
Secure Multi-party Computation:
Information Flow of Outputs and Game Theory

Patrick Ah-Fat and Michael Huth(B)

Department of Computing, Imperial College London, London SW7 2AZ, UK
{patrick.ah-fat14,m.huth}@imperial.ac.uk

Abstract. Secure multiparty computation enables protocol participants
to compute the output of a public function of their private inputs whilst
protecting the confidentiality of their inputs. But such an output, as
a function of its inputs, inevitably leaks some information about input
values regardless of the protocol used to compute it. We introduce foun-
dations for quantifying and understanding how such leakage may influ-
ence input behaviour of deceitful protocol participants as well as that
of participants they target. Our model captures the beliefs and knowl-
edge that participants have about what input values other participants
may choose. In this model, measures of information flow that may arise
between protocol participants are introduced, formally investigated, and
experimentally evaluated. These information-theoretic measures not only
suggest advantageous input behaviour to deceitful participants for opti-
mal updates of their beliefs about chosen inputs of targeted participants.
They also allow targets to quantify the information-flow risk of their
input choices. We show that this approach supports a game-theoretic
formulation in which deceitful attackers wish to maximise the informa-
tion that they gain on inputs of targets once the computation output is
known, whereas the targets wish to protect the privacy of their inputs.

1 Introduction

In Secure Multiparty Computations (SMC), participants ought to provide their
secret inputs and abide by a protocol in order to compute a public function in
cooperation with the other parties. Such a protocol not only allows the partici-
pants to compute the correct output without having to rely on any other third
party, but it also ensures that no information about the inputs leaks from the
computation, other than that revealed by the output itself [5,10,14,29]. Passive
adversaries are those parties who do abide by the protocol but try to infer as
much information as possible on the other parties’ inputs given all the informa-
tion they get during the protocol. On the other hand, active adversaries will try
to deviate from the protocol in order to learn more evidence on the other inputs.
Private and robust protocols have been designed so as to deal with such kinds
of adversaries, and to guarantee that the only information that leaks from the
protocol is that based on the observation of the calculated output [1,4,7,10,15].

This information that is revealed about the inputs when the output is opened
is called acceptable leakage and is commonly referred to in the literature as
c© Springer-Verlag GmbH Germany 2017
M. Maffei and M. Ryan (Eds.): POST 2017, LNCS 10204, pp. 71–92, 2017.
DOI: 10.1007/978-3-662-54455-6 4

72 P. Ah-Fat and M. Huth

the only information that an SMC computation is allowed to leak about the
inputs [10,19]. Current researches in SMC aim at building efficient protocols
dealing with both types of adversaries [3,11,17,19,27] and take for granted that
the function that is being calculated is secure, in that the knowledge of its
output would not harm the privacy of any of the inputs [10,15,19]. However, it
is not clear how one user, willing to take part into a secure computation, could
assess the security of a function that is at stake. One of our aims is to build on
information-theoretic principles to propose a measure of information flow that
can occur in SMC and to quantify how secure the computation of a function is.

Moreover, private and robust protocols do not question the truthfulness of
the input that each party actually provides. Indeed, we cannot prevent any
party from giving an erroneous input as any input could be his actual choice. In
particular, we cannot prevent a party from using a hazardous input which would
question the privacy of the other inputs. This liberty that a party has to be able
to influence the protocol, by deliberately choosing a particular input for his own
benefit, is called input substitution [10]. This influence is part of, and is the only
allowed influence that an SMC protocol tolerates. Again, our work introduces a
measure of such an influence that an attacker can have on an SMC protocol and
we derive a probabilistic analysis that both an attacker and an attacked party
can use to quantify the information flows that could occur after computation.

Indeed, the choice of one party’s input can make dramatic changes in the
information he gets from the output. For instance, in the three-party computa-
tion of a ∗ b + c with positive integer inputs a, b and c, held by the respective
parties A, B and C, player A is able to learn C’s input by choosing 0 as input.
We could further imagine that we know that c is bounded by an integer M and
then player A could choose his input such that a > M , so that the knowledge of
a and a ∗ b+ c would let him learn both values of b and c, by Euclidean division.

In order to study the influence an attacker can gain from input substitution,
it is helpful to define a new variant of attackers. In an SMC context, a passive
adversary provides the input he was planning to use to the protocol, abides by the
rules defined by the protocol, but is still curious, i.e. he will try to infer as much
information as possible on the other parties given the information that he is sent
during the protocol. On the other hand, the notion of active adversary reflects the
fact that such a participant would try to convey inconsistent information during
the protocol in order to maximise his information gain. We now introduce the
notion of a deceitful adversary that reflects the will of a curious participant who
abides by the protocol, to provide a judiciously chosen input that can be different
from his honest and intended input, and which in particular can optimise the
information that he seeks on the other inputs once he learns the output. We will
also consider the coalition of several such deceitful adversaries, and we will allow
them to attack any set of targets.

We can state the objectives set out for this paper as follows:

– To propose a model of attackers, targets and spectators that fits the context
of SMC and enables us to reason about the information flows that may occur
between the parties. This includes modelling the beliefs and knowledge of the
participants as probability distributions.

Secure Multi-party Computation: Information Flow of Outputs 73

– To define a mathematical measure of the information that a set of attackers can
learn on a set of targets. This can guide attackers through input substitution
and help them to choose a judicious input vector that would maximise their
information gain on average.

– Conversely, to evaluate the risk that the targeted participants (referred to as
‘targets’ below) would run when entering a computation with given inputs.

– To show that these quantitative measures can also be used for preventive mech-
anisms taken to prevent a computation from happening that would otherwise
seriously compromise the privacy of certain inputs.

– To extend our approach to a one-round game where a set of attackers A and
a set of targets T both have to choose a vector of inputs, and where A tries to
maximise the information he learns on T after computation whereas T tries
to minimise this same amount of information.

Contributions of Our Paper: Our work explores one way of assessing the security
of a function which is calculated with an SMC protocol, and we show that this
notion of secure function can complement and thus harden the security that is
ensured by the SMC protocols. We introduce the notion of deceitful adversaries
who are willing to make use of input substitution to attack their targets. We
implement a probabilistic approach based on information theory which enables
us to quantify and predict the amount of information that such attackers would
receive on their targets once a computation is executed. And we show that
notions from game theory can be fruitfully applied to understand the strategic
dynamics of input substitutions under the model of deceitful adversaries. In
future work, we will study different use contexts of SMC – e.g. infrequent e-
voting versus frequent accountancy computations. Different use contexts may
then require different measures of information leakage, as discussed in Sect. 7
below, and different proactive or reactive behaviour.

