
Modular Verification of Procedure Equivalence
in the Presence of Memory Allocation

Tim Wood1(B), Sophia Drossopolou1, Shuvendu K. Lahiri2,
and Susan Eisenbach1

1 Imperial College London, London, UK
tw00@doc.ic.ac.uk, {S.Drossopoulou,S.Eisenbach}@imperial.ac.uk

2 Microsoft Research, Redmond, USA
Shuvendu.Lahiri@microsoft.com

Abstract. For most high level languages, two procedures are equivalent
if they transform a pair of isomorphic stores to isomorphic stores. How-
ever, tools for modular checking of such equivalence impose a stronger
check where isomorphism is strengthened to equality of stores. This
results in the inability to prove many interesting program pairs with
recursion and dynamic memory allocation.

In this work, we present RIE, a methodology to modularly establish
equivalence of procedures in the presence of memory allocation, cyclic
data structures and recursion. Our technique addresses the need for find-
ing witnesses to isomorphism with angelic allocation, supports reasoning
about equivalent procedures calls when the stores are only locally iso-
morphic, and reasoning about changes in the order of procedure calls.
We have implemented RIE by encoding it in the Boogie program verifier.
We describe the encoding and prove its soundness.

Keywords: Program equivalence · Program verification · Version-aware
verification

1 Introduction

Program maintenance dominates the program lifecycle. A study of application
bugs that took more than one attempt to fix [35] found that 22–33% of fixes
required a supplementary fix, and found a diverse range of errors including
incomplete refactorings. A study of refactorings [8] found that across 12,922
refactorings from three software projects, 15% of refactorings induced a bug.
Automatic program equivalence verification [19,21,29,36] offers the potential to
reduce problems by allowing a programmer to automatically (without program-
mer annotations) verify that the new version is behaviourally equivalent to the
old.

The goal of these verification tools is to make the benefits of program equiva-
lence verification available to programmers who are not verification experts. An
automatic equivalence verification tool takes a pair of programs as input and then

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 937–963, 2017.
DOI: 10.1007/978-3-662-54434-1 35

938 T. Wood et al.

outputs whether the programs are equivalent or not (or perhaps times-out). Pro-
gram equivalence is undecidable in the general case, however, some success has
been achieved on programs with substantially similar structure. Since software is
frequently modified in small incremental steps, versions tend to be structurally
similar.

We know of two tools designed for fully-automatic program equivalence verifi-
cation of programs with heaps: Symdiff [29] and RVT [21]. Symdiff [22,26,29,30]
is built on top of the Boogie [3] intermediate verification language which, in
turn, uses the Z3 [16] satisfiability modulo theories (SMT) solver to discharge
proof obligations. RVT uses a designed-for-purpose verification algorithm, which
passes program fragments to the CBMC [14] bounded model checker.

Symdiff relates heaps using equality (of arrays modelling the heaps), which we
will call e-equivalence, so programs that differ in the order or amount of dynamic
memory allocation or garbage cannot be verified as equivalent by Symdiff. RVT
does support differences in allocation, but assumes that all heap data structures
are tree-like.1

E-equivalence is too restrictive for programmers, who expect to be able
to replace one procedure with another if the two have identical observable
behaviour. A more intuitive notion of procedure equivalence for programs with
dynamic memory allocation can be constructed using isomorphism between
memory locations. Definitions of program equivalence based on a notion of iso-
morphism have been used in several formal systems [11,37]. Our definition of
equivalence is:

Two procedures are equivalent, if they terminate for the same set of initial
stores, and if both procedures run to completion from isomorphic initial
stores, they result in isomorphic final stores.

Our definition of equivalence matches intuition: it allows for differences in the
order or amount of memory allocation and garbage and is not restricted to tree-
like structures. Achieving automatic and modular verification presents several
challenges:

Challenge 1 What kind of input do we need to give to an SMT solver so that
it can even do the verification? We need to establish an isomorphism between
unbounded heaps of arbitrary shape, which is computationally infeasible in
general. Furthermore, a direct axiomatisation of isomorphism involves exis-
tentially quantifying the mapping between memory locations that charac-
terises the isomorphism. SMT based verification systems are not very good
at producing witnesses to such existentials and so a direct axiomatisation of
isomorphism is ineffective.

Sometimes calls to equivalent procedures occur from stores that are not fully
isomorphic, rather the stores are isomorphic in the footprint of the called pro-
cedures. This leads to the next two challenges:

1 For details, see Definition 2 (and the paragraph following) on page 5 of the 2009
paper by Godlin and Strichman [21].

Verification of Equivalence with Memory Allocation 939

Challenge 2 How can our tool determine when stores correspond in the foot-
print of a called procedure?

Challenge 3 What should we do about equivalent calls from non-isomorphic
stores since they do not necessarily result in isomorphic stores?

Challenge 4 How do we decide which calls are equivalent when there may
be many possible candidates? Equivalent calls may occur in different orders
in each procedure, and moreover the procedure calls which correspond may
differ from execution to execution depending on the initial state (i.e. program
inputs).

1.1 Example

Consider the pair of equivalent procedures in Fig. 1 that differ in the order of
memory allocation.

Fig. 1. Both procedures copy a binary tree.

Both procedures are intended to copy the passed structure t. The proce-
dures are equivalent on any input, whether the input is tree shaped or not.
Our methodology RIE (Replace Isomorphism with Equality) and tool APE
(Automatic Program Equivalence tool) can verify that. The procedures differ
in two ways: Firstly, the allocation of the copied node has been moved from
before the recursive calls on line 5 to after the recursive calls on line 22. Sec-
ondly, the order of the recursive calls on lines 7 and 8 has been reversed on lines
19 and 20. The procedures are written in a simple language we call L, formalised
in Sect. 3.

The procedures are equivalent. An intuition as to why is: when t or r are
null both procedures leave the heap unchanged. Otherwise, both procedures
recursively copy all the nodes to the left, and all the nodes to the right, and
return a newly allocated root node via the parameter r. The only pre-existing
object modified by the procedures is the one pointed to by r. It is possible that
r aliases a node reachable from t, but even so only the v field of r is written
to, and only after the nodes have been copied. The objects allocated to rl and
rr do not alias anything, so the recursive calls cannot modify the tree, and

940 T. Wood et al.

hence swapping the order of the recursive calls does not affect the result. The
postcondition modifies {r} asserts that no existing object, other than r, is
modified. For this example, our tool APE requires this framing assertion. Our
approach can take advantage of any contracts that are available.

The procedures are not e-equivalent (so would fail to match in Symdiff)
when the stores are related with equality. With non-deterministic allocation a
procedure is not even equivalent to itself! It is straightforward to resolve with a
deterministic allocator, e.g. one that starts at 0 and allocates the next address.
Under this deterministic approach [29] a procedure is e-equivalent with itself,
but lcopy and rcopy are still not e-equivalent as the allocations on Line 5 and
Line 22 are allocated different addresses.

