
The Power of Non-determinism in Higher-Order
Implicit Complexity

Characterising Complexity Classes Using
Non-deterministic Cons-Free Programming

Cynthia Kop(B) and Jakob Grue Simonsen

Department of Computer Science,
University of Copenhagen (DIKU), Copenhagen, Denmark

{kop,simonsen}@di.ku.dk

Abstract. We investigate the power of non-determinism in purely
functional programming languages with higher-order types. Specifically,
we consider cons-free programs of varying data orders, equipped with
explicit non-deterministic choice. Cons-freeness roughly means that data
constructors cannot occur in function bodies and all manipulation of
storage space thus has to happen indirectly using the call stack.

While cons-free programs have previously been used by several
authors to characterise complexity classes, the work on non-deterministic
programs has almost exclusively considered programs of data order 0.
Previous work has shown that adding explicit non-determinism to cons-
free programs taking data of order 0 does not increase expressivity; we
prove that this—dramatically—is not the case for higher data orders:
adding non-determinism to programs with data order at least 1 allows for
a characterisation of the entire class of elementary-time decidable sets.

Finally we show how, even with non-deterministic choice, the orig-
inal hierarchy of characterisations is restored by imposing different
restrictions.

Keywords: Implicit computational complexity · Cons-free program-
ming · EXPTIME hierarchy · Non-deterministic programming · Unitary
variables

1 Introduction

Implicit complexity is, roughly, the study of how to create bespoke programming
languages that allow the programmer to write programs which are guaranteed
to (a) only solve problems within a certain complexity class (e.g., the class of
polynomial-time decidable sets of binary strings), and (b) to be able to solve all
problems in this class. When equipped with an efficient execution engine, the

The authors are supported by the Marie Sk�lodowska-Curie action “HORIP”, pro-
gram H2020-MSCA-IF-2014, 658162 and by the Danish Council for Independent
Research Sapere Aude grant “Complexity via Logic and Algebra” (COLA).

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 668–695, 2017.
DOI: 10.1007/978-3-662-54434-1 25

The Power of Non-determinism in Higher-Order Implicit Complexity 669

programs of such a language may themselves be guaranteed to run within the
complexity bounds of the class (e.g., run in polynomial time), and the plethora
of means available for analysing programs devised by the programming language
community means that methods from outside traditional complexity theory can
conceivably be brought to bear on open problems in computational complexity.

One successful approach to implicit complexity is to syntactically con-
strain the programmer’s ability to create new data structures. In the seminal
paper [12], Jones introduces cons-free programming. Working with a small func-
tional programming language, cons-free programs are read-only : recursive data
cannot be created or altered (beyond taking sub-expressions), only read from
input. By imposing further restrictions on data order (i.e., order 0 = integers,
strings; order 1 = functions on data of order 0; etc.) and recursion scheme (e.g.,
full/tail/primitive recursion), classes of cons-free programs turn out to charac-
terise various deterministic classes in the time and space hierarchies of compu-
tational complexity.

However, Jones’ language is deterministic and, perhaps as a result, his charac-
terisations concern only deterministic complexity classes. It is tantalising to con-
sider the method in a non-deterministic setting: could adding non-deterministic
choice to Jones’ language increase its expressivity; for example, from P to NP?

The immediate answer is no: following Bonfante [4], adding a non-
deterministic choice operator to cons-free programs with data order 0 makes
no difference in expressivity—deterministic or not, they characterise P. However,
the details are subtle and depend heavily on other features of the language; when
only primitive recursion is allowed, non-determinism does increase expressivity
from L to NL [4].

While many authors consider the expressivity of higher types, the interplay of
higher types and non-determinism is not fully understood. Jones obtains several
hierarchies of deterministic complexity classes by increasing data orders [12], but
these hierarchies have at most an exponential increase between levels. Given the
expressivity added by non-determinism, it is a priori not evident that similarly
“tame” hierarchies would arise in the non-deterministic setting.

The purpose of the present paper is to investigate the power of higher-order
(cons-free) programming to characterise complexity classes. The main surprise is
that while non-determinism does not add expressivity for first-order programs,
the combination of second-order (or higher) programs and non-determinism
characterises the full class of elementary-time decidable sets—and increasing
the order beyond second-order programs does not further increase expressivity.
However, we will also show that there are simple changes to the restrictions that
allow us to obtain a hierarchy of characterisations as in the deterministic setting.

An extended version of this paper with full proofs is available online [15].

1.1 Overview and Contributions

We define a purely functional programming language with non-deterministic
choice and, following Jones [12], consider the restriction to cons-free programs.

670 C. Kop and J.G. Simonsen

data order 0 data order 1 data order 2 data order 3

cons-free P = EXP =
EXP2TIME EXP3TIME

deterministic EXP0TIME EXP1TIME

cons-free L PSPACE
tail-recursive = = EXP1SPACE EXP2SPACE
deterministic EXP−1SPACE EXP0SPACE

cons-free L P PSPACE EXP
primitive recursive = = = =

deterministic EXP−1SPACE EXP0TIME EXP0SPACE EXP1TIME

The characterisations obtained in [], transposed to the more permissive language used
here. The table should be imagined as extending infinitely to the right.

data order 0 data order 1 data order 2 data order 3

cons-free P ELEMENTARY ELEMENTARY ELEMENTARY
cons-free P = EXP =

EXP2TIME EXP3TIME
unitary variables EXP0TIME EXP1TIME

The characterisations obtained by allowing non-deterministic choice.

arrow depth 0 arrow depth 1 arrow depth 2 arrow depth 3

cons-free P ELEMENTARY ELEMENTARY ELEMENTARY

The characterisations obtained by allowing non-deterministic choice and considering
arrow depth as the variable factor rather than data order

12

Fig. 1. Overview of the results discussed or obtained in this paper.

Our results are summarised in Fig. 1. For completeness, we have also included
the results from [12]; although the language used there is slightly more syntacti-
cally restrictive than ours, the results easily generalise provided we limit interest
to deterministic programs, where the choose operator is not used. As the techni-
cal machinations involved to procure the results for a language with full recursion
are already intricate and lengthy, we have not yet considered the restriction to
tail- or primitive recursion in the non-deterministic setting.

Essentially, our paper has two major contributions: (a) we show that previous
observations about the increase in expressiveness when adding non-determinism
change dramatically at higher types, and (b) we provide two characterisations of
the EXPTIME hierarchy using a non-deterministic language—which may provide
a basis for future characterisation of common non-deterministic classes as well.

Note that (a) is highly surprising: As evidenced by early work of Cook [6]
merely adding full non-determinism to a restricted (i.e., non-Turing complete)
computation model may result in it still characterising a deterministic class of
problems. This also holds true for cons-free programs with non-determinism,
as shown in different settings by Bonfante [4], by de Carvalho and Simonsen
[7], and by Kop and Simonsen [14], all resulting only in characterisations of
deterministic classes such as P. With the exception of [14], all of the above
attempts at adding non-determinism consider data order at most 0, and one

The Power of Non-determinism in Higher-Order Implicit Complexity 671

would expect few changes when passing to higher data orders. This turns out
to be patently false as simply increasing to data order 1 already results in an
explosion of expressive power.

1.2 Overview of the Ideas in the Paper

Cons-free programs (Definition 5) are, roughly, functional programs where func-
tion bodies are allowed to contain constant data and substructures of the func-
tion arguments, but no data constructors—e.g., clauses tl (x::xs) = xs and
tl [] = [] are both allowed, but append (x::xs) ys = x::(append xs ys) is not.1

This restriction severely limits expressivity, as it means no new data can be
created.

A key idea in Jones’ original work on cons-free programming is counting :
expressions which represent numbers and functions to calculate with them. It is
not in general possible to represent numbers in the usual unary way as 0, s 0,
s (s 0), etc., or as lists of bits—since in a cons-free program these expressions can-
not be built unless they already occur in the input—but counting up to limited
bounds can be achieved by other tricks. By repeatedly simulating a single step
of a Turing Machine up to such bounds, Jones shows that any decision problem
in EXPKTIME can be decided using a cons-free program ([12] and Lemma 6).

