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Abstract. We define a correctness criterion, called robustness against
concurrency, for a class of event-driven asynchronous programs that are
at the basis of modern UI frameworks in Android, iOS, and Javascript.
A program is robust when all possible behaviors admitted by the pro-
gram under arbitrary procedure and event interleavings are admitted
even if asynchronous procedures (respectively, events) are assumed to
execute serially, one after the other, accessing shared memory in isola-
tion. We characterize robustness as a conjunction of two correctness cri-
teria: event-serializability (i.e., events can be seen as atomic) and event-
determinism (executions within each event are insensitive to the inter-
leavings between concurrent tasks dynamically spawned by the event).
Then, we provide efficient algorithms for checking these two criteria
based on polynomial reductions to reachability problems in sequential
programs. This result is surprising because it allows to avoid explicit
handling of all concurrent executions in the analysis, which leads to
an important gain in complexity. We demonstrate via case studies on
Android apps that the typical mistakes programmers make are captured
as robustness violations, and that violations can be detected efficiently
using our approach.

1 Introduction

Asynchronous event-driven programming is a widely adopted style for building
responsive and efficient software. It allows programmers to use asynchronous
procedure calls that are stored for later executions, in contrast with synchro-
nous procedure calls that must be executed immediately. Asynchronous calls are
essential for event-driven programming where they correspond to callbacks han-
dling the occurrences of external events. In particular, modern user interface (UI)
frameworks in Android, iOS, and Javascript, are instances of asynchronous event-
driven programming. These frameworks dedicate a distinguished main thread,
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called UI thread, to handling user interface events. Since responsiveness to user
events is a key concern, common practice is to let the UI thread perform only
short-running work in response to each event, delegating to asynchronous tasks
the more computationally demanding part of the work. These asynchronous tasks
are in general executed in parallel on different background threads, depending
on the computational resources available on the execution platform.

The apparent simplicity of UI programming models is somewhat deceptive.
The difficulty of writing safe programs given the concurrency of the underlying
execution platform is still all there. A formal programming abstraction that is
simple, yet exposes both the potential benefits and the dangers of the UI frame-
works would go a long way in simplifying the job of programmers. Programs
written against this abstraction would then be insensitive to implementation and
platform changes (e.g., automatic load balancing). Indeed, the choice of parame-
ters such as the number of possible threads running in parallel, the dispatching
policy of pending tasks over these threads, the scheduling policy for execut-
ing shared-memory concurrent tasks, etc., should be transparent to program-
mers, and the semantics of a program should be independent from this choice.
Therefore the conformance to this abstraction (i.e., a program can be soundly
abstracted according it) would be a highly desirable correctness criterion.

The objectives of our work are (1) to provide such a programming abstraction
that leads to a suitable correctness criterion for event-driven shared memory
asynchronous programs, and (2) to provide efficient algorithms for verifying that
a program is correct w.r.t. this criterion.

The programming abstraction we consider compares two semantics, the
multi-thread and the single-thread semantics:

– The multi-thread semantics reflects the concurrency of the actual program:
The main (UI) thread and asynchronous tasks posted to background threads
interact over the shared memory in a concurrent way. No limit on the num-
ber of tasks, no limit on the number of threads, and no restriction on the
dispatching and scheduling policies are assumed.

– The single-thread semantics is a reference model where a program is supposed
to run on a single thread handling user events in a serial manner, one after the
other. Each event is handled by executing its corresponding code including the
created asynchronous tasks until completion. The asynchronous tasks created
by an event handler (and recursively, by its callee) are executed asynchronously
(once the execution of the creator finishes) serially and in the order of their
invocation.

While the multi-thread semantics provides greater performance and responsive-
ness, the single-thread semantics is simpler to apprehend. The inherent non-
determinism due to concurrency and asynchronous task dispatching from the
multi-thread semantics is not present in the context of the single-thread one.

We consider that a desirable property of a program is that its multi-thread
semantics is a refinement of its single-thread semantics in the sense that the sets
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of observable reachable states of the program w.r.t. both semantics are exactly
the same. A program that satisfies this refinement condition is said to be robust
against concurrency (or simply robust). In fact, robustness violations correspond
to “concurrency bugs”, i.e., violations that are due to parallelization of tasks,
and that do not show up when tasks are executed in a serial manner.

Then, let us focus now on the problem of verifying the robustness of a given
program. We show in this paper that, surprisingly, for the class of UI event-driven
asynchronous programs, this problem can be reduced in linear time to the state
reachability problem in sequential programs. This means that the robustness of
such a concurrent program can be checked in polynomial time on an (instru-
mented) sequential version of the program, without exploring all its concurrent
executions. Let us describe the way we achieve that.

First, we show that robustness against concurrency can be characterized as
the conjunction of event-serializability and event determinism, which are variants
of the classical notions of serializability and determinism, adapted to our context.
Intuitively, since the single-thread semantics defines a unique execution, given a
set of external events (partially ordered w.r.t. some causality relation imposed
by the environment), then (1) the executions of the event handlers must be seri-
alizable (to an order compatible with their causality relation), i.e., the execution
of each event handler and its subtasks can be seen as an atomic transaction, and
(2) the execution of each event handler is deterministic, i.e., it always leads to
the same state, for any possible scheduling of its parallel subtasks.

To search efficiently for event-serializability and event-determinism vio-
lations, we make use of conflict-based approximations in the style of [27],
called conflict-serializability and conflict-determinism, respectively. Indeed, these
conflict-based criteria do not take into account actual data values, but rather
syntactical dependencies between operations (e.g., writing to the same vari-
able), which makes them stronger, but also “easier” to check, while still accu-
rate enough for catching real bugs, introducing rarely false positives, as our
experiments show. We reduce verifying conflict event-serializability and conflict
event-determinism to detecting cycles in appropriately defined dependency (or
happen-before) relations between concurrent events and asynchronous procedure
invocations, respectively. Our key contribution is that these cycle detections can
be done by reasoning about the computations of sequential programs instead
of concurrent programs, avoiding explicit encodings of (potentially unbounded)
sets of pending tasks and exploring all their possible interleavings. Let us explain
this in more details.

An event handler is conflict-deterministic when all its executions have
conflict-preserving permutations where tasks are executed serially in the same
order as in the single-thread semantics. Scheduling tasks in this order corre-
sponds to the DFS (Depth First Search) traversal of the call-tree of tasks (repre-
senting the relation caller-callee). We show that detecting a conflict-determinism
violation, i.e., an asynchronous execution with no serial DFS counterpart, can
be done by reasoning about an instrumented version of the procedural program
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obtained from the code of the event handler by roughly, turning pasynchronous
calls to synchronous ones. This instrumented program simulates borderline
violations, if any, i.e., violations where removing the last action leads to a correct
execution. We show that the amount of auxiliary memory needed to witness such
violations is finite (and small). Moreover, such violations are “almost” asynchro-
nous executions where tasks are scheduled serially according to the DFS traversal
of the call-tree. Such executions can be simulated using synchronous procedure
calls because roughly, the latter are also initiated according to the DFS traversal
of the call-tree. However, they are interleaved in a different way compared to the
asynchronous calls and the event handler must undergo a syntactic transforma-
tion described in Sect. 6.3.

As for conflict-serializability, a first issue in checking it is that event handlers
may consist of different concurrently-executing tasks. This issue is solved by
assuming that the conflict-determinism check is done a-priori. If this check fails
then the program is not robust and otherwise, checking conflict-serializability can
assume sequential event handlers which are in fact the instrumented procedural
programs used in the conflict-determinism check.

Even assuming sequential event handlers, general results about conflict-
serializability state that this problem is PSPACE-complete for a fixed number of
threads [6,15], and EXPSPACE-complete for an unbounded number of threads
[10] (assuming a fixed data domain and absence of recursive procedure calls).
However, we prove that, in the programming model we consider in this paper,
the problem of checking conflict-serializability is polynomial! This result relies
on two facts: (1) there is only one distinguished thread, the UI thread, for which
the order in which procedure invocations are executed is relevant, and (2) we
assume that each asynchronous task executed in the background (not on the UI
thread) is running on a fresh thread. This assumption is valid since background
threads are not manipulated explicitly by the programmer but by the runtime,
and therefore, we need to consider the situation where concurrency is maximal.