The example illustrates the challenges in the following ways. Challenge 1:
equivalence requires that the final stores are isomorphic, but the recursive calls
are unbounded so a tool has to check isomorphism of a graph of arbitrary
shape and unbounded size. Challenge 2: the stores are not equivalent prior
to the recursive calls. For instance, in lcopy three allocations (Lines 3 to 5)
have occurred before the recursive calls, but in rcopy only two allocations have
occurred (Lines 16 to 17). Challenge 3: the stores after the related calls on
Line 7 and Line 20 are not generally isomorphic, since the store after Line 20
contains the effects of two recursive calls but the store after Line 7 contains the
effect of only one recursive call. Challenge 4: we do not know in advance which
recursive call in lcopy (Lines 7 and 8) corresponds to which recursive call in
rcopy (Lines 19 and 20).

1.2 Contributions

We propose a sound methodology, RIE, for establishing isomorphic procedure
equivalence which is effective in an SMT solver. RIE enables our tool APE
to tackle challenge 1 by automatically establishing isomorphism using under-
approximation and heap equality! RIE works by proving equivalence under the
angelic allocation assumption; the memory locations are, as far as possible,
assumed to be allocated in such a way as to make isomorphic heaps also equal.

We describe a simple language L for which isomorphism implies equivalence
of observable behaviours, and give a formal definition of what it means for L to
be closed under isomorphism.

RIE also simplifies challenges two, three and four. RIE allows us to use equal-
ity in place of isomorphism, so challenge 2 is addressed by extending the notion
of heap equality to support partial heap equality, which we then apply to an over-
approximation of the footprint of the procedures. Furthermore RIE rescues us
from the need to produce a witness (from challenge 1) to the correspondence
between procedure behaviour, instead we address challenge 3 by equating the
write effects of equivalent procedures (soundly ignoring unobservable behavioural
differences). We combine our technique with mutual summaries to address
challenge 4.

In Sect. 2 we describe how RIE can be implemented to verify program equiv-
alence. In Sect. 3 we formalise equivalence and isomorphism and outline RIE’s

Verification of Equivalence with Memory Allocation 941

soundness proof. In Sect. 4 we discuss the effectiveness and limitations of RIE.
Finally in Sect. 5 we discuss some related work and conclude.

2 Encoding in a Verifier

Our tool APE takes as input an L program and produces as output ‘success’,
‘failure’, or times out. It does this by translating the input program into Boogie
code, which is fed into the Z3 SMT solver. The source code is available at https://
github.com/lexicalscope/ape.

In this section we illustrate RIE by showing how APE encodes the example
from Sect. 1.1 and how that encoding helps overcome the challenges detailed in
the introduction. In particular, we show how verification under the assumption
of “angelic allocation” proceeds. Previous work typically takes the approach of
abstracting or overapproximating programs with dynamic allocation [11,27,40,
43], storeless semantics [13] go as far as abstracting away the observable store
entirely. We make the surprising observation that under-approximating memory
allocation is also a useful approach, and our formal system proves it sound. RIE
establishes procedure equivalence by checking equivalence for only one pair of
execution traces for each initial store. Specifically:

All pairs of executions from isomorphic initial stores result in isomorphic
final stores if at least one pair of executions from each initial store results
in equal final stores.

In particular, it is not necessary to consider all pairs of isomorphic initial stores.
We prove this in Sect. 3.

RIE combines our ideas about establishing isomorphism using SMT technol-
ogy with the prior work on product programs and mutual summaries to produce
an automatic program equivalence tool that can verify our example. Standard
single program verification tools can be applied to the problem of procedure
equivalence using product programs [5,7,21,29,41], which encode the bodies of a
pair of procedures into a single procedure such that verifying a safety property
of the product procedure is equivalent to verifying a relational property of the
procedure pair [5]. Furthermore, a technique called mutual summaries [22] can
be applied to induce an SMT solver to search for interesting relations between
procedure calls.

2.1 Angelic Allocation

APE checks equivalence for one pair of executions for each initial store. It does
so by searching amongst the possible pairs of executions for a pair that result
in equal stores (modulo garbage). Of interest, then, are pairs of executions
where particular allocation sites (new) in each procedure are allocated the same
addresses. In Fig. 1 there are three allocation sites in each procedure. This gives
six possible correspondences between allocation sites (the variables on the left
of the equality are from lcopy, and the variables on the right are from rcopy):

https://github.com/lexicalscope/ape
https://github.com/lexicalscope/ape

942 T. Wood et al.

Fig. 2. A product procedure encoding of equivalence verification under angelic memory
allocation for procedures lcopy and rcopy.

a) rl = rl, rr = rr, n = n b) rl = rl, rr = n, n = rr

c) rl = rr, rr = rl, n = n d) rl = rr, rr = n, n = rl

e) rl = n, rr = rl, n = rr f) rl = n, rr = rr, n = rl

We do not know in advance which correspondence will be useful for verifica-
tion2. In our example, it happens that correspondence (a) is the useful one. Pairs
of (terminating) executions from the same initial store that have allocations in
this correspondence will result in equal final stores. Hence, no direct checks for
isomorphism are required. We will detail how procedure calls are handled shortly.

We induce the solver to search for the useful correspondence by constructing
a pair of executions for each correspondence and using a disjunction to assert
that at least one of them results in equivalent final stores. The Boogie-like pseudo
code in Fig. 2 shows how APE encodes lcopy and rcopy into a single (Symdiff-
style) product procedure. The inline commands (e.g. line 33) are not actual
Boogie syntax but should be taken to mean that the statements from the body
of the relevant procedure are copied into the product procedure at that point.
When the procedures are inlined, they are rewritten to work on their own private
copy of the heap with fresh variable names. After each inlined pair a different
correspondence between allocation sites is assumed (lines 35 and 40). Finally a
disjunction is asserted to challenge the verifier to prove that the final heaps are
equal for at least one of the inlined pairs (line 44).

Thus, RIE allows us to establish isomorphism using only heap equality!

2 It is interesting to note that in this example the variable names suggest which corre-
spondence is important, perhaps indicating that there may be useful heuristics that
could improve performance—such as trying correspondence (a) first.

Verification of Equivalence with Memory Allocation 943

2.2 Heap Equality

Here we described how APE establishes heap equality, and discuss why our
approach is powerful. Tools can relate programs in an intensional or exten-
sional way [10]. Intensionally equal heaps are defined in the same way, whereas
extensionally equal heaps have the same observable properties. For example, the
heaps3 h1 = h0[(5, f) �→ 7][(5, g) �→ 8] and h2 = h0[(5, g) �→ 8][(5, f) �→ 7] are not
intensionally equal, but they are extensionally equal. Extensional relationships
provide a powerful means to reason about reordering of store updates.

Fig. 3. Extensional equality of the reachable heap region. Written in Boogie.

APE uses the extensional axiomatisation of heap equality shown in Fig. 3.
The axiomatisation allows procedures to create different garbage by only requir-
ing equality of the reachable heap. The parameter $roots is a set of references,
and it overapproximates the references that are on the stack. The predicate
$Reachable is an axiomatisation of heap reachability (something is unreachable
when in a disjoint part of the heap) and is discussed in Sect. 4.3.

We define equality between heaps using a pair of implications that say that if
an object is reachable in either heap, its fields must be equal in both heaps. An
alternative, and perhaps more obvious, definition would be that the reachable
sets are equal, and that each object in the reachable set has equal fields in both
the heaps. The definitions are equivalent—since heaps that are equal in their
reachable parts have the same reachability relation. On several examples the
solver was unable to prove that the reachable sets are equal, but it is able to
prove our definition.

