argument for γ along C: since
C does not contain good sub-cycles, it cannot contain too many sub-cycles at all.
Letting N = 8t1t2(t + 1)3|S|2, we prove:

Proposition 4. Let π be a play in G′ from (sinit, 0) with MP(π) ≤ t. Then there
exist 1 ≤ i ≤ j such that π[i,j] is a good cycle of length at most N .

5.2 Strategies Described by Finite Trees

So far, we have proven that P0 should “target” short good cycles. However in
a two-player context, P1 might prevent P0 from doing so. We therefore need to
consider the branching behaviour of the game, and not only the linear point-
of-view given by a play. Toward that aim, we represent strategies (of P0) as
strategy trees, and use them to bound the amount of memory and the counter
values needed to win in G′.

We consider labelled trees with backward edges T = (N , E , λ, ���), where N
is a finite set of nodes, λ : N → S ×N (each node is labelled with a configuration
of the game G′), and ��� ⊆ N × N . We assume T has at least two nodes. The
relation E is the successor relation between nodes. A node with no E-successor
is called a leaf ; other nodes are called internal nodes. The root of T , denoted
by nroot, is the only node having no predecessor. The relation ��� is an extra
relation between nodes that will become clear later.

For such a tree to represent a strategy, we require that each internal node n
that is labelled by a P0-configuration (s, c) has only one successor n′, with
λ(n′) = (s′, c′) such that there is a transition ((s, c), c′, (s′, c′)) in the game G′;
we require that each internal node n that is labelled with a P1-state (s, c) has
exactly one successor per transition ((s, c), c′, (s′, c′)) in G′, each successor being
labelled with its associated (s′, c′). Finally, we require that each leaf n of T has
a (strict) ancestor node n′ such that λ(n′) = λ(n). The relation ��� will serve
witnessing that property. So we assume that for every leaf n, there is a unique
ancestor node n′ such that n ��� n′; furthermore it should be the case that
λ(n′) = λ(n). Under all these constraints, T is called a strategy tree. It basically
represents a (finite) memory structure for a strategy, as we now explain.

Let T = (N , E , λ, ���) be strategy tree for G′. We define GT = (N , E ′), a
directed graph obtained from T by adding extra edges (n,n′′) for each leaf n
and node n′′ for which there exists another node n′ satisfying n ��� n′ and
(n′,n′′) ∈ E . We refer to these extra edges as back-edges. One may notice that
for any (n,n′) ∈ E ′ there is an edge from λ(n) to λ(n′) in G′. Given two nodes
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n and n′ such that n′ is an ancestor of n in T , we write [n′ � n] for the play
prefix from n′ to n (inclusive) using only transitions from E .

Now, we associate with any prefix ρ in GT from nroot a prefix ρ in G′

from λ(nroot) = (sroot, croot) such that last(ρ) = λ(last(ρ)). The construction
is inductive:

– with the empty prefix in GT we associate the one in G′: εnroot = ε(sroot,croot),
– if ρ = ρ′ · (n′,n) with (n′,n) ∈ E ′, writing (s′, c′) = λ(n′) and (s, c) = λ(n),

then ρ = ρ′ · ((s′, c′), c, (s, c)) (which by construction is indeed a prefix in G′).

We now explain how GT corresponds to a strategy in G′: for any prefix ρ
in GT , if λ(last(ρ)) = (s, c) ∈ Γ0, then last(ρ) has a unique successor n′ in GT ,
and, writing (s′, c′) = λ(n′), we define σT (ρ) = ((s, c), c′, (s′, c′)): σT is a (par-
tially defined) strategy in G′. The following lemma states that GT actually rep-
resents the outcomes of the well-defined strategy σT from λ(nroot) in G′:

Lemma 5. Let μ be a prefix in G′ from (sroot, croot). Assume that for every
i ≤ �(μ) such that last(μ≤i) ∈ Γ0, the function σT is defined on μ≤i and
μ≤i+1 = μ≤i · σT (μ≤i). Then there exists a unique prefix ρ in GT such that
μ = ρ, Moreover, if last(μ) ∈ Γ0, then σT (μ) is defined.

