
Automated Verification of Dynamic Root
of Trust Protocols

Sergiu Bursuc1, Christian Johansen2(B), and Shiwei Xu3

1 University of Bristol, Bristol, UK
2 University of Oslo, Oslo, Norway

cristi@ifi.uio.no
3 Wuhan Digital Engineering Institute, Wuhan, China

Abstract. Automated verification of security protocols based on
dynamic root of trust, typically relying on protected hardware such as
TPM, involves several challenges that we address in this paper. We model
the semantics of trusted computing platforms (including CPU, TPM, OS,
and other essential components) and of associated protocols in a classi-
cal process calculus accepted by ProVerif. As part of the formalization
effort, we introduce new equational theories for representing TPM spe-
cific platform states and dynamically loaded programs.

Formal models for such an extensive set of features cannot be read-
ily handled by ProVerif, due especially to the search space generated by
unbounded extensions of TPM registers. In this context we introduce
a transformation of the TPM process, that simplifies the structure of
the search space for automated verification, while preserving the secu-
rity properties of interest. This allows to run ProVerif on our proposed
models, so we can derive automatically security guarantees for protocols
running in a dynamic root of trust context.

1 Introduction

A hardware root of trust, including dynamic measurement of programs and their
protected execution, is a promising concept for ensuring the integrity of a plat-
form and the privacy of sensitive data, despite powerful software attackers [19].
This relies on the idea that hardware is more difficult to compromise than soft-
ware, and therefore, it can play a crucial role in protocols for handling sensitive
data. When a secure computing platform is needed, a special sequence of instruc-
tions allows for a trusted piece of hardware to attest the integrity of the software
to be run and to give access to data in a protected environment.

However, turning this idea into a secure design and implementation is not
easy, as various attacks have shown [13,29]. For more assurance, one could use
models and tools that allow automated verification of desired properties against
trusted computing protocols and implementations. One main challenge for auto-
mated verification is the size and number of components involved in running
programs protected by a dynamic root of trust. Furthermore, messages of such
protocols consist not only of data, but also of programs that are to be executed
c© Springer-Verlag GmbH Germany 2017
M. Maffei and M. Ryan (Eds.): POST 2017, LNCS 10204, pp. 95–116, 2017.
DOI: 10.1007/978-3-662-54455-6 5

96 S. Bursuc et al.

on the platform, and that can be supplied by an attacker or by an honest par-
ticipant. At the same time, modelling the platform configuration registers (PCR)
of the trusted platform module (TPM) [20] poses problems, because PCRs can
be extended an unbounded number of times. Even the most efficient symbolic
methods struggle with the structure of the resulting search space [6,12].

Our contributions. We propose a formal model in the ProVerif process calculus [7]
for the technology and for the security properties of a dynamic root of trust (as
instantiated by Intel’s Trusted Execution Technology or AMD’s Secure Virtual
Machine). Our model is more realistic than [12] and it covers aspects of trusted
computing that [10] does not cover (Sect. 4). We show how a platform state can
be naturally represented as a term in ProVerif (or applied pi-calculus [1,27]) and
how operations on the platform state can be expressed as equations in a term
algebra (Sects. 4.3 and 4.4). Furthermore, we show how to model the dynamic
loading of protected programs. Our model is simple and does not require heavy
encodings, being based on the classic idea of processes as data, with a twist to
take protection into account (Sect. 4.2).

We propose a new abstraction to model the extension of PCR registers that
allows automated verification for a larger class of protocols than in [12]. We show
how to over-approximate the model of the TPM such that the structure of the
search space is simplified, without losing possible attacks or introducing false
attacks. The main idea is that we can let the attacker set the PCR to any value,
as long as it is “big enough” (Sect. 5).

Putting the formalisation and the abstraction together, we obtain the first
automated verification for a realistic model of a dynamic root of trust. As security
properties, we prove code integrity (the PCR values correctly record the mea-
surement of the platform) and secrecy of sealed data (only a designated program
can access data that has been sealed for its use in a protected environment).

2 Related Work

A programming language and a logic for specifying trusted computing protocols
and properties are proposed in [10]. The setting is quite expressive and it allows
the analysis of protocols similar to the ones that we study in this paper. [10] does
not consider the seal/unseal functions of the TPM, but their language could be
extended to capture them. However, the formal analysis of [10] is manual, and
considering the complexity of the proofs involved, the lack of automation can
be a limitation. We also believe some of their axioms (like those linking the PCR
values to a late launch action) could be decomposed into more atomic formulas,
in closer relation to the computational platform. Their security properties include
correctly reading PCR values and the ability of honest parties to launch roots of
trust; our property of code integrity, modeled as a correspondence assertion, can
be seen as an additional constraint for these two events.

The analysis of [12] is automated with ProVerif and is based on a Horn clause
model. Microsoft’s Bitlocker protocol is shown to preserve the secrecy of data
sealed against a static sequence of PCR values. Their model considers a static

Automated Verification of Dynamic Root of Trust Protocols 97

root of trust, and cannot handle dynamically loaded programs. Furthermore,
there is no way to express a program that has access to data in a protected
environment. Without a richer model of platform states, code integrity properties
cannot be expressed either. To help with automation, [12] shows that, for a
specific class of Horn clauses, it is sound to bound the number of extensions
of PCR registers. Since our model is in applied pi-calculus and our security
properties are different, we cannot directly rely on their result, and we propose
a new way of handling the unbounded PCR extension problem.

Information-flow security and computational models. [14] presents a secure com-
piler for translating programs and policies into cryptographic implementations,
distributed on several machines equipped with TPMs. A computational model
capturing functionalities similar to ours, in conjunction with additional features
such as authenticated key exchange, was recently proposed in [5]. Our mod-
els are more abstract, yet could be related to particular implementations - a
closer connections between formal and computational models could be explored
in future.

Unbounded search space. Several works tackle the problem of an unbounded
search space for automated verification, but technically they are all based on
principles that cannot be translated to PCR registers. In [25], it is shown that,
for a class of Horn clauses, verification of protocols with unbounded lists can
be reduced to verification of protocols with lists containing a single element.
In [9], it is shown that to analyse routing protocols it is sufficient to consider
topologies with at most four nodes. These are strong results, based on the fact
that the elements of a list or the nodes in a route are handled uniformly by
the protocol. Similar results, in a different context, are shown in [15,16]. Their
reductions are based on the principle of data independence for memory stores.
In [22] and respectively [2], it is shown how to handle an unbounded number of
Diffie-Hellman exponentiations and respectively reencryptions in ProVerif. Sur-
prisingly, the underlying associative-commutative properties of Diffie-Hellman
help in [22], while [2] can rely on the fact that a re-encryption does not change
the semantics of a ciphertext. Another case where an unbounded number of
operations is problematic is file sharing [8]. In order to obtain an automated
proof, [8] assumes a bound on the number of access revocations, without provid-
ing justifications for soundness. A sound abstraction for an unbounded number
of revocations, in a more general setting, is proposed in [24]. Still, it is special-
ized to databases and it seems to rely on the same principle as several results
mentioned above: it does not matter what the data is, it only matters to what
set it belongs.

