
Combining Differential Privacy and Mutual
Information for Analyzing Leakages

in Workflows

Martin Pettai(B) and Peeter Laud

Cybernetica AS, Tartu, Estonia
{martin.pettai,peeter.laud}@cyber.ee

Abstract. Workflows are a notation for business processes, focusing on
tasks and data flows between them. We have designed and implemented a
method for analyzing leakages in workflows by combining differential pri-
vacy and mutual information. The input of the method is a description of
leakages for each workflow component, using either differential-privacy-
or mutual-information-based quantification (whichever is known for the
component). The differential-privacy-based bounds are combined using
the triangle inequality and are then converted to mutual-information-
based bounds. Then the bounds for the components are combined using
a maximum-flow algorithm. The output of the method is a mutual-
information-based quantification of leakages of the whole workflow.

1 Introduction

As the businesses’ capabilities of collecting and analysing data increase, so do the
privacy issues around such collection and processing. Existing research on finding
trade-offs between the privacy of individuals and the utility of collected data has
concentrated on constructing or analysing mechanisms for making the outputs
of data analysis methods or programs in general privacy-preserving for their
inputs, while providing as much accuracy as possible. In enterprise environments,
however, processes are compositions of complex tasks performed by humans and
computers. To analyze them, we need methods to compose the guarantees given
by individual tasks, and reason about a series of information releases to different
parties, or the applications of privacy enhancing technologies.

Different privacy-enhancing technologies are best characterized using differ-
ent measures, and these measures may behave differently and provide different
guarantees when tasks are composed. In this paper, we consider the analysis
of workflows, i.e. a sequential/parallel composition of tasks, where the outputs
of one task may serve as inputs of another. A workflow conveniently captures
the data flows in a business process. The inputs to the workflow are privacy-
sensitive pieces or collections of data, while the outputs are disclosed to some
entity. We want to measure the amount of information flowing from the inputs of
the workflow to the outputs, given such measures for single tasks. The informa-
tion flows of tasks are characterized either in terms of sensitivity of the function
c© Springer-Verlag GmbH Germany 2017
M. Maffei and M. Ryan (Eds.): POST 2017, LNCS 10204, pp. 298–319, 2017.
DOI: 10.1007/978-3-662-54455-6 14



Combining Differential Privacy and Mutual Information 299

computed by the task, or in terms of a privacy measure, which may be either
differential privacy, or mutual information between the inputs and outputs of
the task. Depending on the order of application of the rules of composition, we
may obtain results of very different quality.

As an example, consider a theoretical early warning system (EWS) to locate
major incidents in a large city. An incident is deemed to have taken place in a
point that most people are moving away from. To find such points, the EWS
collects location and movement information from the mobile phones in the city.
To enhance the privacy of such collection, noise is added. From the noised data,
we can find the epicenter that most phones are moving away from, and report
its location with the precision of a city block to rapid responders. At the same
time, the law enforcement is interested in determining the outliers among the
phones close to the epicenter, given e.g. by their recent call logs, and found
using techniques of secure computation [13]. Here the effect of adding noise is
best described by differential privacy, while the projections of the location to
a city block, and the call log to a classifier are better characterized through
Shannon entropy and related notions.

Our analysis receives the descriptions of tasks with respect to the information
flows from their inputs to their outputs, as well as the graph describing how the
tasks have been composed. The information flows may be characterized through
various means named above. The analysis will derive mutual information based
information flow constraints for all tasks, and then apply an algorithm based on
maximum flow to derive an upper bound on the global leakage. The correctness
proof of the proposed maximum flow based algorithm (which by itself is not too
complex) is one of the main contributions of this paper.

We begin by describing related work in Sect. 2. In Sect. 3, we define the
workflows that can be analyzed using our method. In Sects. 4 and 5, we describe
and mutual information and differential privacy, respectively, and study how they
are used to quantify leakages in the workflow and its components. In Sect. 6, we
list and describe the different kinds of information flow descriptions about tasks
handled by our analyser. These descriptions are used by the analyser that is
given in Sect. 7 together with its correctness proof. In Sect. 8 we show that the
analyser is also in some sense complete — for a given set of information flow
descriptions, there exists a workflow matching them, such that the adversary can
actually leak as many bits from the source to the target wires as are reported
by the analysis. In Sect. 9 we give some examples of component types that can
be expressed in our system. In Sect. 10, we describe our implementation of the
method. In Sect. 11, we give an example of using the method. Finally, we conclude
in Sect. 12.

2 Related Work

Differential privacy [9] (DP) has emerged as a popular metric for privacy
preservation in computational mechanisms. There exist a fair number of
(semi-)automatic approaches to determine or certify the DP level of a task



300 M. Pettai and P. Laud

from its language-based description, including typing [12,17] or automated
reasoning [4]. DP has served as the basis of privacy-preserving querying sys-
tems [16], where the privacy level of a query is automatically computed [10].
These approaches are not directly applicable to the analysis of workflows, because
here several privacy-enhancing tasks may be sequentially composed.

Conditional entropy and mutual information (channel capacity) have also
been used as privacy metrics; automated ways to determine or approximate
it include static program analysis [6] and statistical sampling [5]. Instead of
Shannon entropy, min-entropy has been argued to be more suitable to charac-
terize the resilience of a system against an adversary trying to guess a secret [18].
The automated approaches based on finding the kernel of the leakage function
and computing the sizes of its equivalence classes [2], as well as measuring the
bit-width of the paths of flow of information through a program [15] can be seen
as instantiations of this idea. In [15], the measurement is performed by find-
ing the maximal flow in a certain network, where the arcs correspond to values
computed in the program, with their bit-widths being the capacities. This is
somewhat similar to Algorithm 1 in this paper, but the capacities correspond
to different quantities. Shannon entropy has found its use to describe the total
throughput of a communication network with noisy channels [3]. In their set-
ting, the finding of the optimal communication rate also reduces to the compu-
tation of maximum flow in a certain network, but their setting is more restricted
than ours (e.g. secret sharing cannot be expressed), with greater independence
required between various messages.

Recently, a DP analysis for workflows has been proposed [8], composing the
sensitivity and DP of individual tasks to the DP of entire workflow. Our app-
roach extends it with the possibility to characterize the privacy preservation in
tasks using mutual information and allows converting from differential privacy
to mutual information. Also, a leakage description in our approach connects a
subset of inputs with a subset of outputs of a task, whereas in [8], the link is
between a single input and a single output. Earlier works on privacy analysis of
business processes [11] are qualitative in nature.

3 Workflows

A workflow consists of information processing components, composed sequen-
tially and/or in parallel. The components are connected by wires.