2.3 Procedure Call

Challenges two, three and four in the introduction relate to the need to reason
modularly about the behaviour of nested procedure calls, such as the recursive
calls in the example Fig. 1. In this section we describe how our encoding in Fig. 4
leverages RIE to address these challenges.

Equivalent procedure calls do not always occur from isomorphic stores
(challenge 2). This is overcome by considering only the region of the heap
3 h0[(5, f) �→ 7] is the heap made by copying h0 and setting field f of object 5 to 7.

944 T. Wood et al.

Fig. 4. Mutual summary of the lcopy and rcopy procedures. Written in Boogie.

reachable from the procedure parameters when trying to establish equivalence
of procedure calls. This corresponds to the predicate $Heap#EqualFromParams
on line 79, detailed in Sect. 3.6.

Equivalent procedure calls do not necessarily result in isomorphic stores
(challenge 3). This is overcome through our choice of procedure summary (line
80) and a frame axiom. The write effects of a pair of equivalent procedure calls
are related by the predicate $SameDiff (line 81). The frame axiom appears as
a free postcondition4 of every procedure (lines 63 and 69). Both are described
below.

Equivalent procedure calls are summarised by the predicate $SameDiff that
relates the pre and post stores of both calls. $SameDiff approximates the actual
behaviour of the procedures a surprising way, although equivalent procedures
can vary in the amount and shape of garbage, $SameDiff states that equivalent
procedure calls will always have equal effects, we justify this in Sect. 3.

The framing axioms (lines 63 and 69) restrict the write effects of the proce-
dures to the part of the heap that was reachable from the procedure parameters.
The axiom follows from the semantics of L. It is not known in advance which

4 A free postcondition may be assumed after a call, but is not checked.

Verification of Equivalence with Memory Allocation 945

procedure calls might be equivalent (challenge 4). This is overcome by how
the summary of the behaviour of equivalent procedures is encoded. Specifically,
the encoding of mutual summaries presented by Hawblitzel et al. [22] is used to
induce the SMT solver to search for related pairs of procedure calls. We detailed
this encoding below.

Figure 4 shows how APE encodes the mutual summary for the procedures
lcopy and rcopy. The encoding consists of several parts. Encountered calls to
the procedures are abstracted by a pair of uninterpreted predicates (lines 57 and
58) which we call abstraction predicates. The predicates are uninterpreted so we
precisely control their instantiation. They are given as free postconditions of
the procedures lcopy (line 61) and rcopy (line 67). Encountering calls to these
procedures causes the abstraction predicates to be instantiated in the solver’s
E-graph. We set triggers (lines 75 and 76) so that the solver will instantiate the
mutual summary axiom’s quantifiers (line 74) for each pair of instantiations of
the abstraction predicates. Non-vacuous instantiations of the axiom occur when
the solver is able to establish that the heaps reachable from the call parameters
are equal, and hence the antecedent is satisfied.

During a Simplify [17] style SMT solver proof search the quantifiers that
appear in an axiom are instantiated with ground terms from the solver’s E-
graph that match triggers associated with the quantifier. In-turn, the axiom is
applied to those instantiations to introduce new terms into the E-graph and so
on. Thus, APE controls the proof search by a combination of the logical meaning
of the axioms and the quantifier triggers.

The synthetic parameter $strat of lcopy (line 60) and rcopy (line 66)
is introduced to prevent the proof search from trying to establish equivalence
between procedure calls occurring under different allocation correspondences.
For example, in Fig. 2, the inlining of lcopy on line 33 and line 39 will con-
tain recursive calls to lcopy and rcopy respectively—but it is not useful to
find relations between these calls as they pertain to different allocations cor-
respondences. Specifically, the disjunction on line 44 asserts nothing about the
relationship between those heaps. The parameter $strat represents the allo-
cation correspondence in effect for that call, and the mutual summary trigger
(lines 75 and 76 of Fig. 4) restricts instantiation of the quantifiers to calls which
occurred under the same allocation correspondence.

We have completed our illustration of how the RIE methodology is imple-
mented in a modular program equivalence tool. Discussion about the effective-
ness and limitations of our approach is in Sect. 4.

3 Soundness of RIE

We now give a model of RIE and summarise a proof of its soundness. The
semantics of L come in two flavours: the V semantics is the ordinary semantics
of L. The A semantics models our Boogie encoding, which includes the various
approximations detailed in Sect. 2. We establish soundness of RIE by showing
that equivalence under A implies equivalence under V.

946 T. Wood et al.

We expect a mapping between procedures names, E , which pairs procedures
that are suspected to be equivalent. RIE takes the program and E as input and
tries to prove that indeed all pairs in E are equivalent.

We start with an overview of the semantics of L, then define isomorphism
and procedure equivalence. Then we detail how the various approximations are
modelled in the A semantics. Finally we give RIE’s soundness theorem5.

3.1 Semantics of L
L is a simple imperative language. Figure 5 describes the standard aspects of
L, while Fig. 6 describes the non-standard aspects. The following points are
interesting about our semantics:

– We distinguish between execution under V and A with a subscript, writing
where L ∈ {V,A}.

– We split procedure call into two: a “call” rule and a “body” rule, similar
to Godlin and Strichman [21], to treat procedure call concretely in V but
abstractly in A. The latter is a first ingredient in reflecting mutual summaries.

– Execution of pairs of procedures is included in the operational semantics,
modelled by the rules COMV and COMA:

σ1, s1 ‖ σ2, s2
tr1,tr2

L σ3 ‖ σ4

meaning statement s1 executed on store σ1 results in store σ3 producing trace
tr1, and similarly for statement s2. These rules reflect product programs [1,5,
29].

– We require the program adhere to a specification given by Con6.
– The semantics are instrumented to produce a trace of the states reached during

execution which we use to distinguish particular executions.
– although our semantics is a big step semantics, we keep the whole calling

context as part of the runtime configuration to allow us to give useful meaning
to isomorphism of stores.

– We assume loops have been encoded as recursive procedures.

We only discuss some of the rules of the operational semantics. NEW allocates
a new object.7 The address of the object must be fresh, and the object has
all fields set to null. ASSIGN updates a stack variable x with the result of
evaluating an expression e in the store σ.

BOD executes the body of a procedure p by looking up and executing p’s state-
ments. Our assumption that procedure contracts have already been verified, is

5 Full details of the proof can be found in the first author’s PhD thesis [44].
6 We expect single program contracts to have been verified; programs with no contracts

are also acceptable.
7 In a concrete implementation we do not require that there is no garbage collection,

just that the programmer cannot manipulate addresses.

Verification of Equivalence with Memory Allocation 947

Fig. 5. Grammar and operations of L

948 T. Wood et al.

Fig. 6. Procedure call and composition rules of L

modelled by the requirement (σ1, σ3) ∈ Con(p). Note that BOD pops the top of
the final stack, while CALLA and CALLV push new frames (using the function
mkframe).

CALLA models abstraction of procedure calls. The behaviour of the
abstracted call is restricted by the procedure’s contract Con(p), and the call
may not free any allocated address (All that RIE actually requires is that the
language not have concrete addresses so any language with garbage collection
which does not support pointer arithmetic can be handled).