We now give conditions for σT to be a winning strategy from (sroot, croot)
in G′. With a finite outcome μ = ρ of σT from (sroot, croot), we associate a
sequence decompT (μ) of cycles in G′, defined inductively as follows:

– decompT (ε(sroot,croot)) is empty;
– if ρ = ρ′ · (n′,n) and n is not a leaf of T , then decompT (ρ) = decompT (ρ′);
– if ρ = ρ′ ·(n′,n) and n is a leaf of T , we let n′′ be such that n ��� n′′; the prefix

[n′′ � n] in T corresponds to a cycle C in G′, and we let decompT (ρ) =
decompT (ρ′) · C.

The sequence decompT (ρ) hence contains all full cycles (closed at leaves) encoun-
tered while reading ρ in T : hence it comprises all edges of ρ except a prefix
starting at nroot and a suffix since the last back-edge has been taken. It is not
hard to see that those can actually be concatenated. By induction, we can easily
show:

Proposition 6. Let μ be a non-empty finite outcome of σT from (sroot, croot)
in G′. Write decompT (μ) = C0 · C1 · . . . · Ch (where each Ci is a cycle). Let ρ
be the prefix in GT such that μ = ρ, n = last(ρ), and ν = [nroot � n]. Write
(sj , cj) = λ(ν̂j). Then:

MP(μ) =

∑h
i=0 MP(Ci) · �(Ci) +

∑�(ν)
j=1 cj

�(μ)

We say that a tree is good if, for every n ��� n′ in T , writing ρ = [n′ � n]

and letting λ(ρ̂j) = (sj , cj), it holds
∑�(ρ)

j=1 cj

�(ρ) ≤ t.



190 P. Bouyer et al.

Proposition 7. If T is a finite good strategy tree, then σT is a winning strategy
from (sroot, croot) in G′.

Note that T can be interpreted as a finite memory structure for strategy σT :
to know which move is given by σT , it is sufficient to move a token in tree T ,
going down in the tree, and following back-edges when stuck at leaves.

5.3 Analyzing Winning Strategies

We proved in the previous section that the finite-memory strategy associated
with a finite good strategy tree is winning. In this section, we first show the con-
verse direction, proving that from a winning strategy, we can obtain a finite good
tree. In that tree, backward edges correspond to (short) good cycles. We then use
the result of Sect. 4 for showing that those parts of the tree that do not belong
to a segment [n � n′] with n′ ��� n can be replaced with other substrategies in
which the counter value is uniformly bounded. That way, we show that if there
is a winning strategy for our games, then there is one where the counter value is
uniformly bounded along all outcomes. This will allow to apply algorithms for
solving games with average-energy payoff under lower- and upper-bound con-
straints [5].

Fix a winning strategy σ for P0 from (s0, c0) in G′. We let

goodpref(σ) = {π≤n |π ∈ Out((s0, c0), σ), there is m < n s.t.
π[m+1,n] is a good cycle with no good strict sub-cycle
and π≤n−1does not contain any good cycle}

and for every π≤n ∈ goodpref(σ), we define back(π≤n) as π≤m such that π[m+1,n]

is a good cycle with no good strict sub-cycle.
We build a strategy tree Tσ as follows:

– the nodes of Tσ are all the prefixes of the finite plays in goodpref(σ); the edges
relate each prefix of length k to its extensions of length k + 1. For a node n
corresponding to prefix ρ≤k (with ρ ∈ goodpref(σ)), we let λ(n) = last(ρ≤k);
we let λ(nroot) = (s0, c0). The leaves of Tσ then correspond to the play prefixes
that are in goodpref(σ).

– backward edges in Tσ are defined by noticing that each leaf n of Tσ corresponds
to a finite path π≤n in goodpref(σ), so that the prefix π≤m = back(π≤n) is
associated with some node m of Tσ such that π[m+1,n] is a good cycle. This
implies λ(π≤n) = λ(π≤m), and we define n ��� m. This way, Tσ is a strategy
tree as defined in Sect. 5.2.

Lemma 8. Tree Tσ is a finite good strategy tree.

Applying Proposition 7, we immediately get:

Corollary 9. Strategy σTσ
is a winning strategy from (s0, c0).
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nroot leaf
start of good cycle

critical node
backward edge
good cycle

Fig. 3. Example of a finite strategy tree, with backward edges and critical nodes.

