
On Communication Models When Verifying
Equivalence Properties

Kushal Babel1, Vincent Cheval2(B), and Steve Kremer2(B)

1 IIT Bombay, Mumbai, India
2 LORIA, Inria Nancy & CNRS & Université de Lorraine, Nancy, France

{vincent.cheval,steve.kremer}@inria.fr

Abstract. Symbolic models for security protocol verification, following
the seminal ideas of Dolev and Yao, come in many flavors, even though
they share the same ideas. A common assumption is that the attacker
has complete control over the network: he can therefore intercept any
message. Depending on the precise model this may be reflected either
by the fact that any protocol output is directly routed to the adver-
sary, or communications may be among any two participants, including
the attacker — the scheduling between which exact parties the commu-
nication happens is left to the attacker. These two models may seem
equivalent at first glance and, depending on the verification tools, either
one or the other semantics is implemented. We show that, unsurprisingly,
they indeed coincide for reachability properties. However, when we con-
sider indistinguishability properties, we prove that these two semantics
are incomparable. We also introduce a new semantics, where internal
communications are allowed but messages are always eavesdropped by
the attacker. We show that this new semantics yields strictly stronger
equivalence relations. We also identify two subclasses of protocols for
which the three semantics coincide. Finally, we implemented verification
of trace equivalence for each of these semantics in the APTE tool and
compare their performances on several classical examples.

1 Introduction

Automated, symbolic analysis of security protocols, based on the seminal ideas
of Dolev and Yao, comes is many variants. All of these models however share a
few fundamental ideas:

– messages are represented as abstract terms,
– adversaries are computationally unbounded, but may manipulate messages

only according to pre-defined rules (this is sometimes referred to as the perfect
cryptography assumption), and

– the adversary completely controls the network.

In this paper we will revisit this last assumption. Looking more precisely
at different models we observe that this assumption may actually slightly differ

c© Springer-Verlag GmbH Germany 2017
M. Maffei and M. Ryan (Eds.): POST 2017, LNCS 10204, pp. 141–163, 2017.
DOI: 10.1007/978-3-662-54455-6 7

142 K. Babel et al.

among the models. The fact that the adversary controls the network is supposed
to represent a worst case assumption.

In some models this assumption translates to the fact that every protocol
output is sent to the adversary, and every protocol input is provided by the
adversary. This is the case in the original Dolev Yao model and also in the
models underlying several tools, such as AVISPA [6], Scyther [13], Tamarin [20],
Millen and Shmatikov’s constraint solver [17], and the model used in Paulson’s
inductive approach [18].

Some other models, such as those based on process algebras, e.g. work based
on CSP [19], the Spi [3] and applied pi calculus [1], but also the strand space
model [21], consider a slightly different communication model: any two agents
may communicate. Scheduling whether communication happens among two hon-
est participants, or a honest participant and the attacker is under the attacker’s
control.

When considering reachability properties, these two communication models
indeed coincide: intuitively, any internal communication could go through the
adversary who acts as a relay and increases his knowledge by the transmit-
ted message. However, when considering indistinguishability properties, typically
modelled as process equivalences, these communication models diverge. Interest-
ingly, when forbidding internal communication, i.e., forcing all communication to
be relayed by the attacker, we may weaken the attacker’s distinguishing power.

In many recent work privacy properties have been modelled using process
equivalences, see for instance [5,14,15]. The number of tools able to verify such
properties is also increasing [9–11,22]. We have noted that for instance the
AKISS tool [10] does not allow any direct communication on public channels,
while the APTE tool [11] allows the user to choose among the two semantics.
One motivation for disallowing direct communication is that it allows for more
efficient verification (as less actions need to be considered and the number of
interleavings to be considered is smaller).

Our contributions. We have formalised three semantics in the applied pi calculus
which differ by the way communication is handled:

– the classical semantics (as in the original applied pi calculus) allows both
internal communication among honest participants and communication with
the adversary;

– a private semantics allows internal communication only on private channels
while all communication on public channels is routed through the adversary;

– an eavesdropping semantics which allows internal communication, but as a
side-effect adds the transmitted message to the adversary’s knowledge.

For each of the new semantics we define may-testing and observational equiv-
alences. We also define corresponding labelled semantics and trace equivalence
and bisimulation relations (which may serve as proof techniques).

We show that, as expected, the three semantics coincide for reachability
properties. For equivalence properties we show that the classical and private

On Communication Models When Verifying Equivalence Properties 143

semantics yield incomparable equivalences, while the eavesdropping semantics
yields strictly stronger equivalence relations than both other semantics. The
results are summarized in Fig. 7.

An interesting question is whether these semantics coincide for specific sub-
classes of processes. We first note that the processes that witness the differences
in the semantics do not use replication, private channels, nor terms other than
names, and no equational theory. Moreover, all except one of these examples
only use trivial else branches (of the form else 0); the use of a non-trivial else
branch can however be avoided by allowing a single free symbol.

However conditions on the channel names may yield such a subclass. We
first observe that the class of simple processes [12], for which already observa-
tional, testing, trace equivalence and labelled bisimulation coincide, do have this
property. Simple processes may however be too restrictive for modelling some
protocols that should guarantee anonymity (as no parallel processes may share
channel names). We therefore identify a syntactic class of processes, that we call
I/O-unambiguous. For this class we forbid communication on private channels,
communication of channel names and an output may not be sequentially fol-
lowed by an input on the same channel directly, or with only conditionals in
between. Note that I/O-unambiguous processes do however allow outputs and
inputs on the same channel in parallel. We show that for this class the eaves-
dropping semantics (which is the most strict relation) coincides with the private
one (which is the most efficient for verification).

Finally, we extended the APTE tool to support verification of trace equiva-
lence for the three semantics. Verifying existing protocols in the APTE example
repository we verified that the results, fortunately, coincided for each of the
semantics. We also made slight changes to the encodings, renaming some chan-
nels, to make them I/O-unambiguous. Interestingly, using different channels,
significantly increased the performance of the tool. Finally, we also observed
that, as expected, the private semantics yields more efficient verification. The
results of our experiments are summarized in the table on page 21.

Outline. In Sect. 2 we define the three semantics we consider. In Sect. 3 we
present our main results on comparing these semantics. We present subclasses
for which (some) semantics coincide in Sect. 4 and compare the performances
when verifying protocols for different semantics using APTE in Sect. 5, before
concluding in Sect. 6.

Because of lack of space we did not include all proofs. Missing proofs are
available in an extended [7].

2 Model

The applied pi calculus [1] is a variant of the pi calculus that is specialised for
modelling cryptographic protocols. Participants in a protocol are modelled as
processes and the communication between them is modelled by message passing
on channels. In this section, we describe the syntax and semantics of the applied
pi calculus as well as the two new variants that we study in this paper.

144 K. Babel et al.

2.1 Syntax

We consider an infinite set N of names of base type and an infinite set Ch of
names of channel type. We also consider an infinite set of variables X of base
type and channel type and a signature F consisting of a finite set of function
symbols. We rely on a sort system for terms. In particular, the sort base type
differs from the sort channel type. Moreover, any function symbol can only be
applied and returns base type terms. We define terms as names, variables and
function symbols applied to other terms. Given N ⊆ N , X ⊆ X and F ⊆ F ,
we denote by T (F,X,N) the sets of terms built from X and N by applying
function symbols from F . We denote fv(t) the sets of variables occurring in t.
We say that t is ground if fv(t) = ∅. We describe the behaviour of cryptographic
primitives by the means of an equational theory E that is a relation on terms
closed under substitutions of terms for variables and closed under one-to-one
renaming. Given two terms u and v, we write u =E v when u and v are equal
modulo the equational theory.