The core insight in the present paper is that in the presence of non-
determinism, an expression of type σ ⇒ τ represents a relation between expres-
sions of type σ and expressions of type τ rather than a function. While the
number of functions for a given type is exponential in the order of that type,
the number of relations is exponential in the depth of arrows occurring in it. We
exploit this (in Lemma 11) by counting up to arbitrarily high numbers using
only first-order data. This observation also suggest that by limiting the arrow
depth rather than the order of types, the increase in expressive power disappears
(Theorem 3).

Conversely, we also provide an algorithm to compute the output of cons-
free programs potentially much faster than the program’s own running time, by
using a tableaux to store results. Although similar to Jones’ ideas, our proof style
deviates to easily support both non-deterministic and deterministic programs.

1.3 Related Work

The creation of programming languages that characterise complexity classes has
been a research area since Cobham’s work in the 1960ies, but saw rapid devel-
opment only after similar advances in the related area of descriptive complexity
(see, e.g., [10]) in the 1980ies and Bellantoni and Cook’s work on characteri-
sations of P [2] using constraints on recursion in a purely functional language
with programs reminiscent of classic recursion theoretic functions. Following
Bellantoni and Cook, a number of authors obtained programming languages

1 The formal definition is slightly more liberal to support easier implementations using
pattern-matching, but the ideas remain the same.

672 C. Kop and J.G. Simonsen

by constraints on recursion, and under a plethora of names (e.g., safe, tiered or
ramified recursion, see [5,19] for overviews), and this area continues to be active.
The main difference with our work is that we consider full recursion in all vari-
ables, but place syntactic constraints on the function bodies (both cons-freeness
and unitary variables). Also, as in traditional complexity theory we consider
decision problems (i.e., what sets can be decided by programs), whereas much
research in implicit complexity considers functional complexity (i.e., what func-
tions can be computed).

Cons-free programs, combined with various limitations on recursion, were
introduced by Jones [12], building on ground-breaking work by Goerdt [8,9], and
have been studied by a number of authors (see, e.g., [3,4,17,18]). The main differ-
ence with our work is that we consider full recursion with full non-determinism,
but impose constraints not present in the previous literature.

Characterisation of non-deterministic complexity classes via programming
languages remains a largely unexplored area. Bellantoni obtained a characteri-
sation of NP in his dissertation [1] using similar approaches as [2], but at the
cost of having a minimisation operator (as in recursion theory), a restriction later
removed by Oitavem [20]. A general framework for implicitly characterising a
larger hierarchy of non-deterministic classes remains an open problem.

2 A Purely Functional, Non-deterministic, Call-by-Value
Programming Language

We define a simple call-by-value programming language with explicit non-
deterministic choice. This generalises Jones’ toy language in [12] by supporting
different types and pattern-matching as well as non-determinism. The more per-
missive language actually simplifies proofs and examples, since we do not need
to encode all data as boolean lists, and have fewer special cases.

2.1 Syntax

We consider programs defined by the syntax in Fig. 2

p ∈ Program ::= ρ1 ρ2 . . . ρN

ρ ∈ Clause ::= f 1 · · · k = s
∈ Pattern ::= x | c 1 · · · m

s, t ∈ Expr ::= x | c | f | if s1 then s2 else s3 | choose s1 · · · sn | (s, t) | s t
x, y ∈ V ::= identifier

c ∈ C ::= identifier disjoint from V (we assume {true, false} ⊆ C)
f, g ∈ D ::= identifier disjoint from V and C

Fig. 2. Syntax

We call elements of V variables, elements of C data constructors and elements
of D defined symbols. The root of a clause f �1 · · · �k = s is the defined symbol

The Power of Non-determinism in Higher-Order Implicit Complexity 673

f. The main function f1 of the program is the root of ρ1. We denote Var(s) for
the set of variables occurring in an expression s. An expression s is ground if
Var(s) = ∅. Application is left-associative, i.e., s t u should be read (s t) u.

Definition 1. For expressions s, t, we say that t is a sub-expression of s, nota-
tion s � t, if this can be derived using the clauses:

s � t if s = t or s � t
(s1, s2) � t if s1 � t or s2 � t if s1 then s2 else s3 � t if si � t for some i

s1 s2 � t if s1 � t or s2 � t choose s1 · · · sn � t if si � t for some i

Note: the head s of an application s t is not considered a sub-expression of s t.

Note that the programs we consider have no pre-defined data structures like
integers: these may be encoded using inductive data structures in the usual way.

Example 1. Integers can be encoded as bitstrings of unbounded length: C ⊇
{false, true, ::, []}. Here, :: is considered infix and right-associative, and []
denotes the end of the string. Using little endian, 6 is encoded by
false::true::true::[] as well as false::true::true::false::false::[]. We for
instance have true::(succ xs) � xs (for xs ∈ V). The program below imposes
D = {succ}:

succ [] = true::[] succ (false::xs) = true::xs
succ (true::xs) = false::(succ xs)

2.2 Typing

Programs have explicit simple types without polymorphism, with the usual def-
inition of type order ord(σ); this is formally given in Fig. 3.

ι ∈ S ::= sort identifier
σ, τ ∈ Type ::= ι | σ × τ | σ ⇒ τ

ord(ι) = 0 for ι ∈ S
ord(σ × τ) = max(ord(σ) , ord(τ))
ord(σ ⇒ τ) = max(ord(σ) + 1, ord(τ))

Fig. 3. Types and type orders

The (finite) set S of sorts is used to type atomic data such as bits; we assume
bool ∈ S. The function arrow ⇒ is considered right-associative. Writing κ for
a sort or a pair type σ × τ , any type can be uniquely presented in the form
σ1 ⇒ . . . ⇒ σm ⇒ κ. We will limit interest to well-typed, well-formed programs:

Definition 2. A program p is well-typed if there is an assignment F from C∪D
to the set of simple types such that:

– the main function f1 is assigned a type κ1 ⇒ . . . ⇒ κM ⇒ κ, with ord(κi) = 0
for 1 ≤ i ≤ M and also ord(κ) = 0

674 C. Kop and J.G. Simonsen

– data constructors c ∈ C are assigned a type κ1 ⇒ . . . ⇒ κm ⇒ ι with ι ∈ S
and ord(κi) = 0 for 1 ≤ i ≤ m

– for all clauses f �1 · · · �k = s ∈ p, the following hold:
• Var(s) ⊆ Var(f �1 · · · �k) and each variable occurs only once in f �1 · · · �k;
• there exist a type environment Γ mapping Var(f �1 · · · �k) to simple types,
and a simple type σ, such that both f �1 · · · �k : σ and s : σ using the rules
in Fig. 4; we call σ the type of the clause.

if a : σ ∈ Γ ∪ Fa : σ
s : σ t : τ
(s, t) : σ × τ

s : σ ⇒ τ t : σ
s t : τ

s1 : bool s2 : σ s3 : σ
if s1 then s2 else s3 : σ

s1 : σ . . . sn : σ
choose s1 · · · sn : σ

Fig. 4. Typing (for fixed F and Γ , see Definition 2)

Note that this definition does not allow for polymorphism: there is a single
type assignment F for the full program. The assignment F also forces a unique
choice for the type environment Γ of variables in each clause. Thus, we may
speak of the type of an expression in a clause without risk of confusion.

Example 2. The program of Example 1 is typed using F = {false : bool, true :
bool, [] : list, :: : bool ⇒ list ⇒ list, succ : list ⇒ list}. As all argument
and output types have order 0, the variable restrictions are satisfied and all
clauses can be typed using Γ = {xs : list}, the program is well-typed.

Definition 3. A program p is well-formed if it is well-typed, and moreover:

– data constructors are always fully applied: for all c ∈ C with c : κ1 ⇒ . . . ⇒
κm ⇒ ι ∈ F : if a sub-expression c t1 · · · tn occurs in any clause, then n = m;

– the number of arguments to a given defined symbol is fixed: if f �1 · · · �k = s
and f �′

1 · · · �′
n = t are both in p, then k = n; we let arityp(f) denote k.