In fact, we show that when events are conflict-deterministic, the problem of
checking conflict-serializability can also be reduced to a reachability problem in
a sequential program. Again, we prove that it is sufficient to focus on a particu-
lar class of (borderline) violations of conflict-serializability. Then, we show that
detecting these violations can be done by reasoning about the executions of a
program where events are executed in a sequential manner, in any order (cho-
sen nondeterministically), and where the tasks generated by each event are exe-
cuted as in the single-thread semantics. For that, we define an instrumentation of
that program that consists in simulating the delaying effects of the multi-thread
semantics, guessing the actions involved in the violation and tracking the depen-
dencies between them in order to check the correctness of the guess (that they
indeed form a cycle). The cycle detection in the case of conflict-serializability is
technically more complex than in the case of conflict-determinism. But still, a
crucial point in the reduction is that we do not need to store the whole cycle
during the search, but it is enough to maintain a fixed number of variables to
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traverse the elements of this cycle. This leads to a polynomial reduction of the
conflict-robustness problem to a reachability problem in a sequential program.

Our reductions hold regardless of the used data domain, for programs with
recursive procedure calls, and unbounded numbers of events and tasks. These
reductions allow to leverage existing analysis tools for sequential programs
to check conflict-robustness. When the data domain is bounded, we obtain a
polynomial-time algorithm for checking conflict-robustness for UI event-driven
asynchronous programs (with recursive procedure calls, and unboundedly many
events and tasks).

We validate our approach on a set of real-life applications, showing that with
few exceptions all detected robustness violations are undesirable behaviours.
Interestingly, the use of conflict versions of the correctness criteria characterizing
robustness is efficient and quite accurate, producing only few false positives (that
can be eliminated easily).

Finally, let us mention that our work also leads to an efficient approach
for verifying functional correctness of UI event-driven asynchronous programs
that consists in reducing this problem to two separate problems: (1) showing
that the program is functionally correct w.r.t the single-thread semantics, and
(2) showing that it is robust against concurrency. Both of these problems can
indeed be solved efficiently by considering only particular types of computations
that are captured by sequential programs.

To summarize, our contributions are:

– Introduction of the notion of robustness against concurrency that pro-
vides a programming abstraction for event-driven asynchronous programs,
and its characterization as the conjunction of event-serializability and
event-determinism.

– Efficient algorithms for checking robustness based on reductions from conflict
event-serializability and conflict event-determinism to state reachability prob-
lems in sequential programs. Decidability and complexity results for verifying
robustness in the case of finite data domains.

– Experimentations showing the relevance of our correctness criteria and the
efficiency of our approach.

2 Motivating Examples

We demonstrate the relevance of robustness using several excerpts from Android
applications. To argue that robustness is not too strong as a requirement, we
discuss two concurrency bugs reported in open-source repositories that are also
robustness violations, more precisely, event-serializability and event-determinism
violations. We also provide a typical example of a robust program.
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2.1 A Violation to Event Serializability

Fig. 1. A program with an event-
serializability violation.

Figure 1 lists a real code excerpt from
the Android IrcCloud app [2] for chatting
on the IRC. Under the concrete multi-
thread semantics, the user event of press-
ing the “send” key is handled by the pro-
cedure onKey. Actions associated with this
event handler include actions performed
by onKey on the main (UI) thread, actions
performed by SendTask.onPreExecute()

on the UI thread before the actions per-
formed asynchronously on a background
thread by SendTasks’s doInBackground

procedure. Another event handler in
this example is onDoubleClicked, which
appends to the message text the name
name of the user whose name is clicked on.
The multi-thread semantics allows inter-
ference between the two event handlers,

onDoubleClicked can interleave with doInBackground. In contrast, the single-
thread semantics allows no such interference. The event handlers and the asyn-
chronous tasks they create are executed entirely on the UI thread, and all the
tasks created by onKey are executed before any other event handler invocation.

This program is not robust and a violation can be generated under
the following scenario. Suppose that the user types “Hello”, presses “send”,
and then double-clicks on another IRC user’s name. Under the multi-
thread semantics, onDoubleClicked may start running on the UI thread while
SendTask.doInBackground is in progress. These two procedures’ accesses can inter-
fere with each other. In particular, the ordering of msgTxt.getText() with respect
to the appending of name to msgTxt determines whether “Hello” or “Hello foo”
gets sent on the network. Moreover, since onKey first records msg.getText() to a
field e.command, an execution of these two events can end in a program state in
which e.command contains “Hello” while msgTxt contains “Hello foo”. This end
state is not possible with any execution of these two event handlers under the
single-thread semantics, where the event handlers are executed serially one after
the other. This is a violation to event serializability. Actually, this behavior was
reported as a bug, and the code was updated [1] so that e.command (instead of
msgTxt, which may have changed) is written into a JSON object and sent on
the network. It was the designers’ intent for the entire event handling code for
the “send” key to appear atomic. With this modification the program becomes
robust.
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2.2 A Violation to Event Determinism

Fig. 2. A program with an event-
determinism violation.

Figure 2 lists an event handler called
iconPackUpdated which creates an asyn-
chronous task (the first runnable to be exe-
cuted by the created thread) to initial-
ize the mAdapter object. Then it creates
another task, to be run by the UI thread,
that uses mAdapter to update the list view
of displayed icons. In an effort to ensure
that the second task runs after the first task
completes, the programmer posts the sec-
ond task after a second’s delay.

Under the concrete multi-thread seman-
tics, it is possible for the first task not to
complete even after a second. In this case,
the second runnable code will produce a

null pointer exception, while in other schedules, the code works as intended.
Although the programmer had intended a deterministic outcome there are exe-
cutions with different outcomes, including errors. Therefore, this event handler
is not event-deterministic, and not robust.

2.3 A Robust Program

The program in Fig. 3 has two event handlers searchForNews and showDetail

which can be invoked by the user to search for news containing a keyword and
to display the details of a selected news respectively.

The procedure searchForNews creates two AsyncTask objects SearchTask and
SaveTask whose execute method will invoke asynchronously doInBackground fol-
lowed by onPostExecute, in the case of the former. Under the multi-thread seman-
tics, doInBackground is invoked on a new thread and onPostExecute is invoked

Fig. 3. A robust program.
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on the main thread. When the user input to search for news is triggered, the
invocation doInBackground of searchTask connects to the network, searches for
the keyword and fetches the list of resulting news titles. Then, the invocation
onPostExecute displays the list of titles to the user. SaveTask saves the keyword
to a database representing the search history in the background. The back-
ground tasks SearchTask.doInBackground and SaveTask.doInBackground might
interfere but any interleaving produces the same result, i.e., searchForNews is
deterministic.

The second event, to show the details of a title, can be triggered once the list
of titles are displayed on the screen. It invokes an asynchronous task to download
the contents of the news in the background and then displays it. In this case,
the tasks are executed in a fixed order and the event is trivially deterministic.

Concerning serializability, the invocation of SaveTask in the first event and the
second event might interleave (under the concrete semantics). However, assum-
ing that the second event is triggered once the results are displayed, any such
interleaving results in the same state as a serial execution of these events.

3 Programs

In order to give a generic definition of robustness, which doesn’t depend on any
particular asynchronous-programming platform or syntax, we frame our discus-
sion around the abstract notion of programs defined in Sect. 3.1. Two alternative
multi-thread and single-thread semantics to programs are given in Sects. 3.2 and
3.3. We consider programs that are data-deterministic, in the sense that the
evaluation of every (Boolean) expression is uniquely determined by the variable
valuation.

3.1 Asynchronous Event-Driven Programs

We define an event handler as a procedure which is invoked in response to a user
or a system input. For simplicity, we assume that inputs can arrive in any order.
Event handlers may have some asynchronous invocations of other procedures, to
be executed later on the same thread or on a background thread.

We fix sets G and L of global and local program states. Local states � ∈ L
represent the code and data of an asynchronous procedure or event-handler
invocation, including the code and data of all nested synchronous procedure
calls. A program is defined as a mapping between pairs of global and local states
which gives the semantics of each statement in the code of a procedure (the
association between threads, local states, and procedure invocations is defined in
Sects. 3.2 and 3.3). To formalize the conflict-based approximation of robustness,
this mapping associates with each statement a label called program action that
records the set of variables read or written and the asynchronous invocations in
that statement. An event set E ⊂ L is a set of local states; each e ∈ E represents
the code and data for a single event handler invocation (called event for short).
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Fig. 4. A canonical program syntax. The metavariables x and y range over global
and local variable names, respectively, p ranges over procedure names, and w over the
symbols “main” and “any”.