In the original syntax of the applied pi calculus, there is no distinction
between an output (resp. input) from a protocol participant and from the envi-
ronment, also called the attacker. In this paper however, we will make this dis-
tinction in order to concisely present our new variants of the semantics. There-
fore, we consider two process tags ho and at that respectively represent honest
and attacker actions. The syntax of plain processes and extended processes is
given in Fig. 1.

P, Q := 0 plain processes A, B := P extended processes
P | AQ | B
!P νn.A
νn.P νx.A
if u = v then P else Q {u/x}
inθ(c, x).P ωc

outθ(c, u).P
eav(c, x).P

where u and v are base type terms, n is a name, x is a variable and c is a name or variable of
channel type, θ is a tag, i.e. θ ∈ {ho, at}.

Fig. 1. Syntax of processes

The process outθ(c, u) represents the output by θ of the message u on the
channel c. The process inθ(c, x) represents an input by θ on the channel c. The
input message will instantiate the variable x. The process eav(c, x) models the
capability of the attacker to eavesdrop a communication on channel c. The
process !P represents the replication of the process P , i.e. unbounded num-
ber of copies of P . The process P | Q represents the parallel composition of
P and Q. The process νn.P (resp. νx.A) is the restriction of the name n in P
(resp. variable x in A). The process if u = v then P else Q is the conditional

On Communication Models When Verifying Equivalence Properties 145

branching under the equality test u = v. The process ωc records that a private
channel c has been opened, i.e., it has been sent on a public or previously opened
channel. Finally, the substitution {u/x} is an active substitution that replaces
the variable x with the term u of base type.

We say that a process P (resp. extended process A) is an honest process (resp.
honest extended process) when all inputs and outputs in P (resp. A) are tagged
with ho and when P (resp. A) does not contain eavesdropping processes and ωc.
We say that a process P (resp. extended process A) is an attacker process (resp.
attacker extended process) when all inputs and outputs in P (resp. A) are tagged
with at.

As usual, names and variables have scopes which are delimited by restric-
tions, inputs and eavesdrops. We denote fv(A), bv(A), fn(A), bn(A) the sets of
free variables, bound variables, free names and bound names respectively in A.
Moreover, we denote by oc(A) the sets of terms c of channel type opened in A,
i.e. that occurs in a process ωc. We say that an extended process A is closed
when all variables in A are either bound or defined by an active substitution
in A. We define an evaluation context C[] as an extended process with a hole
instead of an extended process. As for processes, we define an attacker evaluation
context as an evaluation context where all outputs and inputs in the context are
tagged with at.

Note that our syntax without the eavesdropping process, opened channels
and tags correspond exactly to the syntax of the original applied pi calculus.

Lastly, we consider the notion of frame that are extended processes built from
0, parallel composition, name and variable restrictions and active substitution.
Given a frame ϕ, we consider the domain of ϕ, denoted dom(ϕ), as the set of free
variables in ϕ that are defined by an active substitution in ϕ. Given an extended
process A, we define the frame of A, denoted φ(A), as the process A where we
replace all plain processes by 0. Finally, we write dom(A) as syntactic sugar for
dom(φ(A)).

2.2 Operational Semantics

In this section, we define the three semantics that we study in this paper, namely:

– the classical semantics from the applied pi calculus, where internal communi-
cation can occur on both public and private channels;

– the private semantics where internal communication can only occur on private
channels; and

– the eavesdropping semantics where the attacker is able to eavesdrop on a
public channel.

We first define the structural equivalence between extended processes,
denoted ≡, as the smallest equivalence relation on extended processes that is
closed under renaming of names and variables, closed by application of evalua-
tion contexts, that is associative and commutative w.r.t. |, and such that:

146 K. Babel et al.

A ≡ A | 0 !P ≡ !P | P νn.0 ≡ 0
νi.νj.A ≡ νj.νi.A νx.{u/x} ≡ 0 {u/x} | A ≡ {u/x} | A{u/x}

A | νi.B ≡ νi.(A | B) when i �∈ fv(A) ∪ fn(A) ωc ≡ ωc | ωc
{u/x} ≡ {v/x} when u =E v

The three operational semantics of extended processes are defined by the
structural equivalence and by three respective internal reductions, denoted →c,
→p and →e. These three reductions are the smallest relations on extended
processes that are closed under application of evaluation context, structural
equivalence and such that:

if u = v then P else Q
τ−→s P where u =E v and s ∈ {c, p, e} Then

if u = v then P else Q
τ−→s Q Else

where u, v ground, u �=E v and s ∈ {c, p, e}

outθ(c, u).P | inθ′
(c, x).Q τ−→c P | Q{u/x} Comm

νc.(outθ(c, u).P | inθ′
(c, x).Q | R)

τ−→s νc.(P | Q{u/x} | R) C-Priv
where c �∈ oc(R) and s ∈ {p, e}

outθ(c, u).P | inθ′
(c, x).Q

τ−→s P | Q{u/x} C-Env
at ∈ {θ, θ′}, u is of base type and s ∈ {p, e}

outθ(c, d).P | inθ′
(c, x).Q

τ−→s P | Q{d/x} | ωd C-Open
at ∈ {θ, θ′}, d is of channel type and s ∈ {p, e}

outho(c, u).P | inho(c, x).Q | eav(c, y).R
τ−→e P | Q{u/x} | R{u/y} C-Eav

where u is of base type

outho(c, d).P | inho(c, x).Q | eav(c, y).R
τ−→e P | Q{d/x} | R{d/y} | ωd C-OEav

where d is of channel type

We emphasise that the application of the rule is closed under application of
arbitrary evaluation contexts. In particular the context may restrict channels,
e.g. the rule C-Open may be used under the context νc. resulting in a pri-
vate channel c, but with the attacker input/output being in the scope of this
restriction. It follows from the definition of evaluation contexts that the result-
ing processes are always well defined. We denote by ⇒s the reflexive, transitive
closure of τ−→s for s ∈ {c, p, e}. We note that the classical semantics τ−→c is inde-
pendent of the tags θ, θ′, the eavesdrop actions and the ωc processes.

Example 1. Consider the process

A = (νd.outθ(c, d).inθ(d, x).P) | (inθ′
(c, y).outθ

′
(y, t).Q)

where d is a channel name and t a term of base type. Suppose θ = θ′ = ho then
we have that communication is only possible in the classical semantics (using
twice the Comm rule):

A
τ−→c νd.(inθ(d, x).P | outθ′

(d, t).Q{d/y})
τ−→c νd.(P{t/x} | Q{d/y})

On Communication Models When Verifying Equivalence Properties 147

while no transitions are available in the two other semantics. To enable com-
munication in the eavesdropping semantics we need to explicitly add eavesdrop
actions. Applying the rules C-OEav and C-Eav we have that

A | eav(c, z1).eav(z1, z2).R
τ−→e νd.(inθ(d, x).P | outθ′

(d, t).Q{d/y}
| eav(d, z2).R{d/z1} | ωd)

τ−→e νd.(P{t/x} | Q{d/y} | R{d/z1}{t/z2} | ωd)

We note that the first transition adds the information ωd to indicate that d
is now available to the environment.

Finally, if we consider that at ∈ θ, θ′ then internal communication on a public
channel is possible and, using rules C-Open and C-Env we obtain for s ∈ {p, e}
that

A
τ−→s νd.(inθ(d, x).P | outθ′

(d, t).Q{d/y} | ωd)
τ−→s νd.(P{t/x} | Q{d/y} | ωd)

2.3 Reachability and Behavioural Equivalences

We are going to compare the relation between the three semantics for the two
general kind of security properties, namely reachability properties encoding secu-
rity properties such as secrecy, authentication, and equivalence properties encod-
ing anonymity, unlinkability, strong secrecy, receipt freeness, Intuitively,
reachability properties encode that a process cannot reach some bad state. Equiv-
alences define the fact that no attacker can distinguish two processes. This was
originally defined by the (may)-testing equivalence [3] in the spi-calculus. An
alternate equivalence, which was considered in the applied pi calculus [1], is
observational equivalence.