Let Ports be a fixed infinite set, the elements of which are called ports. For
each p ∈ Ports let V(p) be the set of values that can be input or output through
port p. For a set X, et D(X) denote the set of probability distributions over X.

Definition 1. A component is a tuple M = (ipM , opM , fM ), where ipM , opM ⊂
Ports are finite, ipM ∩ opM = ∅, and fM :

∏
p∈ipM

V(p) → D(
∏

p∈opM
V(p)).

Definition 2. A workflow is a tuple WF = (M,W, s, t), where M is a finite
set of components, W is the finite set of wires, s :

∑
M∈M opM → W and

t :
∑

M∈M ipM → W, satisfying the following constraints:



Combining Differential Privacy and Mutual Information 301

– The mapping s is injective.
– For any two ports p1, p2 of the components of WF, if s(p1) = t(p2) = w or

t(p1) = t(p2) = w, then V(p1) = V(p2). We denote this set by V(w).
– There are no cycles in the directed graph having the tasks in M as vertices,

where an arc from M1 to M2 exists iff there exist p1 ∈ opM1
and p2 ∈ ipM2

,
such that s(p1) = t(p2).

We introduce the following workflow-related notions:

– The inputs or input wires of a component M are the wires in the set IM =
t(ipM ). Similarly, the outputs of M are the wires in OM = s(opM ).

– The listeners of a wire w are the components M satisfying w ∈ IM .
– A path in the workflow is an alternating list of wires and components, each

wire followed by one of its listeners and each component by one of its output
wires.

– A wire w is a global input of the workflow, if s(p) �= w for all output ports of
all components in the workflow. Denote the set of all global inputs by G.

Definition 3. Let WF = (M,W, s, t) be a workflow with global inputs G. Let
InpDist ∈ D(G → V). The run of WF starting from InpDist is a random
variable of type W → V, sampled as follows:

– The values for all w ∈ G are sampled from the distribution InpDist;
– Each component M for which all of its input wires are already mapped to

values, applies fM to the tuple of values at its input ports, probabilistically
producing a tuple of values for its output ports. These values are added to the
mapping for the output wires of M .

– The previous item is repeated until all wires are mapped (this terminates
because there are no cycles in the workflow).

4 Information Flow

Now suppose that a subset S of the global inputs contains sensitive information
and a subset T of all wires is eavesdropped by an adversary. We would like to
estimate how much sensitive information the adversary can learn during each
run of the workflow, i.e. how much information is leaked from S to T . One way
to quantify this leakage is using mutual information.

Definition 4. Let X, Y and Z be discrete random variables. Then the mutual
information of X and Y conditioned over Z (in bits) is

I(X;Y |Z) =
∑

x

∑

y

∑

z

pX,Y,Z(x, y, z) log
pZ(z)pX,Y,Z(x, y, z)
pX,Z(x, z)pY,Z(y, z)

where the logarithm is base-2 and pX,Y , etc. are probability mass functions, e.g.
pX,Z(x, z) = Pr(X = x,Z = z). The mutual information I(X;Y ) of X and Y
is defined as I(X;Y |Z) for a constant Z.



302 M. Pettai and P. Laud

Fact. If X,Y,Z,W are random variables, then I(X;Y |Z,W ) ≤ I(X,W ;Y |Z).
This follows easily from the relationships between mutual information and (con-
ditional) entropy [14, Sect. 2.4].

We identify wires and their corresponding random variables. Also each set of
wires is identified with a tuple of random variables (in some order of wires, fixed
for the workflow) considered as a single composite random variable. Thus we can
write I(A; C) as the mutual information between the sets of wires A and C.

Lemma 1. Let A be the set of all input wires of a component M . Let B be
subset of the output wires of M . Let C be a subset of wires into which there is
no path from M . Then I(B; C|A) = 0.

Proof. Follows from the definition of the run. 	

For each set of wires X , let

– V(X ) be the set of possible values of the wires X ,
– d(X ) be the distribution of the values on the wires X ,
– D(X ) be the set of all distributions over V(X ),
– Const(X ) be the set of all constant distributions (also called degenerate dis-

tributions or deterministic distributions) over V(X ).

For each value v, let Const(v) be the constant distribution of the value v.
As inputs to the analysis, each component may have a description about

the known bounds on the information flow from some subsets of its inputs to
some subsets of its outputs. If there are no known bounds then the flows can
be infinite. Each wire may also have a bound on the size of the values sent over
that wire.

We are interested in I(S;T ). This quantity is uniquely determined by the
distribution d(G) of the values of the global inputs G and the conditional distri-
butions POM |IM=a for all M and a (which together induce the distribution of
the values of all wires). We do not necessarily know these distributions exactly.
Instead, the input of our analyzer includes declarations that restrict the distri-
bution d(G) to a subset of D(G) and for all M , restrict the function f where
f(a) = POM |IM=a, to a subset of D(OM )V(IM ).

S may be a proper subset of G. In this case, the global inputs G\S are not
considered sensitive. Thus, we may assume that the adversary already knows the
value of G\S, i.e. its distribution may be considered constant. Thus d(G\S) ∈
Const(G\S). Therefore, our goal is to compute an upper bound on the value

max
d(S)∈DS

d(G\S)∈Const(G\S)

I(S;T ) (1)

where DS is the set of distributions into which the distribution of S is known
to belong, according to the sensitivity declarations that will be described in
Sect. 6.1.

We compute an upper bound on I(S;T ) using similar bounds for the indi-
vidual components, i.e. I(A, C) for each component M , for all A ⊆ IM , C ⊆ OM .



Combining Differential Privacy and Mutual Information 303

Let I = IM and C ⊆ OM . For each A ⊆ I and D ⊆ D(A), let

qD
M (A; C) = max

d(A)∈D
d(I\A)∈Const(I\A)

I(A; C) (2)

We take the maximum over all distributions that A may belong to because we
do not know what the actual distribution on A is and we want qD

M (A; C) to be an
upper bound on I(A; C). If we do not have any knowledge about the distribution
of A then D = D(A). If we have already determined the possible distributions
of the inputs IM (as will be described in Sect. 6.1) then we can write qM (A; C)
instead of qD

M (A; C).
The description of a component M should ideally contain the values qM (A; C)

for all subsets of A of the inputs of M and all subsets C of the outputs of M .
Because it may be difficult to determine the values qM (A; C), we may instead
have upper bounds on these values. Also, we may not have the values for all A
and C.