Tools and models for non-monotonic state. StatVerif [3] is aimed specifically
for the verification of protocols relying on non-monotonic states, encoding the
semantics of applied pi-calculus enriched with states into a set of Horn clauses
for input to ProVerif. Tamarin [28] is based on multiset rewriting and inherently
allows specification and automated reasoning for non-monotonic states, where
the set of facts can both augment and decrease. SAPIC [21] takes as input

98 S. Bursuc et al.

a stateful variant of applied pi-calculus and produces a multiset-based model,
which is then analysed using Tamarin.

StatVerif [3], SAPIC [21], and Tamarin directly [23], have been used with
success to verify security protocols that rely on non-monotonic states or trusted
hardware: PKCS�11 for key management [26], YubiKey for user authentication
[32], and protocols for contract signing [17]. Our models, on the other hand, are
tailored for direct input to ProVerif, while extending the scope of formal models
for platform state operations and dynamic root of trust protocols based on a
TPM [18–20]. It is one of our main interests for future work to see how the
models of this paper can be analysed with tools like [3,21,28], in order to obtain
a closer alignment with the state semantics of real systems.

3 Preliminaries

3.1 Trusted Computing

We first describe the required computing platform (hardware and software) and
then describe the considered class of dynamic root of trust protocols.

A. Computing platform. We consider a general purpose computing platform
equipped with a CPU and a TPM (both trusted), as well as a generic untrusted
operating system.

Trusted hardware. Trusted computing relies on the CPU and the TPM1 to per-
form certain operations whose integrity cannot be compromised by any software
attacker. Regarding the TPM, two of its trusted features are fundamental for the
applications that we consider in this paper: the ability to record a chain of values
in its platform configuration registers (PCR) and the ability to seal data against
specified values of the PCR.

The TPM allows the PCR to be reset only by the CPU or by a system reset.
On the other hand, the PCR can be extended with any value by software. If a
PCR records a value p and is extended with a value v, the new value of the PCR
is h((p, v)), i.e. the result of applying a hash function to the concatenation of p
and v. Crucially, these are the only two ways in which the values of a PCR can
be modified. The role of the PCR for the protocols that we consider in this paper
is to store the measurement of programs, recording a chain of loaded programs.
When data d is sealed against some specified value v of the PCR, the TPM stores
d internally and can release it in future only if the value recorded in its PCR
matches the value v against which d was sealed.

For the purpose of formal verification, we are flexible about who exactly of
the CPU or the TPM is doing a trusted operation, like measuring, sealing, etc.
This depends on the implementation, e.g., the Intel SGX can do all the oper-
ations of a TPM. Changing the formalization from this paper to fit a particular
implementation should be easy.

1 See recent book [4] detailing the TPM version 2.0 specification and implementations.

Automated Verification of Dynamic Root of Trust Protocols 99

Privileged software. When a system interrupt is triggered (e.g. by network com-
munication or user interface action), all physical memory can be accessed by
the system management interrupt (SMI) handler. This means that any memory
protection mechanism, in particular the protocols that we consider in this paper,
must either disable interrupts for their whole duration (not practical in general)
or else rely on the fact that the SMI handler cannot be compromised. That is
why the SMI handler is stored in a memory area called SMRAM, which enjoys spe-
cial hardware protection. Still, as shown in [13,29], the security guarantees of
trusted computing can be violated using the CPU caching mechanism to compro-
mise the SMI handler. Roughly, these attacks work because the protection of the
SMRAM is not carried on to its cached contents. A countermeasure against such
attacks, that we also adopt in this paper at an abstract level, is a software trans-
fer monitor (STM) [18]. It also resides in the SMRAM, but it cannot be cached while
a dynamic root of trust is running (special registers of the CPU should ensure
that), and its role is to protect some memory regions from the SMI handler.

Fig. 1. Execution flow in DRT

B. Dynamic root of trust.
We consider the technology of
dynamic measurement and pro-
tected execution, also called
dynamic root of trust (DRT),
as instantiated for example in
Intel’s Trusted Execution
Technology (TXT) or AMD
Secure Virtual Machine
(SVM), and as illustrated in
Fig. 1.

The goal of DRT is to
establish a protected execu-
tion environment for a pro-
gram, where private data can be
accessed without being leaked
to an attacker that controls
the operating system. Assume
a program, that we will call
PP (called measured launch
environment on Intel and secure kernel on AMD), needs to be loaded in a
protected environment. The first entry point of the DRT protocol is a trusted
instruction of the CPU (called GETSEC[SENTER] on Intel and SKINIT on AMD),
that takes as input the program PP. To help with the establishment of a pro-
tected environment, the CPU also receives as input another program, that we
will call INIT (called SINIT authenticated code module on Intel and secure
loader on AMD). The DRT launch and execution sequence can then be summarized
as follows:

100 S. Bursuc et al.

1. The CPU receives a request from the operating system containing the INIT
code and the PP code. The system interrupts are disabled at this step, as
an additional protection against untrusted interrupt handlers.

2–3. A software attacker that controls the operating system could compromise
INIT and the STM, and that is why the CPU computes their measurement and
extends the result into the TPM, to keep a trace of programs responsible for
the DRT. Measuring a program means applying a hash function to its source
code. This computation is performed on the CPU and is trusted, entailing
that the resulting value is a correct measurement of INIT and STM. The
CPU communicates with the TPM on a trusted channel and requests that the
PCR is reset and extended with the resulting value (h(INIT),h(STM)).

4–7. The INIT program is loaded and it computes the measurement of the PP
program, extending it into the PCR. The communication between INIT and
the TPM is performed on a private channel established by the CPU. INIT also
allocates protected memory for the execution of PP and loads it.

8. The PP program can re-enable interrupts once appropriate interrupt han-
dlers are set. Furthermore, it can now request the TPM to unseal data that
has been sealed against the current PCR value, and it can have access to
that data in a protected environment. The communication between PP and
the TPM is performed on a private channel established by the CPU.

9. Before ending its execution, the PP program extends the PCR with a dummy
value, to record that the platform state is not to be trusted any more.

Since the OS is untrusted it can supply malicious programs INIT and PP.
Therefore, INIT, PP and the STM are not trusted, but they are measured. If their
measurement does not correspond to some expected trusted values, this will be
recorded in the TPM and secret data will not be unsealed for this environment.

Security goals. Let us summarize the two main security goals of the DRT.

Code integrity: In any execution of the platform, if the measurements recorded
in the PCR value of the TPM correspond to the sequence of programs PINIT, PSTM,
PPP, then the platform is indeed running a DRT for the protected execution of
PPP in the context of PINIT and PSTM. In particular, this means that the programs
PPP, PINIT and PSTM cannot be modified while a DRT is running.

Secrecy of sealed data: Any secret data that is sealed only against a PCR value
recording the sequence of programs PINIT, PSTM, PPP, is only available for the
program PPP, in any execution of the platform.

3.2 ProVerif Process Calculus

We review ProVerif [6,7] and the special way in which we use (a restriction of)
its input calculus in our modelling.

A. Terms, equational theories and deducibility. We consider an infinite
set of names, a, b, c, k, n . . ., an infinite set of variables, x, y, z, . . . and a possibly
infinite set of function symbols F . Names and variables are terms; new terms

Automated Verification of Dynamic Root of Trust Protocols 101

are built by applying function symbols to names, variables and other terms.
We split F into two disjoint sets of public functions Fpub and private functions
Fpriv. Public functions can be applied by anyone to construct terms, including
the attacker, whereas private functions can be applied only as specified by the
protocol. When Fpriv is not explicit, we assume that all functions are public.