Formally, let X = {rd(x),wr(x) : x ∈ . . .} be the set of memory accesses,
W = {main, any} the set of invocation places, and B = {invoke(�, w) : � ∈ L,
w ∈ W}∪{return}∪X ∪{ε} the set of program actions, where ε represents irrel-
evant program actions. The rd(x) and wr(x) represent read and write accesses
to variable x; invoke(�, w) represents an asynchronous invocation whose initial
local state is �; the invocation is to be run on a distinguished main thread when
w = main, and on an arbitrary thread when w = any. Finally, the return pro-
gram action represents the return from an asynchronous procedure invocation.

A program P : G × L → G × L × B maps global states g ∈ G and local
states � ∈ L to new states and program actions; each P (g, �) represents a single
program transition. We assume that when b is an asynchronous invocation or
return program action and P (g, �) = 〈g′, , b〉 then g = g′.

Canonical Program Syntax. Supposing that the global states g ∈ G are maps
from program variables x to values g(x), and that local states � ∈ L map program
variables y to values �(y) and a program counter variable pc to program state-
ments �(pc), we give an interpretation to the canonical program syntax listed in
Fig. 4. We assume atomicity of the statements at the bytecode level. For simplic-
ity, we omit the interpretation of synchronous procedure calls call p(y) which
is defined as usual. For instance, writing �+ to denote �[pc �→ �(pc)+1], then
P (g, �) is

– 〈g[x�→�(y)], �+,wr(x)〉 when �(pc) is a global-variable write x := y,
– 〈g, �+[y �→g(x)], rd(x)〉 when �(pc) is a global-variable read y := x,
– 〈g, �+, rd(y)〉 when �(pc) is assume(y) and �(y) 	= 0,
– 〈g, �, ε〉 when �(pc) is assume(y) and �(y) = 0,
– 〈g, �+, invoke(�′, w)〉 when �(pc) is an asynchronous invocation async[w] p(y),

where �′ maps the parameters of procedure p to the invocation arguments y
and pc to the initial statement of p, and

– 〈g, �, return〉 when �(pc) is the return statement.

The semantics of other statements, including if-then-else conditionals, while
loops, or goto statements, etc. (we assume that Boolean conditions use only local
variables), is standard, and yield the empty program action ε.

An event is called sequential when its code doesn’t contain asynchronous
invocations async[w] p(y). Also, a program P with event set E is called sequential
when every event e ∈ E is sequential. Otherwise, P is called concurrent.

3.2 Multi-thread Asynchronous Semantics

Our multi-thread semantics maximizes the set of possible program behaviors
by allowing events to interleave and interfere with each other. It dispatches the
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event handlers serially on the main thread but allows the asynchronous proce-
dure invocations to execute on separate threads, not necessarily in invocation
order. Configurations of the multi-thread semantics thus maintain sets of run-
ning procedure invocations as well as an unordered queue of pending invocations,
and invocations are associated with events and threads.

To characterize executions by the event-serializability and event-determinism
criteria, we expose the following set A of actions in execution traces:

A = {start(j), end(j) : j ∈ N} ∪ X ∪ {invoke(i),begin(i), return(i) : i ∈ N}

By convention, we denote asynchronous procedure invocation, event, and thread
identifiers, respectively, with the symbols i, j, k. The start(j) and end(j) actions
represent the start and end of event j; the invoke(i), begin(i), and return(i)
actions represent an asynchronous procedure invocation (when it is added to
the queue of pending invocations), the start of i’s execution (when it is removed
from the queue), and return of i, respectively. The set X of memory accesses is
defined as in the program actions of Sect. 3.1.

A task u = 〈�, i, j, k〉 is a local state � ∈ L along with invocation, event and
thread identifiers i, j, k ∈ N, and U denotes the set of tasks. We write invoc(u),
event(u), and thread(u) to refer to i, j, and k, respectively. A configuration
c = 〈g, t, q〉 is a global state g ∈ G along with sets t, q ⊆ U of running and waiting
tasks such that: (1) invocation identifiers are unique, i.e., invoc(u1) 	= invoc(u2)
for all u1 	= u2 ∈ t∪ q, and (2) threads run one task at a time, i.e., thread(u1) 	=
thread(u2) for all u1 	= u2 ∈ t. The set of configurations is denoted by Cm. We say
that a thread k is idle in c when k 	∈ {thread(u) : u ∈ t}, and that an identifier
i, j, k is fresh when i, j, k 	∈ {α(u) : u ∈ (t ∪ q)} for α ∈ {invoc, event, thread},
respectively. A configuration is idle when all threads are idle.

The transition function → in Fig. 5 is determined by a program P and event
set E, and maps a configuration c1 ∈ Cm and thread identifier k ∈ N to another
configuration c2 ∈ Cm and label λ = 〈i, j, a〉 where i and j are invocation
and event identifiers, and a ∈ A is an action—we write invoc(λ), event(λ),
and act(λ) to refer to i, j, and a, respectively. event transitions mark the
beginnings of events. We assume that all events are initiated on thread 0, which
is also referred to as the main thread. Also, for simplicity, we assume that events

Fig. 5. The multi-thread transition function → for a program P with event set E.
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can be initiated arbitrarily at any time. Adding causality constraints between
events, e.g., one event can be initiated only when a certain action has been
executed, is possible but tedious. async transitions create pending asynchronous
invocations, dispatch transitions begin the execution of pending invocations,
and return transitions signal their end (the condition in the right ensures that
this is not a return from an event). end event transitions mark the end of an
event and by an abuse of notation, they map c1 and k to a configuration c2 and
two labels, return(i) denoting the end of the asynchronous invocation and end(j)
denoting the end of the event. All other transitions are local.

An execution of a program P under the multi-thread semantics with event
set E to configuration cn is a configuration sequence c0c1 . . . cn such that

cm
km,λm+1−−−−−−→ cm+1 for 0 ≤ m < n. We say that cn is reachable in P with E

under the multi-thread semantics, and we call the sequence λ1 . . . λn the trace
of c0c1 . . . cn. The reachable states of P with E, denoted Rm(P,E), is the set
of global states in reachable idle configurations. The set of traces of P with E
under the multi-thread semantics is denoted by [[P,E ]]m. We may omit P when
it is understood from the context, and write [[E ]]m instead of [[P,E ]]m.

The call tree of a trace τ is a ranked tree CallTreeτ = 〈V,E,O〉 where V are
the invocation identifiers in τ, and the set of edges E contains an edge from i1
to i2 whenever i2 is invoked by i1, i.e., τ contains a label 〈i1, , invoke(i2)〉. The
function O : E → N labels each edge (i1, i2) with an integer n whenever i2 is
the nth invocation made by i1, i.e., 〈i1, , invoke(i2)〉 is the nth label of the form
〈i1, , invoke( )〉 occurring in τ (reading τ from left to right).

3.3 Single-Thread Asynchronous Semantics

Conversely to the multi-thread semantics of Sect. 3.2, our single-thread seman-
tics minimizes the set of possible program behaviors by executing all events
and asynchronous invocations on the main thread, the asynchronous procedure
invocations being executed in a fixed order.

We explain the order in which asynchronous invocations are executed using
the event handler searchForNews in Fig. 3. This event handler is supposed to
add the keyword to the search history only after the fetching of the news con-
taining that keyword succeeds. This expectation corresponds to executing the
asynchronous procedures according to the DFS traversal of the call tree. In gen-
eral, this traversal is relevant because it preserves causality constraints which are
imprinted in the structure of the code, like in the case of standard synchronous
procedure calls. The DFS traversal of the call tree also has a technical advantage
as it corresponds with the call stack semantics of synchronous procedure calls.
Note however that this semantics is not equivalent to interpreting asynchronous
invocations as synchronous, since the caller finishes before the callee starts. In
the formalization of this semantics, the DFS traversal is modeled using a stack
of FIFO queues for storing the pending invocations.