The triangle equality does not hold for qM . Thus it is possible that

qM (A1; C) + qM (A2; C) < qM (A1 ∪ A2; C)

or
qM (A; C1) + qM (A; C2) < qM (A; C1 ∪ C2)

Thus it does not in general suffice to give qM (A; C) only for one-element sets A
and C, because no bounds for larger sets of wires can be deduced from these.

Monotonicity does hold:

A′ ⊆ A ∧ C′ ⊆ C ⇒ qM (A′; C′) ≤ qM (A; C)

but it may not give the best upper bound on qM (A′; C′).

5 Differential Privacy

Because qM does not satisfy the triangle inequality, we may instead use a different
quantity that does satisfy the triangle inequality and that implies a bound on
qM .

Definition 5. Let P1 and P2 be discrete probability distributions over a set X.
Then P1 and P2 are ε-close iff for all x ∈ X, P1(x) · e−ε ≤ P2(x) ≤ P1(x) · eε.
Let the differential-privacy distance between P1 and P2 be the smallest value ε
(which may be ∞) such that P1 and P2 are ε-close.

Definition 6. Let P be a probability distribution over A. Denote by dP
M (A; C)

the least value ε (which may also be ∞) such that for all value tuples a and a′

of the inputs A for which P (a) > 0 and P (a′) > 0, for all value tuples b of the
inputs IM\A, the probability distributions PC|A=a,IM\A=b and PC|A=a′,IM\A=b

are ε-close. For any set D of probability distributions over A, let

dD
M (A; C) = max

P∈D
dP

M (A; C)



304 M. Pettai and P. Laud

We have the following connection between differential privacy and information
flow.

Lemma 2. Let dD
M (A; C) = ε. Then qD

M (A; C) ≤ q bits, where

q = ε
(eε − 1)(1 − e−ε)

(eε − 1) + (1 − e−ε)
· 1
ln 2

(3)

Proof. The proof is similar to [7]. Table 1 lists correspondences between some
notions in our paper and in [7]. Let D(P ‖ Q) =

∑
a P (a) log(P (a)/Q(a)) be

the Kullback-Leibler divergence from Q to P .

Table 1. Correspondence between the notions in our paper and [7]

Our paper [7]

qD
M (A; C) = max

d(A)∈D
d(I\A)∈Const(I\A)

I(A; C) sup
i,PXn

I(Xi; Y |X−i)

∃P ∈ D. P (a) > 0 ∧ P (a′) > 0 Databases D and D̃ are neighbors (they
differ in at most one entry)

dD
M (A; C) = ε ε is the least value such that for all

neighboring databases xn and x̃n,
PY |Xn=xn ≈(ε,0) PY |Xn=x̃n

We have ∀P ∈ D : P (a) > 0 ∧ P (a′) > 0. ∀b. PC|A=a,IM\A=b and
PC|A=a′,IM\A=b are ε-close. This is analogous to the statement [7] that for all
neighboring databases xn and x̃n, PY |Xn=xn and PY |Xn=x̃n are ε-close. Both of
these statements characterize ε-differential privacy.

Cuff and Yu [7] show that if P and Q are ε-close, then D(P ‖ Q) ≤ q bits
and D(Q ‖ P ) ≤ q bits where q is as in (3). I.e. we have ∀P ∈ D : P (a) >
0 ∧ P (a′) > 0. ∀b. D(PC|A=a,IM\A=b ‖ PC|A=a′,IM\A=b) ≤ q bits.

Consider any case where P ∈ D, A ∼ P , and IM\A = b. Then, analogously
to [7],

I(A; C) = EAD(P (C|A) ‖ P (C))
= EAD(PC|A=a,IM\A=b ‖ EP (a′)>0PC|A=a′,IM\A=b)
≤ EAEP (a′)>0D(PC|A=a,IM\A=b ‖ PC|A=a′,IM\A=b) ≤ q bits

Because this holds for all considered cases, we have qD
M (A; C) ≤ q bits. 	


If we have already determined the possible distributions of the inputs IM (as
will be described in Sect. 6.1) then we can write dM (A; C) instead of dD

M (A; C).
Then dM satisfies triangle inequality for inputs:

dM (A1; C) + dM (A2; C) ≥ dM (A1 ∪ A2; C)



Combining Differential Privacy and Mutual Information 305

Thus the description of a component may give dM (A; C) only for the cases where
A is a one-element set, then we can use the triangle inequality to find an upper
bound on dM (A; C) for the cases where A is a larger set, and then convert this
to an upper bound on qM (A; C).

Note that dM may not satisfy triangle inequality for outputs. If the outputs
C1 and C2 are calculated from the input A (which is in some bounded range)
by adding r and −r to them, respectively, where r is a Laplace random value,
then dM (A;C1) = dM (A;C2) is finite but dM (A;C1, C2) = ∞ because the ran-
domness in C1 and C2 can be canceled out, revealing the exact value of A.

Differential privacy is useful for bounding leakages of information from a cer-
tain provenance but it may not always give the best bounds. For example, if we
make in parallel 100 queries, each 0.1-differentially private, then the combina-
tion is 10-differentially private. When converted to mutual information (using
(3)), this gives 14.4 bits of leakage. On the other hand, each 0.1-differentially
private query separately, when converted to mutual information, leaks 0.0072
bits. Because results of the queries are conditionally independent (conditioned
on the inputs), the triangle inequality holds here for mutual information, thus
the 100 queries together leak only 0.72 bits, not 14.4 bits. Thus we get a much
better bound on the leakage. This gives motivation for combining differential
privacy and mutual information when bounding leakages.

Note that, in (3), q ≈ ε2

2 ln 2 when ε is small. This is one of the reasons
that we use Shannon entropy instead of min-entropy. If we used min-entropy,
we would get the bound q = ε

ln 2 [1], even when ε is small. When the output
C can have only 2 possible values then [1] gives an improved bound q ≈ ε

2 ln 2
when ε is small. Now consider the example in the previous paragraph. Each
0.1-differentially private query, when converted to min-entropy, leaks at most
0.0703 bits of min-entropy if the output is binary, and 0.144 bits in the general
case. The 100 queries together leak either 7.03 or 14.4 bits. Thus, combining
differential privacy with min-entropy during the whole analysis, we would get no
or only a small improvement over the bound (14.4 bits) that we get when using
only differential privacy in the analysis and converting the final result to min-
entropy. On the other hand, as described in the previous paragraph, combining
differential privacy with Shannon entropy during the whole analysis improves
the bound 20 times compared to using only differential privacy in the analysis
and converting the final result to mutual information.

6 Inputs to the Analysis

Our information-flow analysis takes as input the graphical description of the
workflow — the names of tasks and ports, as well as the wires from one port
to another. It takes as input the subsets S and T of wires, stating which global
inputs contain sensitive information, and which wires are read by the adversary.
It also takes as input the information flow behaviour of tasks. The latter may
be expressed in many different kinds, which we describe below.