Outline of Paper: We introduce some useful notions of SMC and information
theory in Sect. 2. We give a formal definition of our model of attackers in Sect. 3.
Then in Sect. 4 we present the probabilistic inferences that an attacker can make
from the observation of the output of a secure computation. Section 5 shows how
input substitution can be made practical thanks to this analysis and we present
a game-theoretic setting that generalises this approach in Sect. 6. We compare
our approach with recent works on information flow analysis in Sect. 7 and we
conclude in Sect. 8.

2 Background

Secure Multiparty Computation: This domain of cryptography enables several
players to compute the result of a public function of their private inputs, with-
out having to rely on a third trusted party while ensuring that the inputs are
kept secret during the computation. Protocols that achieve these tasks are split
into two main categories. Yao’s garbled circuit is the basis of protocols that

74 P. Ah-Fat and M. Huth

are particularly adapted to secure 2-party computations of boolean functions
[10,17,18,31]. Such protocols are based on oblivious transfer and security is
achieved since only obfuscated values of intermediate results are shared between
the parties. On the other hand, the Shamir secret sharing scheme [10,29,31] is
designed to handle secure multiparty computation of arithmetic functions. It
relies on Lagrange interpolation in finite fields and secrecy is ensured by realis-
ing the operations of the function algebraically on homomorphic shares of the
inputs.

We study in this work arithmetic functions of more than 2 inputs. We thus
assume that the functions we consider are securely computed for example by
the CEAS protocol (Circuit Evaluation with Active Security) [10] based on the
Shamir secret sharing scheme. Consequently, we considered only those operations
that are allowed by CEAS, such as addition, multiplication and multiplication by
constant. We also justify the use of subtraction in a similar manner as addition:
using the notations introduced in CEAS, players holding two shared values[[a, fa]]
and [[b, fb]] are able to share [[a− b, fa − fb]]. With the recombination vector, they
can then reconstruct the difference d = a− b. The only assumption that we have
to make is that we work in the field Z/pZ where the prime p is strictly greater
than M++M− which are respectively the absolute value of the greatest positive
number and of the smallest negative number that the output (and inputs) of all
the intermediate results can take. The output o of any computation is thus in
Z/pZ and non-negative; whenever o > M+ is true, the actual result should be
regarded as o − p, otherwise it would be o.

Information Theory: In order to measure the unpredictability of a random vari-
able [30], or in other words, the amount of information we have on it, we recall
the Shannon entropy H(X) defined for a random variable X defined on DX by:

H(X) = −
∑

x∈DX

p(x) log p(x) (1)

where log represents the binary logarithm also some times written log2. In this
paper, we will use Shannon entropy as a measure of the amount of information
that leaks from a computation. However, this choice is questionable and we will
debate this decision in the discussion of Sect. 7.

Finally, for the sake of readability, we will abuse notation throughout the
paper when there is no ambiguity. We will sum over a variable when the input
domain is obvious:

∑
XT

will refer to
∑

xT∈DT
and we will abbreviate the prob-

ability of an event as follows:
∑

XT
p(XT) will refer to

∑
xT∈DT

p(XT = xT).

3 Formal Setting

In this section, we develop a mathematical representation of an SMC computa-
tion that is suitable for information flow analysis.

We write [[1, n]] for {1, 2, . . . , n} below for n ≥ 1. For n parties P1, · · · , Pn,
we denote by P this set of parties and will partition P into 3 groups: Let A ⊆ P

Secure Multi-party Computation: Information Flow of Outputs 75

be a set of attackers. Let us define T ⊆ (P \ A) as a set of targets. Finally, the
remaining parties S = P \ (A ∪ T) are called the spectators.

In our model, each party Pi ∈ P will control one input xi ∈ Di with its
associated domain Di, that we assume to be a finite subset of Z. For the purpose
of our analyses, we will often gather the inputs with respect to the 3 groups of
participants A, T and S. By abuse of notation, we will write xA = (xi)i∈A for
the vector containing the attackers’ inputs. Similarly, we will write xT = (xi)i∈T

and xS = (xi)i∈S to refer to the targets’ and the spectators’ inputs, respectively.
The same rule applies for the domain of those vector variables and we define the
attackers’ input domain DA = ×a∈ADa, the targets’ input domain DT = ×t∈TDt

and the spectators’ input domain DS = ×s∈SDs.

Assumptions: We assume that every participant has a prior belief on each of the
3 vector inputs xA, xT and xS. We further assume that the attackers A and the
targets T come to an agreement within their own group so that they share the
same belief on those variables. Furthermore, we assume that these beliefs are
public and that every group is aware of what the others think of their potential
input. This would be a plausible assumption when all the groups believe that
the inputs are uniformly distributed. We will aim in future works to weaken that
assumption, e.g. to make such knowledge about distributions probabilistic itself.
We represent these beliefs as probability distributions and we write πA : DA −→
[0, 1] for the distribution of the attackers’ inputs from the targets’ point of view.
Similarly, we write πT : DT −→ [0, 1] for the distribution of the targets’ inputs
from the attackers’ point of view. We also assume that attackers and targets
have a shared prior belief πS : DS −→ [0, 1] on the spectators’ inputs.

From the point of view of the attackers, the values of the input xT and xS

appear as random variables that we call XT and XS respectively. Conversely, from
the targets’ point of view, the random variable corresponding to the attackers’
inputs will be written XA. Note that a lack of prior knowledge on one group of
parties may be represented as a uniform distribution over their input domain.
As every party enters their input without knowing the input value of the other
parties, we may assume that the variables XA, XT and XS are independent.

Finally, let us consider an n-ary function f with domain ×i∈PDi −→ DO. As
a function of discrete random variables, the output of f will also be considered
as a random variable, written O.

We want to observe how the attackers can update their beliefs on the targeted
parties once the output of the function f is revealed. We thus define πA,xA

T,o :
DT −→ [0, 1] which returns the posterior joint probability distribution of a set
of targeted values xT ∈ DT, given an observed output o ∈ DO and a set of
attackers’ inputs xA ∈ DA. We will detail the calculation of this function next.

4 Information Flow from One Observed Public Output

We next present how the set of attackers A can use probabilistic inference to
update their belief on the inputs of the targets in T once the values of x1, · · · , xn

have been input and the output of the public function has been calculated.