Angelic allocation in the rule COMA is modelled by the predicate over trace
pairs I. The behaviour of called procedures in the A semantics is modelled by
the predicate over trace pairs M. We define I and M, as the paper progresses.

3.2 Isomorphism

Stores are isomorphic if they differ only in the actual values of heap addresses
or in garbage. An isomorphism is characterised by a bijection between values, π.
Definition 1 says that σ1 is isomorphic to σ2 with relation π iff the stacks of σ1 and
σ2 are the same height; for each corresponding stack frame the same variables are
defined; and π is an injection. Where π is the uniquely defined relation that maps
the stack variables of σ1 to σ2, commutes with field dereference, and preserves
the meaning of null, true, and false.

Definition 1 (Isomorphism).

σ1 ≈π σ2
def⇐⇒

Verification of Equivalence with Memory Allocation 949

– |σ1| = |σ2| ∧ ∀i ≤ |σ1| : dom(σ1[i]) = dom(σ2[i])
– π is an injection8, written in(π)

Where π is the smallest relation that satisfies:

π =πv ∪ {σ1[i](x) �→ σ2[i](x) | x ∈ dom(σ1[i]) ∧ i ≤ |σ1|} ∪
{σ1(a, f) �→ σ2(π(a), f) | a ∈ dom(π)}

And πv
def= [null �→ null, true �→ true, false �→ false]

In our notation: The number of stack frames in store σ is |σ|. The value of
variable x in the ith stack frame is σ[i](x). The domain of the mapping π is
dom(π), and dom(σ[i]) is the set of variables defined in the ith stack frame.

We also require that any contracts in the program are not sensitive to address
values or garbage. We write σi...j to mean σi, . . . , σj .

Definition 2 (Contracts in L). The contracts Con : Pid → P(Store ×Store),
are sets of pairs of Store representing the set of acceptable pre and post stores
of each procedure. We require that:

∀p, σ1...4, π1,2 : σ1 ≈π1 σ2 ∧ σ3 ≈π2 σ4 ∧ (σ1, σ3) ∈ Con(p) ∧ in(π1 ∪ π2)
=⇒ (σ2, σ4) ∈ Con(p)

Lemma 1 (Isomorphism is an equivalence relation). The relation ≈ is an
equivalence relation (reflexive, symmetric, transitive).

The crucial property of ≈ is that it is closed under execution. Namely, exe-
cuting a statement from isomorphic stores results in isomorphic executions. Exe-
cutions are isomorphic iff the elements of their traces are pairwise isomorphic
(written tr1 ≈ tr2), and have isomorphic write effects.

Lemma 2 (L closed under isomorphism).
For every execution σ1, s

tr1 σ3, store σ2, and injection π1 if σ1 ≈π1 σ2 then

– there exists an execution σ2, s
tr2 σ4

– if L = V, every execution σ2, s
tr2 σ4 is isomorphic to σ1, s

tr1 σ3

Executions σ1, s
tr1 σ3 and σ2, s

tr2 σ4 are isomorphic iff ∃π1,2 :

σ1 ≈π1 σ2 ∧ tr1 ≈ tr2 ∧ in(π1 ∪ π2) ∧ effect(σ1, σ3) ≈π2 effect(σ2, σ4)

Where trace isomorphism is:

tr1 ≈ tr2
def⇐⇒ tr1 ≈∅ tr2

tr1 ≈π tr2
def⇐⇒ ∃n : |tr1| = |tr2| = n ∧ ∃π1 . . . π2n :
(∀i ≤ n : tr1[i]↓2 ≈π2i−1 tr2[i]↓2) ∧
(∀i ≤ n : tr1[i]↓3 ≈π2i tr2[i]↓3) ∧
(∀i, j ≤ 2n : in(π ∪ πi ∪ πj))

8 in(π)
def⇐⇒ ∀(a, b), (c, d) ∈ π : (a = c ⇐⇒ b = d).

950 T. Wood et al.

And where effect(σ1, σ3)
def= σ3

heap \ σ1
heap

Proof. By induction on the derivation of σ1, s
tr1 σ3 . Most cases are straight-

forward since no instruction is sensitive to the actual value of addresses. Note
that every instruction makes the set of reachable addresses smaller, apart from
new which expands it by exactly one fresh address—this corresponds to the fact
that addresses are never synthesised and garbage is never resurrected. ��

A way to think of closure under isomorphism is that L is not sensitive to the
actual values of addresses nor garbage. Many industrial languages (such as C,
Java, Python, C�, etc.) contain features that are sensitive to the actual values
of heap addresses or order of allocation. Such sensitivity is typically not central
to the language and it is often not necessary to use such features.

3.3 Regional Isomorphism

As discussed in Sect. 2, APE works by establishing isomorphisms between the
heap regions reachable from procedure parameters (Line 79 of Fig. 4), so we
introduce a notion of isomorphism between heap regions. The heap regions reach-
able from two sequences of parameter names W and X are isomorphic iff the
sequences have the same length, and the relation (π) constructed by following
all paths from the parameters is an injection:

Definition 3 (Regional Isomorphism).

σ1
∼∼∼W,X

π σ2
def⇐⇒

|W | = |X| ∧ W ⊆ dom(σ1
top) ∧ X ⊆ dom(σ2

top) ∧ in(π)

Where π is the smallest relation which satisfies:

π =πv ∪ {σ1(W [i]) �→ σ2(X[i]) | i ≤ |X|} ∪ {σ1(a, f) �→σ2(π(a), f) | a ∈ dom(π)}

3.4 Procedure Equivalence

Procedures are equivalent if executing their bodies from isomorphic stores results
in isomorphic stores. Executing body p means looking up and executing the
statements that form the body of procedure p. Note that rule BOD pops the top
stack frame before completing, so stores σ3, σ4 in Definition 4 are as observed
by a caller. This means that equivalence relates to the observable behaviour of
the procedure body, and that differences in local variables, etc., are ignored.
The same definition of procedure equivalence applies to both the A and the V
semantics.

Definition 4 (Procedure equivalence).

Verification of Equivalence with Memory Allocation 951

3.5 Angelic Allocation

We describe how angelic allocation is modelled by the predicate I in the A
semantics rule COMA. The predicate selects the pairs of execution traces that
exhibit desirable allocation patterns.

Predicate I (Definition 6) retains only traces with heap regions that are equal
at particular isomorphic points (Definition 5) in the traces. In APE, these points
correspond to procedure entry, equivalent procedure calls and allocation sites.
APE only verifies procedures from equal (rather than isomorphic) initial stores,
discards execution pairs which don’t have interesting correspondences between
allocations, and assumes procedures have equal effects. Because we are only
trying to prove soundness of RIE, it is not necessary to fully specify how APE
chooses which stores to equate. Rather, we prove that any assumption of store
equality that the tool makes is sound, subject to the caveats in Definition 5.