A substitution σ is a partial function from variables to terms. The replace-
ment of every variable x with xσ in a term T is denoted by Tσ. A context is a
term C[] that contains a special symbol in place of a subterm. For a context
C[] and a term T , we denote by C[T] the term obtained by replacing with T in
C[]. For any formal object D, we denote by sig(D) the set of function symbols
appearing in D, and by top(T) the outer-most function symbol in term T .

En equational theory E is defined by a set of rewrite rules U1 → V1, . . . , Un →
Vn, where U1, . . . , Un, V1, . . . , Vn are terms with variables. A term U rewrites to
V in one step, denoted by U → V , if there is a context C[], a substitution σ
and an index i ∈ {1, . . . , n} such that U = C[Uiσ] and V = C[Viσ]. Several
rewrite steps from U to V are denoted by U →∗ V . We consider only convergent
equational theories, i.e., for any term T there exists a unique non-reducible term
T↓ s.t. T →∗ T↓. We write U =E V iff U↓= V ↓. ProVerif also allows operations
on sequences: for all n, from any terms T1, . . . , Tn, one can derive the term
(T1, . . . , Tn), and conversely.

Deduction. Given an equational theory E , a set of terms S and a term T , the
ability of an attacker to obtain T from S is captured by the deduction relation
S �E T (or simply S � T when E is understood) defined as being true iff:

• there exists a term T ′ ∈ S such that T ′ =E T , or
• there are terms T1, . . . , Tn such that S �E T1, . . . , S �E Tn and a function

symbol f ∈ Fpub such that f(T1, . . . , Tn) =E T .

B. Processes and operational semantics. Processes of the calculus are built
according to Fig. 2. Replication spawns instances of a process: !P is formally
equivalent with P | !P . Names introduced by new are called bound or private;
they represent the creation of fresh data. Names that are not bound are called
free, or public. The term T in an input in(U, T) allows to specify filters for
messages received on U : a message M will be accepted only if there is a sub-
stitution σ such that M = Tσ. A variable x is free in a process P if P neither
contains x in any of its input patterns nor does it contain any term evaluation
of the form x = T . Consecutive term evaluations can be written together as
let (x1, . . . , xn) = (T1, . . . , Tn) in P . The notions of substitution, contexts
and normal forms translate to processes as expected.

Operational semantics is defined as a transition system on configurations
of the form (N ,M,P), where: N is a set of fresh names created during the
execution of a process; M is the set of terms made available to the attacker; and
P is the set of processes executing in parallel at a given point in time. We write
(N ,M,P) →∗ (N ′,M′,P ′) if the configuration (N ′,M′,P ′) can be reached
from (N ,M,P) in zero or more executions steps. Such a sequence of execution
steps is called a trace of P .

102 S. Bursuc et al.

P,Q,R ::=
0 null process
P | Q parallel composition
!P replication
newn;P name restriction

in(U, T);P message input on U
out(U, T);P message output on U
if U = V then P else Q conditional
let x = T in P term evaluation

Fig. 2. Process algebra, with n a name, x a variable, and T,U, V terms.

C. Security properties. The ability of an attacker to learn a term T by inter-
acting with a process P is denoted by P |= Att(T), defined as true iff there
exists a process Q, with sig(Q) ∩ Fpriv = ∅, such that (Ninit, ∅, {P | Q}) →∗

(N ′,M′,P ′) and M �E T , for some configuration (N ′,M′,P ′). Intuitively, Q
represents any computation that can be performed by the attacker.

A (simplified) correspondence assertion [7] is a formula of the form

Att(T) =⇒ false or Att(T) =⇒ (U = V).

For a correspondence assertion Att(T) =⇒ Φ as above, we have

P |= Att(T) =⇒ Φ iff ∀σ. [(P |= Att(Tσ)) =⇒ Φσ]

Correspondence assertions of the first type model the secrecy of T , while
those of second type enforce the constraint U = V for deducible terms matching
the pattern T (typically the terms U, V will share variables with T).

4 Formalisation

Our formal specification for the trusted computing platform and protocols
described in Sect. 3.1 assumes an attacker that controls the operating system
and can execute a DRT any number of times, with any INIT and PP programs.
Moreover, using the CPU cache, the attacker can compromise the STM and SMI
handler, and use them to access protected memory. The attacker has access to
all TPM functions. However, we assume that the attacker cannot compromise the
CPU nor the TPM, and that the platform state can only be modified according to
the equations that we present in Sect. 4.4.

We model a system state as a term that can be updated by the CPU process,
the TPM process and, once it has been output on a public channel, by the attacker.
Multiple system states can be explored in parallel by the attacker, whose knowl-
edge monotonically accumulates the set of all reachable states. This is an abstrac-
tion with respect to a real platform, where the CPU and the TPM have their own
internal state, part of a global, non-monotonic system state. We also have a
simplified model of TPM sealing: in reality, it relies on encryption with a TPM
private key and refers to a specific system state; in our model, it is represented by
the pair of public/private functions seal/unseal. For unsealing, the TPM process
will require the input of a system state and check that the corresponding unseal
request is valid for that state.

Automated Verification of Dynamic Root of Trust Protocols 103

4.1 Cryptographic Primitives and Platform Constants

To model cryptographic primitives and various constants on the platform state,
we consider the signature Fdata, where Fpriv

data = {unseal/2} and

Fpub
data = {ps/0, pd/0, true/0, false/0, h/1, senc/2, sdec/2, seal/2}.

We also consider the set of rewrite rules Edata:

sdec(senc(xval, xkey), xkey) → xval

unseal(seal(xval, xpcr), xpcr) → xval

The constant pd (resp. ps) represents the result of a dynamic (resp. static) PCR
reset. A dynamic reset marks the start of a dynamic root of trust, and can only
be performed by the CPU. The functions senc and sdec, and the corresponding
rewrite rule, model symmetric key encryption. The symbol h represents a hash
function. Anyone can seal a value, while the corresponding rewrite rule and the
fact that unseal is private ensure that a value can be unsealed only according
to the specification of the TPM.

4.2 Dynamically Loaded Programs

To model the fact that arbitrary programs can be dynamically loaded on the
platform state (e.g. for the roles of INIT and PP), we consider a new public
function symbol prog/1 and an infinite signature of private constants FP , con-
taining a different constant nP for every possible process P . Intuitively, the term
prog(nP) is a public and unique identifier for the program P . In a computational
model, such an identifier can for example be obtained by hashing the source code
of P . The first action of a process that models a program will be to output the
corresponding program identity prog(nP) on a public channel.

On the other hand, the constant nP represents a private entry point for
the program P . Specifically, we consider a private function get entry and the
rewrite rule get entry(prog(x)) → x. The idea is that a trusted loader of pro-
grams (the CPU in our case) has access to the private function get entry and,
using this rewrite rule, it can gain access to the private entry point of any pro-
gram. Now, nP can play the role of a private channel between the trusted loader
and the loaded program. Furthermore, we can store program identifiers in the
platform state, to record what programs are loaded. Then, we can rely on nP to
model the ability of certain loaded programs to affect the platform state (shown
in Sect. 4.4). We denote by Eprog the equational theory defined in this subsection:
Fprog = {prog/1} ∪ FP , Eprog = {get entry(prog(x)) → x}.