Example 3. The program of Example 1 is well-formed, and arityp(succ) = 1.
However, the program would not be well-formed if the clauses below were

added, as here the defined symbol or does not have a consistent arity.

id x = x or true x = true or false = id

Remark 1. Data constructors must (a) have a sort as output type (not a pair),
and (b) occur only fully applied. This is consistent with typical functional pro-
gramming languages, where sorts and constructors are declared with a grammar
such as:

sdec ∈ SortDec ::= data ι = cdec1 | · · · | cdecn

cdec ∈ ConstructorDec ::= c σ1 · · · σm

In addition, we require that the arguments to data constructors have type order
0. This is not standard in functional programming, but is the case in [12]. We
limit interest to such constructors because, practically, these are the only ones
which can be used in a cons-free program (as we will discuss in Sect. 3).

The Power of Non-determinism in Higher-Order Implicit Complexity 675

Definition 4. A program has data order K if all clauses can be typed using type
environments Γ such that, for all x : σ ∈ Γ : ord(σ) ≤ K.

Example 4. We consider a higher-order program, operating on the same data
constructors as Example 1; however, now we encode numbers using functions:

fsucc F [] = if F [] then set F [] false else set F [] true
fsucc F xs = if F xs then fsucc (set F xs false) (tl xs)

else set F xs true
set F val xs ys = if eqlen xs ys then val else F ys
tl (x::xs) = xs eqlen (x::xs) (y::ys) = eqlen xs ys
eqlen [] [] = true eqlen xs ys = false

Only one typing is possible, with fsucc : (list ⇒ bool) ⇒ list ⇒ list ⇒
bool; therefore, F is always typed list ⇒ bool—which has type order 1—and
all other variables with a type of order 0. Thus, this program has data order 1.

To explain the program: we use boolean lists as unary numbers of a limited
size; assuming that (a) F represents a bitstring of length N + 1, and (b) lst has
length N , the successor of F (modulo wrapping) is obtained by fsucc F lst .

2.3 Semantics

Like Jones, our language has a closure-based call-by-value semantics. We let data
expressions, values and environments be defined by the grammar in Fig. 5.

d, b ∈ Data ::= c d1 · · · dm | (d, b)
v, w ∈ Value ::= d | (v, w) | f v1 · · · vn

(n < arityp(f))

γ, δ ∈ Env ::= V → Value

Instantiation:
xγ := γ(x)

(c 1 · · · n)γ := c (1γ) · · · (nγ)

Fig. 5. Data expressions, values and environments

Let dom(γ) denote the domain of an environment (partial function) γ. Note
that values are ground expressions, and we only use well-typed values with fully
applied data constructors. To every pattern � and environment γ with dom(γ) ⊇
Var(�), we associate a value �γ by instantiation in the obvious way, see Fig. 5.

Note that, for every value v and pattern �, there is at most one environment
γ with �γ = v. We say that an expression f s1 · · · sn instantiates the left-hand
side of a clause f �1 · · · �k if n = k and there is an environment γ with each
si = �iγ.

Both input and output to the program are data expressions. If f1 has type
κ1 ⇒ . . . ⇒ κM ⇒ κ, we can think of the program as calculating a function
[[p]](d1, . . . , dM) from M input data arguments to an output data expression.

Expression and program evaluation are given by the rules in Fig. 6. Since,
in [Call], there is at most one suitable γ, the only source of non-determinism is

676 C. Kop and J.G. Simonsen

Expression evaluation:

[Instance]:
p, γ x → γ(x)

p call f → w
[Function]: for f ∈ D

p, γ f → w

p, γ s1 → b1 · · · p, γ sm → bm
[Constructor]:

p, γ c s1 · · · sm → c b1 · · · bm

p, γ s → v p, γ t → w
[Pair]:

p, γ (s, t) → (v, w)

p, γ si → w
[Choice]: for 1 ≤ i ≤ n

p, γ choose s1 · · · sn → w

p, γ s1 → d p, γ if d, s2, s3 → w
[Conditional]:

p, γ if s1 then s2 else s3 → w

p, γ s2 → w
[If-True]:

p, γ if true, s2, s3 → w

p, γ s3 → w
[If-False]:

p, γ if false, s2, s3 → w

p, γ s → f v1 · · · vn p, γ t → vn+1 p call f v1 · · · vn+1 → w
[Appl]:

p, γ s t → w

[Closure]: if n < arityp(f)
p call f v1 · · · vn → f v1 · · · vn

p, γ s → w
[Call]:

if f 1 · · · k = s is the first clause in p such
that f v1 · · · vk instantiates f 1 · · · k, and
dom(γ) = Var(f 1 · · · k) and each vi = iγ

p call f v1 · · · vk → w

Program execution:

p, [x1 := d1, . . . , xM := dM] f1 x1 · · · xM → b

p (d1, . . . , dM) → b

Fig. 6. Call-by-value semantics

the choose operator. Programs without this operator are called deterministic.
By contrast, we may refer to a non-deterministic program as one which is not
explicitly required to be deterministic, so which may or may not contain choose.

Example 5. For the program from Example 1, [[p]](true::false::true::[]) 	→
false::true::true::[], giving 5 + 1 = 6. In the program f1 x y = choose x y, we
can both derive [[p]](true, false) 	→ true and [[p]](true, false) 	→ false.

The language is easily seen to be Turing-complete unless further restric-
tions are imposed. In order to assuage any fears on whether the complexity-
theoretic characterisations we obtain are due to brittle design choices, we add
some remarks.

The Power of Non-determinism in Higher-Order Implicit Complexity 677

Remark 2. We have omitted some constructs common to even some toy pure
functional languages, but these are in general simple syntactic sugar that can
be readily expressed by the existing constructs in the language, even in the
presence of non-determinism. For instance, a let-binding letx = s1 in s2 can
be straightforwardly encoded by a function call in a pure call-by-value setting
(replacing letx = s1 in s2 by helper s1 and adding a clause helper x = s2).

Remark 3. We do not require the clauses of a function definition to exhaust
all possible patterns. For instance, it is possible to have a clause f true = · · ·
without a clause for f false. Thus, a program has zero or more values.

Data Order Versus Program Order. We have followed Jones in considering data
order as the variable for increasing complexity. However, an alternative choice—
which turns out to streamline our proofs—is program order, which considers the
type order of the function symbols. Fortunately, these notions are closely related;
barring unused symbols, 〈program order〉 = 〈data order〉+ 1.

More specifically, we have the following result:

Lemma 1. For every well-formed program p with data order K, there is a well-
formed program p′ such that [[p]](d1, . . . , dM) 	→ b iff [[p′]](d1, . . . , dM) 	→ b for any
b1, . . . , bM , d and: (a) all defined symbols in p′ have a type σ1 ⇒ . . . ⇒ σm ⇒ κ
such that both ord(σi) ≤ K for all i and ord(κ) ≤ K, and (b) in all clauses, all
sub-expressions of the right-hand side have a type of order ≤ K as well.

Proof (Sketch). p′ is obtained from p through the following successive changes:

1. Replace any clause f �1 · · · �k = s where s : σ ⇒ τ with ord(σ ⇒ τ) = K + 1,
by f �1 · · · �k x = s x for a fresh x. Repeat until no such clauses remain.

2. In any clause f �1 · · · �k =s, replace all sub-expressions (choose s1 · · · sm) t1 · · ·
tn or (if s1 then s2 else s3) t1 · · · tn of s with n > 0 by choose (s1 t1 · · · tn) · · ·
(sm t1 · · · tn) or if s1 then (s2 t1 · · · tn) else (s3 t1 · · · tn) respectively.

3. In any clause f �1 · · · �k = s, if s has a sub-expression t = g s1 · · · sn with
g : σ1 ⇒ . . . ⇒ σn ⇒ τ such that ord(τ) ≤ K but ord(σi) > K for some
i, then replace t by a fresh symbol ⊥τ . Repeat until no such sub-expressions
remain, then add clauses ⊥τ = ⊥τ for the new symbols.