Reachability properties can simply be encoded by verifying the capability
of a process to perform an output on a given cannel. We define A ⇓s,θ

c to hold
when A ⇒ sC[outθ(c, t).P] for some evaluation context C that does not bind c,
some term t and some plain process P , and A ⇓s

c to hold when A ⇓s,θ
c for some

θ ∈ {at, ho}. For example the secrecy of s in the process νs.A can be encoded
by checking whether for all attacker plain process I, we have that

I | νs.(A | inho(c, x).if x = s then outho(bad, s)) �⇓s,ho
bad

where bad �∈ fn(A).
Authentication properties are generally expressed as correspondence proper-

ties between events annotating processes, see e.g. [8]. A correspondence property
between two events begin and end, denoted begin ⇐ end, requires that the event
end is preceded by the event begin on every trace. A possible encoding of this
correspondence property consists in first replacing all instances of the events in
A by outputs outho(ev, begin) and outho(ev, end) where ev �∈ fn(A)∪bn(A). This
new process A′ can then be put in parallel with a cell Cell that reads on the
channel ev and stores any new value unless the value is end and the current
stored value in the cell is not begin. In such a case, the cell will output on the

148 K. Babel et al.

channel bad. The correspondence property can therefore be encoded by checking
whether for all attacker plain process I, we have that I | νev.(A′ | Cell) �⇓s,ho

bad .
We say that an attacker evaluation context C[] is c-closing for an extended

process A if fv(C[A]) = ∅. For s ∈ {p, e}, we say that C[] is s-closing for A if
it is c-closing for A, variables and names are bound only once in C[] and for all
channels c ∈ bn(C[]) ∩ fn(A), if the scope of c includes then the scope of c
also includes ωc.

We next introduce the two main notions of behavioural equivalences: may
testing and observational equivalence.

Definition 1 ((May-)Testing equivalences ≈c
m, ≈p

m, ≈e
m). Let s ∈ {c, p, e}.

Let A and B two closed honest extended processes such that dom(A) = dom(B).
We say that A ≈s

m B if for all attacker evaluation contexts C[] s-closing for A
and B, for all channels c, we have that C[A] ⇓s

c if and only if C[B] ⇓s
c.

Definition 2 (Observational equivalences ≈c
o, ≈p

o, ≈e
o). Let s ∈ {c, p, e}.

Let A and B two closed extended processes such that dom(A) = dom(B). We
say that A ≈s

m B if ≈s
m is the largest equivalence relation such that:

– A ⇓s
c implies B ⇓s

c;
– A

τ−→s A′ implies B ⇒ εsB
′ and A′ ≈s

m B′ for some B′;
– C[A] ≈s

m C[B] for all attacker evaluation contexts C[] s-closing for A and B.

For each of the semantics we have the usual relation between these two
notions: observational equivalence implies testing equivalence.

Proposition 1. ≈s
o � ≈s

m for s ∈ {c, e, p}.

Example 2. Consider processes A and B of Fig. 2. Process A computes a value
hn(a) to be output on channel c, where hn(a) denotes n applications of h and
h0(a) = a. The value is initially a and A may choose to either output the current
value, or update the current value by applying the free symbol h. B may choose
non-deterministically to either behave as A or output the fresh name s. (The
non-deterministic choice is encoded by a communication on the private channel
e which may be received by either the process behaving as A or the process
outputting s.)

We have that A �≈s
o B. The two processes can indeed be distinguished by the

context

C[] =̂ | outat(ca, a) | !(inat(ca, x).outat(ca, h(x))
| inat(ca, y).inat(c, z).if y = z then outat(ct, h(x))

Intuitively, when B outputs s the attacker context C[] can iterate the appli-
cation of h the same number of times as would have done process A. Comparing
the value computed by the adversary (hn(a)) and the honestly computed value
(either hn(a) or s) the adversary distinguishes the two processes by outputting
on the test channel ct.

On Communication Models When Verifying Equivalence Properties 149

A νd.outho(d, a) | !inho(d, x).outho(d, h(x)) | inho(d, y).outho(c, y)

B νe.outho(e, a) | inho(e, z).A | inho(e, z).νs.outho(c, s)

Fig. 2. Processes A and B such that A ≈s
m B, but A �≈s

o B and A �≈s
t B for s ∈ {c, e, p}.

However, we have that A ≈s
m B. Indeed, for any s-closing context D[] and all

public channel ch we have that D[A] ⇓s
ch if and only if D[B] ⇓s

ch. In particular
for context C[] defined above we have that both C[A] ⇓s

ch and C[B] ⇓s
ch for

ch ∈ {ca, ct, c}. Unlike observational equivalence, may testing does not require
to “mimick” the other process stepwise and we cannot force a process into a
particular branch.

2.4 Labelled Semantics

The internal reduction semantics introduced in the previous section requires
to reason about arbitrary contexts. Similar to the original applied pi calcu-
lus, we extend the three operational semantics by a labeled operational seman-
tics which allows processes to directly interact with the (adversarial) environ-
ment: we define the relation �−→c,

�−→p and �−→e where � is part of the alpha-
bet A = {τ, out(c, d), eav(c, d), in(c, w), νk.out(c, k), νk.eav(c, k) | c, d ∈ Ch, k ∈
X ∪ Ch and w is a term of any sort}. The labeled rules are given in Fig. 3.

Consider our alphabet of actions A defined above. Given w ∈ A∗, s ∈ {c, p, e}
and an extended process A, we say that A

w−→s An when A
�1−→s A1

�2−→s A2
�3−→s

. . .
�n−→s An for some extended processes A1, . . . , An and w = �1 · . . . · �n. By

convention, we say that A
ε−→s A where ε is the empty word. Given tr ∈ (A\{τ})∗,

we say that A
tr=⇒s A′ when there exists w ∈ A∗ such that tr is the word w where

we remove all τ actions and A
w−→s A′.

Example 3. Coming back to Example 1, we saw that A
τ−→c

τ−→c νd.(P{t/x} |
Q{d/y}) and no τ -actions in the other two semantics were available. Instead
of explicitly adding eavesdrop actions, we can apply the rules Eav-OCh and
Eav-T and obtain that

A
νd.eav(c,d)−−−−−−−→e inho(d, x).P | outho(d, t).Q{d/y})
νz.eav(d,z)−−−−−−−→e P{t/x} | Q{d/y} | {t/z}

We can now define both reachability and different equivalence properties in
terms of these labelled semantics and relate them to the internal reduction. To
define reachability properties in the labelled semantics, we define A �s

c to hold
when A

tr=⇒ A′, tr = tr1out(c, t)tr2 and tr1 does not bind c for some tr, tr1, tr2 ∈
(A \ {τ})∗, term t and extended process A′.

The following proposition states that any reachability property modelled in
terms of A ⇓s,θ

c and universal quantification over processes, can also be expressed
using A �s

c without the need to quantify over processes.

150 K. Babel et al.

IN inho(c, y).P
in(c,t)−−−−→s P{t/y}

OUT-CH outho(c, d).P
out(c,d)−−−−−→s P

OPEN-CH
A

out(c,d)−−−−−→s A′ d �= c

νd.A
νd.out(c,d)−−−−−−−→s A′

EAV-OCH
A

eav(c,d)−−−−−→e A′ d �= c

νd.A
νd.eav(c,d)−−−−−−−→e A′

SCOPE
A

�−→s A′ u does not occur in �

νu.A
�−→s νu.A′

bn(�) ∩ fn(B) = ∅
PAR

A
�−→s A′ bv(�) ∩ fv(B) = ∅

A | B
�−→s A′ | B

STRUCT
A ≡ B B

�−→s B′ B′ ≡ A′

A
�−→s A′

EAV-CH outho(c, d).P | inho(c, x).Q
eav(c,d)−−−−−→e P | Q{d/x}

EAV-T outho(c, t).P | inho(c, x).Q
νy.eav(c,y)−−−−−−−→e P | Q{t/x} | {t/y}

OUT-T outho(c, t).P
νx.out(c,x)−−−−−−−→s P | {t/x}

x �∈ fv(P) ∪ fv(t)

where s ∈ {c, p, e}.