Definition 5 (Isomorphic Points).
Any tool using RIE must define a function

pts : (Trace × Trace) → P(N × N × Lid∗ × Lid∗)

with the following properties:

1. The same set of points is produced for isomorphic traces:

∀tr3,4 : tr1 ≈ tr3 ∧ tr2 ≈ tr4 =⇒ pts(tr1, tr2) = pts(tr3, tr4)

2. The traces are isomorphic at each of the points:

∀(i, j,W,X) ∈ pts(tr1, tr2) : ∃π1 : tr1[i] ∼∼∼W,X
π1

tr2[j]

3. If the initial stores of tr1, tr2 are isomorphic, then the isomorphism is injective
with all the other isomorphisms. Otherwise the isomorphisms are empty.
– in(π ∪ Π(tr1, tr2))
– �π : fst(tr1) ≈π fst(tr2) =⇒ Π(tr1, tr2) = ∅

Where

Π(tr1, tr2) =
⋃ {

π
∣∣ ∃(i, j,X, Y) ∈ pts(tr1, tr2) ∧ tr1[i] ∼∼∼X,Y

π tr2[j]
}

Definition 6 (Angelic Allocation).

I(tr1, tr2)
def⇐⇒ Π(tr1, tr2) ⊆ id

Definition 5 requires that the points are selected symmetrically for isomorphic
traces. This symmetry is critical for the soundness of RIE, which must verify
at least one pair of execution traces for each initial state. Furthermore, the def-
inition requires that the union of the isomorphisms between the selected heap
regions is an injection. This corresponds to the fact that RIE is implemented by
equating allocation sites, and will be discussed further in later sections, partic-
ularly Sect. 4.

952 T. Wood et al.

3.6 Mutual Summaries of Equivalent Procedures

APE uses mutual summaries, lines 73 and 80 in Fig. 4, to allow the verifier to
use facts about the behaviour of equivalent procedure calls in its proofs. It is
needed in order for procedure equivalence to be a transitive relation.

APE’s use of mutual summaries is modelled by the rule CALLA, which over-
approximates the behaviour of concrete procedure call. And the predicate M in
the rule COMA, which restricts the traces to those where the procedure pairs in
E behave equivalently.

The antecedent σ1
∼∼∼{x1...xn},{y1...yn}

π1
σ2 expresses that the regions reach-

able from the parameters are isomorphic (as needed for challenge 2), while the
conclusion effect(σ1, σ3) ≈π2 effect(σ2, σ4) expresses that the procedures have
isomorphic write effects (as needed for challenge 3). In our example, the encod-
ing of the antecedent is $Heap#EqualFromParams on line 79 of Fig. 4, while the
encoding of the conclusion is $SameDiff on line 80 of Fig. 4.

Definition 7 (Mutual Summaries of Equivalent Procedures).

M(tr1, tr2)
def⇐⇒ ∀π1, σ1...4, (p1, p2) ∈ E :

(call p1(x1 . . . xn), σ1, σ3) ∈ tr1 ∧
(call p2(y1 . . . yn), σ2, σ4) ∈ tr2 ∧
σ1

∼∼∼{x1...xn},{y1...yn}
π1

σ2

=⇒ ∃π2 : in(π1 ∪ π2) ∧ effect(σ1, σ3) ≈π2 effect(σ2, σ4)

3.7 Soundness of RIE

We now give the theorem which guarantees soundness of RIE, and describe
some keys points in its proof. Theorem 1 states that if all pairs in E are mutually
terminating and equivalent under the A semantics, then they are also equivalent
under the V semantics. Mutual termination (mt) means that both procedures
terminate for the same set of initial stores9.

Theorem 1 (RIE is sound).

If ∀(p3, p4) ∈ E :mtV(p3, p4) ∧ p3
A∼∼ p4

Then ∀(p1, p2) ∈ E : p1
V∼∼ p2

Where mtL(p3, p4)
def⇐⇒ ∀σ1...3 : σ1 ≈ σ2 =⇒

9 We could produce a total definition of procedure equivalence by including a notion of
mutual termination [18,22] in Definition 4. However, APE does not yet reason about
the termination behaviour of the procedures. A total notion of procedure equivalence
is important, particularly where a transitive procedure equivalence relation is needed.
Since our tool takes the same basic approach as Symdiff, it should be straightforward
to incorporate existing mutual termination checking techniques [18,20,22].

Verification of Equivalence with Memory Allocation 953

Proof. The proof proceeds by showing that for any pair of executions (tr1, tr2)
from isomorphic initial stores in the V semantics there exist an isomorphic execu-
tion (tr5 with tr1 ≈ tr5) such that that I and M hold for (tr1, tr5) and thus the
tr5 and tr2 executions compose by ‖ in the A semantics. Then by the assump-
tions and transitivity of ≈ we know that tr1, tr2 end in isomorphic stores. The
proof goes by an inner induction nested within an outer induction. We now write
the proof in some more detail:

Assume ∀(p3, p4) ∈ E :mtV(p3, p4) ∧ p3
A∼∼ p4.

To show:

First Part: From Definition 5 we see that there is a π2 = Π(tr1, tr2) (1). By
Lemma 3 (below) there exists a third execution such that
tr1 is isomorphic to tr3 with π2, i.e. tr1 ≈π2 tr3, which means by Lemma 1
(symmetry) we get tr3 ≈π−1

2
tr1 (2). Take any point (i, j,X, Y) ∈ pts(tr1, tr2).

To show: tr3[i] ∼∼∼X,Y
id tr2[j]. By (1) exists π4 such that tr1[i] ∼∼∼X,Y

π4
tr2[j] and

π4 ⊆ π2 (4). By (2) there exists π3 such that tr3[i] ≈π3 tr1[i] and π3 ⊆ π−1
2 (3).

Hence, by Lemma 1 (transitivity), we have that tr3[i] ∼∼∼X,Y
π3◦π4

tr2[j], we know π3

composed with π4 is large enough because X is a subset of the stack variables
defined in tr1[i], and dom(π3) includes the values of all stack variables. By (3),
(4), we know that π3 composed with π4 is a subset of the identity relation.
So tr3[i] ∼∼∼X,Y

id tr2[j]. Because tr1 ≈ tr3 we have by definition pts(tr1, tr2) =
pts(tr3, tr2). Then we get ∀(i, j,X, Y) ∈ pts(tr3, tr2) : tr3[i] ∼∼∼X,Y

id tr2[j]. And
thus we have Π(tr3, tr2) ⊆ id , which in turn gives us I(tr3, tr2) (5).

Second Part: We now proceed by induction on the size of the derivation of
.

It remains to show that, tr2 is also a trace under A and that there is an A
trace tr5 isomorphic to tr3 such that M(tr5, tr2) holds. Note that it is trivial
to prove that apart from ‖ all the rules of A semantics overapproximate the V
semantics (l1). By (l1) and induction on the derivation of
we get .

Base Case: there are no procedure calls in . By Lemma 2
then also has no procedure calls. By (l1) and induc-
tion on the derivation of we get .
Since there are no procedure calls, trivially M(tr3, tr2) and

. From the antecedent we know that
lst(tr3) ≈ lst(tr2), and since tr1 ≈ tr3 then by transitivity of ≈ we have
lst(tr1) ≈ lst(tr2). And since lst(tr1) = σ3 and lst(tr2) = σ4 base case is done.

Inductive Step: there are procedure calls in .

To show: there exists an execution such that M(tr5, tr2)
and tr5 ≈id tr3 (6). Proceed by an inner induction over the derivation of

954 T. Wood et al.

. Most cases are trivial. The interesting cases are CALLV
where the called procedure is in E , and the inductive case TRANS.