76 P. Ah-Fat and M. Huth

First, based on the attackers’ beliefs on the targets’ and spectators’ distri-
butions πT and πS, the attackers calculate the prior distribution of the output
O, that they will use to update their belief on XT. From the attackers’ point
of view and for a given set of values xA = (xa)a∈A in DA, the probability for
the output O to be a given value o takes into account all the combinations of
xT = (xt)t∈T and xS = (xs)s∈S that satisfy f(x1, · · · , xn) = o. For every o in
the output domain DO, we have the following forward propagation:

p(O = o | XA = xA) =
∑

XT

XS

f(x1,··· ,xn)=o

p(XT,XS) (2)

We now consider the actual public output o as hard evidence in order to
update the attackers’ beliefs on the targets’ inputs probability distribution. By
virtue of Bayes’ theorem with conditional probabilities and noticing that p(XT =
xT | XA = xA) = p(XT = xT) since XA and XT are independent, the backward
propagation can be written as follows, for every xT in DT:

p(XT = xT | O = o,XA = xA) =
p(O = o | XT = xT) · p(XT = xT)

p(O = o | XA = xA)
(3)

The attackers’ belief on the probability distribution of XT gives us p(Xt = xt)
for each xT ∈ DT. We have also just calculated the prior probability for the
output p(O = o) in (2). Finally, the conditional probability p(O = o | XT =
xT,XA = xA) of O given xT can be calculated in a similar manner as in (2)
for the prior probability distribution of O. Indeed, we take into account all the
combinations of xS in DS that satisfy f(x1, · · · , xn) = o and we have:

p(O = o | XT = xT,XA = xA) =
∑

XS

f(x1,··· ,xn)=o

p(XS) (4)

This gives the attackers a way of recovering the joint probability distribution
of their targets πA,xa

T,o : DT −→ [0, 1], defined for any vector xT in DT, xA in DA

and o in DO by:

πA,xA

T,o (xT) = p(XT = xT | O = o,XA = xA) (5)

Based on this posterior distribution, we can measure the amount of informa-
tion we obtain by calculating H(XT | XA = xA, O = o), the specific, conditional
entropy of XT given the values xA and o that we formalise next.

Definition 1. We define the entropy of the inputs of a set of targets T attacked
by a set of attackers A as the function entA

T
: DA × DO −→ R

+
0 defined for a

given observed output o and a vector of attackers’ inputs xA ∈ DA as:

entA
T
(xA, o) =

∑

XT

g(p(XT | XA = xA, O = o)) (6)

where we define g(x) = −x log x.

Secure Multi-party Computation: Information Flow of Outputs 77

Note 1. The entropy of the posterior distribution πA,xA

T,o gives us an idea of the
amount of information that a set of attackers having input xA gets on XT once
and after they learn the public output o.

5 Anticipated Information Flow from Expected Outputs

The latter notion of entropy informs the attackers of how much information
they have on XT once the computation has been realised and the output o has
been revealed to everyone. However, the attackers and the targets may want to
measure the average amount of information that would leak from the result o of
a function before its computation occurs — and thus before we learn the value of
o. This would enable the attackers to estimate the amount of information they
would gain, whereas the targets would be able to evaluate the risk that they run
before entering a computation. We thus calculate the average entropy of variable
XT over all possible outputs weighted by their likelihood given that xA and xT

are known. We formally define an indicator that reflects this.

Definition 2. The joint weighted average entropy of variable XT attacked by
parties A is the function jwaeA

T
: DA × DT −→ R

+ defined for all xA ∈ DA and
xT ∈ DT by:

jwaeA
T
(xA,xT) =

∑

o∈DO

p(O = o | XA = xA,XT = xT) · entA
T
(xA, o) (7)

The measure defined in (7) informs us about the information that the attack-
ers would learn on average about the targets if xA and xT were chosen. But as a
group of attackers, parties A would be interested in measuring how informative
one of their inputs xA is, regardless of what the targets choose. We thus define
the average of the joint weighted average entropy over all possible values of xT

weighted by their prior probabilities.

Definition 3. The attackers’ weighted average entropy of variable XT attacked
by parties A is the function awaeA

T
: DA −→ R

+ defined for all xA ∈ DA by:

awaeA
T
(xA) =

∑

xT∈DT

p(XT = xT) · jwaeA
T
(xA,xT) (8)

We also define the targets’ weighted average entropy as the function twaeA
T

:
DT −→ R

+ defined for all xT ∈ DT by:

twaeA
T
(xT) =

∑

xA∈DA

p(XA = xA) · jwaeA
T
(xA,xT) (9)

Note 2. We notice that the attackers’ weighted average entropy can be written:

awaeA
T
(xA) =

∑

o∈DO

entA
T
(xA, o)

(
∑

XT

p(XT) · p(O = o | XA = xA,XT)

)
(10)

78 P. Ah-Fat and M. Huth

But we know that p(XT) = p(XT | XA = xA) since those two random
variables are deemed to be independent. The law of total probabilities with
conditional probabilities thus gives us:

awaeA
T
(xA) =

∑

o∈DO

p(O = o | XA = xA) · entA
T
(xA, o) (11)

that we can identify to H(XT | XA = xA, O), the posterior conditional Shannon
entropy of XT given xA and O.

This function informs the attackers of how much information they are likely
to learn on XT depending on the input vector xA that they choose. The lower
measure awaeA

T
(xA) is, the more information xA reveals on XT. Let us illustrate

those definitions through simple examples and show that they can be used by
the parties to measure their expected entropy once the output is computed.

Example 1. Let us consider 3 parties X, Y and Z holding inputs corresponding
to the respective lower case letters. Let us consider the function f defined by
f(x, y, z) = 3xy − 2yz. We further imagine that attacker A = {X} is attacking
target T = {Y }, with a spectator S = {Z}. Let us first study the target’s
weighted average entropy and draw the values of twaeA

T
(y) in Fig. 1.

This graph informs the target party T of how much information the attacker
will learn on average once the output is computed. We can see that those results
are not easily predictable and that the computation of twaeA

T
(y) can indeed be

useful for party T. For example, we have twaeA
T
(6) � 1.57 and twaeA

T
(29) � 0.40,

which means that on average, input y = 29 would be more easily guessed by the
attackers than input y = 6.

Conversely, we can compute the attacker’s weighted average entropy for his
possible inputs. We draw in Fig. 2 the values of awaeA

T
(x) for all values of x.