Fig. 3. Labeled semantics

Proposition 2. For all closed honest plain processes A, for all s ∈ {c, e, p},
A �s

c iff there exists an attacker plain process Is such that Is | A ⇓s,ho
c .

Next, we define equivalence relations using our labelled semantics that may
serve as proof techniques for the may testing relation. First we need to define
an indistinguishability relation on frames, called static equivalence.

Definition 3 (Static equivalence ∼). Two terms u and v are equal in
the frame φ, written (u =E v)φ, if there exists ñ and a substitution σ such
that φ ≡ νñ.σ, ñ ∩ (fn(u) ∪ fn(v)) = ∅, and uσ =E vσ.

Two closed frames φ1 and φ2 are statically equivalent, written φ1 ∼ φ2,
when:

– dom(φ1) = dom(φ2), and
– for all terms u, v we have that: (u =E v)φ1 if and only if (u =E v)φ2.

Example 4. Consider the equational theory generated by the equation
dec(enc(x, y), y) = x. Then we have that

νk. {enc(a,k)/x1} ∼ νk. {enc(b,k)/x1}
νk. {enc(a,k)/x1 ,

k /x2} �∼ νk. {enc(b,k)/x1 ,
k /x2}

νk, a. {enc(a,k)/x1 ,
k /x2} ∼ νk, b. {enc(b,k)/x1 ,

k /x2}

Intutively, the first equivalence confirms that encryption hides the plaintext
when the decryption key is unknown. The second equivalence does not hold as
the test (dec(x1, x2) =E a) holds on the left hand side, but not on the right

On Communication Models When Verifying Equivalence Properties 151

hand side. Finally, the third equivalence again holds as two restricted names are
indistinguishable.

Now we are ready to define two classical equivalences on processes, based on
the labelled semantics: trace equivalence and labelled bisimulation.

Definition 4 (Trace equivalences ≈c
t, ≈p

t , ≈e
t). Let s ∈ {c, p, e}. Let A and B

be two closed honest extended processes. We say that A �s
t B if for all A

tr⇒sA
′

such that bn(tr) ∩ fn(B) = ∅, there exists B′ such that B
tr⇒sB

′ and φ(A′) ∼
φ(B′). We say that A ≈s

t B when A �s
t B and B �s

t A.

Definition 5 (Labeled bisimulations ≈c
�, ≈p

� , ≈e
�). Let s ∈ {c, p, e}. Let A

and B two closed honest extended processes such that dom(A) = dom(B). We
say that A ≈s

� B if ≈s
� is the largest equivalence relation such that:

– φ(A) ∼ φ(B)
– A

τ−→s A′ implies B
ε⇒sB

′ and A′ ≈s
� B′ for some B′,

– A
�−→s A′ and bn(�) ∩ fn(B) = ∅ implies B

l⇒sB
′ and A′ ≈s

� B′ for some B′.

We again have, as usual that labelled bisimulation implies trace equivalence.

Proposition 3. ≈s
� � ≈s

t for s ∈ {c, e, p}.
In [1] it is shown that ≈c

o = ≈c
�. We conjecture that for the new semantics

p and e this same equivalence holds as well. Re-showing these results is beyond
the scope of this paper, and we will mainly focus on testing/trace equivalence.
As shown in [12], for the classical semantics trace equivalence implies may test-
ing, while the converse does not hold in general. The two relations do however
coincide on image-finite processes.

Definition 6. Let A be a closed extended process. A is image-finite for the
semantics s ∈ {c, e, p} if for each trace tr the set of equivalence classes {φ(B) |
A

tr=⇒s B}/∼ is finite.

Note that any replication-free process is necessarily image-finite as there are
only a finite number of possible traces for any given sequence of labels tr. The
same relations among trace equivalence and may testing shown for the classical
semantics hold also for the other semantics.

Theorem 1. ≈s
t � ≈s

m and ≈s
t = ≈s

m on image-finite processes for s ∈ {c, e, p}.
The proof of this result (for the classical semantics) is given in [12] and is

easily adapted to the other semantics. To see that the implication is strict, we
continue Example 2 on processes A and B defined in Fig. 2. We already noted
that A ≈s

m B, but will now show that A �≈s
t B (for s ∈ {c, e, p}). All possible

traces of A are of the form A
νx.out(c,x)
=======⇒sA

′ where φ(A′) = {hn(a)/x} for n ∈ N.
We easily see that A�≈s

tB as for any n we have that {hn(a)/x} �∼ {s/x}, by testing
x = hn(a). On the other hand, given an image-finite process, we can only have a
finite number of different frames for a given trace, and therefore we can bound
the context size that is necessary for distinguishing the processes.

152 K. Babel et al.

A νs1.νs2.((out
ho(c, s1).in

ho(c, x).P1(x)) | (inho(c, y).P2(y)))

B νs1.νs2.((out
ho(c, s1).in

ho(c, x).P2(x)) | (inho(c, y).P1(y)))

where
P1(x (=̂) if x = s1 then outho(d, s2)) | (if x = s2 then outho(e, x))

P2(x (=̂) if x = s1 then outho(d, s2))

To emit on channel e, processes A and B must execute P2(s1) followed by P1(s2). In the classi-
cal semantics, a trace of A emitting on e through an internal communication between outho(c, s1)
and inho(c, y) forces B to execute P1(s1) thus preventing it to emit on e.

=̂

=̂

Fig. 4. Processes A and B such that A ≈p
� B and A �≈c

m B.

3 Comparing the Different Semantics

In this section we state our results on comparing these semantics. We first show
that, as expected, all the semantics coincide for reachability properties.

Theorem 2. For all ground, closed honest extended processes A, for all chan-
nels d, we have that A �p

d iff A �c
d iff A �e

d.

The next result is, in our opinion, more surprising. As the private semantics
force the adversary to observe all information, one might expect that his distin-
guishing power increases over the classical one. This intuition is however wrong:
the classical and private trace equivalences, testing equivalence and labelled
bisimulations appear to be incomparable.

Theorem 3. ≈p
r �⊆ ≈c

r and ≈c
r �⊆ ≈p

r for r ∈ {�, t,m}.

Proof. We first show that there exist A and B such that A ≈p
� B, but A �≈c

m B.
Note that, as ≈s

� ⊂ ≈s
t ⊆ ≈s

m for s ∈ {c, p} these processes demonstrate both
that ≈p

� �⊆ ≈c
�, ≈p

t �⊆ ≈c
t and ≈p

m �⊆ ≈c
m.

Consider processes A and B defined in Fig. 4. In short, the result follows from
the fact that if A performs an internal communication on channel c followed by
an output on d (from P1), B has no choice other then performing the output on d
in P2. In the private semantics, however, the internal communication will be split
in an output followed by an input: after the output on c, the input inho(c, x).P2(x)
following the output becomes available. More precisely, to see that A ≈p

� B we

first observe that if A
νz.out(c,z)−−−−−−−→p A′ then B

νz.out(c,z)−−−−−−−→p B′ and A′ ≡ B′, and

vice-versa. If A
in(c,t)−−−−→p A′ then B

in(c,t)−−−−→p B′. As t �∈ {s1, s2} we have that
P1(t) ≈p

� 0 ≈p
� P2(t). Finally, if t �= s2 we also have that P1(t) ≈p

� P2(t) as in
particular P1(s1) ≈p

� P2(s1). Therefore,

νs1.νs2.(out
ho(c, s1).in

ho(c, x).P1(x)) ≈p
� νs1.νs2.(out

ho(c, s1).in
ho(c, x).P2(x))

which allows us to conclude.