306 M. Pettai and P. Laud

6.1 Sensitivity

For each wire w, let distw be a distance (metric) on V(w). Let

β0(w) = max
a,a′∈supp d(w)

distw(a, a′) (4)

This is the diameter (according to distw) of the support of the distribution of w.
Our analysis can make use of declarations that the support of the dis-

tribution of a global input w has diameter (according to distw) at most s. In
this case, let β(w) = s. For those global inputs w for which there is no such
declaration, let β(w) = ∞. Then β(w) ≥ β0(w) for all global inputs w.

Our analysis can also make use of declarations that (M,A,C) (where
A ∈ IM , C ∈ OM ) has c-sensitivity. This means that

– for all a, a′ ∈ V(A),b ∈ V(IM\{A}), d, d′ ∈ V(C):
• if M may output d on C if it gets a on A and b on IM\{A}
• and M may output d′ on C when it gets a′ on A and b on IM\{A}
• then distC(d, d′) ≤ c · distA(a, a′).

In other words, if we change the input A by a certain distance then the output C
can change by at most c times that distance. The component M may have sensi-
tivity declarations for several pairs of its inputs and outputs. Denote c(A,C) = c
if (M,A,C) has c-sensitivity and c(A,C) = ∞ if there does not exist c such that
(M,A,C) has c-sensitivity, or such c has not been given.

All sensitivity declarations involving a certain wire (either as an input or an
output of a component, or as a global input) must use the same distance distw

on the values of that wire. If the values are databases then distance may be e.g.
the number of records differing in the two versions of the database. If the values
are scalars then the distance may be the absolute value of the difference of the
two versions of the value.

If we know β(A) and distA for all A ∈ A then we can find the set of dis-
tributions D used implicitly in dM (A; C) and qM (A; C) to denote dD

M (A; C) and
qD
M (A; C), respectively:

D = DA = {P | ∀A ∈ A, a, a′ ∈ supp P |A. distA(a, a′) ≤ β(A)} (5)

6.2 Differential Privacy

Consider a component M and one of its inputs A. Let ddp be the differential-
privacy distance defined on the distributions of a subset of its outputs C.

Our analysis can make use of declarations that (M,A, C) has ε-
differential privacy. This means that for all a, a′, b:
ddp(PC|A=a,IM\{A}=b, PC|A=a′,IM\{A}=b) ≤ ε · distA(a, a′). If such declaration
exists for some M , A, and C, then denote this value ε by ε(A, C). Put ε(A, C) =
∞, if no such declaration exists.

Our analysis can also make use of declarations that (M,A, C) has
sensitivity-less ε-differential privacy. This means that for all a,a′, b:



Combining Differential Privacy and Mutual Information 307

ddp(PC|A=a,IM\A=b, PC|A=a′,IM\A=b) ≤ ε. If such declaration exists for some
M , A, and C, then denote this value ε by ε(A, C). Put ε(A, C) = ∞, if no such
declaration exists.

6.3 Mutual Information

Our analysis can make use of declarations that a component M leaks at
most q bits from a subset Ai of its inputs to a subset Cj of its outputs, i.e.
q

D(Ai)
M (Ai, Cj) ≤ q. This implies qM (Ai, Cj) ≤ q. These are the mutual informa-

tion declarations for (M,Ai, Cj), meaning that (M,Ai, Cj) has at most q bits of
mutual information. Here the triangle inequality does not hold.

7 Analysis

The goal of our analysis is to conservatively estimate (i.e. upper-bound) (1). To
compute it, we make several passes over the description of the workflow. These
passes result us in finding qM (A, C) for each component M , for all subsets A of
its inputs and all subsets C of its outputs. We will then invoke a graph-theoretic
algorithm that computes (1) from all qM (A, C). We describe the computations
below.

7.1 Bounding the Information Flow Through Components

Computing β for all wires. In Sect. 6.1, we defined β(w) for all global inputs w
and we showed that it is an upper bound of β0(w) (4) in this case. For any other
wire C (taken in topological order), which belongs to OM for some component
M , we can compute β(C) as

β(C) =
∑

A∈IM

β(A) · c(A,C)

It is easy to see, by induction and using the triangle inequality for distC , that
β(w) ≥ β0(w) for all wires w. If we know that β(w) = s then we know that
the distribution of the values on w is such that any two values with non-zero
probability are at a distance at most s from each other.

Parallel Composition of Differential Privacy. For each component M and A ⊆
IM , C ⊆ OM , let

γ(M,A, C) = min{ε(A, C),
∑

A∈A
min{ε(A, C) · β(A), ε(A, C)}}.

It is easy to see that ε(A, C) ≥ d
D(A)
M (A, C), ε(A, C) ≥ d

D(A)
M (A, C), ε(A, C) ·

β(A) ≥ dM (A, C). Now, using the triangle inequality for ddp, we get that

γ(M,A, C) ≥ dM (A, C) = dD
M (A, C), (6)

where D is as in (5).



308 M. Pettai and P. Laud

Bounding the Mutual Information Through a Component. Consider a component
M . Let A be the subset of its inputs and C the subset of its outputs that are
on the path from the source to the sink. Suppose we want to find a bound on
how much information can flow through M from A to C, i.e. an upper bound on
qD
M (A; C), where D is the set of distributions into which the actual distribution

of A is known to belong. D is determined by the sensitivity declarations, as
described in Sect. 6.1. If there are no sensitivity declarations about the wires in
A then D = D(A).

If we have a mutual-information declaration for (M,A, C) then we can use
the bound from that declaration. If we have a mutual-information declaration for
(M,A′, C′) where A ⊆ A′ and C ⊆ C′ then by monotonicity we can also use that
bound. If we get bounds from several declarations then we take the minimum of
those bounds.

If we have a differential-privacy declaration for (M,A, C) then we use that to
find an upper bound on dM (A, C). If we have differential-privacy declarations for
(M,A, C) for each A ∈ A then we use (6) to find an upper bound on dM (A, C).
Then we convert the bound on dD

M (A, C) to a bound on qD
M (A, C) using Lemma 2.

7.2 Maximum Information Flow in a Workflow

After we have obtained the upper bounds on the mutual information between
the inputs and outputs of each component, we use Algorithm1 to find the max-
imum information flow F in the whole workflow. This is an upper bound on the
amount of information that an adversary can leak from S to T . Based on the
workflow, and the input and output wires, the algorithm constructs a network

Algorithm 1. Maximum information flow in a system
Input: A set of components and directed wires between them, forming a dag. Some
wires have no beginning component, these are the global inputs. Some wires may have
no end component. S is a subset of global inputs. T is a subset of all wires.