Fig. 1. Behaviour of twaeAT(y) for the function f(x, y, z) = 3xy−2yz with inputs ranged
and uniformly distributed in [[1, 30]], where A = {X}, T = {Y } and S = {Z}.

Secure Multi-party Computation: Information Flow of Outputs 79

Here again, we can first observe that the results we obtain are not straight-
forward. Indeed, some inputs x are more informative than others. In particular,
we can speculate that on average, the attacker X would learn more information
about the target’s input if he chooses an odd input x.

In this simple example, we can have an intuitive idea that would explain this
conjecture. Indeed, the expression of f can be written as follows: f(x, y, z) =
y(3x − 2z). Consequently, if x is odd, 3x will be odd and necessarily 3x − 2z
will be odd as well. Thus, the parity of variable y is determined by the parity
of the output. More precisely, we know that y is odd if and only if the output
o is odd, which would rule out half of the possibilities for y, and which could
not be possible if x was even. However, in more complex cases, a mathematical
explanation that would predict the amount of information that an attacker could
learn on a target is not available in general. The computation and inspection of
awaeA

T
could give us an estimate of such information flow.

This example also shows us another interesting feature that an attacker could
use. Let us imagine that the attacker A has as honest, intended input the value
x = 14. We can imagine that this attacker would like to learn as much informa-
tion as possible on the input of target T, but that he would also be mindful of
the accuracy of the output of the SMC computation. Then, the graph in Fig. 2
would again allow him to substitute his input for another one, say x = 15, that
is as close as possible as his honest input, but that will also give him much more
information on y. On the other hand, we could also imagine that the parties are
intelligent enough to detect if one of the inputs has deliberately been corrupted.
In particular, the targets could also run probabilistic analyses on the attackers’
inputs. Then, choosing a corrupted input that is close to his honest input might
enable an attacker to overcome the risk of being accused of cheating.

Fig. 2. Behaviour of awaeAT(x) for the function f(x, y, z) = 3xy − 2yz with inputs
uniformly distributed over [[1, 30]], where A = {X}, T = {Y } and S = {Z}.

80 P. Ah-Fat and M. Huth

Example 2. We would like to explore if measures awaeA
T

and twaeA
T

effectively
helps us to predict the average amount of information flow that occurs after a
computation reveals its output. In order to assess the information that these func-
tions provide, we measure the average number of tries that the attacker A needs
in order to guess the targeted inputs xT once the computation is executed, and
given the values of awaeA

T
or twaeA

T
respectively. Theoretically, we would expect

this guessing entropy to grow at least exponentially with the Shannon entropy
[23]. We consider the same function f(x, y, z) = 3xy − 2yz as in Example 1 with
the same groups A = {X}, T = {Y } and S = {Z} having uniforms prior beliefs
on the other inputs over [[1, 30]], and we perform the following test.

For each value of x ∈ [[1, 30]], we randomly pick some value for y and z and
calculate the output o = f(x, y, z). We then let A = {X} guess the value of
xT = {y} given its posterior distribution and the knowledge of o. In particular,
A is more likely to try a value of xT that has a high posterior probability. We
record the number of tries that were needed for A to find the correct value of
xT and repeat the iteration 500 times. We report in Fig. 3 the average number
of tries nguess as a function of awaeA

T
(x) for the 30 values of x that we tested.

We also performed the same regression test by fixing the initial value of y and
choosing a random value for x in order to reflect the point of view of T, and we
also plotted the average number of tries nguess that A needs to guess xT as a
function of twaeA

T
(y) for all values of y ∈ [[1, 30]]. The results displayed in Fig. 3

show that the higher the value of awaeA
T
(x) is, the more tries an attacker would

need to guess xT. Conversely, the higher the value of twaeA
T
(y) is, the more tries

A needs to guess xT, which confirms the intuitive meaning of those functions.
The graph of Fig. 3 also suggests that measure twaeA

T
predicts occurring infor-

mation flow less precisely than awaeA
T

does. This can be explained by the fact
that twaeA

T
not only takes into account the beliefs that A has on xT, but it also

considers the belief that T has on xA, which awaeA
T

does not need.
We now present some mathematical properties of awaeA

T
. A set of attackers

A can manage to learn no less information on a set of targets T
′ than they can

learn on a set of target T if T′ ⊆ T. We formalise the idea in the theorem below.

Theorem 1. Let P be a set of parties partitioned into a set of attackers A,
targets T, and spectators S. We also consider a subset of targets T′ ⊆ T. For all
attackers’ input xA ∈ DA, we then have:

awaeA
T′(xA) ≤ awaeA

T
(xA) (12)

Proof. For the sake of readability, we will use the following abuse of notation in
the proofs. For a given vector xA, we will abbreviate the probability p(XA = xA)
as p(xA). Similarly, for a given event X, we will write the conditional probability
p(X | XA = xA) as p(X | xA). The expression of the awaeA

T
for the set of targets

T = T
′ ∪ T

′′, where T
′′ = T \ T

′, and for an input xA ∈ DA is defined as:

Secure Multi-party Computation: Information Flow of Outputs 81

Fig. 3. Correlation between the average number of guesses nguess (that A needs on
average to guess xT) and the values of awaeAT(x) and twaeAT(y) for the function
f(x, y, z) = 3xy − 2yz with inputs ranged in [[1, 30]], where A = {X}, T = {Y } and
S = {Z}. We ran 30 tests for each values of x (left) and 30 tests for each values of y
(right) that we detail in Example 2.

awaeA
T
(xA) =

∑

O

p(O | xA) ·
[
∑

XT

g(p(XT | O,xA))

]

=
∑

O

p(O | xA) ·
⎡

⎣
∑

X
T′

∑

X
T′′

g(p(XT′ ,XT′′ | O,xA))

⎤

⎦ (13)

where we recall g(x) = −x log x.
As the function g is concave, we have:

∑

X
T′′

g (p(XT′ ,XT′′ | O,xA)) ≥ g(
∑

X
T′′

p(XT′ ,XT′′ | O,xA))

So Eq. (13) becomes:

awaeA
T
(xA) ≥

∑

O

p(O | xA) ·
⎡

⎣
∑

X
T′

g(
∑

X
T′′

p(XT′ ,XT′′ | O,xA))

⎤

⎦

But we know that
∑

X
T′′ p(XT′ ,XT′′ | O,xA) = p(XT′ | O,xA), so we get:

awaeA
T
(xA) ≥

∑

O

p(O | xA) ·
⎡

⎣
∑

X
T′

g(p(XT′ | O,xA))

⎤

⎦

which is equivalent to the expected result:

awaeA
T
(xA) ≥ awaeA

T′(xA) �

We have seen that the smaller the set of targets, the more information the
attackers can learn. We show now a similar result: intuitively, the fewer the
attackers are, the less information they can infer.