On Communication Models When Verifying Equivalence Properties 153

As A and B are image-finite, we have that A ≈c
m B if and only if A ≈c

t B.
To see that A �≈c

t B we observe that A may perform the following transition
sequence, starting with an internal communication on a public channel:

A
τ−→c νs1.νs2.((inho(c, x).P1(x)) | (P2(s1)))

νz.out(d,z)
=======⇒c νs1.νs2.((inho(c, x).P1(x)) | {s2/z})

in(c,z)−−−−→c νs1.νs2.(P1(s2) | {s2/z})

In order to mimic the behaviour of A, B must perform the same sequence of
observable transitions:

B
νz.out(d,z) in(c,z)
===========⇒c νs1.νs2.(P2(s2) | {s2/z})

We conclude as νs1.νs2.(P1(s2) | {s2/z})
νz′.out(e,z′)−−−−−−−−→ νs1.νs2.({s2/z} | {s2/z′}),

but νs1.νs2.(P2(s2) | {s2/z}) � νz′.out(e,z′)−−−−−−−−→. This trace inequivalence has also been
shown using APTE.

To show that ≈c
r �⊆ ≈p

r for r ∈ {�, t,m} we show that there exist processes
A and B such that A ≈c

� B and A �≈p
m B. As in the first part of the proof, note

that, as ≈s
� ⊂ ≈s

t ⊆ ≈s
m for s ∈ {c, p} these processes demonstrate that ≈c

� �⊆ ≈p
� ,

≈c
t �⊆ ≈p

t and ≈c
m �⊆ ≈p

m.
Consider the processes A and B defined in Fig. 5. The proof crucially relies on

the fact that B may perform an internal communication in the classical semantics
to mimic A, which becomes visible in the attacker in the private semantics. To see
that A ≈c

� B we first observe that the only first possible action from A or B is an

input. In particular, given a term t, there is a unique B′ such that B
in(c,t)−−−−→ B′

where B′ = νs.(outho(c, s).outho(d, a) | inho(c, y).P (y)). However, if A
in(c,t)−−−−→ A′

then either A′ = B′ or A′ = A′′ with A′′ =̂ νs.(inho(c, x).outho(c, s).outho(d, a) |
P (t)). Therefore, to complete the proof, we only need to find B′′ such that

B
in(c,t)
====⇒ B′′ and A′′ ≈c

� B′′. Such process can be obtain by applying an internal

communication on B′, i.e. B
in(c,t)−−−−→c B′ τ−→ νs.(outho(d, a) | P (s)). Note that

t �= s since s is bound, meaning that P (t) ≈c
� outho(d, a). Moreover, P (s) ≈c

�

inho(c, x).outho(c, s).outho(d, a). This allows us to conlude that νs.(outho(d, a) |
P (s)) ≈c

� A′′.
Again, as A and B are image-finite may and trace equivalence coincide. To

see that A �≈p
t B we first observe that A may perform the following transition

sequence:

A
in(c,t)−−−−→p A′′ τ−→p νs.(inho(c, x).outho(c, s).outho(d, a) | outho(d, a))

νz.out(d,z)−−−−−−−→p νs.(inho(c, x).outho(c, s).outho(d, a) | {a/z})

We conclude as B
in(c,t)−−−−→p B′ but B′ � νz.out(d,z)−−−−−−−→p. This trace disequivalence has

also been shown using APTE. ��

154 K. Babel et al.

A νs.(inho(c, x).outho(c, s).outho(d, a) | inho(c, y).P (y))

B νs.(inho(c, x).(outho(c, s).outho(d, a) | inho(c, y).P (y)))

where
P (y =̂) if y = s then inho(c, z).outho(c, s).outho(d, a) else outho(d, a)

In the private semantics, a trace of A starting with the execution of inho(c, y) can only be matched
on B by executing inho(c, x). B could then emit on channel c, which is not the case for A,
hence yielding non equivalence. In the classic semantics, an internal communication between
outho(c, s) and inho(c, y) allows to hide the fact that B can emit on c.

=̂

=̂

Fig. 5. Processes A and B such that A ≈c
� B and A �≈p

m B.

One may also note that the counter-example witnessing that equivalences in
the private semantics do not imply equivalences in the classical semantics is min-
imal : it does not use function symbols, equational reasoning, private channels,
replication nor else branches. The second part of the proof relies on the use of else
branches. We can however refine this result in the case of labeled bisimulation to
processes without else branches, the counter-example being the same processes
A and B described in the proof but where we replace each outho(d, a) by 0. In
the case of trace equivalence, we can also produce a counter-example without
else branches witnessing that trace equivalences in the classical semantics do no
imply trace equivalences in the private semantics but provided that we rely on
a function symbol h. In the appendix of the technical report [7], we describe in
more details these processes and give the proofs of them being counter-examples.

Next, we show that the eavesdropping semantics yields strictly stronger
bisimulations and trace equivalences: the eavesdropping semantics is actually
strictly included in the intersection of the classic and private semantics.

Theorem 4. ≈e
� � ≈p

� ∩ ≈c
�.

Proof (Sketch)

1. We first show that ≈e
� ⊆ ≈p

� . Suppose A≈e
�B and let R be the relation wit-

nessing this equivalence. We will show that R is also a labelled bisimulation
in the private semantics. Suppose ARB.
– as A≈e

�B, we have that φ(A) ∼ φ(B).
– if A

τ−→p A′ then, as τ−→p⊂ τ−→e, A
τ−→e A′. As A≈e

�B there exists B′ such that
B

ε=⇒e B′ and A′RB′. As B is a honest process no Comm-Eav transition
is possible, and hence B

ε=⇒p B′.
– if A

�−→p A′ and bn(�) ∩ fn(B) = ∅ then we also have that A
�−→e A′

(as �−→p⊂ �−→e and there exists B′ such that B
�=⇒e B′ and A′RB′. As no

Comm-Eav are possible and � is not of the form eav(c, d) nor νy.eav(c, y)
we have that B

�=⇒p B′.
2. We next show that A ≈e

� B implies A ≈c
� B for any A,B. We will show that

≈e
� is also a labelled bisimulation in the classical semantics. The proof relies

on similar arguments as in Item 2 of the proof of Theorem5 and the facts
that

On Communication Models When Verifying Equivalence Properties 155

– νñ.(A′ | {t/x}) ≈e
� νñ.(B′ | {u/x}) implies νñ.A′ ≈e

� νñ.B′,
– A′ ≈e

� B′ implies νc.A′ ≈e
� νc.B′

The first property is needed when an internal communication of a term or
public channel is replaced by an eavesdrop action and an input. The second
property handles the case when we replace the internal communication of a
private channel by an application of the Eav-OCh rule and an input.

3. We now show that the implication ≈e
� � ≈c

� ∩ ≈c
t is strict, i.e., there exist A

and B such that A ≈c
� B, A ≈p

� B but A �≈e
t B (which implies A �≈e

� B).