Find (e.g. using breadth-first search) all wires and components through which there
is a path from S to T .
Remove all other wires and components.
Set the capacity of each wire to be the maximum entropy of the data that can be
sent over the wire (e.g. the number of bits for fixed-length data).
for each remaining component M do

Find its remaining input wires AM and its remaining output wires CM .
Find a bound on qM (AM ; CM ) as described in Sect. 6.3.
Replace the component M with vertices InM and OutM so that

the wires AM now enter InM and
the wires CM now begin from OutM .

Add an edge from InM to OutM with capacity qM (AM ; CM ).
Add a vertex Source from which the wires S begin.
Add a vertex Sink into which the wires T enter.
Find the maximum flow from Source to Sink.
return the maximum flow.



Combining Differential Privacy and Mutual Information 309

(a directed graph, where each arc has been labeled with its capacity, together
with distinguished source and sink vertices), such that the maximum flow in this
graph is the upper bound that we seek. The following theorem states that F is
indeed an upper bound to the amount of information that can be leaked.

Theorem 1 (Correctness of Algorithm1). Suppose that Algorithm1 has
been run, finding the maximum flow F in a system. Assume that d(S) ∈ DS

and d(G\S) ∈ Const(G\S). Then I(S;T ) ≤ F .

Proof. Let C be a minimum cut of the transformed graph in Algorithm1. The
inputs and the outputs of a component M in the transformed graph, are AM and
CM , respectively. In this proof, the occurrences of words like “edge”, “path”, etc.
refer to the transformed graph, not the original graph. W.l.o.g. we can assume
that C contains all zero-capacity edges of the transformed graph (because adding
edges with zero capacity to the cut does not change the minimality of the cut).
Let D be the set of edges outside C from which there is a path to T that does
not contain any of the edges in C. Let e1, . . . , es be the edges in C ∪ D in a
topological order. Each edge corresponds to either a wire or a component in the
original workflow. For each edge e, let

o(e) =

{
CM if e corresponds to a component M

{w} if e corresponds to a wire w

c(e) =

⎧
⎪⎨

⎪⎩

the capacity of M if e ∈ C and e corresponds to a component M

the capacity of w if e ∈ C and ecorresponds to a wire w

0 if e ∈ D

Then we prove by induction that for all i ≤ s,

I

⎛

⎝S;
i⋃

j=1

o(ej)

⎞

⎠ ≤
i∑

j=1

c(ej)

The case i = 0 holds because I(S; ∅) = 0.
Now suppose that

I

⎛

⎝S;
i⋃

j=1

o(ej)

⎞

⎠ ≤
i∑

j=1

c(ej)

holds. Let Q =
⋃i

j=1 o(ej).
First consider the case where ei+1 ∈ D corresponds to a component M .

Consider an edge e corresponding to an input wire w of M . If e �∈ C then the
path obtained by adding e to the beginning of a path from ei+1 to T that does
not intersect C, is a path from e to T that does not intersect C, thus e ∈ D.
Thus e ∈ C ∪ D. Because there is path from e to ei+1, e must be earlier in
the topological order, i.e. e = ek for some k < i + 1. Because e corresponds to



310 M. Pettai and P. Laud

a wire w, o(ek) = w, also o(ek) ⊆ Q, thus w ∈ Q. Thus AM ⊆ Q. Because
of topological order, there is no path from M to Q\AM . Thus by Lemma 1,
I(S,Q\AM ;CM |AM ) = 0. Also c(ei+1) = 0. Now

I

⎛

⎝S;
i+1⋃

j=1

o(ej)

⎞

⎠ = I(S;Q ∪ CM ) = I(S;Q) + I(S;CM |Q)

≤ I(S;Q) + I(S,Q\AM ;CM |AM ) = I(S;Q) ≤
i∑

j=1

c(ej) =
i+1∑

j=1

c(ej)

Now consider the case where ei+1 ∈ C corresponds to a component M .
Because of topological order, there is no path from M to Q\AM . Thus by
Lemma 1, I(S,Q\AM ;CM |AM ) = 0. Also c(ei+1) ≥ I(AM ;CM ). Now

I(S;CM |Q) ≤ I(S,Q;CM ) ≤ I(S,Q ∪ AM ;CM )
= I(AM ;CM ) + I(S,Q\AM ;CM |AM ) ≤ c(ei+1)

I

⎛

⎝S;
i+1⋃

j=1

o(ej)

⎞

⎠ = I(S;Q ∪ CM ) = I(S;Q) + I(S;CM |Q)

≤
⎛

⎝
i∑

j=1

c(ej)

⎞

⎠ + c(ei+1) =
i+1∑

j=1

c(ej)

Now consider the case where ei+1 ∈ D corresponds to a wire w. Then there is
a path from w to T that does not intersect C. w cannot be a global input because
otherwise there would be a path from S to T that does not intersect C, thus
it also would not contain zero-capacity edges, thus it would be an augmenting
path with positive capacity, contradicting the minimality of the cut C. Thus w
is an output of a component M . Consider an edge e corresponding to an input
wire w of M . If e �∈ C then the path obtained by adding e to the beginning of a
path from ei+1 to T that does not intersect C, is a path from e to T that does
not intersect C, thus e ∈ D. Thus e ∈ C ∪ D. Because there is path from e to
ei+1, e must be earlier in the topological order, i.e. e = ek for some k < i + 1.
Now w ∈ o(ek) and o(ei+1) ⊆ o(ek) ⊆ Q. Also c(ei+1) = 0. Thus

I

⎛

⎝S;
i+1⋃

j=1

o(ej)

⎞

⎠ = I

⎛

⎝S;
i⋃

j=1

o(ej)

⎞

⎠ ≤
i∑

j=1

c(ej) =
i+1∑

j=1

c(ej)



Combining Differential Privacy and Mutual Information 311

Now consider the case where ei+1 ∈ C corresponds to a wire w. Then
c(ei+1) ≥ H(w), the entropy of the value on the wire. Thus

I(S;w|Q) ≤ I(S,Q;w) = H(w) + H(S,Q) − H(S,Q,w) ≤ H(w) ≤ c(ei+1)

I

⎛

⎝S;
i+1⋃

j=1

o(ej)

⎞

⎠ = I(S;Q,w) = I(S;Q) + I(S;w|Q)

≤
⎛

⎝
i∑

j=1

c(ej)

⎞

⎠ + c(ei+1) =
i+1∑

j=1

c(ej)

We have thus proved the induction step for all cases. Now we can estimate
I(S;T ). Consider any edge e corresponding to a wire in T . If e �∈ C then there
is a path from e to T that does not intersect C, thus e ∈ D. Thus e ∈ C ∪ D.
Thus T ⊆ C ∪ D =

⋃s
j=1 o(ej).