4.3 Platform State

To model a platform state, we consider the signature:

Fstate = {state/4, tpm/1, cpu/2, smram/2, drt/3}

104 S. Bursuc et al.

where all the symbols of Fstate are private. This ensures that a platform state
can be constructed or modified only according to the specification, relying on
equations that we present in Subsect. 4.4. Intuitively, a term of the form

state(tpm(TPCR), cpu(TINT, TCACHE), smram(TSTM, TSMIH), drt(TINIT, TPP, TLOCK))

represents a platform state where:

• TPCR is a term that represents the value of the PCR register of the TPM;
• TINT is the value of a register of the CPU showing if interrupts are enabled;
• TCACHE represents the contents of the CPU cache;
• TSMIH represents the program for the SMI handler and STM represents the STM

program, which are located in SMRAM;
• TLOCK is showing if a dynamic root of trust is running;
• TINIT represents the INIT program;
• TPP represents the protected program PP.

4.4 Read and Write Access

The read access is universal: any agent who has access to a platform state

state(tpm(TPCR), cpu(TINT, TCACHE), smram(TSTM, TSMIH), drt(TINIT, TPP, TLOCK))

can read any of its components relying on the public unary function symbols
Fread = {pcr, int, cache, stm, smi, init, pp, lock} and associated rewrite rules:

pcr(state(tpm(y), x1, x2, x3)) → y
int(state(x1, cpu(y1, y2), x2, x3)) → y1

cache(state(x1, cpu(y1, y2), x2, x3)) → y2

init(state(x1, x2, drt(y1, y2, y3), x3)) → y1

pp(state(x1, x2, drt(y1, y2, y3), x3)) → y2

lock(state(x1, x2, drt(y1, y2, y3), x3)) → y3

stm(state(x1, x2, x3, smram(y1, y2))) → y1

smi(state(x1, x2, x3, smram(y1, y2))) → y2

The write access to the platform state is restricted by the equational the-
ory described and illustrated in Fig. 3, where tpm acc and cpu acc are private
constants and all other new symbols are public.

PCR. Only the TPM can reset, extend or set the value of the PCR. This capability
of the TPM is modeled by the private constant tpm acc, which will be used
only in the TPM process, described later in Fig. 4.

INT. The interrupts can be enabled or disabled by the CPU, whose capability
is modeled by the private constant cpu acc. Additionally, if a DRT is run-
ning, then the corresponding protected program PP also has the ability
to enable or disable interrupts. This is modeled in the second set int
equation, by relying on the fact that, if prog(x) represents the public
identity of a program (as explained in Sect. 4.2), then x represents a
private entry point for that program. Therefore, we can use x to model
the ability of prog(x) to change certain elements of the platform state
when it is loaded.

Automated Verification of Dynamic Root of Trust Protocols 105

Fig. 3. Write access to the platform state.

CACHE. Any values can be cached. The cache values can then be copied into the
contents of the SMI handler and, when a DRT is not running, into the
STM component of the state.

INIT. Only the CPU has the ability to load an INIT program on the platform.
PP. The PP program can be loaded by the CPU (the first equation for set pp)

or by an INIT program, if the latter is already loaded on the platform (the
second equation for set pp). Furthermore, the SMI in conjunction with
the STM can also modify the PP program, if the interrupts are enabled
(the third equation for set pp).

106 S. Bursuc et al.

LOCK. Similarly, the DRT lock can be set/unset by the CPU, by the running PP,
or by the SMI in conjunction with the STM, if the interrupts are enabled.

We denote by Estate the equational theory defined in this subsection.

4.5 Communication Channels

The public constant os models a communication channel for platform states and
other messages that may be intercepted, modified or provided by the intruder
as inputs to the CPU or the TPM. A private constant cpu tpm models the secure
channel between the CPU and the TPM. A private function tpm ch models the
ability of the CPU to establish a private channel between a loaded program and the
TPM. Generally, these channels will be of the form tpm ch(prog(t)) and the CPU
will send this term both to the program represented by prog(t) (on channel t)
and to the TPM (on channel cpu tpm). We also use message tags that will be
clear from the context.

4.6 The Trusted Platform Module

TPM = !TPMRESET | !TPMEXTEND | !TPMUNSEAL
TPMRESET = let (ch, rv)=(cpu tpm, pd) in !PCRRESET |

let (ch, rv) = (os, ps) in !PCRRESET
PCRRESET = in(ch, (reset req,nonce, pf state));

let new st = reset(pf state, tpm acc, rv) in
out(ch, (reset resp,nonce,new st))

TPMEXTEND = let ch = cpu tpm in !PCREXTEND |
let ch = os in !PCREXTEND |
! (in(cpu tpm, (ext channel, ch)); !PCREXTEND)

PCREXTEND = in(ch, (extend req,nonce, pf state, v));
let new st = extend(pf state, tpm acc, v) in
out(ch, (extend resp,nonce,new st))

TPMUNSEAL = in(os, pf state);
if lock(pf state) = true then

let ch = tpm ch(pp(pf state)) in UNSEAL
else let ch = os in UNSEAL

UNSEAL = in(ch, (tag unseal, blob));
let v = unseal(blob, pcr(pf state)) in
out(ch, (tag plain, v)))

Fig. 4. The TPM process

We model the TPM by
the process in Fig. 4. A
PCR reset request can
come either from the
CPU, and then the PCR
is reset to the value
pd marking a dynamic
root of trust, or else
from the operating sys-
tem. A PCR extend
request can come from
the CPU, from the oper-
ating system or from
a private channel that
the CPU can establish
between the TPM and
some other process. To
unseal a value, the
TPM relies on the value
of the PCR registers
recorded in the plat-
form state that is asso-
ciated to an unseal
request. The corresponding equation for unseal ensures that this operation will
succeed only if the PCR values from the state match the PCR values against which
plain data was sealed. If a DRT is running, we perform the unseal for the pro-
tected program PP, on the private channel tpm ch(pp(pf state)); otherwise, the
unsealed value is made public on channel os.