82 P. Ah-Fat and M. Huth

Theorem 2. Let P be a set of parties partitioned into a set of attackers A,
targets T and spectators S. We also define an additional set of parties A

′′ ⊆ A

that will turn into spectators by setting A
′ = A \ A

′′ and S
′ = S ∪ A

′′. We have:

∀xA′ ∈ DA′ . min
x

A′′ ∈D
A′′

awaeA
T

(
xA′

xA′′

)
≤ awaeA

′
T

(xA′) (14)

where the notation
(
xA′

xA′′

)
represents the vector in DA � DA′ × DA′′ that con-

catenates xA′ and xA′′ .

Theorem 2 means that if a set of attackers can gain a certain amount of
information on a set of targets, they cannot increase that amount of information
gain if some attackers leave the group.

In other words, a set of attackers A that contains a smaller set A′ can always
manage to learn at least as much information as the latter.

Proof. Let xA′ ∈ DA′ be a vector of attackers’ input. Let us show that there

exists a xA′′ ∈ DA′′ that satisfies awaeA
T

(
xA′

xA′′

)
≤ awaeA

′
T

(xA′). The weighted

average entropy for attackers A
′ and target set T can be written by definition

as:

awaeA
′

T
(xA′) =

∑

O

p(O | xA′) ·
[
∑

XT

g(p(XT | O,xA′))

]

where we recall the definition of g(x) = −x log x.
The law of total probability with conditional probabilities gives us:

p(XT | O,xA′) =
∑

X
A′′

p(XA′′ | O,xA′) · p(XT | O,

(
xA′

XA′′

)
)

As
∑

X
A′′ p(XA′′ | O,xA′) = 1 and g is concave, we have:

g(
∑

X
A′′

p(XA′′ | O,xA′)·p(XT | O,

(
xA′

XA′′

)
)) ≥

∑

X
A′′

p(XA′′ | O,xA′)·g(p(XT | O,

(
xA′

XA′′

)
))

and thus:

awaeA
′

T
(xA′) ≥

∑

O

p(O | xA′) ·
⎡

⎣
∑

XT

∑

X
A′′

p(XA′′ | O,xA′) · g(p(XT | O,

(
xA′

XA′′

)
))

⎤

⎦

(15)
However, by virtue of Bayes’ theorem with conditional probabilities, we have:

p(O | xA′) · p(XA′′ | O,xA′) = p(XA′′ | xA′) · p(O |
(
xA′

XA′′

)
)

Secure Multi-party Computation: Information Flow of Outputs 83

So Eq. (15) becomes:

awaeA
′

T
(xA′) ≥

∑

O

∑

XT

∑

X
A′′

p(XA′′ | xA′) · p(O |
(
xA′

XA′′

)
) · g(p(XT | O,

(
xA′

XA′′

)
))

and by rearranging the sums, we have:

awaeA
′

T
(xA′) ≥

∑

X
A′′

p(XA′′ | xA′)·
[
∑

O

p(O |
(
xA′

XA′′

)
) ·

∑

XT

g(p(XT | O,

(
xA′

XA′′

)
))

]

which is equivalent to:

awaeA
′

T
(xA′) ≥

∑

X
A′′

p(XA′′ | xA′) · awaeA
T

(
xA′

XA′′

)

≥
∑

X
A′′

p(XA′′) · awaeA
T

(
xA′

XA′′

)

since XA′ (which belongs to the attackers) and XA′′ (that is held by the specta-
tors) are independent.

This last equation means that the average of awaeA
T

(
xA′

XA′′

)
over the values

of XA′′ is smaller than awaeA
′

T
(xA′). In particular, we can choose an appropriate

vector xA′′ = arg minX
A′′ awaeA

T

(
xA′

XA′′

)
that will realise the desired property

awaeA
T

(
xA′

xA′′

)
≤ awaeA

′
T

(xA′). �

Note 3. If we consider an empty set of attackers A
′, Theorem 2 states that a

set of attackers A that attack targets T always have a combination of inputs xA

that can optimise their goal. Not only does this imply that input substitution is
effective, but it also demonstrates that this measure of information flow adapts
easily to any possible target set T, whereas a semantic approach would be less
scalable. Let us now illustrate these theorems with a simple example.

Example 3. Let us consider 5 parties A, B, C, D and E holding an input rep-
resented as the corresponding lower case letter. We assume that each of these
inputs range over the domain D = [[1, 5]], and that the beliefs of all the parties
on the other inputs are uniform over this domain. Let us consider the function f
defined by f(a, b, c, d, e) = ae+(b−2)(b−3)(c+d)+2(b−2)c+3d. We study the
values of awaeA

T
that a set of attackers A learn on their targets T and compare

different situations. We first study the case where A = {A,B} wish to attack
T = {C,D} and compare it to the case where A attack a smaller set of targets
T

′ = {C}. We then compare the first case to the situation where a restricted set
of attackers A

′ = {A} attacks T.

84 P. Ah-Fat and M. Huth

Fig. 4. Comparison of information flow on T and a smaller T
′.

Case 1: Let us compare and draw in Fig. 4 the values of awaeA
T

(
a
b

)
and

awaeA
T′

(
a
b

)
for all values of attackers’ input

(
a
b

)
. We notice that for all input

values
(

a
b

)
, we have awaeA

T′

(
a
b

)
≤ awaeA

T

(
a
b

)
as claimed in Theorem 1.

We can also notice the particular point awaeA
T′(5, 4) = 0 which means that

for the input (a, b) = (5, 4), the attackers A will learn the exact value of their
target input c. Indeed, in this case, the attackers know that the output value can
be written o = 6c + 5(e + d). For inputs ranged in D =[[1, 5]], we can prove that
the value of the target input c is then determined by the value of the output.

Case 2: We now want to observe the influence that a set of attackers can gain

when they collude. We draw in Fig. 5 the values of awaeA
′

T
(a) and awaeA

T

(
a
b

)

for all values of a and b. We can notice that for all a, there exists a b such that

awaeA
T

(
a
b

)
≤ awaeA

′
T

(a), as claimed in Theorem 2.