I(S;T ) ≤ I(S;C ∪ D) ≤
s∑

j=1

c(ej) = F

Here the second inequality holds by the result we proved by induction. The
equality holds by the maximum-flow-minimum-cut theorem (

∑s
j=1 c(ej) is the

value of the minimum cut C). 	


8 Completeness of Algorithm1

We can also show the completeness of Algorithm 1 in some sense, i.e. that under
certain conditions, certain (very strong) adversaries can bring the leakage arbi-
trarily close to the bound F , with arbitrarily small (but positive) error proba-
bility.

Suppose that for each port p ∈ Ports, the set Ports also contains ports
p(1), p(2), . . . with V(p(i)) = V(p). For a set of ports P , let P (1..n) denote the
set of ports {p(i) | p ∈ P, i ∈ {1, . . . , n}}. For a component M , let M (n) be the
component “executing n copies of M in parallel”. I.e. the input and output ports
of M (n) are ipM(n) = ip

(1..n)
M , and opM(n) = op

(1..n)
M . The function fM(n) takes

the n copies of the inputs and independently applies fM to each copy, resulting
in n different sets of outputs.

Let M be a component and PI , PO subsets of its input and output ports. Let
fI :

∏
p∈PI

V(p) → D(
∏

p∈PI
V(p)) and fO :

∏
p∈PO

V(p) → D(
∏

p∈PO
V(p)).

Let aI ∈ ∏
p∈ipM\PI

V(p). Let the mapping fM have the same type as fM , and
be constructed by first applying fI to the values appearing on PI , then fM to
the results of fI and the values aI (i.e. the values on ports ipM\PI are ignored),
and finally fO only to the outputs of fM that would go to ports PO in M (other
outputs pass beside fO). The augmentation of M with PI , PO, fI , fO,aI is the
component aug(PI , fI ,aI ;M ; fO, PO) with the same input and output ports as
M , and with the function fM .



312 M. Pettai and P. Laud

The augmentation of a component is used to “change the encoding” of its
inputs and outputs. If the mutual information between the inputs PI and outputs
PO of M was q, then this is the bound also for the mutual information between
the same inputs and outputs of aug(PI , fI ,aI ;M ; fO, PO).

Let WF = (M,W, s, t) be a workflow. For each component M ∈ M, let
PM ;I and PM ;O be subsets of ipM and opM , respectively. For each n, let Sn

M ;I

and Sn
M ;O be mappings with the following types:

Sn
M ;I :

∏
p∈P

(1..n)
M;I

V(p) → D(
∏

p∈P
(1..n)
M;I

V(p))

Sn
M ;O :

∏
p∈P

(1..n)
M;O

V(p) → D(
∏

p∈P
(1..n)
M;O

V(p)).

Also, let Sn
M ;v ∈ ∏

p∈ip
M(n)\P

(1..n)
M;I

V(p). We consider S to be a function that maps

a number n and a component (name) M into a pair of mappings and a tuple of
values. We call the tuple of subsets of ports [(PM ;I , PM ;O)]M∈M the type of S.
We call S a simulator for WF .

The workflow WF (n)
S intuitively executes n copies of WF , where each com-

ponent M (n) has been augmented using S. Formally, WF (n)
S = (Mn,Wn, s, t),

where

– Mn = {aug(PM ;I ,Sn
M ;I ,Sn

M ;v;M
(n);Sn

M ;O, PM ;O) |M ∈ M};
– Wn = {(w, i) |w ∈ W, i ∈ {1, . . . , n}};
– s(p(i)) = (s(p), i) and t(p(i)) = (t(p), i) for all output and input ports of the

components in Mn.

Theorem 2. Suppose that Algorithm1 has been run, finding the maximum flow
F in the workflow WF. For each component M , let DM be the set of allowed
probability distributions of AM , as restricted by the sensitivity declarations. If
for each component M , the bound qM = qDM

M (AM ;CM ) found by the algorithm
is tight, i.e. there exists P ∈ DM such that if AM ∼ P then I(AM ;CM ) = qM ,
then for all ε > 0, there exists a simulator S with type [(AM , CM )]M∈M, such
that for each δ > 0, there exists n > 0 such that the workflow WF (n)

S can leak at
least n(F − ε) bits of information with the error probability at most δ.

Proof. Consider a component M . The weight of the edge e corresponding to
this component in the flow graph is q0 = qD

M (A; C). Let us run the maximum
flow algorithm again with the weight of each edge corresponding to a component
reduced by ε0, i.e. q = q0 − ε0. Then the maximum flow in this modified network
is at least F −Kε0 where K is the number of components in the network and F
is the flow in the original network. The flow through the edge e determined by
the maximum flow algorithm is f ≤ q.

Let d(A) ∈ D and d(I\A) ∈ Const(I\A) be such that maximize I(A; C)
in (2). There are n copies of the workflow executed in parallel. The simulator
S consists of pre- and postprocessing tools for each component M . There is a
(single) preprocessor Sn

M ;AM
before the n copies of M that takes the total of nf

bits (assumed to be from the uniform distribution) on the n copies of the wires



Combining Differential Privacy and Mutual Information 313

A destined to M and encodes them into an n-tuple whose components are each
from the distribution d(A) (not necessarily independent). The tuple of constants
Sn

M ;v has been picked from the constant distribution d(I\A); these are sent to
the n copies of the wires I\A destined to M . There is a (single) postprocessor
Sn

M ;CM
after the n copies of M that takes the n-tuple from the n copies of C and

decodes them into a total of nf bits.
By well-known results from information theory, the encoding/decoding (for

using a channel with capacity at least f + ε0 for n times) can be chosen in such
a way that these Nf bits are with probability at least 1−δ0 equal to the nf bits
that were encoded by the simulator before the n copies of M . The probability
that for each component M , the bits sent to the encoder before M are equal to
the bits received from the decoder after M , is at least 1 − Kδ0. Thus also the
probability that the n(F − Kε0) bits of the source are equal to the n(F − Kε0)
bits of the sink, is at least 1 − Kδ0 (with the variables quantified as follows:
∀ε0∀δ0∃n). We can take ε = Kε0 and δ = Kδ0 and get that the augmented
workflow can leak n(F − ε) bits from the source to the sink with probability at
least 1 − δ. 	