4. If there exists f : σ1 ⇒ . . . ⇒ σm ⇒ κ ∈ F with ord(κ) > K or ord(σi) > K
for some i, then remove the symbol f and all clauses with root f.

The key observation is that if the derivation for [[p]](d1, . . . , dM) 	→ b uses some
f s1 · · · sn : σ with ord(σ) ≤ K but si : τ with ord(τ) > K, then there is a
variable with type order > K. Thus, if a clause introduces such an expression,
either the clause is never used, or the expression occurs beneath an if or choose
and is never selected; it may be replaced with a symbol whose only rule is
unusable. This also justifies step 1; for step 4, only unusable clauses are removed.

��
Example 6. The following program has data order 0, but clauses of functional
type; fst and snd have output type nat ⇒ nat of order 1. The program is

678 C. Kop and J.G. Simonsen

changed by replacing the last two clauses by fst x y = const x y and snd x y =
id y.

start xs ys = choose (fst xs ys) (snd xs ys)
const x y = x fst x = const x
id x = x snd x = id

3 Cons-Free Programs

Jones defines a cons-free program as one where the list constructor :: does not
occur in any clause. In our setting (where more constructors are in principle
admitted), this translates to disallowing non-constant data constructors from
being introduced in the right-hand side of a clause. We define:

Definition 5. A program p is cons-free if all clauses in p are cons-free. A clause
f �1 · · · �k = s is cons-free if for all s � t: if t = c s1 · · · sm with c ∈ C, then t is
a data expression or �i � t for some i.

Example 7. Example 1 is not cons-free, due to the second and third clause (the
first clause is cons-free). Examples 4 and 6 are both cons-free.

The key property of cons-free programming is that no new data structures
can be created during program execution. Formally, in a derivation tree with
root [[p]](d1, . . . , dM) 	→ b, all data values (including b) are in the set Bp

d1,...,dM
:

Definition 6. Let Bp
d1,...,dM

:= {d ∈ Data | ∃i[di � d] ∨ ∃(f � = s) ∈ p[s � d]}.
Bp

d1,...,dM
is a set of data expressions closed under �, with a linear number of

elements in the size of d1, . . . , dM (for fixed p). The property that no new data
is created during execution is formally expressed by the following lemma.

Lemma 2. Let p be a cons-free program, and suppose that [[p]](d1, . . . , dM) 	→ b
is obtained by a derivation tree T . Then for all statements p, γ � s → w or
p, γ �if b′, s1, s2 → w or p �call f v1 · · · vn → w in T, and all expressions t such
that (a) w � t, (b) b′ � t, (c) γ(x) � t for some x or (d) vi � t for some i: if t
has the form c b1 · · · bm with c ∈ C, then t ∈ Bp

d1,...,dM
.

That is, any data expression in the derivation tree of [[p]](d1, . . . , dM) 	→ b (includ-
ing occurrences as a sub-expression of other values) is also in Bp

d1,...,dM
.

Proof (Sketch). Induction on the form of T , assuming that for a statement under
consideration, (1) the requirements on γ and the vi are satisfied, and (2) γ maps
expressions t � s, s1, s2 to elements of Bp

d1,...,dM
if t = c t1 · · · tm with c ∈ C. ��

Note that Lemma 2 implies that the program result b is in Bp
d1,...,dM

. Recall
also Remark 1: if we had admitted constructors with higher-order argument
types, then Lemma 2 shows that they are never used, since any constructor
appearing in a derivation for [[p]](d1, . . . , dM) 	→ b must already occur in the
(data!) input.

The Power of Non-determinism in Higher-Order Implicit Complexity 679

4 Turing Machines, Decision Problems and Complexity

We assume familiarity with the standard notions of Turing Machines and com-
plexity classes (see, e.g., [11,21,22]); in this section, we fix the notation we use.

4.1 (Deterministic) Turing Machines

Turing Machines (TMs) are triples (A,S, T) where A is a finite set of tape sym-
bols such that A ⊇ {0, 1, }, S ⊇ {start, accept, reject} is a finite set of states,
and T is a finite set of transitions (i, r, w, d, j) with i ∈ S\{accept, reject} (the
original state), r ∈ A (the read symbol), w ∈ A (the written symbol), d ∈ {L, R}
(the direction), and j ∈ S (the result state). We sometimes denote this transi-

tion as i
r/w d
===⇒ j. A deterministic TM is a TM such that every pair (i, r) with

i ∈ S \ {accept, reject} and r ∈ A is associated with exactly one transition
(i, r, w, d, j). Every TM in this paper has a single, right-infinite tape.

A valid tape is an element t of AN with t(p) �= for only finitely many p.
A configuration is a triple (t, p, s) with t a valid tape, p ∈ N and s ∈ S. The
transitions T induce a relation ⇒ between configurations in the obvious way.

4.2 Decision Problems

A decision problem is a set X ⊆ {0, 1}+. A deterministic TM decides X if for
any x ∈ {0, 1}+: x ∈ X iff x1 . . . xn . . . , 0, start) ⇒∗ (t, i, accept) for some
t, i, and (x1 . . . xn . . . , 0, start) ⇒∗ (t, i, reject) iff x /∈ X. Thus, the TM
halts on all inputs, ending in accept or reject depending on whether x ∈ X.

If h : N −→ N is a function, a deterministic TM runs in time λn.h(n) if for all
n ∈ N\{0} and x ∈ {0, 1}n: any evaluation starting in (x1 . . . xn . . . , 0, start)
ends in the accept or reject state in at most h(n) transitions.

4.3 Complexity and the EXPTIME Hierarchy

We define classes of decision problem based on the time needed to accept them.

Definition 7. Let h : N → N be a function. Then, TIME (h(n)) is the set of
all X ⊆ {0, 1}+ such that there exist a > 0 and a deterministic TM running in
time λn.a · h(n) that decides X.

By design, TIME (h(n)) is closed under O: TIME (h(n)) = TIME (O(h(n))).

Definition 8. For K,n ≥ 0, let exp0
2(n) = n and expK+1

2 (n) = expK
2 (2n) =

2exp
K
2 (n). For K ≥ 0, define EXPKTIME �

⋃
a,b∈N

TIME
(
expK

2 (anb)
)
.

Since for every polynomial h, there are a, b ∈ N such that h(n) ≤ a ·nb for all
n > 0, we have EXP0TIME = P and EXP1TIME = EXP (where EXP is the usual
complexity class of this name, see e.g., [21, Ch. 20]). In the literature, EXP is
sometimes called EXPTIME or DEXPTIME (e.g., in the celebrated proof that ML
typability is complete for DEXPTIME [13]). Using the Time Hierarchy Theorem
[22], it is easy to see that P = EXP0TIME � EXP1TIME � EXP2TIME � · · · .
Definition 9. The set ELEMENTARY of elementary-time computable languages
is

⋃
K∈N

EXPKTIME.

680 C. Kop and J.G. Simonsen

4.4 Decision Problems and Programs

To solve decision problems by (cons-free) programs, we will consider programs
with constructors true, false of type bool, [] of type list and :: of type bool ⇒
list ⇒ list, and whose main function f1 has type list ⇒ bool.

Definition 10. We define:

– A program p accepts a1a2 . . . an ∈ {0, 1}∗ if [[p]](a1:: . . . ::an) 	→ true, where
ai = true if ai = 1 and ai = false otherwise.

– The set accepted by program p is {a ∈ {0, 1}∗ | p accepts a}.
Although we focus on programs of this form, our proofs will allow for arbi-

trary input and output—with the limitation (as guaranteed by the rule for pro-
gram execution) that both are data. This makes it possible to for instance con-
sider decision problems on a larger input alphabet without needing encodings.

Example 8. The two-line program with clauses even [] = true and
even (x::xs) = if x then false else true accepts the problem {x ∈ {0, 1}∗ | x
is a bitstring representing an even number (following Example 1)}.