However, we can also notice that the attackers have to choose their inputs
cautiously. For example, awaeA

T
(5, 1) � 3.97 whereas awaeA

′
T

(5) � 2.92, which
means that even though the attackers A know the values of more inputs than
A

′, some combinations of inputs might hinder their information retrieval.

Moreover, we can add that the values of awaeA
T

for the different values of
xA ∈ DA can guide the attackers towards a choice of informative inputs with
respect to the set of targets that they wish to attack. Conversely, the targets can
take advantage of the values provided by twaeA

T
in order to measure the risk that

they would run if they entered a particular input xT ∈ DT given a potential set
of attackers A. However, in our model, targets are deemed to be honest parties
who shall neither collude nor share any information on their inputs. This kind

Secure Multi-party Computation: Information Flow of Outputs 85

Fig. 5. Influence that A has compared to a smaller A
′.

of inference would thus only be drawn by single targets T = {Pt}. Furthermore,
to the extent that the output of the computation does not matter, the targets
would also have an incentive to substitute their inputs in order to protect their
privacy. However, as the functions awaeA

T
and twaeA

T
can be calculated by every

party, we could further imagine that the attackers and the targets would not
choose the inputs that would directly minimise (or respectively maximise) the
entropy of XT after computation, but would have a strategy over their possible
inputs that would be the best response to its opponent’s expected choice. In the
following section, we propose a game-theoretic extension of this SMC context
where the payoff of each group of parties is given by the posterior entropy of XT.

6 Game Theoretic MPC

In this section, we define a two-player game based on the usual context of SMC
that could model the strategies that the participants of the protocol would follow
in order to control the information flows that may arise from this computation.

We consider the same formal setting as for an SMC protocol and we identify
the two players of the game as the set of attackers A and the set of targets
T. In order to play a game, the players have to choose an input xA ∈ DA and
xT ∈ DT respectively. A third set of inputs xS will be picked at random in
DS by a third party representing the spectators, and those three inputs will be
used to feed the secure computation of f(x1, · · · , xn) = o whose result o will be
publicly revealed. Once the result is broadcast, the participants in A, referred
to as ‘player’ A subsequently, will learn a certain amount of information on the
input xT of player T, that can be measured by the entropy of πA,xA

T,o , the posterior
distribution of XT, as calculated in the previous section. The aim for player A is
to maximise this information that he gains on XT whereas the aim for ‘player’
T is to minimise this information flow.

86 P. Ah-Fat and M. Huth

Fig. 6. Payoff matrix for row player T.
Columns indicate attackers’ strategies.

Fig. 7. Row player T’s payoff matrix
from Example 4.

The payoff matrix for player T representing this two-player zero sum game
can be expressed as (jwaeA

T
(xA,xT))xA∈DA

xT∈DT

and can be written as in Fig. 6.

We can notice that this matrix is indeed the payoff matrix for row player T

in that the higher the value of jwaeA
T
, the better off player T is. Let us illustrate

such a game in a simple situation.

Example 4. Let us consider 3 sets of parties A = {X}, T = {Y } and S = {Z}
controlling the respective inputs x, y and z ranged in [[1, 4]]. Let us consider a
function f to be securely computed f(x, y, z) = 2xy − xz − yz. Based on Eq. (7)
of Definition 2, we draw player T’s payoff matrix in Fig. 7.

Strategy y = 2 for player T is dominated by strategy y = 1. Indeed, for all
x in [[1, 4]] we have jwaeA

T
(x, 2) ≤ jwaeA

T
(x, 1). Thus, player Y has no incentive

to play strategy y = 2 and will never play it. Similarly, strategy x = 4 is
dominated by strategy x = 3 for the player X since for all y in [[1, 4]] we have
jwaeA

T
(3, y) ≤ jwaeA

T
(4, y), and thus the attacker will never play strategy x = 4.

We can calculate the average weighted entropy for player X and player Y :

n twaeAT(n) awaeAT(n)

1 0.625 0.625

2 0.5 0.75

3 0.5 0.25

4 0.375 0.375

Based on the values of player Y ’s weighted average entropy, we could think
that player Y has an incentive to play y = 1 in order to maximise his posterior
entropy. Conversely, based on the values of awaeA

T
, we would say that attacker

X has an incentive to choose input x = 3 in order to minimise the expected
entropy of Y after computation. But if we look at the payoff matrix for target
Y displayed in Eq. (7), we can notice that these strategies (x = 1, y = 3) form
a Nash equilibrium in pure strategies [2]. This means that in this situation, not
only can the attacker learn as much information as possible on the target, but
this is also the best strategy he could play given player Y ’s strategy.

This formulation can help an attacker in a normal SMC context to rule out
some dominated strategies. Indeed, a deceitful attacker would never have an
incentive to choose an input that would always produce a higher entropy for XT.

Secure Multi-party Computation: Information Flow of Outputs 87

Similarly, the payoff matrix could also emphasise some inputs xT that would
be compromising for player T. Again, in a pure SMC context, a set of targets
T could precompute the risk that their input could be guessed and evaluate the
entropy that the observed output would leak about their input xT. They could
then accept or refuse to take part in an SMC protocol.

However, the targets would only be able to assess an estimate of the risk
that they run on average by supplying a certain input. The exact entropy that
a set of attackers would gain on xT can only be calculated once the output is
revealed, that is to say once xA, xT but also xS have been submitted to the
protocol. We could thus ideally imagine an SMC protocol that not only realises
perfect security with robustness against malicious adversaries, but which would
also be robust against deceitful adversaries. Such a protocol would only allow
those computations that guarantee that any information flow does not exceed
a certain threshold. Concretely, we could imagine an internal mechanism that
would lead the protocol to fail if the information flow associated with the given
combination of inputs is too high. An intuitive way of evaluating the information
flow IFlow associated to a given set of inputs would be to consider IFlow as a
function of the inputs, and to calculate it via an SMC protocol. We would then
have to consider the information flow that leaks from this new computation and
possibly iterate this process to attain some form of limit or fixed point.

Indeed, a failure of such an algorithm would of course prevent a risky output
to be calculated in a hazardous situation, but it would still reveal some informa-
tion about the combination of the three inputs xA, xT and xS [22]. In particular,
the attackers would learn that they are in a situation that makes the entropy of
XT lower than a given threshold. In order to prevent this kind of inference, we
could imagine a probabilistic algorithm that would fail with a certain probabil-
ity. In this case, if the algorithm terminates and returns an output, the latter is
guaranteed to preserve the privacy of the targets’ input up to a certain thresh-
old. On the other hand, if the protocol fails, it would not be obvious for the
attackers whether it is a probabilistic failure or one that gives some information
about xT. In such a probabilistic protocol, the privacy of xT would be enhanced
but the chances for the output to be calculated would decrease.