9 Component Types

Here is a (non-exhaustive) list of component types that can be expressed in our
system. Diagrams of the components are shown on the left and the corresponding
declarations read by our analyzer are shown on the right.

9.1 Database Aggregator

A

a1 a2

y1

comp A a1 a2 -> y1 ;
leak sens 20.0 a1 -> y1 ;
leak sens 50.0 a2 -> y1 ;

The declarations mean that (A, a1, y1) has 20.0-sensitivity and (A, a2, y1) has
50.0-sensitivity.

The inputs (here a1 and a2 but in general 1 or more inputs) are database
tables and the component aggregates them to a scalar value y1. E.g. y1 may be
the linear correlation coefficient of a1 and a2. If there is only one input table
(e.g. a1) then y1 may be e.g. the mean, median, or standard deviation of a1.

The distance defined on any of its inputs ai is the number of records by
which the two database tables differ. The distance defined on its output y1 is
the absolute value of the difference between the two scalar values.

For each input ai, the component has sensitivity c(ai, y1). E.g. if y1 is the
mean of ai and each value in ai is in the range [L,R] then c(ai, y1) = R−L

n ,
where n is the number of values (records) in ai.



314 M. Pettai and P. Laud

9.2 Database Linker

A

a1 a2

b1

comp A a1 a2 -> b1 ;
leak sens 3 a1 -> b1 ;
leak sens 1 a2 -> b1 ;

The declarations mean that (A, a1, b1) has 3-sensitivity and (A, a2, b1) has 1-
sensitivity.

The database tables a1 and a2 are linked by a column in each table. Let us call
this column the provenance column and the possible values in this column the
provenances. The table a1 must have at most one record with each provenance
but a2 may contain up to r records with each provenance. Then the sensitivities
are: c(a1, b1) = r and c(a2, b1) = 1. This can be generalized to the case of linking
more than 2 tables, of which only one may have non-unique provenances.

The output of a database linker may be used as an input of a database
aggregator.

9.3 Scalar Combiner

A

x1 x2

y1

comp A x1 x2 -> y1 ;
leak sens 1.0 x1 -> y1 ;
leak sens 1.0 x2 -> y1 ;

Here (A, x1, y1) has 1.0-sensitivity and (A, x2, y1) has 1.0-sensitivity. The inputs
(2 or more of them, here x1 and x2) are scalars. They are combined to calculate
the output y1 (also a scalar).

This can be used to combine outputs of database aggregators. E.g. if x1 and
x2 are the lower and upper quartile, respectively, of a database table then y1
may be the difference x2 − x1. In this case c(x1, y1) = c(x2, y1) = 1.

9.4 Laplace Randomizer

A

x1

y1

comp A x1 -> y1 ;
leak dpr 0.01 x1 -> y1 ;

The declarations mean that (A, x1, y1) has 0.01-differential privacy.
The input x1 is a scalar value and the output y1 is calculated by adding

Laplace noise from Laplace(λ) to x1. Here 1
λ = ε(x1, y1) = 0.01. If x1 has

sensitivity β0(x1) = c with respect to the global inputs then γ(A, x1, y1) = c
λ .

This can be combined with a database aggregator or scalar combiner to make
their result differentially private.



Combining Differential Privacy and Mutual Information 315

9.5 Laplace Randomizer Without Sensitivity

A

x1

y1

comp A x1 -> y1 ;
leak dp 2.0 x1 -> y1 ;

Here (A, x1, y1) has sensitivity-less 2.0-differential privacy, with the keyword
leak dp instead of leak dpr indicating that sensitivity is not used.

The input x1 is a scalar value and the output y1 is calculated by adding
Laplace noise from Laplace(λ) to x1. The input does not need to have any sensi-
tivity bound derived from sensitivity declarations. If it does have such a bound,
it is ignored. Instead, we assume that x1 is in a certain range [L,R] and if it is not
there (by some mistake) then it is clipped into that range. Then we add Laplace
noise from Laplace(λ) to x1. The result y1 is R−L

λ -differentially private. E.g. we
may assume that x1 is a result of computing a linear correlation coefficient, being
in the range [−1, 1], and take λ = 1. Then the result is 2-differentially private,
i.e. γ(A, x1, y1) = 2.

9.6 Secret Sharing

A

x1

y1 y2 y3

comp A x1 -> y1 y2 y3 ;
leak mi 0.0 x1 -> y1 y2 ;
leak mi 0.0 x1 -> y1 y3 ;
leak mi 0.0 x1 -> y2 y3 ;
leak mi 64.0 x1 -> y1 y2 y3 ;

The declarations mean that (A, x1, {y1, y2}) has at most 0.0 bits of mutual
information, (A, x1, {y1, y3}) has at most 0.0 bits of mutual information,
(A, x1, {y2, y3}) has at most 0.0 bits of mutual information, (A, x1, {y1, y2, y3})
has at most 64.0 bits of mutual information.

Here we secret share x1 into three shares y1, y2, y3. In the case of additive
secret sharing, we would have y1 ⊕ y2 ⊕ y3 = x1, where ⊕ is addition modulo
2k, where k is the bit length of each of the four values.

Here we have information-theoretical bounds on the flows. E.g.
q(x1; y1, y2) = q(x1; y1, y3) = q(x1; y2, y3) = 0 but q(x1; y1, y2, y3) = k.

We can also express other kinds of secret sharing.

10 Implementation

We have implemented (in C++) Algorithm 1. The maximum flow from Source
to Sink is computed using Edmonds-Karp algorithm. The implementation reads
the description of the system, transforms it to a flow network, and finds the
maximum flow in this graph. If the system has V components and E wires then
the generated directed graph has at most 2V + 2 nodes and at most E + V
edges. Thus the complexity is O(V E2). It can be improved by using a faster
maximum-flow algorithm.



316 M. Pettai and P. Laud

A

B C

D

x1
x2

x3 x4

x5 x6

x7

Fig. 1. A system Fig. 2. Input file describing the system
in Fig. 1

We have also implemented the idea in Sect. 5. We apply the triangle inequality
for the inputs and get a bound on dM (A; C). We convert it to a bound on
qM (A; C). We get another bound on qM (A; C) using only the known bounds on
qM and monotonicity (triangle inequality cannot be applied here). Either or both
of the two bounds may also be infinite (i.e. no bound can be derived). Then we
take the minimum of the two bounds.

11 Example

Figure 1 shows an example of a system with components A,B,C,D and wires
x1, x2, x3, x4, x5, x6, x7. The corresponding input file describing this system is
shown in Fig. 2. This file is read by our implementation.