We will sometimes speak of the input size, defined by:

Definition 11. The size of a list of data expressions d1, . . . , dM is∑M
i=1 size(di), where size(c b1 · · · bm) is defined as 1 +

∑m
i=1 size(bi).

5 Deterministic Characterisations

As a basis, we transfer Jones’ basic result on time classes to our more general
language. That is, we obtain the first line of the first table in Fig. 1.

data order 0 data order 1 data order 2 data order 3 . . .

cons-free
deterministic

P = EXP0TIME EXP = EXP1TIME EXP2TIME EXP3TIME . . .

To show that deterministic cons-free programs of data order K characterise
EXPKTIME it is necessary to prove two things:

1. if h(n) ≤ expK
2 (a · nb) for all n, then for every deterministic Turing Machine

M running in TIME (h(n)), there is a deterministic, cons-free program with
data order at most K, which accepts x ∈ {0, 1}+ if and only if M does;

2. for every deterministic cons-free program p with data order K, there is a
deterministic algorithm operating in TIME

(
expK

2 (a · nb)
)

for some a, b which,
given input expressions d1, . . . , dM , determines b such that [[p]](d1, . . . , dM) 	→
b (if such b exists). Like Jones [12], we assume our algorithms are implemented
on a sufficiently expressive Turing-equivalent machine like the RAM.

We will show part (1) in Sect. 5.1, and part (2) in Sect. 5.2.

The Power of Non-determinism in Higher-Order Implicit Complexity 681

5.1 Simulating TMs Using Deterministic Cons-Free Programs

Let M := (A,S, T) be a deterministic Turing Machine running in time λn.h(n).
Like Jones, we start by assuming that we have a way to represent the num-
bers 0, . . . , h(n) as expressions, along with successor and predecessor opera-
tors and checks for equality. Our simulation uses the data constructors true :
bool, false : bool, [] : list and :: : bool ⇒ list ⇒ list as discussed in
Sect. 4.4; a : symbol for a ∈ A (writing B for the blank symbol), L, R : direc
and s : state for s ∈ S; action : symbol ⇒ direc ⇒ state ⇒ trans; and
end : state ⇒ trans. The rules to simulate the machine are given in Fig. 7.

run cs = test (state cs [h(|cs|)])
test accept = true transition i r = action w d j for all i

r/w d
===⇒ j ∈ T

test reject = false transition i x = end i for i ∈ {accept, reject}
state cs [n] = if [n = 0] then start else get3 (transat cs [n − 1])
transat cs [n] = transition (state cs [n]) (tapesymb cs [n])

get1 (action x y z) = x get1 (end x) = B

get2 (action x y z) = y get2 (end x) = R

get3 (action x y z) = z get3 (end x) = x

tapesymb cs [n] = tape cs [n] (pos cs [n])

tape cs [n] [p] = if [n = 0] then inputtape cs [p]
else tapehelp cs [n] [p] (pos cs [n − 1])

tapehelp cs [n] [p] [i] = if [p = i] then get1 (transat cs [n − 1])
else tape cs [n − 1] [p]

pos cs [n] = if [n = 0] then [0] else adjust cs (pos cs [n−1]) (get2 (transat cs [n−1]))
adjust cs [p] L = [p − 1] adjust cs [p] R = [p + 1]

inputtape cs [p] = if [p = 0] then B else nth cs [p − 1]
nth [] [p] = eurttibB = 1

nth (x::xs) [p] = if [p = 0] then bit x else nth xs [p − 1] bit false = 0

Fig. 7. Simulating a deterministic Turing Machine (A, S, T)

Types of defined symbols are easily derived. The intended meaning is that
state cs [n], for cs the input list and [n] a number in {0, . . . , h(|cs|)}, returns
the state of the machine at time [n]; pos cs [n] returns the position of the reader
at time [n], and tape cs[n] [p] the symbol at time [n] and position [p].

Clearly, the program is highly exponential, even when h(|cs|) is polynomial,
since the same expressions are repeatedly evaluated. This apparent contradiction
is not problematic: we do not claim that all cons-free programs with data order
0 (say) have a derivation tree of at most polynomial size. Rather, as we will see
in Sect. 5.2, we can find their result in polynomial time by essentially using a
caching mechanism to avoid reevaluating the same expression.

682 C. Kop and J.G. Simonsen

What remains is to simulate numbers and counting. For a machine running in
TIME (h(n)), it suffices to find a value [i] representing i for all i ∈ {0, . . . , h(n)}
and cons-free clauses to calculate predecessor and successor functions and to
perform zero and equality checks. This is given by a (λn.h(n) + 1)-counting
module. This defines, for a given input list cs of length n, a set of values An

π to
represent numbers and functions seedπ, predπ and zeroπ such that (a) seedπ cs
evaluates to a value which represents h(n), (b) if v represents a number k, then
predπ cs v evaluates to a value which represents k − 1, and (c) zeroπ cs v
evaluates to true or false depending on whether v represents 0. Formally:

Definition 12 (Adapted from [12]). For P : N → N \ {0}, a P -counting
module is a tuple Cπ = (απ,Dπ,Aπ, 〈·〉π, pπ) such that:

– απ is a type (this will be the type of numbers);
– Dπ is a set of defined symbols disjoint from C,D,V, containing symbols

seedπ, predπ and zeroπ, with types seedπ : list ⇒ απ, predπ : list ⇒
απ ⇒ απ and zeroπ : list ⇒ απ ⇒ bool;

– for n ∈ N, An
π is a set of values of type απ, all built over C ∪ Dπ (this is the

set of values used to represent numbers);
– for n ∈ N, 〈·〉n

π is a total function from An
π to N;

– pπ is a list of cons-free clauses on the symbols in Dπ, such that, for all lists
cs : list ∈ Data with length n:

• there is a unique value v such that pπ �call seedπ cs → v;
• if pπ �call seedπ cs → v, then v ∈ An

π and 〈v〉n
π = P (n) − 1;

• if v ∈ Aπ and 〈v〉n
π = i > 0, then there is a unique value w such that

pπ �call predπ cs v → w; we have w ∈ An
π and 〈w〉n

π = i − 1;
• for v ∈ An

π with 〈v〉n
π = i: pπ �call zeroπ cs v → true if and only if

i = 0, and pπ �call zeroπ cs v → false if and only if i > 0.

It is easy to see how a P -counting module can be plugged into the program
of Fig. 7. We only lack successor and equality functions, which are easily defined:
succπ cs i = scπ cs (seedπ cs) i
scπ cs j i = if equalπ cs (predπ cs j) i then j else sc cs (predπ cs j) i
equalπ cs i j = if zeroπ cs i then zeroπ cs j

else if zeroπ cs j then false
else equalπ cs (predπ cs i) (predπ cs j)

Since the clauses in Fig. 7 are cons-free and have data order 0, we obtain:

Lemma 3. Let x be a decision problem which can be decided by a deterministic
TM running in TIME (h(n)). If there is a cons-free (λn.h(n)+1)-counting mod-
ule Cπ with data order K, then x is accepted by a cons-free program with data
order K; the program is deterministic if the counting module is.

Proof. By the argument given above. ��
The obvious difficulty is the restriction to cons-free clauses: we cannot simply

construct a new number type, but will have to represent numbers using only sub-
expressions of the input list cs, and constant data expressions.