Inner Case: CALLV where the called procedure is in E . By case
there is and (p3, p4) ∈ E . Rule CALLV
can only be applied if a shallower tree is derivable for the body of
the called procedure. Therefore we apply the outer induction hypoth-
esis, the antecedent mtV(p3, p4), and Lemma 3, to deduce that there
exists σ7 such that and σ5 ≈id σ7. From
CALLA we see that (intu-
ition: we swap the behaviour of p3 for the behaviour of p4). Take
tr5 = (call p3(x1 . . . xn), σ2, σ7) and we have tr3 ≈id tr5. To show:
M(tr5, tr2). Take arbitrary (call p4(y1 . . . yn), σ8, σ10) ∈ tr2 such that
σ2

∼∼∼{x1...xn},{y1...yn}
π5

σ8. To show: ∃π6 : in(π5 ∪ π6) ∧ effect(σ2, σ5) ≈π6

effect(σ8, σ10). This follows straightforwardly from Lemma2 and the fact that
the same procedure p4 was executed to obtain σ5 as to obtain σ10. Inner case
done.

Inner Case: TRANS By case there is and hence exists
σ9, tr7,9 such that . The proof goes as expected,
by applying the inner induction hypothesis twice with one slight complex-
ity. The first application constructs another execution of s1 with the desired
properties; but that execution’s final store is not σ9! Rather it is some other
store (say σ11) that is isomorphic to σ9. Before we apply the inner induction
hypothesis a second time, we use Lemma 3 to construct an execution isomor-
phic to but with initial store σ11. M holds for the resultant
traces by the same argument as the CALLV case. Inner case done.
Hence M(tr5, tr2). From (5) and (6) we also have I(tr5, tr2). So we get
that is an execution under the
A semantics. Finally, from the antecedent we know that lst(tr3) ≈ lst(tr4),
and since tr1 ≈ tr3 ≈ tr5 and tr2 ≈ tr4 then by transitivity of ≈ we have
lst(tr1) ≈ lst(tr2). And since lst(tr1) = σ3 and lst(tr2) = σ4 we are done.

��
The soundness proof of Theorem 1 relies on constructing alternative execu-

tions that are isomorphic using the identity bijection, Lemma3 states that all
such alternative executions are derivable in L.

Lemma 3 (Sufficent non-determinism). Given statement s, stores σ1...3,
mapping π1, and alternative allocation strategy π2, such that:

– σ1 and σ2 are isomorphic with mapping π1: σ1 ≈π1 σ2

– s can execute to completion from σ1:
– π1 and π2 map common addresses in the same way in(π1 ∪ π2)
– ∀(a1, a2) ∈ π2 :(a1 ∈ σ1

heap ⇐⇒ a2 ∈ σ2
heap)

Then there exists an isomorphic execution such that:

tr1 ≈π2 tr2 ∧ ∀(a1, a2) ∈ π2 :(a1 ∈ σ3
heap ⇐⇒ a2 ∈ σ4

heap)

Verification of Equivalence with Memory Allocation 955

Proof. By induction on the derivation of the alternative execution
is constructed. In particular note that because π2 does not map between allo-
cated and unallocated addresses, the appropriate alternative address is always
unallocated when an allocation statement is reached. And that, since in(π1 ∪ π2)
then all addresses that were already allocated at the start of the execution
do not need to be allocated alternatives. The proof goes through for both V
and A. ��

4 Discussion

The number of correspondences between allocations (Sect. 2) is factorial in the
maximum number of allocation sites in either procedure. Hence RIE is only
practical for relatively small numbers of allocation sites. However, this is not
as restrictive as it may seem because our approach is modular. In practice,
when loops are encoded as procedure calls, then many interesting procedures
contain only small numbers of allocations. In some cases it is also possible to
split a procedure into chunks or abstract common parts. It is also likely that the
applicability of this technique can be significantly extended by using additional
static analysis to eliminate some of the permutations in advance. For example,
the types of the objects being allocated could be used to eliminate permutations
that aligned objects of different types.

Framing of procedure calls is important in verifying equivalence for many
examples. APE has a fairly naive approach to framing and disjointness of heap
regions, which restricts the class of examples it can currently deal with. However,
our techniques, and choice of Dafny [32] style heap encoding, should be amenable
to a more powerful framing methodology. Improving APE’s framing support is
likely to significantly improve its completeness.

We considered many alternative approaches to establishing isomorphism. The
natural approach using existentials does not work very well. We investigated
several approaches using universal quantification. We tried defining heaps to be
isomorphic if all pairs of paths that lead to related addresses in one heap also
lead to related addresses in the other. We tried several approaches for limit-
ing which, and what depth of paths should be considered by the solver. But
the underlying doubly exponential complexity of comparing all pairs of paths
impedes the applicability of that approach. The requirement that disjoint heap
effects of procedure calls commute was an important design force: many alter-
native approaches required extensive additional axioms to handle the various
cases, whereas our current approach of enumerating allocators seems to handle
many cases naturally.

4.1 Examples

There are a collection of programs available from https://github.com/lexical
scope/ape\#automatic-procedure-equivalence-tool that show the capabilities of

https://github.com/lexicalscope/ape#automatic-procedure-equivalence-tool
https://github.com/lexicalscope/ape#automatic-procedure-equivalence-tool

956 T. Wood et al.

Fig. 7. Examples with the maximum number of allocations per procedure and timings

APE. Several of them have been listed in Fig. 7 with timings performed on an
Intel Core i5-3210M@2.5 GHz processor with 8 GB memory.

We surmise that the amount of time APE takes to verify an example is related
to the number of allocations, the number of paths through the procedure, the
number of procedure calls, the complexity of any framing reachability that needs
to be solved, and the order that Z3 happens to apply the axioms (i.e. how far
into the search space the solution lies—for example, reordering procedure calls
usually slows the verification down).

RIE’s approach of using equality to establish isomorphism does prevent APE
from establishing isomorphism in some cases where it would be helpful to do so.
The example in Fig. 8 is from a refactoring of some code which manipulates a
doubly linked list. Both procedures add an element to a list, but first remove it
if it is already present. The left procedure has a redundant check that the item
is in the list, in the right procedure this redundancy is removed.

The isomorphism between lines 88 and 105 relates the addresses in rf0 and
rf. The isomorphism between lines 91 and 105 relates the addresses in rf1
and rf. If we were to assume equality for both of these isomorphisms then we
would have rf = rf0 = rf1. However, rf0 is allocated by the new statement
on line 87 whereas rf1 is allocated by the subsequent new statement on line 90.
The semantics of new require that each allocation gives an address which was
not previously allocated—i.e. that rf0 �= rf1.

RIE, therefore, restricts the selected points in Definition 6 to prevent contra-
dictory isomorphisms being selected. Due to this restriction a verifier using RIE
alone may fail to produce a proof for some procedures that are in fact equiva-
lent according to our definitions. Any tool using RIE in practice may choose to
equate one pair of calls to find, but it must find some other way to deal with
the other pair of calls (such as manually adding an additional specification of
find).

Verification of Equivalence with Memory Allocation 957

Fig. 8. A difficult example where two stores in one execution are isomorphic with the
same store in the other execution.

4.2 Definitions of Isomorphism and Procedure Equivalence

Our definition of procedure equivalence is useful because it is a contextual equiv-
alence [34] for L. This means that given equivalent procedures p1, p2 and a pro-
gram that calls p1, one can always change the program to call p2 instead without
affecting the observable behaviour of the program. Of particular interest to pro-
grammers is Corollary 1: the relation ≈ preserves the meaning of all assertions.