Consider the processes A and B defined in Fig. 6. This example is a variant of
the one given in Fig. 4. The difference is the addition of “inho(d, z).if z = s1 then ”
in processes P1(x) and P2(x): this additional check is used to verify whether the
adversary learned s1 or not. The proofs that A ≈c

� B and A ≈p
� B follow the same

lines as in Theorem 3. We just additionally observe that νs1.(inho(d, z).if z =
s1 then outho(d, s2)) ≈s

� νs1. (inho(d, z).0) for s ∈ {c, p}.
The trace witnessing that A �≈e

t B (which implies A �≈e
� B) is again simi-

lar to the one in Theorem3, but starting with an eavesdrop transition which
allows the attacker to learn s1, which in turn allows him to learn s2 and distin-
guish P1(s2) from P2(s2). We have verified A �≈e

t B using APTE which implies
A �≈e

� B. ��

Again we note that the implications are strict, even for processes containing
only public channels.

Theorem 5. ≈e
t � ≈p

t ∩ ≈c
t.

Proof (Sketch)

1. We first prove that ≈e
t ⊆ ≈p

t . Suppose that A ≈e
t B. We need to show that

for any A′ such that A
tr=⇒p A′ there exists B′ such that B

tr=⇒p B′. It follows
from the definition of the semantics that whenever A

tr=⇒p A′ then we also

have A
tr=⇒e A′ as �−→p ⊂ �−→e. As A ≈e

t B, we have that there exists B′, such

A νs1.νs2.((out
ho(c, s1).in

ho(c, x).P1(x)) | (inho(c, y).P2(y)))

B νs1.νs2.((out
ho(c, s1).in

ho(c, x).P2(x)) | (inho(c, y).P1(y)))

where

P1(x (=̂) if x = s1 then inho(d, z).if z = s1 then outho(d, s2)) | (if x = s2 then outho(e, x))

P2(x (=̂) if x = s1 then inho(d, z).if z = s1 then outho(d, s2))

To emit on channel e, processes A and B must execute P2(s1) by inputing twice s1 followed
by P1(s2). In the classical semantics, an internal communication on A between outho(c, s1)
and inho(c, y) forces B to execute P1(s1) but hides s1, preventing a second input of s1 by A.
However, in the eavesdropping semantics, the internal communication reveals s1 allowing A to
emit on e but not B.

=̂

=̂

Fig. 6. Processes A and B such that A ≈c
� B, A ≈p

� B but A �≈e
t B.

156 K. Babel et al.

that B
tr=⇒e B′ and φ(A′) ∼ φ(B′). As tr does not contain labels of the form

eav(c, d) nor νy.eav(c, y) and as no Comm-Eav are possible (A and B are
honest processes) we also have that B

tr=⇒p B′. Hence A ≈p
t B.

2. We next prove that ≈e
t ⊆ ≈c

t. Similar to Item 1 we suppose that A ≈e
t B and

A
trc==⇒c A′

c. From the semantics, we obtain that A
tre==⇒e A′

e, where
– φ(A′

c) ⊆ φ(A′
e), i.e., dom(φ(A′

c)) ⊆ dom(φ(A′
e)) and the frames coincide

on the common domain.
– tre is constructed from tr by replacing any τ action resulting from the

Comm rule by an application of an eavesdrop rule (Eav-T, Eav-Ch, or
Eav-OCh).

The proof is done by induction on the length of tr and the proof tree of each
transition. As A ≈e

t B we also have that B
tre==⇒e B′

e and A′
e ∼ B′

e. We show by
the definition of the semantics that B

trc==⇒c B′
c and φ(B′

c) ⊆ φ(B′
e) (replacing

each eavesdrop action by an internal communication). Due to the inclusions
of the frames and A′

e ∼ B′
e we also have that A′

c ∼ B′
c.

3. To show that the implication ≈e
t � ≈p

t ∩≈c
t is strict, i.e., there exist processes

A and B such that A ≈c
t B, A ≈p

t B but A �≈e
t B. The processes defined in

Fig. 6 witness this fact (cf the discussion of these processes in the proof of
Theorem 4). These trace (in)equivalences have also been verified using APTE.

We note from the processes defined in Fig. 6 that the implications are strict
even for processes that do not communicate on private channels, do not use
replication, nor else branches and terms are simply names (no function symbols
nor equational theories).

Theorem 6. ≈e
m � ≈p

m ∩ ≈c
m.

Proof (Sketch)

1. We first prove that ≈e
m ⊆ ≈p

m. Suppose that A ≈e
m B. Suppose that A ≈e

m B.
We need to show that for all channel c, for all C[] attacker evaluation con-
texts p-closing for A and B, C[A] ⇓p

c is equivalent to C[B] ⇓p
c. It follows

from the definition of the private semantics that any process eav(c, x).P in
C[] has the same behaviour as the process 0. Hence, we generate a con-
text C1[] by replacing in C[] any instance of eav(c, x).P by 0, and thus
obtaining C[A] ⇓p

c ⇔ C ′[A] ⇓p
c and C[B] ⇓p

c ⇔ C ′[B] ⇓p
c. Notice that the def-

inition of semantics gives us →p ⊆ →e. Hence, C ′[A] ⇓p
c implies C ′[A] ⇓e

c

and C ′[B] ⇓p
c implies C ′[B] ⇓e

c. Furthermore, since we built C ′[] to not con-
tain any process of the form eav(c, x).P , we deduce that rules C-Eav and
C-OEav can never be applied in a derivation of C ′[A] or C ′[B]. It implies
that C ′[A] ⇓p

c⇔ C ′[A] ⇓e
c and C ′[B] ⇓p

c⇔ C ′[B] ⇓e
c. Thanks to A ≈e

m B, we
know that C ′[A] ⇓e

c ⇔ C ′[B] ⇓e
c and so we conclude that C[A] ⇓p

c ⇔ C[B] ⇓p
c.

2. We next prove that ≈e
m ⊆ ≈c

m. Similarly to Item 1, we consider a channel c
and an attacker evaluation context C[] that is c-closing for A and B. The
main difficulty of this proof is to match the application of the rule Comm
in the classical semantics with the rules C-Eav and C-OEac. However, C[]

On Communication Models When Verifying Equivalence Properties 157

≈s
� ≈s

o

≈s
t

≈s
m

for all s ∈ {c, p, e}
for image finite processes ≈s

t = ≈s
m

if s = c then ≈s
� = ≈s

o (conjectured for s ∈ {p, e})

≈c
r ≈e

r ≈p
r

for all r ∈ {m, t, �}

Fig. 7. Overview of the results.

does not necessarily contain eavesdrop process eav(d, x) | ωc. Moreover, as
mentioned in Item 1, a process eav(d, x).P has the same behavior as 0 in
the classical semantics but can have a completely different behaviour in the
eavesdropping semantics if P is not 0. Thus, we remove from C[] the eaves-
drop processes, obtaining C ′[]. Then, we define a new context C ′′[] based on
C ′[] where will add harmless eavesdrop process eav(d, y).0. We first add in
parallel the processes !eav(a, y) | ωa for all free channels a in C ′[], A and B.
Moreover, since private channels can be opened, we also replace any process
νd.P , inat(c, x).P where d, x are of channel type with νd.(P |!eav(d, y)) and
inat(c, x).(P |!eav(x, y)). By induction of the derivations, we can show that
C[A] ⇓c

c ⇔ C ′′[A] ⇓e
c and C[B] ⇓c

c ⇔ C ′′[B] ⇓e
c. Since A ≈e

m B, we deduce
that C ′′[A] ⇓e

c ⇔ C ′′[B] ⇓e
c and so C[A] ⇓c

c ⇔ C[B] ⇓c
c.

3. To show that the implication ≈e
m � ≈p

m ∩ ≈c
m is strict, i.e., there exist

processes A and B such that A ≈c
m B, A ≈p

m B but A �≈e
m B. The processes

defined in Fig. 6 witness this fact. They already were witness of the strict
inclusion ≈e

t � ≈p
t ∩≈c

t (see proof of Theorem 5) and since A and B are image
finite, we know from Theorem 1 that may and trace equivalences between A
and B coincide. ��

4 Subclasses of Processes for Which the Semantics
Coincide

4.1 Simple Processes

The class of simple processes was defined in [12]. It was shown that for these
processes observational and may testing equivalences coincide. Intuitively, these
processes are composed of parallel basic processes. Each basic process is a
sequence of input, test on the input and output actions. Moreover, importantly,
each basic process has a distinct channel for communication.