7 Discussion and Related Work

Quantitative Information Flow: In our paper, we used the notion of Shannon
entropy in order to measure the amount of information that an attacker learns
on some private inputs. However, this choice is debatable and it would be worth
studying the application of other entropy measures to our scenario. Indeed, dif-
ferent measures of entropy are more appropriate for assessing different security
concerns [6,35]. For example, Shannon entropy is unable to estimate or to give
an upper bound on the expected number of guesses [21,23], also known as the
guessing entropy or guesswork. Moreover, other security concerns cannot be
addressed by Shannon entropy, such as the probability of a secret to be guessed
in one try, also known as Bayes vulnerability [33]. Instead, the min-entropy,

88 P. Ah-Fat and M. Huth

another instance of Rényi entropy, directly reflects this threat. Also, information
flow analysis can be shaped in order to measure a certain security requirement
thanks to the more general notion of g-leakage [25] where the desired security
property in question can be specified using a gain function. Our approach is
parametric in the choice of such an information-theoretic measure and so could,
in principle, support such alternative measures. This is subject to future work.

Input Substitution: We introduced in this paper the notion of deceitful adver-
saries who take advantage of information flow analysis in order to manipulate
the input that they provide to an SMC in such a way that they learn more infor-
mation on some targeted inputs. This deceitful behaviour is questionable and
might not be realistic in some applications of SMC. For example, in the case of
e-voting [26], the consequences of falsifying one’s input could be dramatic, and
therefore the notion of deceitful adversaries would not apply in this context.

However, SMC can also be used in other domains where the exactitude of
a single party’s input is less decisive than in e-voting. In particular, in data
mining [19], SMC can be applied to compute a statistical function averaged
over a population and whose output would not be affected by a slightly noisy
input. A deceitful adversary who cares about learning the correct output of the
function would still have an incentive to substitute his input, in that he will still
get a reasonable approximation of the output. Moreover, we can think of cases
where a negligible perturbation in the attackers’ inputs could trigger a significant
information flow. We could thus imagine that a deceitful adversary could benefit
from a larger information gain without affecting too much the integrity of the
result of the SMC. Example 1 features a situation where a perturbation of size
1 in the attacker’s input suffices to produce a high information leak.

We have seen that the correctness of the output should also be taken into
account by a deceitful adversary, reflecting what is at stake in a computation.
An adversary may also want to explore a trade-off between the information
that he gets from the output and the relevance of the output itself. SMC has
been used for example to implement an auction between Danish farmers [5]
while protecting the confidentiality of their bids and therefore of their individual
economic position. In such a situation, we could imagine using or extending the
notion of g-leakage in order to reflect the interest of a farmer to slightly deviate
from his legitimate bid with the aim of maximising his benefits while protecting
his personal details, or attacking someone else’s economic position.

Information Flow in Programs: Information flow analysis in imperative pro-
grams is a field that has been explored with many different approaches. One
of the fundamental concepts of this domain of study is the consideration of
security classes introduced by Denning [12], which enables us to classify the
variables of a program with respect to their level of privacy in order to form a
lattice of information. Based on this classification, type systems [36] and seman-
tic approaches [16] have been implemented in order to define the security of
instructions involving such variables. The most basic model considers only two
security classes L and H separating the variables with a low and high level

Secure Multi-party Computation: Information Flow of Outputs 89

of privacy respectively [12]. The security of a program is then expressed with
the notion of non-interference between both classes [13,32,36]. However, as pro-
grams in practice may contain some interference, other quantitative approaches
[8,9,20,28,34,37] have been proposed in order to measure the information flow
that can arise between variables from different security classes. The computa-
tion of such quantitative information flows also includes the use of probabilistic
instructions [16,24,32] that can randomise the algorithms and make programs
non-deterministic and thus in some cases protect the privacy of variables in H.

In our approach, we measure the information flow that can leak from the
observation of the output of an SMC computation and this echoes some of those
works on information flow analysis in programs. In comparison, we could identify
the target’s inputs of our setting to the higher security level class H whereas
both the attackers’ inputs xA and the output o would be added to the lower
security class L. The non-interference property would then be satisfied if the
posterior entropy of XT is equal to its prior entropy. We can also notice that
the role of the spectators in our work could be compared to those probabilistic
instructions in sequential programs. Indeed, the attackers only have a prior belief
on the spectators’ inputs, which hides the targets’ inputs and spreads their
posterior probability distribution once the output is revealed. Finally, our work
differs from the concepts of program analysis in that we do not measure the
information that leaks from every intermediate instruction or every step of a
loop in an imperative program. We only study the information flow that leaks
from the output of a public function. We may consider the latter as a functional
program whose computation is known to be secure, and is realised in practice
by an SMC protocol.

8 Conclusions

The notion of security of a protocol in secure multiparty computation ensures
that for all function f that needs to be computed, no information about the
inputs will leak, except from that which is leaked by the observation of the public
output. With respect to this notion of security, those protocols can securely
compute any function f that is composed of the supported operations of addition
and multiplication. This definition of security is thus independent of the function
that is being calculated. However, in practice, the participants of the secure
computation of f would not only like to make sure that no information leaks
from the protocol itself, but they would also like to know and minimise the risks
of information flow from public outputs of function f – regardless of the protocol
used to implement that computation. In this work, we analysed such risks.

We introduced the notion of deceitful adversary as well as a model of attack-
ers and targets that fits the setting of SMC. We modelled the agents’ beliefs by
probability distributions and we used Shannon entropy to measure the unpre-
dictability of the targets’ inputs under different circumstances. Based on this
modelling choice, we defined some measures awaeA

T
and twaeA

T
that can estimate

the information flow that would arise for a given pair of attackers’ and targets’

90 P. Ah-Fat and M. Huth

inputs. We further explored the sensitivity of awaeA
T

with respect to the set of
attackers A and targets T. In particular we showed that several deceitful adver-
saries would generally have an incentive to collude and substitute their input
appropriately in order to optimise their gain.

We experimentally tested those measures on sample functions and demon-
strated that even for simple arithmetic functions, the values of awaeA

T
and twaeA

T

helps us to exhibit some non-trivial behaviours of the information flow that we
could not have predicted with logical inference or a semantic approach.