Automated Verification of Dynamic Root of Trust Protocols 107

4.7 Dynamic Root of Trust: Launch

CPU = ! (*** The CPU process ***)
(* Step 1: receive a DRT request *)
in(os, (drt req, init , pp, pf state))
if lock(pf state) = false then
let s′

0 = set int(pf state, cpu acc, false) in
let s0 = set lock(s′

0, cpu acc, true) in

(* Step 2: measure INIT and the STM *)
let measure = (h(init), h(stm(pf state))) in

(* Step 3: reset and extend the PCR *)
new nonce; out(cpu tpm, (reset req, nonce, s0));
in(cpu tpm, (reset resp, nonce, s1));
out(cpu tpm, (extend req, nonce, s1,measure));
in(cpu tpm, (extend resp, nonce, s2));
(*Step 4a: load INIT & grant TPM access*)
let s3 = set init(s2, cpu acc, init) in
let einit = get entry(init) in
out(einit , (nonce, s3, tpm ch(init), pp));
out(cpu tpm, (ext channel, tpm ch(init))));
(* Step 7b: establish TPM access for PP *)
in(einit , (drt resp, nonce,new state));
let epp = get entry(pp(new state)) in
out(epp, (new state, tpm ch(prog(epp))));
out(cpu tpm, (ext channel, tpm ch(prog(epp))))

INIT = (*** A trusted INIT program ***)
out(os, prog(Tinit)); out(os, prog(Tstm));
(* Step 4b: receive PP and TPM channel *)
in(Tinit, (nonce, pf st , tpmc, pp));
(* Steps 5-6: extend h(PP) into PCR *)
let measure = h(pp) in new nonce1;
out(tpmc, (extend req, nonce1, pf st ,measure));
in(tpmc, (extend resp, nonce1, ext st));
(* Step 7a: load PP on platform state *)
let new st = set pp(ext st , Tinit, pp) in
out(exp init, (drt resp, nonce,new st)));
out(os,new st)

Fig. 5. DRT process for CPU and INIT

The procedure for launch-
ing a dynamic root of
trust, i.e. steps 1–7 from
Fig. 1, is modeled by the
processes CPU and INIT,
from Fig. 5. The CPU re-
ceives a request includ-
ing the INIT and PP pro-
grams and the platform
state where the DRT is
to be launched. If a DRT
is not already running
in the corresponding plat-
form state, then the CPU
disables the interrupts and
sets the DRT lock (step 1).
Next, the CPU measures
the INIT and STM pro-
grams and extends the
result into the PCR (steps
2–3). In step 4a, the INIT
program is loaded and we
use the term tpm ch(init)
to model an established
private channel between
the TPM and the running
INIT program. We use the
program abstraction intro-
duced in Sect. 4.2 to model
the loading and the execu-
tion of INIT, relying on the
private constant Tinit. In
turn, the loaded INIT pro-
gram measures the PP pro-
gram, records the mea-
surement into the TPM,
and loads PP on the plat-
form state (steps 4b–7a).
After the INIT program
has measured the PP pro-
gram and loaded it into
memory, the CPU gets back
the new platform state and sets up the private channel for communication
between the loaded PP and the TPM (step 7b).

108 S. Bursuc et al.

4.8 Dynamic Root of Trust: Execution

PP = (* Example of protected program *)
(* Step 7c: launch and get TPM access *)
out(os, prog(Tpp)));
in(Tpp, (pf state0 , tpmc));
(* Re-enable interrupts *)
let pf st = set int(pf state0 , Tpp, true)
in out(os, pf st);

(* Step 8: unseal and decrypt *)
in(os, xseal); in(os, xenc);
out(tpmc, (tag unseal, xseal));
in(tpmc, (tag plain, xk));
let mess = sdec(xenc, xk) in out(os,mess);

(* Step 9: Ending the execution *)
new rand; out(tpmc, (extend req, rand, pf st ,⊥));
in(tpmc, (extend resp, rand, exts));
let ends = set lock(exts, Tpp, false) in
out(os, ends)

Fig. 6. DRT execution

We illustrate the execution
of a trusted PP program
with an example in Fig. 6,
where step 8 is an exam-
ple of some useful execu-
tion of PP, i.e., unsealing
and decrypting, whereas
the rest is behaviour we
expect from any protected
program. The private con-
stant Tpp represents the
private entry point of PP
according to the model
from Sect. 4.2.

In Fig. 7 we consider
a fresh symmetric key kpp
and assume that this key
has been sealed against
the measurement of the
trusted PP program, with
identity prog(Tinit), of
the trusted INIT program,
with identity prog(Tinit), and of the trusted STM program, with identity
prog(Tstm). This is represented by the term sealed key in the process DATA
(see the code in the figure below), which we publish on the channel os. We also
assume that some private message hipp is encrypted with kpp and senc(hipp, kpp)
is made publicly available on channel os.

In the context of a DRT, the program PP should be able to unseal the key kpp,
decrypt and publish hipp. Before the execution of PP ends, the DRT lock is set
to false, and also the PCR is extended with a dummy value in order to leave the
PCR in a state which is not to be trusted any more. We verify, in Sect. 4.9, that
secret DATA sealed for this program remains secret.

The SETUP process ties everything together, i.e., it loads and publishes an
initial state, and runs any DRT request from the operating system. We call EXEC,
all the processes put together, whereas the TPM is the one providing the trusted
functionalities of reset, extend, and unseal. We use DRT = (TPM | EXEC).

4.9 Security Properties in the Formal Model

Reachability. The reachability of a state in the platform can be expressed as
a (non-)secrecy property: a state is reachable when a corresponding state term
can be obtained by the attacker after interacting with the process DRT modulo
the theory Edrt = Edata ∪ Eprog ∪ Estate, expressed as a formula of the form

DRT |=Edrt
Att(state(Ttpm, Tcpu, Tsmram, Tdrt)).

Automated Verification of Dynamic Root of Trust Protocols 109

DATA = (* Seal and encrypt private data *)
new kpp; new hipp; out(os, senc(hipp, kpp));
let sealed key = seal(kpp, hchain) in out(os, sealed key);
(* where hchain = h(h(pd, (h(prog(Tinit)), h(prog(Tstm)))), h(prog(Tpp))) *)

SETUP = (* Launching the system *)
(* Load the initial state *)
in(os, xstm); in(os, xsmi);
out(os, state(tpm(ps), cpu(true,⊥), smram(xstm, xsmi), drt(⊥,⊥, false));
(* Run a DRT with any loaded programs *)
in(os, init); in(os, pp); in(os, pf state); out(os, (drt req, init, pp, pf state));

(* The main processes put together *)
EXEC = (CPU | ! INIT | SETUP | DATA | ! PP) DRT = (TPM | EXEC)

Fig. 7. DRT setup and full process.

The property that the DRT = (TPM | EXEC) process can reach an expected state
where some trusted programs INIT and PP have been correctly measured and
loaded on the platform can be expressed as follows:

DRT |=Edrt
Att(state(
tpm(h((h((pd, v1)), v2))), cpu(true, x),
smram(prog(Tstm), prog(y))
drt(prog(Tinit), prog(Tpp), true)))

where
v1 = (h(prog(Tinit)),

h(prog(Tstm))
v2 = h(prog(Tpp)).

An additional reachability property of interest is whether the program PP has
succeeded to unseal the key kpp, decrypt the private message hipp and output
it on the public channel os. This is captured by the following (non-)secrecy
formula:

DRT |=Edrt
Att(hipp).

Code integrity. We say that the trusted platform ensures code integrity if
the measurement contained in the PCR value correctly reflects the state of the
platform. Specifically, we require that whenever a dynamic root of trust is active
with a PCR value of pd extended with the expected measurements v1 and v2,
then only the corresponding PP, INIT and STM are running on the platform, and
they cannot be modified. This can be expressed by the following correspondence
assertion, which we will denote by Φint in the rest of the paper:

DRT |=Edrt
Att(state(tpm(h((h((pd, v1)), v2))), cpu(x, y), smram(xstm, xsmi),

drt(xinit, xpp, true))) =⇒ (xinit, xpp, xstm) = (p1, p2, p3)

where p1 = prog(Tinit), p2 = prog(Tpp), p3 = prog(Tstm).
Note that we ensure the property only for trusted programs. Indeed, if any of

PP, INIT or STM are malicious, they could use their privileges to reach a platform
state that does not reflect the PCR values. This is fine, because the PCR values
will correctly record the identity of running programs in the chain of trust.