Let n ��� n′ be two related nodes in Tσ. We say that a node n′′ is just below
[n′ � n] in Tσ whenever its predecessor appears along [n′ � n], but node n′′

itself does not appear along any path [n1 � n2] for which n2 ��� n1. Such nodes,
together with the root of the tree, are called the critical nodes (see Fig. 3).

Lemma 10. If n is a critical node in Tσ, then writing λ(n) = (s, c), we have
that c ≤ t + W · (N + 1).

Given a critical node n, we define

target(n) = {n′ in subtree of n | there exists n′′ such that n′′ ��� n′

and [n � n′] contains no other such node}.

Looking again at Fig. 3, the targets of a critical node are the start nodes of the
good cycles that are closest to that critical node. In particular, for the rightmost
critical node on Fig. 3, there are two candidate target nodes (because there are
two overlapping good cycles), but only the topmost one is a target.

For every critical node n, we apply Lemma 2 with γ = λ(n) and Γ ′
γ =

{γ′ = λ(n′) | n′ ∈ target(n)}, setting M = t + W · (N + 1). We write σn for
the corresponding strategy: applying σn from λ(n), player P0 will reach some
configuration (s′, c′) such that there is a node n′ ∈ target(n) with λ(n′) = (s′, c′).

Now, for any node n′ that is the target of a backward edge n ��� n′, but
whose immediate predecessor does not belong to any segment [n1 � n2] with
n2 ��� n1, we define strategy σ[n′] which follows good cycles as much as possible;
when a leaf m is reached, the strategy replays similarly as from the equivalent
node m′ for which m ��� m′. If, while playing that strategy, the play ever leaves
a good cycle (due to a move of player P1), then it reaches a critical node n′′.
From that node, we will apply strategy σn′′ as defined above, and iterate like
this.

This defines a strategy σ′. Applying Lemma 2 to strategies σn when n is
critical, and the previous analysis of good cycles, we get the following doubly-
exponential bound on the counter value (which is only exponential in case con-
stants W , t1, and t2 are encoded in unary):
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Proposition 11. Strategy σ′ is a winning strategy from (s0, c0), and all visited
configurations (s, c) when applying σ′ are such that c ≤ M ′ with

M ′ = 2O(t+W ·(8t1t2(t+1)3|S|2+1)+|S|+|E|·W+|S|·(�t	+1)).

5.4 Conclusion

Gathering everything we have done above, we get the following equivalence.

Proposition 12. Player P0 has a winning strategy in game G from sinit for
the objective AvgEnergyL(t) if, and only if, he has a wining strategy in G from
sinit for the objective AvgEnergyLU (t, U) = EnergyLU (U) ∩ AvgEnergy(t), where
U = M ′ is the bound from Proposition 11.

Hence we can use the algorithm for games with objectives AvgEnergyLU (t, U)
in [5], which is polynomial in |S|, |E|, t, and U (hence pseudo-polynomial only).
Having in mind that the upper bound U is doubly-exponential, we can deduce
our main decidability result. The memory required is also a consequence of [5].

Theorem 13. The AEL threshold problem is in 2-EXPTIME. Furthermore
doubly-exponential memory is sufficient to win (for player P0).

We could not prove a matching lower-bound, but relying on [17], we can
prove EXPSPACE-hardness:

Theorem 14. The AEL threshold problem is EXPSPACE-hard, even for the
fixed threshold zero.

In [16], a super-exponential lower bound is given for the required memory to
win a succinct one-counter game. While the model of games is not exactly the
same, the actual family of games witnessing that lower bound on the memory
happens to be usable as well for the AEL threshold problem (with threshold
zero). The reduction is similar to the one in the proof of Theorem14. This
yields a lower bound on the required memory to win games with AvgEnergyL(t)
objectives which is 2(2

√
n/

√
n)−1.

For unary encodings or small weights we get better results from our technique:

Corollary 15. The AEL threshold problem is in EXPTIME and exponential
memory is sufficient to win (for player P0), if the weights and the threshold
are encoded in unary or polynomial in the size of the graph.