The formalization of the single-thread semantics reuses the notions of task
and label in Sect. 3.2. Let U0 be the set of tasks u = 〈�, i, j, 0〉 executing on
thread 0. We overload the term configuration which in this context is a tuple
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Fig. 6. The single-thread transition function ⇒ for a program P with events E (ε and
〈〉 are the empty sequence and tuple, resp.,). Also, f and f ′ are tuples, and q is obtained
by popping a queue from q if this queue is empty, or q = q, otherwise.

c = 〈g, u, q〉 where g ∈ G, u ∈ (U0∪{⊥}) is a possibly-empty task placeholder (at
most one task is running at any moment), and q ∈ (Tuples(U0))∗ is a sequence of
tuples of tasks (a tuple, resp., a sequence, denotes a FIFO queue, resp., a stack).
Cs is the set of configurations of the single-thread semantics. We call c ∈ Cs idle
if u = ⊥.

The transition function ⇒ in Fig. 6 is essentially a restriction of → where
all the procedures run on the main thread, an event begins when there are no
pending invocations, and the rules async and dispatch use a stack of FIFO
queues for storing pending invocations. The effect of pushing/popping a queue
to the stack or enqueuing/dequeueing a task to a queue is represented using
the concatenation operation ·, resp.,◦, for sequences, resp., tuples. Every task
created by async is posted to the main thread and it is enqueued in the queue
on the top of the stack q. dispatch dequeues a pending task from the queue f
on the top of q, and pushes a new empty queue to q (for storing the tasks created
during the newly started invocation) if f doesn’t become empty. Moreover, the
rules return and end event pop the queue on the top of q if it is empty.

An execution of a program P under the single-thread semantics with event set

E to configuration cn is a sequence c0c1 . . . cn s.t. cm
0,λm+1====⇒ cm+1 for 0 ≤ m < n.

We say that cn is reachable in P with E under the single-thread semantics,
and we call the sequence λ1 . . . λn the trace of c0c1 . . . cn. The reachable states
of P with E, denoted Rs(P,E), is the set of global states reachable in idle
configurations.

The set of traces of P with E under the single-thread semantics is denoted
by [[P,E]]s (P may be omitted when it is understood from the context).

4 Robustness of Asynchronous Programs

Our robustness criterion is defined as the equality of the single-thread and
multi-thread semantics of a program, and decomposed into two independently-
checkable criteria, event serializability and event determinism.
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Given a program P with event set E, each execution under the single-thread
semantics can be simulated by an execution under the multi-thread semantics:
the latter corresponds to a special scheduling policy that consists in executing
all tasks created by an event before starting executing tasks corresponding to
another event, and moreover, tasks are executed atomically, in the order given by
the DFS traversal of the call tree. This implies that the multi-thread semantics is
a relaxation of the single-thread semantics, and therefore, Rs(P,E) ⊆ Rm(P,E).
The reverse direction is the most interesting one:

Definition 1 (Robustness). A program P with events E is robust against con-
currency (or simply robust) when all reachable states in the multi-thread seman-
tics are also reachable in the single-thread semantics: Rm(P,E) ⊆ Rs(P,E).

Robustness means that for the considered program, the concurrency intro-
duced by the multi-thread semantics does not modify the set of observable states,
i.e., Rm(P,E) = Rs(P,E). We introduce in the following two correctness criteria
that capture precisely the notion of robustness.

We say an execution with trace λ1 · · · λn is event-serial when for all n1 < n3,
if act(λn1) = start(j) and act(λn3) = start(j′), then there is n2 such that n1 <
n2 < n3 and act(λn2) = end(j).

Definition 2 (Event-serializability). A program P with events E is event-
serializable if every global state in Rm(P,E) can be reached by an event-serial
execution1.

Given an event e, an e-execution starting from global state g0 is a g0-initialized
execution (according to the multi-thread semantics) with trace λ1 · · · λn such
that (1) act(λ1) = start(j), (2) act(λn) = end(j), for some j, and (3) for every
m ∈ N such that 1 < m < n, act(λm) is neither a start nor an end action.
Intuitively, we consider executions of individual events, from their starting point
until the completion of all the tasks they have created. Then, let Rm(P, g0, e)
be the set of global states in final configurations of e-executions starting from
g0. Notice that e-executions from g0 differ by the scheduling order of the tasks
created by e that are running in parallel on different threads.

Definition 3 (Event-determinism). An event e of a program P is determin-
istic if for every global state g0, the set Rm(P, g0, e) is a singleton or empty.
A program P with events E is event-deterministic, if every e ∈ E is
deterministic.

Notice that our notion of determinism is defined for events that are running
alone, without interference of other events.

Theorem 1. A program is robust against asynchrony if and only if it is event-
serializable and event-deterministic.
1 For simplicity, we have ignored the set of events which are executed when comparing

global state reached by aribitrary and event-serial executions, resp. Reaching a global
state using the same set of events is easy to formalize but tedious.
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5 Conflict Robustness

Following an idea introduced in the context of database transactions [27],
we define a syntactic, conservative notion of conflict robustness that is the
conjunction of two properties: conflict-event serializability and conflict-event
determinism.

5.1 Conflict-Event Serializability

Let ≺⊆ A × A be a conflict relation that relates any two actions a, a′ accessing
the same variable, i.e., a, a′ ∈ {rd(x),wr(x)} for some x, one of them being a
write. A trace is conflict-event serializable iff the “conflict-event graph” which
tracks the conflict relation between concurrent events is acyclic.

Formally, the conflict-event graph of a trace τ is the directed graph EvGτ =
〈V,E〉 whose nodes V are the event identifiers of τ, and which contains an edge
from j1 to j2 when τ contains a pair of labels λ1 and λ2 such that λ1 occurs
before λ2, act(λ1) ≺ act(λ2), event(λ1) = j1, and event(λ2) = j2.

Definition 4. A trace τ is called conflict-event serializable when EvGτ is
acyclic. A program P with event set E is conflict-event serializable iff every
trace in [[P,E ]]m is conflict serializable.

A permutation τ′ of a trace τ is conflict-preserving when every pair λ1, λ2 of
labels in τ appear in the same order in τ′ whenever act(λ1) ≺ act(λ2). Note that
a conflict-preserving permutation τ′ leads to the same global state as the original
trace τ. From now on, whenever we use permutation we mean conflict-preserving
permutation. A trace τ is conflict-event serializable iff it is a conflict-preserving
permutation of an event-serial trace.

Theorem 2. A program P with event set E is event-serializable when it is
conflict-event serializable.

5.2 Conflict Determinism

We define conflict determinism, which is also based on the acyclicity of a certain
class of “conflict graphs”, called conflict-invocation graphs. These graphs repre-
sent the conflicts between the asynchronous invocations, but also the order in
which these invocations would be executed under the single-thread semantics,
i.e., the DFS traversal of the call tree. If the conflict-invocation graph of every
trace τ of an event e is acyclic, then e is deterministic because every trace τ is a
conflict-preserving permutation of the trace t0 corresponding to the single-thread
semantics, and thus leads to the same global state as t0.

Given a trace τ, let <dfs be the total order between the invocation identifiers
in τ defined by the DFS traversal of CallTreeτ. The conflict-invocation graph
of a trace τ is the directed graph InvG(τ) = 〈V,E〉 whose nodes V are the
asynchronous invocation identifiers in τ, and which contains an edge from i1 to
i2 when i1 <dfs i2, or τ contains a pair of labels λ1 and λ2 of i1 and i2, resp.,
such that act(λ1) ≺ act(λ2) and λ1 occurs before λ2.
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Definition 5. A trace τ is DFS-serial iff InvG(τ) is acyclic. An event e is
conflict-deterministic iff every trace in [[e ]]m is DFS-serial.

A trace τ is called invocation-serial iff for every three labels λ1, λ2, λ3 occur-
ring in τ in this order, if invoc(λ1) = invoc(λ3), then invoc(λ1) = invoc(λ2). For
an event e, a DFS-serial trace τ in [[e ]]m is a permutation of an invocation-serial
trace τ0 ∈ [[e ]]m where invoc(λ1) <dfs invoc(λ2) for every two labels λ1 and λ2

occurring in this order in τ0.

Theorem 3. An event is deterministic when it is conflict-deterministic.

6 Checking Conflict Determinism

We reduce the problem of checking conflict determinism of an event to a reach-
ability problem in a sequential program. We present the reduction in two steps.
First, conflict determinism of an event interpreted under the multi-thread seman-
tics, whose asynchronous invocations run concurrently, is reduced to a reacha-
bility problem in a program running on the single-thread semantics, where asyn-
chronous invocations are executed serially (Sects. 6.1 and 6.2). The latter is then
reduced to a reachability problem in a sequential program (Sect. 6.3).