110 S. Bursuc et al.

In particular, our property shows that untrusted DRT programs cannot make the
PCR values record the measurement of trusted programs.

Secrecy of sealed data. We also verify that data sealed for PP, i.e. the key
kpp, remains secret (we denote this formula by Φsec):

(Φsec) DRT |=Edrt
Att(kpp) =⇒ false.

5 Process Transformation for Automated Verification

ProVerif does not terminate for the DRT process and the equational theory Edrt.
The main reason is the rewrite rule from Estate that allows an unbounded num-
ber of PCR extensions, reflecting a problem first noticed in [12]. In this section,
we propose a general transformation of processes that allows a more efficient
exploration of the search space by ProVerif. The transformation is based on a
general observation formalised in Proposition 1: we can replace a process P with
a process Q as input for ProVerif, as long as Q and P are equivalent with respect
to the security properties of interest. Concretely, we will replace the process DRT
with a process DRTb that bounds the number of PCR extensions, while allowing
a direct way for the attacker to set the PCR to any value that is bigger than the
considered bound.

For a process P , let Att(P) = {T | P |= Att(T)} be the set of terms that
can be obtained by the attacker when interacting with P . For a set of terms M,
we let Att(M) = {T | M � T}. We notice the following.

Proposition 1. Let P,Q be processes and Att(T) =⇒ Φ be a correspondence
assertion such that, for any substitution σ,

Tσ ∈ Att(P) � Att(Q) =⇒ Φσ and Tσ ∈ Att(Q) � Att(P) =⇒ Φσ.

Then we have: P |= Att(T) =⇒ Φ if and only if Q |= Att(T) =⇒ Φ.

The proof of Proposition 1 follows immediately from definitions, yet this
result is crucial to make our models amenable for ProVerif. We are thus allowed
to transform the process DRT into a process DRTb, that is equivalent to DRT with
respect to code integrity and secrecy properties Φint and Φsec, and whose search
space can be handled by ProVerif. It will be easier to express DRTb using some
additional rewrite rules. In conjunction with Proposition 1, we will then rely on
the following result for soundness and completeness:

Proposition 2. Let P be a process, E be an equational theory and Att(T) =⇒
Φ be a correspondence assertion. Assume Eb is a set of rewrite rules such that
∀U → V ∈ Eb : top(U) ∈ Fpriv, i.e., is a private symbol. Then we have:

P |=E Att(T) =⇒ Φ if and only if P |=E∪Eb Att(T) =⇒ Φ.

Automated Verification of Dynamic Root of Trust Protocols 111

Notation. We denoted a term of the form h((. . . h((T0, T1))), . . . , Tn))
by chain(T0, . . . , Tn), using chain(T0) for T0. We define length
(chain(T0, . . . , Tn)) = n, representing the number of extensions of a PCR.

Problematic rewrite rule. We recall the rewrite rule that poses non-
termination problems for ProVerif:

extend(state(tpm(y), x1, x2, x3), tpm acc, v) → state(tpm(h((y, v))), x1, x2, x3)

Intuitively, ProVerif does not terminate because it is unable to make an abstract
reasoning about the introduction of the term h((y, v)) in the right hand side of
this rewrite rule. We propose a transformation of the TPM process into a process
TPMb that allows more values to be written into the PCR, overapproximating the
effect of the problematic rewrite rule. This transformation will be sound and
complete (satisfying the conditions of Proposition 1) based on the observation
that, once it exceeds a certain bound, the value of the PCR does not matter for
Φsec and Φint – thus, we can let the attacker have complete control over it.

Proposed transformation. For a given natural number b, we would like the
following behaviour of the TPMb process: if an extend request is received for a
platform state state(tpm(T1), T2, T3, T4) and a value V :

• if the length of the PCR is smaller than b, i.e. length(T1) < b, then execute
this request normally, using the function extend. The updated platform state
returned by the TPMb should now be state(tpm(h((T1, V))), T2, T3, T4).

• if the length of the PCR value T1 is greater or equal to b, i.e. length(T1) ≥ b,
then output T1 and V to the attacker and wait for a new value T ′

1 as a
response. If the length of T ′

1 is big enough, i.e. length(T ′
1) > b, the updated

platform state returned by the TPMb should now be state(tpm(T ′
1), T2, T3, T4).

In a normal execution, we would have T ′
1 = h((T1, V)). However, the attacker

has the choice to set T ′
1 to any value.

Formally, the TPMb process relies on the private function is small to detect
if the value of the PCR is lower or higher than the bound, and treat the two cases
differently. The following set of rewrite rules, for all 0 ≤ i < b, define is small:
is small(chain(v0, . . . , vi)) → true, where v0 ∈ {ps, pd} and v1, . . . , vi are
mutually distinct variables. We also need to check if some value to be extended
into the PCR is big enough. For this, we introduce the private function is big,
together with the rewrite rule: is big(chain(v0, . . . , vb+1)) → true, where
v0, . . . , vb+1 are mutually distinct variables.

The only difference from the normal TPM process is in PCRbEXTEND, which first
detects if the current value of the PCR is small or big: if it is small, the extension
process proceeds normally (the process TPMSMALLEXTEND); if it is bigger than the given
bound, then the TPM requests that the operating system combines pcr and val
itself (the process TPMBIGEXTEND). Upon receiving the response from the os, the TPM
first checks that the value provided is indeed big (the compromised operating
system may be cheating). Only then, it updates the PCR to the requested value.

We denote by Eb
drt the equational theory Edrt augmented with the rules for

is small,is big and set pcr introduced in this section and we assume that
these new symbols are private (they are used only by TPMb).

112 S. Bursuc et al.

DRTb = TPMb | EXEC
TPMb = TPM { PCREXTEND �→ PCRbEXTEND }
PCRbEXTEND = in(ch, (= extend req, nonce, pf state, val));

let pcr = pcr(pf state) in
if is small(pcr) = true then PCRSMALLEXTEND else PCRBIGEXTEND

PCRSMALLEXTEND = let new st = extend(pf state, tpm acc, val) in
out(ch, (extend resp, nonce, new st))

PCRBIGEXTEND = out(os, (pcr, val)); in(os, new pcr)
if is big(new pcr) = true then

let new st = set pcr(pf state, tpm acc, new pcr) in
out(ch, (extend resp, nonce, new st))

5.1 Sketch of Correctness Proofs

We have to show that, for Φ ∈ {Φsec, Φint}, we have DRT |=Edrt
Φ ⇔ DRTb |=Eb

drt
Φ.

We note that soundness (direction ⇐) is the property that is necessary to derive
the security guarantees for DRT, while completeness is secondary: it explains
why we dont get false attacks against DRTb with ProVerif. Since Att(DRT) ⊆
Att(DRTb), soundness is easy to prove, while completeness requires careful analy-
sis of terms in Att(DRTb) � Att(DRT). We show that such terms are roughly lim-
ited to what we explicitly release in DRTb: state terms with big PCR values; they
cannot be used by the attacker to violate Φsec and Φint.