Definition 7 (basic process). The set B(c,V) of basic processes built
on c ∈ Ch and V ⊆ X (variables of base type) is the least set of processes that
contains 0 and such that

158 K. Babel et al.

– if B1, B2 ∈ B(c,V), M,N ∈ T (F ,N ,V), then
if M = N then B1 else B2 ∈ B(c,V).

– if B ∈ B(c,V), u ∈ T (F ,N ,V), then outho(c, u).B ∈ B(c,V).
– if B ∈ B(c,V � {x}), x of base type (x /∈ V), then inho(c, x).B ∈ B(c,V).

Definition 8 (simple process). A simple process is obtained by composing
and replicating basic processes and frames, hiding some names:

νñ. (νñ1.(B1 | σ1) | !(νc′
1, m̃1.out

ho(p1, c
′
1).B

′
1)

...
...

νñk.(Bk | σk) | !(νc′
n, m̃n.outho(pn, c′

n).B′
n))

where Bj ∈ B(cj , ∅), B′
j ∈ B(c′

j , ∅) and cj are channel names that are pairwise
distinct. The names p1, . . . , pn are distinct channel names that do not appear
elsewhere and σ1, . . . , σk are frames without restricted names (i.e. substitutions).

We have that for simple processes, all equivalences and semantics coincide.

Theorem 7. When restricted to simple processes, we have that ≈s1
r1

= ≈s2
r2

for
r1, r2 ∈ {�, o,m, t} and s1, s2 ∈ {c, p, e}.

Proof. The result when s1 = s2 = c was shown in [12]. As for simple processes,
all parallel processes have distinct channels, the internal communication rule
may never be triggered, and therefore it is easy to show that the three semantics
coincide.

4.2 I/O-Unambiguous Processes

Restricting processes to simple processes is often too restrictive. For instance,
when verifying unlinkability and anonymity properties, two outputs by different
parties should not be distinguishable due to the channel name. We therefore
introduce another class of processes, that we call io-unambiguous for which we
also show that the different semantics (although not the different equivalences)
do coincide.

Intuitively, an io-unambiguous process forbids an output and input on
the same public channel to follow each other directly (or possibly with
only conditionals in between). For instance, we forbid processes of the form
outθ(c, t).inθ(c, x).P , outθ(c, t).(inθ(c, x).P | Q) as well as outθ(c, t).if t1 =
t2 then P else inθ(c, x).Q. We however allow inputs and outputs on the same
channel in parallel.

On Communication Models When Verifying Equivalence Properties 159

Definition 9. We define an honest extended process A to be I/O-unambiguous
when ioua(A,) = � where

ioua(0, c) = � ioua({u/x}, c) = � ioua(!P, c) = ioua(P, c)
ioua(A | B, c) = ioua(A, c) ∧ ioua(B, c) ioua(νx.A, c) = ioua(A, c)

ioua(νn.A, c) =
{

⊥ if n ∈ Ch
ioua(A, c) otherwise

ioua(if u = v then P else Q, c) = ioua(P, c) ∧ ioua(Q, c)

ioua(outθ(d, u).P, c) =
{

⊥ if u is of channel type
ioua(P, d) otherwise

ioua(inθ(d, x).P, c) =
{

⊥ if x is of channel type or d = c
ioua(P,) otherwise

Note that an I/O-unambiguous process does not contain private channels
and always input/output base-type terms. We also note that a simple way to
enforce that processes are I/O-unambiguous is to use disjoint channel names for
inputs and outputs (at least in the same parallel thread).

Theorem 8. When restricted to I/O-unambiguous processes, we have that ≈p
r =

≈e
r but ≈e

r � ≈c
r for r ∈ {�, t}.

Proof. From Theorems 4 and 5, we already know that ≈e
r ⊆ ≈p

r and ≈e
r ⊆ ≈c

r.
Hence, we only need to show that ≈p

r ⊆ ≈e
r and ≈p

r � ≈c
r. The latter is easily

shown by noticing that the processes A and B in Fig. 5 are I/O-unambiguous.
Thus, we focus on ≈p

r ⊆ ≈e
r.

We start by proving that for all I/O-unambiguous processes A, for all A
tr=⇒ A′,

we have that A′ is I/O-unambiguous. Note that structural equivalence preserves
I/O-unambiguity, i.e. for all extended processes A,B, for all channel name c,
A ≡ B implies ioua(A, c) = ioua(B, c). Hence, we assume w.l.o.g. that a name is
bound at most once and the set of bound and free names are disjoint.

Second, we show that for all I/O-unambiguous processes A, for all

A
νz.out(c,z).in(c,z)
===========⇒p A′, we have that

νz.eav(c,z)
=======⇒e A′. To prove this property,

denoted P, let us assume w.l.o.g. that A
νz.out(c,z)−−−−−−−→p A1 →∗

p A2
in(c,z)−−−−→p A′.

The transition A
νz.out(c,z)−−−−−−−→p A1 indicates that A ≡ νñ.(outho(c, u).P | Q) and

A1 ≡ ñ.(P | Q | {u/z}) for some P,Q, ñ, c, u. Note that A is I/O-unambiguous,
and hence ioua(P, c) = �.

As A is I/O-unambiguous implies that A does not contain private channels,
we have that the rule applied in A1 →∗

p A2 is either the rule Then or Else.
Therefore, there exists P ′ and Q′ such that P →∗

p P ′, Q →∗
p Q′, An ≡ νñ.(P ′ |

Q′ | {u/x}) and ioua(P ′, c) = �. Hence, we deduce that there exists Q1, Q2

such that Q′ ≡ νm̃.(in.(c, x)Q1 | Q2) and A′ ≡ νñ.νm̃.(P ′ | Q1{u/x} | Q2). We
conclude the proof of this property by noticing that we can first apply on A the
reduction rules of Q →∗

p Q′, then apply the rule C-Eav and finally apply the
rules of P →∗

p P ′.

160 K. Babel et al.

1. To prove ≈p
t ⊆ ≈e

t, we assume that A,B are two closed honest extended
processes such that A ≈p

t B. For all A
tr=⇒e A′, it follows from the semantics

that A
trp=⇒p A′ where trp is obtained by replacing in tr each νz.eav(c, z) by

νz.out(c, z).in(c, z). Since A ≈p
t B, there exists B′ such that B

trp=⇒p B′ and
φ(A′) ∼ φ(B′). Thanks to the property P, we conclude that B

tr=⇒e B′.
2. To prove ≈p

� ⊆ ≈e
�, we assume that A,B are two closed honest extended

processes such that A ≈p
� B and let R be the relation witnessing this equiva-

lence. We will show that R is also a labelled bisimulation in the eavesdropping
semantics. Suppose ARB.
– as A ≈p

� B, we have that φ(A) ∼ φ(B).
– if A

τ−→e A′ then, as A is honest, A
τ−→p A′. As A ≈p

� B there exists B′ such
that B

ε=⇒p B′ and A′RB′. As τ−→p ⊂ τ−→e, B
ε=⇒e B′

– if A
�−→e A′ then, as A is I/O-unambiguous, A

tr=⇒e A′ where tr =
νz.out(c, z).in(c, z) when � = νz.eav(c, z) else tr = �. As A ≈p

� B, there
exists B′ such that B

tr=⇒p B′ and A′RB′. When tr = �, the definition of

the semantics directly gives us B
�=⇒e B′. When tr = νz.out(c, z).in(c, z),

the property P gives us B
�=⇒e B′. ��

5 Different Semantics in Practice

As we have seen, in general, the three proposed semantics may yield different
results. A conservative approach would consist in verifying always the eaves-
dropping semantics which is stronger than the two other ones, as shown before.
However, this semantics seems also to be the least efficient one to verify.