The Power of Non-determinism in Higher-Order Implicit Complexity 683

Example 9. We consider a P -counting module Cx where P (n) = 3 · (n+1)2. Let
αx := list × list × list and for given n, let An

π := {(d0, d1, d2) | d0 is a list
of length ≤ 2 and d1, d2 are lists of length ≤ n}. Writing | x1:: . . . ::xk::[] | = k,
let 〈(d0, d1, d2)〉n

x := |d0| · (n + 1)2 + |d1| · (n + 1) + |d2|. Essentially, we consider
3-digit numbers i0i1i2 in base n + 1, with each ij represented by a list. px is:

seedx cs = (false::false::[], cs, cs)
predx cs (x0, x1, y::ys) = (x0, x1, ys) zerox cs (x0, x1, y::ys) = false
predx cs (x0, y::ys, []) = (x0, ys, cs) zerox cs (x0, y::ys, []) = false
predx cs (y::ys, [], []) = (ys, cs, cs) zerox cs (y::ys, [], []) = false
predx cs ([], [], []) = ([], [], []) zerox cs ([], [], []) = true

If cs = true::false::true::[], one value in A3
x is v = (false::[], false::true::

[], []), which is mapped to the number 1 · 42 + 2 · 4 + 0 = 24. Then px �call

predx cs v → w := (false::[], true::[], cs), which is mapped to 1·42+1·4+3 = 23
as desired.

Example 9 suggests a systematic way to create polynomial counting modules.

Lemma 4. For any a, b ∈ N \ {0}, there is a (λn.a · (n + 1)b)-counting module
C〈a,b〉 with data order 0.

Proof (Sketch). A straightforward generalisation of Example 9. ��
By increasing type orders, we can obtain an exponential increase of

magnitude.

Lemma 5. If there is a P -counting module Cπ of data order K, then there is a
(λn.2P (n))-counting module Ce[π] of data order K + 1.

Proof (Sketch). Let αe[π] := απ ⇒ bool; then ord
(
αe[π]

) ≤ K + 1. A number
i with bit representation b0 . . . bP (n)−1 (with b0 the most significant digit) is
represented by a value v such that, for w with 〈w〉π = i: pe[π] �call v w → true
iff bi = 1, and pe[π] �call v w → false iff bi = 0. We use the clauses of Fig. 8.

seede[π] cs x = true

zeroe[π] cs F = zhelpe[π] cs F (seedπ cs)

zhelpe[π] cs F k = if F k then false

else if zeroπ cs k then true

else zhelpe[π] cs F (predπ cs k)

prede[π] cs F = phelpe[π] cs F (seedπ cs)

phelpe[π] cs F k = if F k then flipe[π] cs F k

else if zeroπ cs k then seede[π] cs

else phelpe[π] cs (flipe[π] cs F k) (predπ cs k)

flipe[π] cs F k i = if equalπ cs k i then not (F i) else F i

not b = if b then false else true

Fig. 8. The clauses used in pe[π], extending pπ with an exponential step.

684 C. Kop and J.G. Simonsen

We also include all clauses in pπ. Here, note that a bitstring b0 . . . bm repre-
sents 0 if each bi = 0, and that the predecessor of b0 . . . bi10 . . . 0 is b0 . . . bi01 . . . 1.

��
Combining these results, we obtain:

Lemma 6. Every decision problem in EXPKTIME is accepted by a deterministic
cons-free program with data order K.

Proof. A decision problem is in EXPKTIME if it is decided by a deterministic
TM operating in time expK

2 (a · nb)) for some a, b. By Lemma 3, it therefore
suffices if there is a Q-counting module for some Q ≥ λn. expK

2 (a · nb) + 1, with
data order K. Certainly Q(n) := expK

2 (a ·(n+1)b) is large enough. By Lemma 4,
there is a (λn.a · (n + 1)b)-counting module C〈a,b〉 with data order 0. Applying
Lemma 5 K times, we obtain the required Q-counting module Ce[...[e[〈a,b〉]]]. ��
Remark 4. Our definition of a counting module significantly differs from the one
in [12], for example by representing numbers as values rather than expressions,
introducing the sets An

π and imposing evaluation restrictions. The changes enable
an easy formulation of the non-deterministic counting module in Sect. 6.

5.2 Simulating Deterministic Cons-Free Programs Using an
Algorithm

We now turn to the second part of characterisation: that every decision problem
solved by a deterministic cons-free program of data order K is in EXPKTIME.
We give an algorithm which determines the result of a fixed program (if any) on
a given input in TIME

(
expK

2 (a · nb)
)

for some a, b. The algorithm is designed to
extend easily to the non-deterministic characterisations in subsequent settings.

Key Idea. The principle of our algorithm is easy to explain when variables have
data order 0. Using Lemma 2, all such variables must be instantiated by (tuples
of) elements of Bp

d1,...,dM
, of which there are only polynomially many in the input

size. Thus, we can make a comprehensive list of all expressions that might occur
as the left-hand side of a [Call] in the derivation tree. Now we can go over the
list repeatedly, filling in reductions to trace a top-down derivation of the tree.

In the higher-order setting, there are infinitely many possible values; for
example, if id : bool ⇒ bool has arity 1 and g : (bool ⇒ bool) ⇒ bool ⇒ bool
has arity 2, then id, g id, g (g id) and so on are all values. Therefore, instead
of looking directly at values we consider an extensional replacement.

Definition 13. Let B be a set of data expressions closed under �. For ι ∈ S,
let 〈|ι|〉B = {d ∈ B | � d : ι}. Inductively, let 〈|σ × τ |〉B = 〈|σ|〉B × 〈|τ |〉B and
〈|σ ⇒ τ |〉B = {Aσ⇒τ | A ⊆ 〈|σ|〉B × 〈|τ |〉B ∧ ∀e ∈ 〈|σ|〉B there is at most one u with
(e, u) ∈ Aσ⇒τ}σ⇒τ . We call the elements of any 〈|σ|〉B deterministic extensional
values.

The Power of Non-determinism in Higher-Order Implicit Complexity 685

Note that deterministic extensional values are data expressions in B if σ is
a sort, pairs if σ is a pair type, and sets of pairs labelled with a type otherwise;
these sets are exactly partial functions, and can be used as such:

Definition 14. For e ∈ 〈|σ1 ⇒ . . . ⇒ σn ⇒ τ |〉B and u1 ∈ 〈|σ1|〉B, . . . , un ∈
〈|σn|〉B, let e(u1, . . . , un) be {e} if n = 0 and

⋃
Aσn⇒τ ∈e(u1,...,un−1)

{o ∈ 〈|τ |〉B |
(un, o) ∈ A} if n > 0.

By induction on n, each e(u1, . . . , un) has at most one element as would be
expected of a partial function. We also consider a form of matching.

Definition 15. Fix a set B of data expressions. An extensional expression has
the form f e1 · · · en where f : σ1 ⇒ . . . ⇒ σn ⇒ τ ∈ D and each ei ∈ 〈|σi|〉B.
Given a clause ρ : f �1 · · · �k = r with f : σ1 ⇒ . . . ⇒ σk ⇒ τ ∈ F and variable
environment Γ , an ext-environment for ρ is a partial function η mapping each
x : τ ∈ Γ to an element of 〈|τ |〉B, such that �jη ∈ 〈|σj |〉B for 1 ≤ j ≤ n. Here,

– �η = η(�) if � is a variable and �η = (�(1)η, �(2)η) if � = (�(1), �(2));
– �η = �[x := η(x) | x ∈ Var(�)] otherwise (in this case, � is a pattern with data

order 0, so all its variables have data order 0, so each η(x) ∈ Data).

Then �η is a deterministic extensional value for � a pattern. We say ρ matches
an extensional expression f e1 · · · ek if there is an ext-environment η for ρ such
that �iη = ei for all 1 ≤ i ≤ k. We call η the matching ext-environment.

Finally, for technical reasons we will need an ordering on extensional values:

Definition 16. We define a relation � on extensional values of the same type:

– For d, b ∈ 〈|ι|〉B with ι ∈ S: d � b if d = b.
– For (e1, e2), (u1, u2) ∈ 〈|σ × τ |〉B: (e1, e2) � (u1, u2) if each ei � ui.
– For Aσ, Bσ ∈ 〈|σ|〉B with σ functional: Aσ � Bσ if for all (e, u) ∈ B there is

u′ � u such that (e, u′) ∈ A.

The Algorithm. Let us now define our algorithm. We will present it in a general
form—including a case 2d which does not apply to deterministic programs—so
we can reuse the algorithm in the non-deterministic settings to follow.