This reduction uses the fact that a certain class of conflict determinism viola-
tions can be simulated by a sequential program up to conflict-preserving permu-
tations of actions (note that any conflict-preserving permutation of a violation is
also a violation). This class of violations called borderline violations are minimal
in the sense that removing the last action leads to a correct trace. Besides the
simulation, we show that fixed-size additional memory is required to witness the
conflicts inducing a cycle in the conflict invocation graph.

Definition 6 (Borderline Conflict Determinism Violation). A trace τ is
a borderline violation to conflict determinism if it is not DFS-serial but every
strict prefix of τ is DFS-serial.

For instance, the trace τ1 given in Fig. 7(a) contains a borderline violation.
This trace is generated by an event e that invokes two procedures p and q
in this order, each procedure on a different thread. The only conflict between
memory accesses is that between the wr(x) actions in q and resp., p. The conflict-
invocation graph of τ1 contains a cycle between the invocations of p and q: the
edge from the invocation of p to that of q is implied by the fact that p is invoked
before q within the same procedure (we have “p <dfs q”), and the edge in the
other direction exists because q writes to the variable x before p does. The trace
τ1 until after the second wr(x) is a borderline violation since its maximal strict
prefix (without the second wr(x)) is DFS-serial. The last label of a borderline
violation τ, in this example wr(x), is called the pivot of τ. The label of τ which
precedes and conflicts with its pivot and which induces the cycle in its conflict-
invocation graph is called the root of τ. Formally, if i1 is the invocation containing
the pivot of τ, the root of τ is an action conflicting with the pivot and which is
included in an invocation i2 such that i1 <dfs i2. For the trace in Fig. 7(a), the
root is the action wr(x) in the invocation of q.
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Fig. 7. Simulating borderline conflict determinism violations on the single-thread
semantics. The event e makes two fresh thread asynchronous invocations to p and
q in this order. Boxes represent sequences of trace labels ordered from top to bottom.
Actions of the same thread are aligned vertically. The arrows represents transition label
conflicts. For readability, we omit the event and task identifiers in the trace labels and
keep only the memory accesses. The grey blocks labeled by delay, resp., skip, denote
sequences of actions that are delayed, resp., skipped.

6.1 Simulating Borderline Violations

We define a code-to-code translation from an event e to an event detStr−(e) which
simulates2 permutations of every DFS-serial or borderline violation trace in[[e ]]m.
The event detStr−(e) uses additional non-deterministically enabled statements to
simulate the particular interleavings present in those traces. The instrumentation
required to witness violations is introduced in Sect. 6.2.

Overview. We give an informal description of the translation using as examples
the traces pictured in Fig. 7.

Delaying the Pivot. We first explain the simulation of the invocation that con-
tains the pivot, which may interfere with invocations that are supposed to be

2 We refer to the standard notion of (stuttering) simulation where (sequences of)
transitions in detStr−(e) are mapped to transitions of e.
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executed later under the single-thread semantics. For the borderline violation in
Fig. 7(a), the invocation of p that contains the pivot wr(x) destroys the value
written to x by q, an invocation which is executed after p under the single-thread
semantics.

The maximal strict prefix (ending before the second wr(x)) is DFS-serial
and can be reordered to a trace where the order between transition labels is
consistent with the invocation order (i.e., e before p and before q). Figure 7(b)
pictures such a reordering, denoted by τ′

1. Our goal is to show that the trace τ′
1

can be simulated by an execution under the single-thread semantics of a slightly
modified version of e. First note that τ′

1 is not admitted by the single-thread
semantics of e because the invocation of p is only partially included in this prefix.
And the single-thread semantics executes every task until completion. However,
it is possible to “delay” the execution of the pivot wr(x) in p until q finishes,
even under the single-thread semantics, by adding a suitable set of auxiliary
variables to e. This mechanism is pictured in Fig. 7(c). Every statement in the
procedure p is guarded by (the negation of) an auxiliary Boolean flag skip which
can be non-deterministically flipped to true in order to skip over statements.
Moreover, an auxiliary global variable pivotLabel will record the next control
flow label � when this flag is set to true. Then, extending the invocation of q with
goto pivotLabel allows to resume the invocation of p and execute the pivot. To
simulate every borderline violation, the goto statement is non-deterministically
enabled in every invocation.

Incomplete Invocations. While the violation in Fig. 7(a) includes only one incom-
plete invocation (the one containing the pivot) this is not always the case.
A borderline violation may contain unboundedly-many other incomplete invo-
cations. For instance, the violation in Fig. 7(d) includes incomplete invocations
of e and q (they finish after the pivot). Should the simulation of this borderline
violation execute e and q entirely, the pivot may never be enabled. The correct
simulation, pictured in Fig. 7(e), will make use of the same mechanism based on
the Boolean flag skip in order to skip over statements in e and q. In general,
an invocation can be skipped in its entirety. This simulation also shows that the
goto statement can be executed after an incomplete invocation.

Main Thread Invocations. The last issue concerns the main thread which has the
particularity of being able to execute more than one invocation (all the other
threads execute a single invocation). It executes invocations serially and only
the last one may be incomplete. For instance, consider the DFS-serial trace τ3
pictured in Fig. 7(f). This is the trace of an event e that invokes p1, q, p2, and
p3, in this order, and except q all the tasks are assigned to the main thread.
Since p1 is invoked before p3, a DFS-serial permutation τ′

3 of τ3 contains the
incomplete invocation of p1 before the complete invocation of p3, as shown in
Fig. 7(g). None of the semantics we defined allows such traces. The problem is
that both invocations are executed by the main thread which has to complete a
task before executing another one. Our simulation will however admit such traces
but it will verify that they are conflict-preserving permutations of valid traces.
This verification procedure (included in the definition of detStr−(e)) checks that
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the conflict invocation graph doesn’t contain a path of memory conflicts, i.e.,
conflicts induced by read and write accesses, from the incomplete invocation
on the main thread to any future complete invocation on the same thread. Let
us consider again the trace τ3 in Fig. 7(f). Since τ3 is DFS-serial, its conflict
invocation graph doesn’t contain paths of memory conflicts from p3 to any other
invocation ordered before p3 in the DFS traversal of the call tree. This includes
the incomplete invocation p1 and q. For the permutation τ′

3, this implies that its
conflict invocation graph contains no paths of memory conflicts from p1 to p3.
When a trace satisfies this condition, i.e., an incomplete invocation on the main
thread doesn’t conflict with a future complete invocation on the same thread,
all the complete invocations on the main thread can be reordered before the
incomplete one (preserving the order between conflicting trace labels) and this
results in a valid trace (under the multi-thread semantics). The simulation of
τ′
3 on the single-thread semantics, pictured in Fig. 7(g), enables this verification

procedure during the invocation of p1 because it is executed on the main thread
and it skips over statements. It is also possible that other invocations on the
main thread, e.g., p2, are skipped entirely.

Notations. We introduce several notations used in the definition of detStr−(e).
This event is obtained by rewriting every statement s of a procedure transitively
invoked by e to a code fragment s1; if(c) then s; s2 where s1 and s2 are state-
ments and c is a Boolean expression. We use before(s), guard(s), and after(s)
to refer to s1, c, and s2, respectively. For every statement s, �(s) denotes the
control flow label of s, that can be used for instance in goto statements. Also,
rdSet(s), resp., wrSet(s), is the set of global variables read, resp., written, by s.
We have wrSet(s) = {x} and rdSet(s) = ∅ when s is x := y, and wrSet(s) = ∅
and rdSet(s) = {x} when s is y := x. Otherwise, rdSet(s) = wrSet(s) = ∅.

We assume that every procedure p is augmented with two local variables
rdSetProc and wrSetProc tracking the global variables read and written by p,
respectively (rdSet(s) and wrSet(s) are added to rdSetProc and wrSetProc,
respectively, after every statement s that gets executed).

The instrumentation uses the non-deterministic choice denoted by ∗ (for-
mally, ∗ is a distinguished Boolean variable that evaluates non-deterministically
to true or false). To refer to the different non-deterministic choices in the
instrumentation, we may index them with natural numbers.

To reduce clutter in the instrumentation, we use [ s ]ev(b) to denote a state-
ment s that is executed at most once during the execution of the event and the
Boolean variable b is set to true when s gets executed.