The file describes the leakages using differential-privacy epsilons, which are
shown as 0.2 for each single input and single output of each component. For
the component A, we also give the leakage from {x1} to {x3, x4} because the
triangle inequality cannot be used for outputs. The triangle inequality does hold
for inputs and it is used to find the leakages involving more than one input
of the same component. For example, consider component B. Its leak from x2
to x5 is 0.2, and from x3 to x5 is also 0.2. Then its leak from (x2, x3) to x5
is dB({x2, x3}; {x5}) = 0.4. Then we convert these into upper bounds for the
mutual-information-based leakages:

qB({x2, x3}; {x5}) ≤ 0.114
qB({x2}; {x5}) ≤ 0.029
qB({x3}; {x5}) ≤ 0.029



Combining Differential Privacy and Mutual Information 317

Source

InA

OutA

InB InC

OutB OutC

InD

OutD

Sink

x1

x2 0.114

x3 x4

0.114 0.029

x5 x6

0.114

x7

Fig. 3. Flow network from {x1, x2} to
{x7} corresponding to the system in
Fig. 1

Source

InA

OutA

InB InC

OutB OutC

InD

OutD

Sink

x1

0.114

x3 x4

0.029 0.029

x5 x6

0.114

x7

Fig. 4. Flow network from {x1} to
{x7} corresponding to the system in
Fig. 1

As we see, the triangle inequality does not hold for qB .
Then a flow network for a subset of the global inputs and outputs is generated

for the system. The result for the input subset {x1, x2} and the output subset
{x7} is shown in Fig. 3. The wires with finite capacity have their capacity shown
next to them, instead of their name. The direction of the edges is downwards.
We find the maximum flow from Source to Sink, which is 0.114.

Considering the input subset {x1} and the output subset {x7}, we get the
flow network in Fig. 4. The capacity of the edge from InB to OutB is now 0.029
instead of 0.114, Reducing the maximum flow from Source to Sink to 0.058.

We also find the maximum flow from the input subset {x2} to the output
subset {x7}, getting 0.029. Thus the triangle inequality also does not hold for
the global system, as 0.029 + 0.058 < 0.114.

12 Conclusion

We have presented a method for analyzing leakages in workflows using leakage
bounds for the individual components of the workflow. We combine both mutual
information and differential privacy in our analysis to get better bounds on the
leakages. We have also implemented the method. We conclude that using both
differential privacy and mutual information can improve the privacy guarantees
of workflows, compared to using either of them alone.



318 M. Pettai and P. Laud

Acknowledgements. This research was funded by the Air Force Research laboratory
(AFRL) and Defense Advanced Research Projects Agency (DARPA) under contract
FA8750-16-C-0011. The views expressed are those of the author(s) and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.
This work has also been supported by Estonian Research Council, grant No. IUT27-1.

References

1. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: On
the information leakage of differentially-private mechanisms. J. Comput. Secur.
23(4), 427–469 (2015)

2. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: 30th IEEE Symposium on Security and Privacy (S&P 2009),
17–20 May 2009, Oakland, pp. 141–153. IEEE Computer Society (2009)

3. Barros, J., Servetto, S.D.: Network information flow with correlated sources. IEEE
Trans. Inf. Theory 52(1), 155–170 (2006)

4. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reasoning
for differential privacy. ACM Trans. Program. Lang. Syst. 35(3), 9 (2013)

5. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information
leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
390–404. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 33

6. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comput. Secur. 15(3), 321–371 (2007)

7. Cuff, P., Yu, L.: Differential privacy as a mutual information constraint. In: CCS
2016 (2016). http://arxiv.org/pdf/1608.03677

8. Dumas, M., Garćıa-Bañuelos, L., Laud, P.: Differential privacy analysis of data
processing workflows. In: Kordy, B., Ekstedt, M., Kim, D.S. (eds.) GraM-
Sec 2016. LNCS, vol. 9987, pp. 62–79. Springer, Cham (2016). doi:10.1007/
978-3-319-46263-9 4

9. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
doi:10.1007/11787006 1

10. Ebadi, H., Sands, D.: Featherweight PINQ. CoRR, abs/1505.02642 (2015)
11. Frau, S., Gorrieri, R., Ferigato, C.: Petri net security checker: structural non-

interference at work. In: Degano, P., Guttman, J., Martinelli, F. (eds.) FAST
2008. LNCS, vol. 5491, pp. 210–225. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01465-9 14

12. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent
types for differential privacy. In: Giacobazzi, R., Cousot, R. (eds.) The 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2013, Rome, 23–25 January 2013, pp. 357–370. ACM (2013)

13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM
(1987)

14. Gover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New
York (2006)

15. McCamant, S., Ernst, M.D.: Quantitative information flow as network flow capac-
ity. In: Gupta, R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation, Tucson,
7–13 June 2008, pp. 193–205. ACM (2008)

http://dx.doi.org/10.1007/978-3-642-12002-2_33
http://arxiv.org/pdf/1608.03677
http://dx.doi.org/10.1007/978-3-319-46263-9_4
http://dx.doi.org/10.1007/978-3-319-46263-9_4
http://dx.doi.org/10.1007/11787006_1
http://dx.doi.org/10.1007/978-3-642-01465-9_14
http://dx.doi.org/10.1007/978-3-642-01465-9_14


Combining Differential Privacy and Mutual Information 319

16. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: Çetintemel, U., Zdonik, S.B., Kossmann, D., Tatbul,
N. (eds.) Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2009, Providence, 29 June–2 July 2009, pp. 19–30. ACM
(2009)

17. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for dif-
ferential privacy. In: Hudak, P., Weirich, S. (eds.) Proceeding of the 15th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2010,
Baltimore, 27–29 September 2010, pp. 157–168. ACM (2010)

18. Smith, G.: On the foundations of quantitative information flow. In: Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00596-1 21

http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/978-3-642-00596-1_21

	Combining Differential Privacy and Mutual Information for Analyzing Leakages in Workflows
	1 Introduction
	2 Related Work
	3 Workflows
	4 Information Flow
	5 Differential Privacy
	6 Inputs to the Analysis
	6.1 Sensitivity
	6.2 Differential Privacy
	6.3 Mutual Information

	7 Analysis
	7.1 Bounding the Information Flow Through Components
	7.2 Maximum Information Flow in a Workflow

	8 Completeness of Algorithm1
	9 Component Types
	9.1 Database Aggregator
	9.2 Database Linker
	9.3 Scalar Combiner
	9.4 Laplace Randomizer
	9.5 Laplace Randomizer Without Sensitivity
	9.6 Secret Sharing

	10 Implementation
	11 Example
	12 Conclusion
	References