Algorithm 7. Let p be a fixed, deterministic cons-free program, and suppose
f1 has a type κ1 ⇒ . . . ⇒ κM ⇒ κ ∈ F .

Input: data expressions d1 : κ1, . . . , dM : κM .
Output: The set of values b with [[p]](d1, . . . , dM) 	→ b.

1. Preparation.
(a) Let p′ be obtained from p by the transformations of Lemma 1, and by

adding a clause start x1 · · · xM = f1 x1 · · · xM for a fresh symbol start
(so that [[p]](d1, . . . , dM) 	→ b iff p′ �call start d1 · · · dM → b).

686 C. Kop and J.G. Simonsen

(b) Denote B := Bp
d1,...,dM

and let X be the set of all “statements”:
i. � f e1 · · · en � o for (a) f ∈ D with f : σ1 ⇒ . . . ⇒ σm ⇒ κ′ ∈ F ,

(b) 0 ≤ n ≤ arityp(f) such that ord(σn+1 ⇒ . . . ⇒ σm ⇒ κ′) ≤ K,
(c) ei ∈ 〈|σi|〉B for 1 ≤ i ≤ n and (d) o ∈ 〈|σn+1 ⇒ . . . ⇒ σm ⇒ κ′|〉B;

ii. η � t � o for (a) ρ : f �1 · · · �k = s a clause in p′, (b) s � t : τ , (c)
o ∈ 〈|τ |〉B and (d) η an ext-environment for ρ.

(c) Mark statements of the form η � t � o in X as confirmed if either t ∈ V
and η(t) � o, or if t = c t1 · · · tm with c ∈ C and tη = o. All statements
not of either form are marked unconfirmed.

2. Iteration: repeat the following steps, until no further changes are made.
(a) For all unconfirmed statements � f e1 · · · en � o in X with n < arityp(f):

write o = Oσ and mark the statement as confirmed if for all (en+1, u) ∈ O
there exists u′ � u such that � f e1 · · · en+1 � u′ is marked confirmed.

(b) For all unconfirmed statements � f e1 · · · ek � o in X with k = arityp(f):
i. find the first clause ρ : f �1 · · · �k = s in p′ that matches f e1 · · · ek

and let η be the matching ext-environment (if any);
ii. determine whether η � s � o is confirmed and if so, mark the state-

ment f e1 · · · ek � o as confirmed.
(c) For all unconfirmed statements of the form η � if s1 then s2 else s3 � o

in X , mark the statement confirmed if both η � s1 � true and η � s2 � o
are confirmed, or both η � s1 � false and η � s3 � o are confirmed.

(d) For all unconfirmed statements η � choose s1 · · · sn � o in X , mark the
statement as confirmed if η � si � o for any i ∈ {1, . . . , n}.

(e) For all unconfirmed statements η � (s1, s2) � (o1, o2) in X , mark the
statement confirmed if both η � s1 � o1 and η � s2 � o2 are confirmed.

(f) For all unconfirmed statements η � x s1 · · · sn � o in X with x ∈ V,
mark the statement as confirmed if there are e1 ∈ 〈|σ1|〉B, . . . , en ∈ 〈|σn|〉B
such that each η � si � ei is marked confirmed, and there exists o′ ∈
η(x)(e1, . . . , en) such that o′ � o.

(g) For all unconfirmed statements η � f s1 · · · sn � o in X with f ∈ D, mark
the statement as confirmed if there are e1 ∈ 〈|σ1|〉B, . . . , en ∈ 〈|σn|〉B such
that each η � si � ei is marked confirmed, and:
i. n ≤ arityp(f) and � f e1 · · · en � o is marked confirmed, or
ii. n > k := arityp(f) and there are u, o′ such that � f e1 · · · ek � u is

marked confirmed and u(ek+1, . . . , en) � o′ � o.
3. Completion: return {b | b ∈ B∧ � start d1 · · · dM � b is marked confirmed}.

Note that, for programs of data order 0, this algorithm closely follows the
earlier sketch. Values of a higher type are abstracted to deterministic exten-
sional values. The use of � is needed because a value of higher type is asso-
ciated to many extensional values; e.g., to confirm a statement � plus 3 �

{(1, 4), (0, 3)}nat⇒nat in some program, it may be necessary to first confirm
� plus 3 � {(0, 3)}nat⇒nat.

The complexity of the algorithm relies on the following key observation:

The Power of Non-determinism in Higher-Order Implicit Complexity 687

Lemma 8. Let p be a cons-free program of data order K. Let Σ be the set of all
types σ with ord(σ) ≤ K which occur as part of an argument type, or as an output
type of some f ∈ D. Suppose that, given input of total size n, 〈|σ|〉B has cardinality
at most F (n) for all σ ∈ Σ, and testing whether e1 � e2 for e1, e2 ∈ [[σ]]B takes
at most F (n) steps. Then Algorithm 7 runs in TIME

(
a · F (n)b

)
for some a, b.

Here, the cardinality Card(A) of a set A is just the number of elements of A.

Proof (Sketch). Due to the use of p′, all intensional values occurring in Algo-
rithm 7 are in

⋃
σ∈Σ〈|σ|〉B. Writing a for the greatest number of arguments any

defined symbol f or variable x in p′ may take and r for the greatest number of
sub-expressions of any right-hand side in p′ (which is independent of the input!),
X contains at most a · |D| ·F (n)a+1 + |p′| · r ·F (n)a+1 statements. Since in all but
the last step of the iteration at least one statement is flipped from unconfirmed
to confirmed, there are at most |X | + 1 iterations, each considering |X | state-
ments. It is easy to see that the individual steps in both the preparation and
iteration are all polynomial in |X | and F (n), resulting in a polynomial overall
complexity. ��

The result follows as Card(〈|σ|〉B) is given by a tower of exponentials in ord(σ):

Lemma 9. If 1 ≤ Card(B) < N , then for each σ of length L (where the length of
a type is the number of sorts occurring in it, including repetitions), with ord(σ) ≤
K: Card(〈|σ|〉B) < expK

2 (NL). Testing e � u for e, u ∈ 〈|σ|〉B takes at most
expK

2 (N (L+1)3) comparisons between elements of B.
Proof (Sketch). An easy induction on the form of σ, using that expK

2 (X) ·
expK

2 (Y) ≤ expK
2 (X · Y) for X ≥ 2, and that for Aσ1⇒σ2 , each key e ∈ 〈|σ1|〉B

is assigned one of Card(〈|σ2|〉B) + 1 choices: an element u of 〈|σ2|〉B such that
(e, u) ∈ A, or non-membership. The second part (regarding �) uses the first. ��

We will postpone showing correctness of the algorithm until Sect. 6.3, where
we can show the result together with the one for non-deterministic programs.
Assuming correctness for now, we may conclude:

Lemma 10. Every decision problem accepted by a deterministic cons-free pro-
gram p with data order K is in EXPKTIME.

Proof. We will see in Lemma 20 in Sect. 6.3 that [[p]](d1, . . . , dM) 	→ b if and only
if Algorithm 7 returns the set {b}. For a program of data order K, Lemmas 8
and 9 together give that Algorithm 7 operates in TIME

(
expK

2 (n)
)
. ��

Theorem 1. The class of deterministic cons-free programs with data order K
characterises EXPKTIME for all K ∈ N.

Proof. A combination of Lemmas 6 and 10. ��

688 C. Kop and J.G. Simonsen

6 Non-deterministic Characterisations

A natural question is what happens if we do not limit interest to deterministic
programs. For data order 0, Bonfante [4] shows that adding the choice operator
to Jones’ language does not increase expressivity. We will recover this result for
our generalised language in Sect. 7. However, in the higher-order setting, non-
deterministic choice does increase expressivity—dramatically so. We have:

data order 0 data order 1 data order 2 data order 3 . . .

cons-free P ELEMENTARY ELEMENTARY ELEMENTARY . . .