For an event e, let P(e) be the set of the procedures possibly invoked by
e, which is defined inductively by: (1) e ∈ P(e) and (2) for every p ∈ P(e),
if async[w] q(y) occurs syntactically in the code of e, then q ∈ P(e). Also, let
P0(e) be the subset of P(e) consisting of procedures posted to the main thread,
i.e., in the previous inductive definition, we take w = main. W.l.o.g. we assume
that the procedures in P0(e) are distinct from the procedures q contained in
asynchronous invocations “async[any] q(. . .)” executed on other threads.

All the Boolean variables added by the instrumentation are initially false.
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Defining the Instrumentation

Dealing with Fresh Thread Invocations. To simulate incomplete invocations exe-
cuted by threads other than the main thread, every procedure in P(e) \ P0(e) is
augmented with a Boolean flag skip that is non-deterministically set to true.
Once skip is set to true, the rest of statements are skipped and the first skipped
statement may be chosen as the pivot and its label stored in pivotLabel. The
pivot may get executed non-deterministically at a later time.

The program instrumentation to simulate borderline violations is given in
Fig. 8a. For every statement s of procedure p ∈ P(e) \ P0(e), guard(s) and
before(s) are defined respectively at lines 1 and 4 where skip is a local variable
and pivotLabel is a global variable.

Dealing with Main Thread Invocations. For procedures in P0(e), the instrumen-
tation ensures that at most one invocation of such a procedure is incomplete,
and also, that the invocation graph contains no path of memory conflicts from
such an incomplete invocation to any future complete invocation of a procedure
in P0(e). Such paths of memory conflicts may cross invocations of procedures
which are not in P0(e), therefore the instrumentation of the latter must also be
modified.

To simulate an incomplete invocation on the main thread, for every statement
s of a procedure p ∈ P0(e), before(s) is defined as in line 15 in Fig. 8a where
skip is a Boolean local variable. As for invocations executed on other threads,
the first skipped statement may be chosen as the pivot. To be able to track

Fig. 8. Instrumentation for checking conflict-determinism.
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paths of memory conflicts, the variables read and written during the incomplete
invocation are stored in the global variables rdSetGlobal and wrSetGlobal,
respectively. For invocations of procedures p ∈ P0(e), skip can be set to true
at most once during the execution of the event.

Other tasks posted to the main thread can be skipped entirely or executed
completely, by setting a local flag skipProc. When they are executed completely,
a global Boolean flag validMain is used to witness that they are not the des-
tination of a path of memory conflicts as explained above. At the beginning of
each procedure, validMain is reset to false as shown at line 22. Then, guard(s)
of every statement s of a procedure p ∈ P0(e) checks for skipProc as in line 13.

Once an incomplete invocation on the main thread is present, i.e.,
skipMainSet is true, the procedure for checking the absence of paths of memory
conflicts is enabled. For every statement s of every procedure p ∈ P(e), after(s)
is set as in line 26 where conflictDetected is a Boolean local variable. This
conditional checks whether the current procedure conflicts with the incomplete
invocation or transitively, with all the other invocations that conflict with the
latter. If this is the case, then its set of memory accesses is continuously added
to the global sets rdSetGlobal and wrSetGlobal of memory accesses.

When a main thread invocation finishes, if it has been executed completely
and if it follows an incomplete main thread invocation, the instrumentation
checks for absence of paths of memory conflicts and may non-deterministically
execute the pivot. The code at line 35 is added at the end of every p ∈ P0(e).

Relationship Between e and detStr−(e). The following result expresses the rela-
tionship between the original event e and detStr−(e). It shows that the single-
thread semantics of detStr−(e) simulates permutations of all the DFS-serial
traces and borderline violations of e under the multi-thread semantics (modulo
a thread id renaming). Moreover, every trace of detStr−(e) under the single-
thread semantics where the last value of validMain is true, this set of traces
being denoted by [[detStr−(e)]]validMains , corresponds to a trace of e under the
multi-thread semantics (modulo the instrumentation added in detStr−(e) and a
thread id renaming). For a trace τ of detStr−(e), τ is the trace obtained from τ

by erasing all transition labels corresponding to statements added by the instru-
mentation. For readability, we ignore the issue of renaming thread ids.

Theorem 4. For every trace τ1 in [[e ]]m, if τ1 is DFS-serial or a borderline
conflict determinism violation, then there exists a trace τ2 in [[detStr−(e)]]s such
that τ′

1 = τ2 is a conflict-preserving permutation of τ1. Moreover, for every trace
τ1 in [[detStr−(e)]]validMains there exists a trace τ2 in [[e ]]m such that τ2 = τ1.

6.2 Witnessing Borderline Violations

The instrumentation used to verify that a trace is indeed a borderline violation
consists in guessing a candidate for the root and then, when the pivot gets
executed, checking whether it conflicts with the chosen candidate. For instance,
if we consider the single-thread semantics simulation in Fig. 7(c), the action
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wr(x) in q is guessed as the root and its label is stored in an auxiliary variable
rootLabel. This label is used to check that the root candidate conflicts with
the pivot when the latter is executed. The root must be chosen after the pivot
in order to guarantee that this leads to a cycle in the conflict invocation graph
(i.e., the DFS traversal of the call tree orders the invocation containing the pivot
before the one containing the root).

We define a new event detStr(e) that sets an error flag to true whenever
the current trace is not DFS serial and the root and pivot candidates are valid.
This event is obtained from detStr−(e) by adding two global variables error and
rootLabel, and:

– Concatenating the code at line 41 in Fig. 8b to before(s). This allows to non-
deterministically choose s to be the root of the violation. In order to avoid
choosing the pivot after the root, we must also replace ∗2 and ∗5 in detStr−(e)
with ! rootSet & ∗2 and ! rootSet & ∗5, respectively.

– Concatenating the code at line 44 in Fig. 8b to after(s) where

conflict(pivotLabel, rootLabel) ::= rdSet(�
−1

(pivotLabel)) ∩ wrSet(�
−1

(rootLabel)) �= ∅
‖rdSet(�−1

(rootLabel)) ∩ wrSet(�
−1

(pivotLabel)) �= ∅
‖wrSet(�

−1
(rootLabel)) ∩ wrSet(�

−1
(pivotLabel)) �= ∅

This allows to validate that the root does indeed conflict with the pivot, once
the latter gets executed. If the conflict is validated, then error is set to true.

Since the added instrumentation only reads variables of detStr−(e), the new
event detStr(e) still satisfies the claim in Theorem 4.

Theorem 5. An event e (under the multi-thread semantics) satisfies conflict
determinism iff the program detStr(e) under the single-thread semantics does
not reach a state where error = true.

For complexity, detStr(e) can be constructed in linear time and its number
of variables increases linearly in the number of variables and procedures of e.

6.3 Reduction to the Procedural Semantics

As a continuation to Theorem 5, we define a code-to-code translation from an
event e to a sequential event seq(e) such that seq(e) admits exactly the set of
traces of e under the single-thread semantics3.

Single-Thread Semantics vs Procedural Semantics. Essentially, seq(e) is obtained
from e by rewriting asynchronous procedure invocations to regular procedure

3 Modulo the omission of the labels invoke(i), begin(i), return(i) related to asynchro-
nous invocations.
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calls. However, this rewriting can’t be applied directly because of the following
issue. Consider a procedure p invoking another procedure q. If the invocation
of q is asynchronous, the single-thread semantics executes p completely before
starting q. Under the procedural semantics, when q is invoked using a regular
procedure call, the execution of p is blocked when q is invoked and resumed when
q is completed. For instance, consider the event:

procedure e1(){y:=1; async[main] p();y:=2;} procedure p(){y:=3;}

Executing e1 on the single-thread semantics, we get the sequence of assignments
y := 1, y := 2, y := 3. Rewriting async[main] p() to a regular procedure call
call p(), we get an event that executes y := 1, y := 3, y := 2 in this order.

This issue doesn’t exist if all the asynchronous invocations occur at the end
of the procedures. For instance consider the following event e2:

procedure e2(){x:=1; async[main] p();} procedure q() {x:=3;}

procedure p(){x:=2; async[main] q();}

Rewriting every async[main] to a procedure call call , we get an event
that executes the assignments on x in exactly the same order as e2 under the
single-thread semantics. This holds because the single-thread semantics executes
the asynchronous invocations according to the DFS traversal of the call tree,
which corresponds to the “stack” semantics of procedure calls.