Corollary 1 (Isomorphism is assertion preserving).

∀σ1, σ2, b : σ1 ≈ σ2 =⇒ (σ1 � b ⇐⇒ σ2 � b)

Proof. Follows from Lemma 2 ��
Interestingly, it is possible to define isomorphism almost equivalently as the

least-fixed-point interpretation of the relation:

where σ∅ is the empty store. That is, it could be defined as a smallest relation
closed under the atomic operations of the semantics. However, even though the
semantics is naturally closed under ≈′, the definition is not as helpful when trying
to decide if a particular pair of stores are isomorphic. Regardless, a definition in
this least-fixed-point style would allow us to construct a notion of isomorphism
even for a semantics where we did not know an appropriate direct definition.
Perhaps it is interesting to consider what assertion language would be preserved
for any particular semantics given such a definition.

958 T. Wood et al.

4.3 Reachability

Establishing reachability enables APE to prove interesting examples, but is ancil-
lary to the focus of this paper RIE and angelic allocation. Still, our definition
of equivalence allows differences in garbage (which is unreachable memory), and
APE use reachability to reason about read and write effect framing as described
in Sect. 2.3—so an useful axiomatisation of reachability is needed.

Fig. 9. The partial axiomatisation of reachability used by APE, written in Boogie. The
triggers are elided {...}. The function $Read(h,a,f) is the value of field f of object a

in heap h, the predicate $Allocated($h,$a) holds if object $a is allocated in heap $h.
The predicate $Edge($h, $a, $f, $c) holds if the field $f of object $a has the value
$c in heap $h.

Figure 9 shows our Boogie encoding of reachability. We give several axioms
for the predicate $Reach, which the tool instantiates in different circumstances
controlled by various triggers (controlled programatically, users cannot write
them). Rather than precisely deciding the reachability set, often it is necessary
to prove disjointness of certain heap regions. For example, garbage objects are
disjoint from the reachable region, and a property of a region is preserved over a
procedure call if the region is disjoint from the call effects. Our choice of axioms
enable the tool to establish a lack of reachability by showing either that there
are no outgoing (line 130) or no incoming (line 127) edges to a particular heap
region. Although the axioms line 127 and line 130 are logically equivalent, we
use triggers to unroll them in different situations.

5 Related Work and Conclusions

The study of program equivalence arguably pre-dates the study of functional cor-
rectness. In his 1969 paper [23], Hoare identified that “Many [previous] axiomatic
treatments of computer programming [2,24,46] tackle the problem of proving
the equivalence, rather than the correctness, of algorithms”. To date, practical

Verification of Equivalence with Memory Allocation 959

approaches to program equivalence rely on structural similarity of the programs.
Many works focus on methods to account for some structural differences. The
importance of program structure in proving program equivalence was observed
by Dijkstra in 1972 [15], where he also observes that programmers are often
called upon to modify existing programs.

Key developments in program equivalence have come from research into non-
interference in secure information flow and compiler translation validation. Non-
interference is the property that the values of secret inputs do not influence public
outputs. Translation validation provides assurances that the program output by
a compiler is correct with respect to the input program. Translation validation
concerns itself with correctness of particular compiler runs, and does prove the
compiler implementation correct. Non-interference can be formalised in terms of
program equivalence [25], or more generally as a safety property over pairs of
program traces [7,41]. Methods for reducing safety properties over trace pairs
to safety properties over single traces have been explored [9,33] and generalised,
particularly via product programs [4,6] and similar [38,42,47]. Product programs
combine a pair of programs into one, such that useful invariants can be formu-
lated at interesting points in the product, and can generalise to relations between
programs [5]. Compiler translation validation [28,31,38,42,47] is inherently a
program equivalence question. Many techniques have been applied, several vari-
ations of product programs [47], constructing bisimulations between control flow
graphs [28], iteratively applying equality axioms [38], or normalising [42] graph
representations of the programs.

Relational Hoare Logic [5,10–12,45] (RHL) was proposed by Benton, in
2004 [10], in the course of proving the correctness of various compiler opti-
misations. The Hoare triple {P}S{Q} is extended to a Hoare quadruple by
inclusion of two statements, rather than one, {P}C1 ∼ C2{Q}. The pre and
post conditions are lifted to relations over stores. RHL has been extended by
various rules to account for differences in structure between the programs [5,10].
Barthe, Crespo, and Kunz [5] pointed out that RHL is closely related to the
idea of product programs. Several formal works tackle the problem of prov-
ing program equivalence in the presence of dynamic memory allocation. Pitts
uses a simulation between memory locations when defining a semantic approach
to program equivalence [37], the memory model is flat not a heap. Benton et
al. uses isomorphism between heap regions when proposing an RHL that sup-
ports dynamic allocation [11]. Yang constructs a relational separation logic with
support for dynamic allocation [45]. Sumner and Zhang propose a different app-
roach, canonical memory addresses are constructed based on program control
flow and syntactic elements. Banerjee, Schmidt, and Nikouei [1] propose a logic
for weaving programs with structural differences so that relational properties
of programs can be expressed. They extend this with a region logic to support
reasoning about encapsulation in dynamically allocating programs; catering for
equivalence between programs which vary the representation of objects.

960 T. Wood et al.

5.1 Fully Automatic Equivalence Verification Tools

To our knowledge there are four other tools with the objective of fully auto-
mated verification of procedure equivalence for imperative programs: Symd-
iff [29], RVT [21], SCORE [36], and Rêve [19]. Symdiff [29] uses program ver-
ification to prove or provide counter examples of equivalence. It uses mutual
summaries, and can infer intermediate summaries to establish equivalence. Con-
ditional equivalence [22] can show partial equivalence over a subset of proce-
dure inputs and construct summaries of interprocedural behavioural differences.
Symdiff is built on Boogie [3]. Symdiff has no built-in support for procedures
that differ in memory allocation. RVT [21] proves equivalence of some C pro-
grams. RVT generates loop and recursion free program fragments, which are
verified by the CBMC [14] bounded model checker. Loops are encoded as recur-
sive functions. Recursive calls are replaced by uninterpreted functions. Recently
support for unbalanced recursive functions has been added [39]. RVT is extended
to dynamic data structures involving pointers by generating (symbolic) bounded
tree-like data structures as inputs for procedures. These initial tree-like struc-
tures are isomorphic up to some bound. RVT then verifies (up to the same
bound) that those data structures remain isomorphic, at procedure calls and
procedure return. The bound is determined by a syntactic overapproximation
of the maximum depth of modification. No rigorous proof is presented for this
extension to pointers. Rêve [19] and SCORE [36] support numerical programs
without heaps. Rêve uses Horn constraints to verify equivalence of deterministic
imperative programs with unbounded integer variables. Rêve infers inductive
coupling predicates and as such can deal with loops and recursion where, for
example, the number and meaning of procedure parameters has changed. The
authors of Rêve propose in the future to extend their tool with an RVT-like
approach to the heap. SCORE uses abstract interpretation over an interleav-
ing of the programs. A good interleaving is found by searching. SCORE deals
with numerical programs. For non-equivalent programs SCORE can compute an
overapproximation of the semantic difference. The precision of this overapprox-
imation is related to the size of the syntactic difference.