First, from Proposition 2 and the definition of Eb
drt, we can easily translate

between Edrt and Eb
drt, thus the notions and results that follow are modulo Eb

drt.

Corollary 1. For any Φ, we have DRT |=Edrt
Φ ⇔ DRT |=Eb

drt
Φ.

Terms T with top(T) = state are called state terms (or states). For a
state term T =state(tpm(T1), cpu(T2, T3), smram(T3, T4), drt(T5, T6, T7)), we let
Comp(T)={T1, . . . , T7}. For a set of terms M1, we say that a set of state terms
M2 is M1-saturated if for any T ∈ M2 we have ∀U ∈ Comp(T) : M1 � U .

Lemma 1. Let M1 be a set of terms and M2 be an M1-saturated set of state
terms. Then we have Att(M1 ∪ M2) = Att(M1) ∪ M2.

Lemma 1 formalizes the intuition that, without access to TPM or CPU, the only
operation that an attacker can perform on a state is to extract its components.
The proof follows by a straightforward inspection of rewrite rules. To help in the
sequel, we consider several restrictions of attacker’s power against DRTb:

• Att0(DRTb) is the set of terms that can be obtained by an attacker interacting
with DRTb, while not being allowed to use terms in Att(DRTb)�Att(DRT) when
constructing inputs for DRTb. That is, Att0(DRTb) can be seen as a passive
attacker with respect to the additional functionality in DRTb.

• Att1(DRTb) is the knowledge of the previous attacker whose power is aug-
mented with the ability to unseal terms from Att0(DRTb), with TPM UNSEAL,
relying on state terms from Att(DRTb)�Att(DRT). This attacker is not allowed
to use terms from Att(DRTb) � Att(DRT) in any other way.

Automated Verification of Dynamic Root of Trust Protocols 113

• Att2(DRTb) is the knowledge of a state respecting attacker against DRTb: the
attacker is given unrestricted access to DRTb and can use any terms from
Att(DRTb) � Att(DRT) to construct his inputs; however, the attacker can only
use state terms according to the specification of an honest behaviour while
interacting with the TPM, the CPU, or the equational theory.

Note that Att0(DRTb) ⊆ Att1(DRTb) ⊆ Att2(DRTb) ⊆ Att(DRTb). We denote
by Mb the set of state terms returned to the attacker by the PCRBIGEXTEND process.
Note that Mb is an Att(DRT)-saturated set of state terms with ∀T ∈ Mb :
length(pcr(T)) > b.

Lemma 2. For any b, we have Att(DRT) ⊆ Att0(DRTb) ⊆ Att(DRT) ∪ Mb.

The first inclusion follows easily from the definition of DRTb, which is able
to simulate any normal PCR extension performed by DRT, without access to
any terms in Att(DRTb) � Att(DRT). For the second inclusion, relying on the
fact that Mb is Att(DRT)-saturated, we use Lemma 1 to deduce Att0(DRTb) ⊆
Att(Att(DRT) ∪ Mb) ⊆ Att(DRT) ∪ Mb.

Lemma 3. For b ≥ 2, we have Att1(DRTb) ⊆ Att0(DRTb).

By definition, Att1(DRTb) � Att0(DRTb) ⊆ {U | seal(U, V) ∈ Att0(DRTb)}.
Note that the only sealed term in Att0(DRTb) that does not originate from
the attacker is seal(kpp, hchain), with length(hchain) = 2. For any other
term seal(U, V) ∈ Att0(DRTb), we have U ∈ Att0(DRTb), and therefore
U /∈ Att1(DRTb) � Att0(DRTb). From Lemma 2, the definition of TPMUNSEAL,
and the fact that ∀T ∈ Mb : length(pcr(T)) > b, we also deduce that
kpp /∈ Att1(DRTb) � Att0(DRTb), so we can conclude Att1(DRTb) ⊆ Att0(DRTb).

Lemma 4. For b ≥ 2, we have Att2(DRTb) ⊆ Att1(DRTb) ∪ Mb.

New terms U ∈ Att2(DRTb) come from using a state term V ∈ Att1(DRTb) in
TPMRESET,TPMEXTEND or CPU. From Lemmas 2 and 3, we have either V ∈ Att(DRT)
or V ∈ Mb. In both cases, we can show that U ∈ Att1(DRTb) ∪ Mb.

Corollary 2. For b ≥ 2, we have Att(DRT) ⊆ Att(DRTb) ⊆ Att(DRT)∪Mb∪Mf ,
where Mf is a set of terms such that any term T ∈ Mf contains a state term
T ′ with pcr(T ′) > b.

The set Mf represents the additional terms that a non state respecting attacker
can derive from Mb. The property of Mf is due to the fact that Eb

drt and the DRTb

process do not have effect on state terms that are used outside their intended
scope. Such terms will end up as harmless subterms of attacker’s knowledge.

Corollary 3. For b ≥ 2, DRT and DRTb satisfy the conditions of Proposition 1
with respect to both Φsec and Φint.

114 S. Bursuc et al.

Corollary 2 shows that it is sufficient to check that conditions of Proposition 1
are satisfied for terms T in Mb ∪ Mf . For Φsec, this follows from the fact that
such terms T are either state terms, or contain state terms, and therefore the
key kpp cannot be among them. For Φint, this follows from the fact that those
state terms have PCR lengths bigger than 2, while the precondition of Φint is a
state term with PCR length 2. From Corollary 3 and Proposition 1, we deduce:

Corollary 4. For Φ ∈ {Φsec, Φint}, we have DRT |=Eb
drt

Φ ⇔ DRTb |=Eb
drt

Φ.

From Corollaries 1 and 4, we conclude:

Theorem 1. For Φ ∈ {Φsec, Φint}, DRT |=Edrt
Φ ⇔ DRTb |=Eb

drt
Φ.

6 Verification

The ProVerif code for the DRTb process and the security properties defined in
Sects. 4 and 5 is available online2. It uses the equational theory Edata ∪ Eprog ∪
Eb
state, with b = 2. The verification of each security property terminates in order

of minutes, returning the expected result. From these results (implying there is
no attack on DRTb modulo Eb

drt) and from Theorem 1 (implying there is no attack
on DRT modulo Edrt), we derive:

Theorem 2. The DRT process satisfies, modulo Edata ∪ Eprog ∪ Estate, the prop-
erties of code integrity and data secrecy defined in Sect. 4.9.

In order to check the reachability properties DRT |= Φ defined in Sect. 4.9,
we give ¬(DRT |= Φ) as input query for ProVerif - an attack with respect to
this query would be a witness trace for the desired reachability property. When
returning such a trace, ProVerif can either confirm that it is valid (attack found)
or cannot confirm it. Our models fall in the latter case, and we have to further
inspect the output trace to see how its steps can be used to reconstruct a valid
trace: we do observe in the output trace the expected intermediary messages on
the channels cpu tpm and os, and we can follow the source of these messages
up to a dynamic root of trust request, of whose validity we have to again make
sure. By a similar analysis of attack traces returned by ProVerif, we can observe
the attacks of [13,29] in our models, when we allow the STM to be modified
arbitrarily.