6 Multi-dimensional Average-Energy Games

We now turn to a more general class of games where integer weights on the
edges are replaced by vectors of integer weights, representing changes in different
quantitative aspects. That is, for a game G = (S0, S1,E ) of dimension k ≥ 1,
we now have E ⊆ S × [−W,W ]k × S for W ∈ N. Multi-dimensional games
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have recently gained interest as a powerful model to reason about interplays
and trade-offs between different resources; and multi-dimensional versions of
many classical objectives have been considered in the literature: e.g., mean-
payoff [11,25], energy [11,19,25], or total-payoff [10]. We consider the natural
extensions of threshold problems in the multi-dimensional setting: we take the
zero vector in N

k as lower bound for the energy, a vector U ∈ N
k as upper bound,

a vector t ∈ Q
k as threshold for the average-energy, and the payoff functions are

defined using component-wise limits. That is, we essentially take the conjunction
of our objectives for all dimensions. We quickly review the situation for the three
types of average-energy objectives.

Average-energy games (without energy bounds). In the one-dimensional version
of such games, memoryless strategies suffice for both players and the threshold
problem is in NP ∩ coNP [5]. We prove here that already for games with three
dimensions, the threshold problem is undecidable, based on a reduction from
two-dimensional robot games [22]. Decidability for average-energy games with
two dimensions remains open.

Theorem 16. The threshold problem for average-energy games with three or
more dimensions is undecidable. That is, given a finite k-dimensional game G =
(S0, S1, E), for k ≥ 3, an initial state sinit ∈ S, and a threshold t ∈ Q

k, deter-
mining whether P0 has a winning strategy from sinit for objective AvgEnergy(t)
is undecidable.

Average-energy games with lower and upper bounds. One-dimensional versions
of those games were proved to be EXPTIME-complete in [5]. The algorithm con-
sists in reducing (in two steps) the original game to a mean-payoff game on an
expanded graph of pseudo-polynomial size (polynomial in the original game but
also in the upper bound U ∈ N) and applying a pseudo-polynomial time algo-
rithm for mean-payoff games (e.g., [6]). Intuitively, the trick is that the bounds
give strong constraints on the energy levels that can be visited along a play
without losing and thus one can restrict the game to a particular graph where
acceptable energy levels are encoded in the states and exceeding the bounds is
explicitely represented by moving to “losing” states, just as we did in Sect. 3 for
the lower bound. Carefully inspecting the construction of [5], we observe that the
same construction can be generalized straightforwardly to the multi-dimensional
setting. However, the overall complexity is higher: first, the expanded graph
will be of exponential size in k, the number of dimensions, while still polyno-
mial in S and U . Second, multi-dimensional limsup mean-payoff games are in
NP ∩ coNP [25].

Theorem 17. The threshold problem for multi-dimensional average-energy
games with lower and upper bounds is in NEXPTIME ∩ coNEXPTIME. That is,
given a finite k-dimensional game G = (S0, S1, E), an initial state sinit ∈ S,
an upper bound U ∈ N

k, and a threshold t ∈ Q
k, determining if P0 has

a winning strategy from sinit for objective EnergyLU (U) ∩ AvgEnergy(t) is in
NEXPTIME ∩ coNEXPTIME.
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Whether the EXPTIME-hardness that trivially follows from the one-
dimensional case [5] can be enhanced to meet this upper bound (or conversely)
is an open problem.

Average-energy games with lower bound but no upper bound. Finally, we consider
the core setting of this paper, which we just proved decidable in one-dimension,
solving the open problem of [5]. Unfortunately, we show that those games are
undecidable as soon as two-dimensional weights are allowed. To prove it, we
reuse some ideas of the proof of undecidability for multi-dimensional total-payoff
games presented in [10], but specific gadgets need to be adapted.

Theorem 18. The threshold problem for lower-bounded average-energy games
with two or more dimensions is undecidable. That is, given a finite k-dimensional
game G = (S0, S1, E), for k ≥ 2, an initial state sinit ∈ S, and a threshold
t ∈ Q

k, determining whether P0 has a winning strategy from sinit for objec-
tive AvgEnergyL(t) is undecidable.
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