5.2 Conclusion

We defined procedure equivalence, and a sound methodology RIE, for automat-
ically proving equivalence of programs which vary in dynamic memory alloca-
tion. We described our RIE encoding APE for equivalence verification (available
at https://github.com/lexicalscope/ape). Our approach is fully automatic, and
applicable to programs which manipulate heap data structures of any shape.

References

1. Banerjee, A., Schmidt, D.A., Nikouei, M.: Relational logic with framing and
hypotheses. In: FSTTCS (2016)

2. de Barker, J.W.: Axiomatics of simple assignment statements. In: MR 94 (1968)

https://github.com/lexicalscope/ape

Verification of Equivalence with Memory Allocation 961

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: Boer, F.S., Bonsangue,
M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006). doi:10.1007/11804192 17

4. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.)
LFCS 2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35722-0 3

5. Barthe, G., Crespo, J.M., Kunz, C.: Product programs and relational program
logics. J. Logical Algebraic Methods Program. 85(5), 847–859 (2016)

6. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21437-0 17

7. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of the 17th IEEE Workshop on Computer Security Foundations.
IEEE Computer Society (2004)

8. Bavota, G., et al.: When does a refactoring induce bugs? An empirical study. In:
2012 IEEE 12th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE (2012)

9. Benton, N.: Abstracting allocation. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207,
pp. 182–196. Springer, Heidelberg (2006). doi:10.1007/11874683 12

10. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM (2004)

11. Benton, N., et al.: Relational semantics for effect-based program transformations
with dynamic allocation. In: Proceedings of the 9th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming. ACM (2007)

12. Beringer, L.: Relational decomposition. In: Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 39–54. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-22863-6 6

13. Bozga, M., Iosif, R., Laknech, Y.: Storeless semantics and alias logic. In: Proceed-
ings of the 2003 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
based Program Manipulation, PEPM 2003, San Diego, California, USA. ACM
(2003)

14. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of C and verilog pro-
grams using bounded model checking. In: 2003 Proceedings of the Design Automa-
tion Conference. IEEE (2003)

15. Dahl, O.J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic
Press Ltd., Cambridge (1972)

16. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

17. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

18. Elenbogen, D., Katz, S., Strichman, O.: Proving mutual termination. Form. Meth-
ods Syst. Des. 47(2), 204–229 (2015)

19. Felsing, D., et al.: Automating regression verification. In: Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, ASE
2014. ACM (2014)

20. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive
procedures. Acta Informatica 45(6), 403–439 (2008)

http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/978-3-642-35722-0_3
http://dx.doi.org/10.1007/978-3-642-35722-0_3
http://dx.doi.org/10.1007/978-3-642-21437-0_17
http://dx.doi.org/10.1007/11874683_12
http://dx.doi.org/10.1007/978-3-642-22863-6_6
http://dx.doi.org/10.1007/978-3-540-78800-3_24

962 T. Wood et al.

21. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of the 46th
Annual Design Automation Conference. ACM (2009)

22. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Towards modularly com-
paring programs using automated theorem provers. In: Bonacina, M.P. (ed.) CADE
2013. LNCS (LNAI), vol. 7898, pp. 282–299. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38574-2 20

23. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

24. Igarishi, S.: An axiomatic approach to equivalence problems of algorithms with
applications. Ph.D. thesis (1964)

25. Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow. Sci.
Comput. Program. 37, 1–3 (2000)

26. Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Conditional equivalence. Technical report
MSR-TR-2010-119. Microsoft, October 2010

27. Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order
imperative programs. In: Conference Record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM (2006)

28. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM (2009)

29. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 54

30. Lahiri, S., et al.: Differential assertion checking. In: Foundations of Software Engi-
neering. ACM (2013)

31. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs’. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2014. ACM (2014)

32. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

33. Leino, K.R.M., Müller, P.: Verification of equivalent-results methods. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 307–321. Springer, Hei-
delberg (2008). doi:10.1007/978-3-540-78739-6 24

34. Milner, R.: Fully abstract models of typed λ-calculi. Theor. Comput. Sci. 4(1),
1–22 (1977)

35. Park, J., et al.: An empirical study of supplementary bug fixes. In: 2012 9th IEEE
Working Conference on Mining Software Repositories (MSR) (2012)

36. Partush, N., Yahav, E.: Abstract semantic differencing via speculative correlation.
In: Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications. ACM (2014)

37. Pitts, A.M.: Operational semantics and program equivalence. In: Barthe, G., Dyb-
jer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 378–412.
Springer, Heidelberg (2002). doi:10.1007/3-540-45699-6 8

38. Stepp, M., Tate, R., Lerner, S.: Equality-based translation validator for LLVM. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 737–742.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 59

http://dx.doi.org/10.1007/978-3-642-38574-2_20
http://dx.doi.org/10.1007/978-3-642-38574-2_20
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-540-78739-6_24
http://dx.doi.org/10.1007/3-540-45699-6_8
http://dx.doi.org/10.1007/978-3-642-22110-1_59

Verification of Equivalence with Memory Allocation 963

39. Strichman, O., Veitsman, M.: Regression verification for unbalanced recursive
functions. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM
2016. LNCS, vol. 9995, pp. 645–658. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-48989-6 39

40. Tennent, R.D., Ghica, D.R.: Abstract models of storage. High.-Order Symbolic
Comput. 13(1), 119–129 (2000)

41. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). doi:10.1007/11547662 24

42. Tristan, J.-B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-
idation for LLVM. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM (2011)

43. Tzevelekos, N.: Program equivalence in a simple language with state. Comput.
Lang. Syst. Struct. 38(2), 181–198 (2012)

44. Wood, T.: Equivalence verification for memory allocating procedures. Ph.D. thesis,
Imperial College London, Under Submission

45. Yang, H.: Relational separation logic. Theor. Comput. Sci. 375, 1–3 (2007)
46. Yanov, Y.: Logical operator schemes. In: Kybernetilca I (1958)
47. Zaks, A., Pnueli, A.: CoVaC: compiler validation by program analysis of the cross-

product. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014,
pp. 35–51. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68237-0 5

http://dx.doi.org/10.1007/978-3-319-48989-6_39
http://dx.doi.org/10.1007/978-3-319-48989-6_39
http://dx.doi.org/10.1007/11547662_24
http://dx.doi.org/10.1007/978-3-540-68237-0_5

	Modular Verification of Procedure Equivalence in the Presence of Memory Allocation
	1 Introduction
	1.1 Example
	1.2 Contributions

	2 Encoding in a Verifier
	2.1 Angelic Allocation
	2.2 Heap Equality
	2.3 Procedure Call

	3 Soundness of RIE
	3.1 Semantics of L
	3.2 Isomorphism
	3.3 Regional Isomorphism
	3.4 Procedure Equivalence
	3.5 Angelic Allocation
	3.6 Mutual Summaries of Equivalent Procedures
	3.7 Soundness of RIE

	4 Discussion
	4.1 Examples
	4.2 Definitions of Isomorphism and Procedure Equivalence
	4.3 Reachability

	5 Related Work and Conclusions
	5.1 Fully Automatic Equivalence Verification Tools
	5.2 Conclusion

	References