7 Further Work

While our model takes into account at an abstract level the attacks and mit-
igations of [13,29], further refinements and soundness results are necessary in
order to be able to conclude that attacks such as these or as [30,31] are not pos-
sible in practice. We need to develop models that are abstract enough to allow
clear specifications and automated reasoning, and realistic enough to capture for
2 www.dropbox.com/s/cvq4op3w106868t/drt.pi (using ProVerif version 1.85).

www.dropbox.com/s/cvq4op3w106868t/drt.pi

Automated Verification of Dynamic Root of Trust Protocols 115

instance implementation flaws. We plan to see how the models of this paper can
be expressed in richer frameworks like StatVerif [3] and SAPIC [21], in order to
capture more closely the state semantics of real platforms. We think the process
transformation that we have presented in Sect. 5 is an instance of a more general
result, whose exploration would also be fruitful for future applications.

Acknowledgements. We would like to thank Cas Cremers and several reviewers for
helping improve this work.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of the 28th ACM Symposium on Principles of Programming Languages
(POPL 2001), pp. 104–115, January 2001

2. Arapinis, M., Bursuc, S., Ryan, M.D.: Reduction of equational theories for
verification of trace equivalence: re-encryption, associativity and commutativity.
In: Degano and Guttman [11], pp. 169–188

3. Arapinis, M., Ritter, E., Ryan, M.D.: StatVerif: verification of stateful processes.
In: CSF, pp. 33–47. IEEE Computer Society (2011)

4. Arthur, W., Challener, D., Goldman, K.: A Practical Guide to TPM 2.0. APress,
Berkeley (2015)

5. Barbosa, M., Portela, B., Scerri, G., Warinschi, B.: Foundations of hardware-based
attested computation and application to SGX. In: IEEE European Symposium on
Security and Privacy, EuroS&P, Saarbrücken, Germany, 21–24 March 2016, pp.
245–260. IEEE (2016)

6. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Computer Security Foundations Workshop (CSFW 2001) (2001)

7. Blanchet, B.: Automatic verification of correspondences for security protocols. J.
Comput. Secur. 17(4), 363–434 (2009)

8. Blanchet, B., Chaudhuri, A.: Automated formal analysis of a protocol for secure
file sharing on untrusted storage. In: IEEE Symposium on Security and Privacy,
pp. 417–431. IEEE Computer Society (2008)

9. Cortier, V., Degrieck, J., Delaune, S.: Analysing routing protocols: four nodes
topologies are sufficient. In: Degano and Guttman [11], pp. 30–50

10. Datta, A., Franklin, J., Garg, D., Kaynar, D.: A logic of secure systems and its
application to trusted computing. In: 30th IEEE Symposium on Security and
Privacy, pp. 221–236. IEEE (2009)

11. Degano, P., Guttman, J.D. (eds.): POST 2012. LNCS, vol. 7215. Springer,
Heidelberg (2012)

12. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal analysis of protocols based
on TPM state registers. In: Proceedings of the 24th IEEE Computer Security
Foundations Symposium (CSF 2011), Cernay-la-Ville, France, pp. 66–82. IEEE
Computer Society Press, June 2011

13. Duflot, L., Grumelard, O., Levillain, O., Morin, B.: ACPI and SMI handlers: some
limits to trusted computing. J. Comput. Virol. 6(4), 353–374 (2010)

14. Fournet, C., Planul, J.: Compiling information-flow security to minimal trusted
computing bases. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 216–235.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19718-5 12

http://dx.doi.org/10.1007/978-3-642-19718-5_12

116 S. Bursuc et al.

15. Franklin, J., Chaki, S., Datta, A., McCune, J.M., Vasudevan, A.: Parametric ver-
ification of address space separation. In: Degano and Guttman [11], pp. 51–68

16. Franklin, J., Chaki, S., Datta, A., Seshadri, A.: Scalable parametric verification
of secure systems: how to verify reference monitors without worrying about data
structure size. In: IEEE Symposium on Security and Privacy, pp. 365–379. IEEE
Computer Society (2010)

17. Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer,
Heidelberg (1999). doi:10.1007/3-540-48405-1 29

18. Grawrock, D.: Dynamics of a Trusted Platform: A Building Block Approach. Intel
Press, Hillsboro (2009)

19. Trusted Computing Group. TCG Architecture Overview, Specification revision 1.4
(2007). www.trustedcomputinggroup.org

20. Trusted Computing Group. TPM main specification (2011). www.trusted
computinggroup.org

21. Kremer, S., Künnemann, R.: Automated analysis of security protocols with global
state. In: IEEE Symposium on Security and Privacy, pp. 163–178. IEEE Computer
Society (2014)

22. Küsters, R., Truderung, T.: Using ProVerif to analyze protocols with Diffie-
Hellman exponentiation. In: 22nd IEEE Computer Security Foundations Sympo-
sium (CSF), pp. 157–171. IEEE Computer Society (2009)

23. Meier, S.: Advancing automated security protocol verification. PhD Thesis, ETH
Zürich (2013)

24. Mödersheim, S.: Abstraction by set-membership: verifying security protocols and
web services with databases. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V.
(eds.) ACM Conference on Computer and Communications Security, pp. 351–360.
ACM (2010)

25. Paiola, M., Blanchet, B.: Verification of security protocols with lists: from length
one to unbounded length. In: Degano and Guttman [11], pp. 69–88

26. RSA Security Inc., v2.20. PKCS #11: Cryptographic token interface standard,
June 2004

27. Ryan, M.D., Smyth, B.: Applied pi calculus. In: Cortier, V., Kremer, S. (eds.)
Formal Models and Techniques for Analyzing Security Protocols, Cryptology and
Information Security Series. IOS Press (2011)

28. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: Chong, S. (ed.) 25th IEEE
Computer Security Foundations Symposium (CSF), pp. 78–94. IEEE Computer
Society (2012)

29. Wojtczuk, R., Rutkowska, J.: Attacking INTEL trusted execution technology. In:
Black Hat DC (2009)

30. Wojtczuk, R., Rutkowska, J.: Attacking INTEL TXT via SINIT code execution
hijacking. Invisible Things Lab (2009)

31. Wojtczuk, R., Rutkowska, J., Tereshkin, A.: Another way to circumvent INTEL
trusted execution technology. Invisible Things Lab (2009)

32. Yubico, A.B.: Kungsgatan 37, 111 56 Stockholm Sweden. The YubiKey manual -
Usage, configuration and introduction of basic concepts (version 2.2) (2010)

http://dx.doi.org/10.1007/3-540-48405-1_29
www.trustedcomputinggroup.org
www.trustedcomputinggroup.org
www.trustedcomputinggroup.org

	Automated Verification of Dynamic Root of Trust Protocols
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Trusted Computing
	3.2 ProVerif Process Calculus

	4 Formalisation
	4.1 Cryptographic Primitives and Platform Constants
	4.2 Dynamically Loaded Programs
	4.3 Platform State
	4.4 Read and Write Access
	4.5 Communication Channels
	4.6 The Trusted Platform Module
	4.7 Dynamic Root of Trust: Launch
	4.8 Dynamic Root of Trust: Execution
	4.9 Security Properties in the Formal Model

	5 Process Transformation for Automated Verification
	5.1 Sketch of Correctness Proofs

	6 Verification
	7 Further Work
	References