We have implemented the three different semantics in the APTE tool, for
processes with static channels, i.e. inputs and outputs may only have names
in the channel position and not variables. This allowed us to investigate the
difference in results and performance between the semantics.

In our experiments we considered several examples from APTE’s repository:

– the Private Authentication protocol proposed by Abadi and Fournet [2];
– the passive authentication protocol implemented in the European Passport

protocol [4,16];
– the French and UK versions of the Basic Access Protocol (BAC) implemented

in the European passport [5,16].

For all these examples we found that the results, i.e., whether trace equiv-
alence holds or not, was unchanged, independent of the semantics. However,
as expected, performance of the private semantics was generally better. The
existing protocol encodings generally used a single public channel. To enforce
I/O-unambiguity, we introduced different channels and, surprisingly, noted that
distinct channels significantly enhance the tool’s performance. (The model using
different channels in the case of RFID protocols such as the electronic passport
is certainly questionable.)

On Communication Models When Verifying Equivalence Properties 161

The results are summarised in the following table. For each protocol we
considered the original encoding, and a slightly changed one which enforces I/O-
unambiguity. In the results column we mark an attack by a cross (×) and a
successful verification with a check mark (�). In case of an attack we generally
considered the minimal number of sessions needed to find the attack. In case of
a successful verification we consider more sessions, which is the reason for the
much higher verification times.

Protocol # Sessions Property Time Result

≈e
t ≈c

t ≈p
t

Private Authentication 1 Anonymity 1 s 1 s 1 s �
2 53h 53m 20 s 47 h 46m 40 s 46 h 56m 40 s

I/O unambiguous 1 1s 1s 1s

2 31m 39 s 21m 2 s 19m 39 s

Passive Authentication 2 Anonymity 4 s 3 s 3 s �
I/O unambiguous 2 4 s 4 s 3 s

3 6 h 38m 34 s 6 h 29m 24 s 6 h 36m 40 s

Passive Authentication 2 Unlinkability 4 s 4 s 3 s �
I/O unambiguous 2 3 s 3 s 3 s

3 7 h 43m 2 s 6 h 39m 14 s 4 h 27m 47 s

FR BAC protocol 2 Unlinkability 1 s 1m 29 s 1 s ×
I/O unambiguous 2 1 s 1 s 1 s

UK BAC protocol 2 Unlinkability 1 h 2m 35 s ? 6 h 39m 14 s ×
I/O unambiguous 2 4s 53s 2s

6 Conclusion

In this paper we investigated two families of Dolev-Yao models, depending on
how the hypothesis that the attacker controls the network is reflected. While
the two semantics coincide for reachability properties, they yield incomparable
notions of behavioral equivalences, which have recently been extensively used to
model privacy properties. The fact that forcing all communication to be routed
through the attacker may diminish his distinguishing power may at first seem
counter-intuitive. We also propose a third semantics, where internal commu-
nication among honest participants is permitted but leaks the message to the
attacker. This new communication semantics entails strictly stronger equiva-
lences than the two classical ones. We also identify two subclasses of protocols
for which (some) semantics coincide. Finally, we implemented the three seman-
tics in the APTE tool. Our experiments showed that the three semantics provide
the same result on the case studies in the APTE example repository. However,
the private semantics is slightly more efficient, as less interleavings have to be
considered. Our results illustrate that behavioral equivalences are much more
subtle than reachability properties and the need to carefully choose the precise
attacker model.

162 K. Babel et al.

Acknowledgments. We would like to thank Catherine Meadows and Stéphanie
Delaune for interesting discussions, as well as the anonymous reviewers for their com-
ments. This work has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grant agree-
ment No 645865-SPOOC) and the ANR project SEQUOIA ANR-14-CE28-0030-01.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Nielson, H.R.: 28th Symposium on Principles of Programming Languages (POPL
2001), pp. 104–115. ACM, London, January 2001

2. Abadi, M., Fournet, C.: Private authentication. Theor. Comput. Sci. 322(3), 427–
476 (2004)

3. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus.
Inf. Comput. 148(1), 1–70 (1999)

4. Arapinis, M., Cheval, V., Delaune, S.: Verifying privacy-type properties in a mod-
ular way. In: Cortier, V., Zdancewic, S. (eds.) Proceedings of the 25th IEEE Com-
puter Security Foundations Symposium (CSF 2012), pp. 95–109. IEEE Computer
Society Press, Cambridge, June 2012

5. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: Proceedings of 23rd Computer Secu-
rity Foundations Symposium (CSF 2010), pp. 107–121. IEEE Computer Society
Press (2010)

6. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). doi:10.1007/
11513988 27

7. Babel, K., Cheval, V., Kremer, S.: On communication models when verifying equiv-
alence properties. Technical report, HAL (2017)

8. Blanchet, B.: Automatic verification of correspondences for security protocols. J.
Comput. Secur. 17(4), 363–434 (2009)

9. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. J. Logic Algebraic Program. 75(1), 3–51 (2008)

10. Chadha, R., Cheval, V., Ciobâcă, Ş., Kremer, S.: Automated verification of equiv-
alence properties of cryptographic protocol. ACM Trans. Comput. Logic 17, 23
(2016)

11. Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: negative
tests and non-determinism. In: Proceedings of 18th ACM Conference on Computer
and Communications Security (CCS 2011), ACM, October 2011

12. Cheval, V., Cortier, V., Delaune, S.: Deciding equivalence-based properties using
constraint solving. Theor. Comput. Sci. 492, 1–39 (2013)

13. Cremers, C.J.F.: The scyther tool: verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 38

14. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

15. Dong, N., Jonker, H., Pang, J.: Analysis of a receipt-free auction protocol in
the applied pi calculus. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST
2010. LNCS, vol. 6561, pp. 223–238. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19751-2 15

http://dx.doi.org/10.1007/11513988_27
http://dx.doi.org/10.1007/11513988_27
http://dx.doi.org/10.1007/978-3-540-70545-1_38
http://dx.doi.org/10.1007/978-3-642-19751-2_15
http://dx.doi.org/10.1007/978-3-642-19751-2_15

On Communication Models When Verifying Equivalence Properties 163

16. Force, P.T.: PKI for machine readable travel documents offering ICC read-only
access. Technical report, International Civil Aviation Organization (2004)

17. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proceedings of 8th Conference on Computer and Communi-
cations Security, pp. 166–175. ACM Press (2001)

18. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J.
Comput. Secur. 6(1/2), 85–128 (1998)

19. Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, A.: Modelling and Analy-
sis of Security Protocols. Addison Wesley, Boston (2000)

20. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 48

21. Fabrega, T.H., Javier, F., Herzog, J.C., Guttman, J.D.: Strand spaces: proving
security protocols correct. J. Comput. Secur. 7(2/3), 191–230 (1999)

22. Tiu, A., Dawson, J.E.: Automating open bisimulation checking for the spi calculus.
In: Proceedings of 23rd Computer Security Foundations Symposium (CSF 2010),
pp. 307–321. IEEE Computer Society (2010)

http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1007/978-3-642-39799-8_48

	On Communication Models When Verifying Equivalence Properties
	1 Introduction
	2 Model
	2.1 Syntax
	2.2 Operational Semantics
	2.3 Reachability and Behavioural Equivalences
	2.4 Labelled Semantics

	3 Comparing the Different Semantics
	4 Subclasses of Processes for Which the Semantics Coincide
	4.1 Simple Processes
	4.2 I/O-Unambiguous Processes

	5 Different Semantics in Practice
	6 Conclusion
	References