Finally, we showed through simple examples that those measures can guide
the attackers and targets through a choice of strategic, risk-aware inputs. This
naturally led us to consider a more general game-theoretic setting that could
model the risk management of participants of a secure multiparty computation.

It would be of interest to be able to develop similar results as Theorems 1
and 2 for the measure of twaeA

T
. This would enable us to better understand

how a target set could protect itself or better estimate the risks it faces. But,
our approach assumes that the beliefs of the participants on their opponents
are public. We would like to extend this simple setting to a multi-agent system
where those beliefs would be private to each group of participants, and could be
updated by the probabilistic analysis provided by those measures.

The notion of secure information flow of a function we studied can harden the
security of SMC protocols and it may be beneficial to include such probabilistic
analyses of information flow, based on the measures we defined, into existing
SMC protocols. Such modified protocols would ideally detect if a sensitive com-
bination of inputs is being examined, and would prevent such computations to
return. Those combined protocols would not only preserve the privacy of the
inputs inside the protocol, but would also contain inevitable information flow
within a reasonable range reflecting risk appetite or risk budget.

Acknowledgements. This work was supported by the UK EPSRC with Fees Award
and grants EP/N023242/1 and EP/N020030/1. We thank Geoffrey Smith and anony-
mous reviewers for their constructive comments and suggestions.

References

1. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure
multiparty computation. Cryptology ePrint Archive, Report 2011/136 (2011)

2. Avis, D., Rosenberg, G.D., Savani, R., Von Stengel, B.: Enumeration of Nash
equilibria for two-player games. Econ. Theor. 42(1), 9–37 (2010)

3. Baum, C., Damg̊ard, I., Toft, T., Zakarias, R.: Better preprocessing for secure
multiparty computation. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 327–345. Springer, Cham (2016). doi:10.1007/
978-3-319-39555-5 18

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of STOC,
pp. 1–10. ACM (1988)

http://dx.doi.org/10.1007/978-3-319-39555-5_18
http://dx.doi.org/10.1007/978-3-319-39555-5_18

Secure Multi-party Computation: Information Flow of Outputs 91

5. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) Financial Cryptography and Data Security. LNCS, vol. 5628.
Springer, Heidelberg (2009)

6. Cachin, C.: Entropy measures and unconditional security in cryptography. Ph. D
thesis, Diss. Techn. Wiss. ETH Zürich, Nr. 12187 (1997). Ref.: Maurer, U., Korref,
Massey, J.L. (1997)

7. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: Proceedings of STOC, pp. 11–19. ACM (1988)

8. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comput. Secur. 15(3), 321–371 (2007)

9. Michael, M.R., Myers, A.C., Schneider, F.B.: Quantifying information flow with
beliefs. J. Comput. Secur. 17(5), 655–701 (2009)

10. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, Cambridge (2015)

11. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 38

12. Dorothy, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

13. Dima, C., Enea, C., Gramatovici, R.: Nondeterministic noninterference and
deducible information flow. Technical report, Citeseer (2006)

14. Wenliang, D., Atallah, M.J.: Secure multi-party computation problems, their appli-
cations: a review and open problems. In: Proceedings of the Workshop on New
Security Paradigms, pp. 13–22. ACM (2001)

15. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In:
Proceedings of STOC 1987, pp. 218–229. ACM (1987)

16. Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow. Sci.
Comput. Program. 37(1), 113–138 (2000)

17. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3 40

18. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party compu-
tation. J. Cryptology 22(2), 161–188 (2009)

19. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data
mining. J. Priv. Confidentiality 1(1), 5 (2009)

20. Malacaria, P.: Algebraic foundations for quantitative information flow. Math.
Struct. Comput. Sci. 25(02), 404–428 (2015)

21. Malone, D., Sullivan, W.: Guesswork is not a substitute for entropy. Slides (2005)
22. Mardziel, P., Magill, S., Hicks, M., Srivatsa, M.: Dynamic enforcement of

knowledge-based security policies. In: IEEE 24th Computer Security Foundations
Symposium, pp. 114–128. IEEE (2011)

23. Massey, J.L.: Guessing and entropy. In: Proceedings of the IEEE International
Symposium on Information Theory, p. 204. IEEE (1994)

24. McIver, A., Morgan, C.: A probabilistic approach to information hiding. Pro-
gramming Methodology. Monographs in Computer Science, pp. 441–460. Springer,
Heidelberg (2003)

25. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: IEEE 25th Computer Security
Foundations Symposium, pp. 265–279. IEEE (2012)

http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-540-70583-3_40

92 P. Ah-Fat and M. Huth

26. Nair, D.G., Binu, V.P., Kumar, G.S.: An improved e-voting scheme using secret
sharing based secure multi-party computation. arXiv preprint arXiv:1502.07469
(2015)

27. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 40

28. Phan, Q-S., Malacaria, P., Păsăreanu, C.S., d’Amorim, M.: Quantifying informa-
tion leaks using reliability analysis. In: Proceedings of the International SPIN Sym-
posium on Model Checking of Software, pp. 105–108. ACM (2014)

29. Shamir, A.: How to share a secret. CACM 22(11), 612–613 (1979)
30. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication.

University of Illinois Press, Urbana (1949)
31. Smart, N.P.: Cryptography Made Simple. Springer, Heidelberg (2016)
32. Smith, G.: Principles of secure information flow analysis. In: Christodorescu, M.,

Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection. Advances in
Information Security, vol. 27, pp. 291–307. Springer, Heidelberg (2007)

33. Smith, G.: On the foundations of quantitative information flow. In: Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00596-1 21

34. Smith, G.: Quantifying information flow using min-entropy. In: Eighth Interna-
tional Conference on Quantitative Evaluation of Systems, pp. 159–167. IEEE
(2011)

35. Smith, G.: Recent developments in quantitative information flow (invited tutorial).
In: Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pp. 23–31. IEEE Computer Society (2015)

36. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Comput. Secur. 4(2–3), 167–187 (1996)

37. Yasuoka, H., Terauchi, T.: Quantitative information flow as safety and liveness
hyperproperties. Theor. Comput. Sci. 538, 167–182 (2014)

http://arxiv.org/abs/1502.07469
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/978-3-642-00596-1_21

	Secure Multi-party Computation: Information Flow of Outputs and Game Theory
	1 Introduction
	2 Background
	3 Formal Setting
	4 Information Flow from One Observed Public Output
	5 Anticipated Information Flow from Expected Outputs
	6 Game Theoretic MPC
	7 Discussion and Related Work
	8 Conclusions
	References