Therefore, the event seq(e) is obtained in two steps. A first translation is used
to move all asynchronous invocations at the end of the procedures. This results
in an event having exactly the same single-thread semantics as the original one.
Then, we replace every asynchronous invocation with a procedure call.

Defining seq(e). The event e is extended with auxiliary data structures that
store the names and the inputs of the asynchronous invocations. Using these
data structures, all the invocations are delayed till the end of the encompassing
procedure. Thus,

– each procedure p is extended with an auxiliary local variable invocList which
stores a list of procedure names and inputs,

– when an asynchronous procedure q is invoked in p with inputs y, the proce-
dure name q together with its parameters y is appended to the local variable
invocList of p without invoking q,

– before returning from a procedure p, all the procedures stored in invocList
are invoked in the order they are recorded.

For the event e1, this boils down to simply moving the invocation in e1 at the
end (i.e., after y := 1). It is easy to see that the obtained event has the same
single-thread semantics as the original event.
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Let seq(e) be the event obtained from e by applying the transformation above
and then, replacing every asynchronous invocation async[w] p(y) with call
p(y).

For an event e, we overload the equality relation between traces τ1 ∈ [[e]]s
and τ2 ∈ [[seq(e)]]s as follows: τ1 = τ2 iff removing the labels invoke(i), begin(i),
return(i) with i ∈ N from τ1, and the transition labels corresponding to state-
ments added by the instrumentation from τ2, we get the same trace.

A sequential program Seq has the same set of traces under the multi-thread
and the single-thread semantics, so its set of traces is denoted [[Seq]].

Theorem 6. For any event e, [[e]]s =[[seq(e)]].

For an event e, let detSeq(e) = seq(detStr(e)). By Theorem 6, detSeq(e)
still satisfies the claim in Theorem 4. The following is a direct consequence of
Theorems 5 and 6.

Corollary 1. An event e (under the multi-thread semantics) satisfies conflict
determinism iff the sequential event detSeq(e) does not reach a state where
error = true.

Concerning complexity, let e be an event where each procedure invokes at
most k other procedures, for some fixed k. Then, the time complexity of con-
structing detSeq(e) and its number of variables are quadratic in the number of
variables and procedures of e and k.

7 Checking Conflict Robustness

Building on the reduction of conflict determinism to reachability in sequential
programs, we show that a similar reduction can be obtained for conflict robust-
ness. This reduction is based on two facts: (1) incomplete executions of conflict-
deterministic events can be simulated by a sequential program, which has been
proved in Sect. 6, and (2) conflict serializability for a set of conflict deterministic
events can be again reduced to reachability in sequential programs. To prove
the latter we use the concept of borderline violation, this time for conflict seri-
alizability. We show that interleavings corresponding to such violations can be
simulated by a sequential program. This program behaves like a “most-general
client” of the event-based program in the sense that it executes an arbitrary set
of events, in an arbitrary order, but serially without interference from others.
We show that the memory required to track the conflicts which induce a cycle
in the conflict graph is of bounded size, although the conflict graph cycles are of
unbounded size in general.

Definition 7 (Borderline Conflict Serializability Violation). A trace t is
a borderline violation to conflict serializability if it is not conflict serializable
but every strict prefix of τ is conflict serializable.
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Fig. 9. Simulating borderline conflict serializability violations with a sequential pro-
gram. Boxes represent sequences of trace labels ordered from top to bottom. Actions
of the same event are aligned vertically. The arrows represent all the conflicts in the
trace. The grey blocks labeled by delay, resp., skip, denote sequences of actions that
are delayed, resp., skipped.

The trace τ1 in Fig. 9(a) contains a borderline violation. Its conflict-event
graph contains a cycle between the three events e1, e2, and e3. The prefix of
τ1 ending just before rd(z) satisfies conflict serializability. The last label of a
borderline violation τ is called the pivot of τ (in this example rd(z)) and the
event that contains the pivot is called the delayed event of τ (in this example e1).

Simulating Borderline Violations. For a set of conflict-deterministic events
E, we define a code-to-code translation to a set of sequential events that simu-
lates every conflict-serializable trace and every borderline serializability violation
of E under the multi-thread semantics.

As for conflict determinism, the maximal strict prefix of a borderline violation
can be reordered to a trace where events are executed serially, but possibly not
until completion (because it satisfies conflict serializability). Such a reordering for
the trace τ1 is given in Fig. 9(b). This reordering can be simulated by a sequential
program that executes the conflict determinism instrumentations detSeq(ei) with
i ∈ [1, 3] instead of the original events, as shown in Fig. 9(c). The sequential
program chooses non-deterministically the delayed event, in this case e1, and
the pivot, and stores the latter in an auxiliary variable pivotSerLabel when
leaving the delayed event. While executing other possibly incomplete events
using the skipping mechanism introduced for conflict determinism, it may non-
deterministically choose to execute goto pivotSerLabel, in this case after e3.

Witnessing Borderline Violations. To establish that a trace is indeed a bor-
derline violation, the instrumentation guesses for each event a statement called
exit point which conflicts with an action of a future event and a statement called
entry point which conflicts with the currently recorded exit point of a previ-
ous event. The conflict is validated each time an entry point is chosen. This
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instrumentation is demonstrated in Fig. 9(c). For instance, while simulating e1,
wr(x) is guessed as the exit point and its label is recorded in the auxiliary
exit variable. During the simulation of e2, wr(x) is guessed as the entry point
and the conflict is validated. As the simulation of e2 shows, the exit point may
occur before the entry point. In this case, the instrumentation uses an addi-
tional variable tempExit to store the exit point of the current event until the
conflict with a previous event is validated. Once the conflict is confirmed the
value of tempExit is copied to exit. Since the conflicts must form a path in the
conflict event graph, there is no need to recall more than one exit point at a
time.

The instrumentation added for checking conflict robustness is similar to the
one used for conflict determinism. Let robSeq(e) denote the sequential event
obtained from detSeq(e) by adding this instrumentation. For an event set E, let
robSeq(E) = {robSeq(e) : e ∈ E}.

Then, let robSeq(E) be the set of events robSeq(e) with e ∈ E.

Theorem 7. A program P with events E satisfies conflict robustness iff
robSeq(E) doesn’t reach a state where error = true.

For complexity, robSeq(E) can be constructed in linear time and the number
of additional variables is linear in the number of procedures in detSeq(E). The
complexity of checking conflict robustness is given by the following theorem.

Theorem 8. Checking conflict robustness of a program P with events E, a fixed
number of variables which are all Boolean, and a fixed number of procedures, each
procedure containing a fixed number of asynchronous invocations, is polynomial
time decidable.

8 Experimental Evaluation

The goal of our experimental work [5] is to show that (i) event-serializability
and event-determinism violations correspond to actual bugs, and (ii) detecting
these violations using the reduction to reachability in sequential programs is
feasible.

We use the Soot framework [7] to implement the instrumentation required
for robustness checking. The reachability of the error state in the instrumented
sequential program is verified using Java Path Finder (JPF) [4].

We applied the conflict-robustness checking algorithm to a set of Android
apps from the FDroid [3] repository. The application code for reflection, depen-
dency to external libraries (e.g., for http connection, analytics tracker, maps),
and the code which only effects the display (e.g., displaying web pages, anima-
tion, custom graphics) is eliminated. The remaining code factors out the vari-
ables that does not effect the concurrent behavior of the program and keeps the
program logic.
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We define an event as a procedure which is invoked by the Android app in
order to initialize an activity, in response to an user input (e.g., clicking on a
button, writing text, navigating back) or a system input (e.g., location change,
network disconnect). Our tool receives as input a driver class which initiates the
application and invokes a set of events. The tool checks conflict-robustness for
the set of executions defined by the driver class. In our experiments, we take
into consideration causality constraints between events, e.g., the event handler
of a UI component can not be invoked if it is not visible on the screen.

8.1 Event-Determinism Experiments

Table 1. Experimental data for conflict determinism.
The last column lists whether the event is found conflict
deterministic.

Application Event handler #inst #c #m #r/w #(*) t(m:s) Det?

aarddict Create activity 1307780 177 3016 90 1428 0:01 Y
Lookup word 77203 222 3604 60 103 <1 s Y
Scan sd 21334 167 2941 15 21 <1 s Y

apphangar Select item 58908 222 3560 48 70 <1 s Y
Update icon pack 13308927 264 4004 95 28833 00:33 N

bookworm Generate cover 34528 194 2928 30 41 <1 s Y
Retrieve cover 36789 213 3440 31 41 <1 s Y
Save edits 63017 189 3015 108 158 <1 s Y
Search book 53250 185 3012 50 69 <1 s Y

grtgtfs Fav stops 53995 162 2885 142 113 <1 s Y
Process bustimes 65945 159 2749 105 168 <1 s Y
Search route 55077 167 2968 34 67 <1 s Y
Search stop 56742 168 2968 52 75 0:01 Y

irccloud Save prefs 103344 293 3478 18 15 <1 s Y
Save settings 102868 293 3478 17 13 <1 s Y
Select buffer 136224103 379 4330 761 260605 8:04 Y
Send message 162682 356 4140 171 77 <1 s Y

vlille Load stations 971665 404 5808 236 131 0:01 Y
Load favorites 9583 141 2400 37 0 <1 s Y
Update stations 975974 416 5905 265 131 0:01 Y

Table 1 lists the exper-
imental data related to
conflict-deterministic che-
cking. Related to the
size of the event han-
dlers, we list the number
of analyzed instructions
(#inst), loaded classes
(#c) and methods (#m).
The analysis time is affec-
ted by the number of
resolved non-deterministic
data choices (#(*)), the
number of asynchronous
invocations, whether the
instrumented read/write
accesses are made in these

invocations, and the execution time of the analyzed program.
We have applied our algorithm to various event handlers and all but one are

found to be deterministic. A determinism violation is found in iconPackUpdated

benchmark as explained in Sect. 2. The pivot of the violation is a write access to
the mAdapter variable by a procedure running in the background, and the root is
a read on the same variable made by a procedure running on the main thread.

8.2 Event-Serializability Experiments

Table 2 shows experimental data for conflict-serializability checking.

True Bugs. Four of the benchmarks had traces with conflict serializability
violations which we concluded were true bugs (and true event-serializability vio-
lations) after examining the code and the consequences of these violations.
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Table 2. Experimental data for conflict serializabil-
ity. The last two columns say whether the example is
serializable and whether a violation is not spurious.

Application Seq. #inst #c #m #r/w # (*) t(m:s) Ser? Bug?

aarddict 1 1084371993 224 3620 154 1764359 23:12 N Y
2 101776570 169 2957 100 195370 1:42 N Y

bookworm 1 22701600 183 2801 202 77614 0:42 Y -
2 19179949 183 2801 201 61896 0:33 Y -
3 1094300968 189 3016 286 3494089 33:51 Y -
4 3547795 188 3029 131 15961 0:08 N Y

grtgtfs 1 74082801 168 2969 123 279857 2:04 Y -
2 - - - 149 - >1 h - -
3 1130239 139 2692 77 4712 0:02 Y -
4 60736622 170 2984 161 163236 1:21 N N

irccloud 1 33713083 293 3479 141 147000 2:55 Y -
2 1761539 293 3479 140 7851 0:10 Y -
3 171715464 294 3485 147 534338 08:51 Y -
4 - - - - 2110 >1 h - -
5 - - - - 902 >1 h - -
6 54556857 358 4165 849 208076 5:28 N Y
7 11104756 357 4154 833 39599 0:59 N Y

vlille 1 48935337 406 5824 286 143461 3:05 N Y
2 394535226 406 5824 292 1319041 28:52 N N

The violation in aarddict

app occurs between the ini-
tialization of the activity
(initializes the UI compo-
nents and starts the dic-
tionary service to load the
dictionaries) and an event
handler to lookup a word.
The lookup cannot retrieve
the requested word if the
service gets initialized after
the lookup. The pivot of
the serializability violation is
a write access to a vari-
able dictionaryService in
an asynchronous procedure
invoked on the main thread

that conflicts with the asynchronous procedure invoked on a background thread
by the second event handler. We detected an event serializability violation in the
bookworm app between the events dealing with user inputs to search for a book
and navigating back to the previous screen. In this violation, while the first
event handler performs the search in the background and not yet updated the
currSearchTerm variable, the second event handler saves the stale currSearchTerm

value in the cache. The pivot of the violation is a write access to the current
search term in an asynchronous procedure invoked on the background thread.
A violation detected in the irccloud app is presented in Sect. 2, which causes the
app to send wrong messages. The pivot is a read access to the message text in
an asynchronous procedure invoked on a background thread that conflicts with
a write access in the double click event. A similar violation occurs in another
user input sequence where the user types some text after pressing the “send”
key. In the vlille benchmark, the serializability violation in the first line occurs
when the user removes an item from the favorites list while the items are being
loaded. The app throws an exception when the removal in the second event
handler interleaves with the asynchronous procedure in the background.

Avoidable False Alarms. In the grtftfs benchmark, the conflict-
serializability violation is not a bug or a serializability violation. (Conflict-
serializability is stronger than serializability.) This violation is triggered by
making two queries one after another. In an execution where the second event
handler overwrites the query before the first event handler reads it in the back-
ground, both asynchronous procedures end up performing the same, later search.
While technically this is not a serializability violation, we believe it is worthwhile
to report conflict-serializability violations to the programmer, because fixing
them would lead to improved code.
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Inter-related Events. Some event handlers intervene the execution of another
event by design. For such inter-related events, the event-serializability violation
might not be a bug. The vlille benchmark has such an example (the second row
on the table). In this scenario, the user navigates back while the app is loading
a list of items asynchronously in a background thread. The event handler for
back navigation sets the mCancelled flag of the AsyncTask. If this flag is set, the
first event handler does not invoke the AsyncTask’s asynchronous onPostExecute

procedure. Our techniques can be modified to consider inter-related events and
task cancellation, but we leave this for future work.

9 Related Work

The UI framework in Android has been the focus of much work. Most existing
tools for detecting concurrency errors investigate race detection [8,21,25]. Race
conditions are low-level symptoms for a much broader class of concurrent pro-
grams which are often not indicative of actual programming errors. In this paper,
we attempt to characterize and detect higher-level concurrency errors in Android
programs. Robustness violations are incomparable with data-race freedom viola-
tions. Data races do not generally imply cyclic data dependencies among events,
and cyclic data dependencies do not imply data races: e.g., surrounding each indi-
vidual memory access within a cycle by a common lock eliminates possible races,
but preserves cycles. Furthermore, checking conflict robustness is fundamentally
more efficient than checking for data race freedom. Conflict event serializability
requires tracking events, while data race freedom requires tracking individual
program actions like reads and writes, which greatly outnumber events. More-
over, conflict robustness reduces to reachability in sequential programs, yielding
significantly lower asymptotic complexity.

Recent work [29] proposes a static analysis to detect “anomalies” in event
driven programs, i.e. accesses to the same memory location by more than one
event handlers. Since many events access shared memory locations, this app-
roach produces many false alarms, but programs without anomalies are conflict-
event serializable. The works in [23,24] refactor applications by moving long
running jobs to asynchronous tasks and transform improperly-used asynchrony
constructs into correct constructs. Ensuring transformed asynchronous tasks do
not race with their callers lends support to our work as it guarantees event-
determinism.

The works in [12–14,26] target exploring interesting subsets of executions
and schedules for asynchronous programs, that offer a large coverage of the exe-
cution space. This is orthogonal to the focus of our paper which is to investigate
correctness criteria.

Conflict serializability [27] has been introduced in the context of databases
and since then used as a tractable approximation of atomicity. We use serializ-
ability to formalize the fact that event handlers behave as if they were executed in
isolation, without interference from others. While in other uses of serializability
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the transactions are sequential, in our case a single invocation of an event handler
consists of several asynchronous procedures that can interleave arbitrarily in
between them. Farzan and Madhusudan [15,16] and Bouajjani et al. [10] inves-
tigate decision procedures for conflict serializability of finite-state concurrent
models while checking serializability in general has been approached using both
static, e.g., [18,20,32,34], and dynamic tools, e.g., [17,19,30,33].

Determinism has been largely advocated in the context of concurrent pro-
grams, e.g., [9,31], since it simplifies the debugging and verification process. Prior
work has introduced static verification techniques, e.g., [22] but also dynamic
analyses based on testing, e.g., [11,28]. Differently from prior work, we provide
a methodology for checking determinism of event-driven asynchronous programs
that ultimately reduces to a reachability problem in a sequential program.
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