As before, we will show the result—for data orders 1 and above—in two parts:
in Sect. 6.1 we see that cons-free programs of data order 1 suffice to accept all
problems in ELEMENTARY; in Sect. 6.2 we see that they cannot go beyond.

6.1 Simulating TMs Using (Non-deterministic) Cons-Free Programs

We start by showing how Turing Machines in ELEMENTARY can be simulated
by non-deterministic cons-free programs. For this, we reuse the core simulation
from Fig. 7. The reason for the jump in expressivity lies in Lemma 3: by taking
advantage of non-determinism, we can count up to arbitrarily high numbers.

Lemma 11. If there is a P -counting module Cπ with data order K ≤ 1, there
is a (non-deterministic) (λn.2P (n)−1)-counting module Cψ[π] with data order 1.

Proof. We let αψ[π] := bool ⇒ απ (which has type order max(1, ord(απ))), and:

– An
ψ[π] := the set of those values v : αψ[π] such that:
• there is w ∈ Aπ with 〈w〉n

π = 0 such that pψ[π] �call v true → w;
• there is w ∈ Aπ with 〈w〉n

π = 0 such that pψ[π] �call v false → w;
and for all 1 ≤ i < P (n) exactly one of the following holds:

• there is w ∈ An
π with 〈w〉n

π = i such that pψ[π] �call v true → w;
• there is w ∈ An

π with 〈w〉n
π = i such that pψ[π] �call v false → w;

We will say that v true 	→ i or v false 	→ i respectively.
– 〈v〉n

ψ[π] :=
∑P (n)−1

i=1 {2P (n)−1−i | v true 	→ i};
– pψ[π] be given by Fig. 9 appended to pπ, and Dψ[π] by the symbols in pψ[π].

So, we interpret a value v as the number given by the bitstring b1 . . . bP (n)−1

(most significant digit first), where bi is 1 if v true evaluates to a value repre-
senting i in Cπ, and bi is 0 otherwise—so exactly if v false evaluates to such a
value. ��

To understand the counting program, consider 4, with bit representation
100. If 0, 1, 2, 3 are represented in Cπ by values O,w1, w2, w3 respectively, then in
Cψ[π], the number 4 corresponds to Q := st1 w1 (st0 w2 (st0 w3 (baseψ[π] O))).

The Power of Non-determinism in Higher-Order Implicit Complexity 689

– core elements; sti n F sets bit n in F to the value i
baseψ[π] x b = x
st1ψ[π] n F true = choose n (F true)
st1ψ[π] n F false = F false

st0ψ[π] n F true = F true

st0ψ[π] n F false = choose n (F false)

– testing bit values (using non-determinism and non-termination)
bitsetψ[π] cs F i = if equalπ cs (F true) i then true

else if equalπ cs (F false) i then false

else bitsetψ[π] cs F i
– the seed function
nulπ cs = nul π cs (seedπ cs)
nul π cs n = if zeroπ cs n then n else nul π cs (predπ cs n)
seedψ[π] cs = seed ψ[π] cs (seedπ cs) (baseψ[π] (nulπ cs))
seed ψ[π] cs i F = if zeroπ cs i then F else seed ψ[π] cs (predπ cs i) (st1ψ[π] i F)
– the zero test
zeroψ[π] cs F = zero ψ[π] cs F (seedπ cs)
zero ψ[π] cs F i = if zeroπ i then true

else if bitsetψ[π] cs F i then false

else zero ψ[π] cs F (predπ cs i)
– the predecessor
predψ[π] cs F = prψ[π] cs F (seedπ cs) (baseψ[π] (nulπ cs))
prψ[π] cs F i G = if bitsetψ[π] cs F i then cpψ[π] cs F (predπ cs i) (st0ψ[π] i G)

else prψ[π] cs F (predπ cs i) (st1ψ[π] i G)
cp cs F i G = if zeroπ cs i then G

else if bitsetψ[π] cs F i then cpψ[π] cs F (predπ cs i) (st1ψ[π] i G)
else cpψ[π] cs F (predπ cs i) (st0ψ[π] i G)

Fig. 9. Clauses for the counting module Cψ[π].

The null-value O functions as a default, and is a possible value of both Q true
and Q false for any function Q representing a bitstring.

The non-determinism comes into play when determining whether Q true 	→ i
or not: we can evaluate F true to some value, but this may not be the
value we need. Therefore, we find some value of both F true and F false;
if either represents i in Cπ, then we have confirmed or rejected that bi = 1.
If both evaluations give a different value, we repeat the test. This gives a
non-terminating program, but there is always exactly one value b such that
pψ[π] �call bitsetψ[π] cs F i → b.

The seedψ[π] function generates the bit string 1 . . . 1, so the function F
with F true 	→ i for all i ∈ {0, . . . , P (n) − 1} and F false 	→ i for only
i = 0. The zeroψ[π] function iterates through bP (n)−1, bP (n)−2, . . . , b1 and tests
whether all bits are set to 0. The clauses for predψ[π] assume given a bitstring
b1 . . . bi−110 . . . 0, and recursively build b1 . . . bi−101 · · · 1 in the parameter G.

Example 10. Consider an input string of length 3, say false::false::true::[].
Recall from Lemma 4 that there is a (λn.n+1)-counting module C〈1,1〉 represent-
ing i ∈ {0, . . . , 3} as suffixes of length i from the input string. Therefore, there is
also a second-order (λn.2n)-counting module Cψ[〈1,1〉] representing i ∈ {0, . . . , 7}.
The number 6—with bitstring 110—is represented by the value w6:

690 C. Kop and J.G. Simonsen

w6 = st1ψ[〈1,1〉] (true::[]) (st1ψ[〈1,1〉] (false::true::[]) (
st0ψ[〈1,1〉] (false::false::true::[]) (consψ[〈1,1〉] []))) : bool ⇒ list

But then there is also a (λn.22
n−1)-counting module Cψ[ψ[〈1,1〉]], representing

i ∈ {0, . . . , 27 −1}. For example 97—with bit vector 1100001—is represented by:

S = st1ψ[ψ[〈1,1〉]] w1 (st1ψ[ψ[〈1,1〉]] w2 (st0ψ[ψ[〈1,1〉]] w3 (
st0ψ[ψ[〈1,1〉]] w4 (st0ψ[ψ[〈1,1〉]] w5 (st0ψ[ψ[〈1,1〉]] w6 (
st1ψ[ψ[〈1,1〉]] w7 (consψ[ψ[〈1,1〉]] w7)))))))

Here st1ψ[ψ[〈1,1〉]] and st0ψ[ψ[〈1,1〉]] have the type (bool ⇒ list) ⇒ (bool ⇒
bool ⇒ list) ⇒ bool ⇒ bool ⇒ list and each wi represents i in Cψ[〈1,1〉], as
shown for w6 above. Note: S true 	→ w1, w2, w7 and S false 	→ w3, w4, w5, w6.

Since 22
m−1 − 1 ≥ 2m for all m ≥ 2, we can count up to arbitrarily high

bounds using this module. Thus, already with data order 1, we can simulate
Turing Machines operating in TIME

(
expK

2 (n)
)

for any K.

Lemma 12. Every decision problem in ELEMENTARY is accepted by a non-
deterministic cons-free program with data order 1.

Proof. A decision problem is in ELEMENTARY if it is in some EXPKTIME
which, by Lemma 3, is certainly the case if for any a, b there is a Q-counting
module with Q ≥ λn. expK

2 (a · nb). Such a module exists for data order 1 by
Lemma 11. ��

6.2 Simulating Cons-Free Programs Using an Algorithm

Towards a characterisation, we must also see that every decision problem
accepted by a cons-free program is in ELEMENTARY—so that the result of every
such program can be found by an algorithm operating in TIME

(
expK

2 (a · nb)
)

for some a, b,K. We can reuse Algorithm 7 by altering the definition of 〈|σ|〉B.

Definition 17. Let B be a set of data expressions closed under �. For ι ∈ S,
let [[ι]]B = {d ∈ B | � d : ι}. Inductively, define [[σ × τ]]B = [[σ]]B × [[τ]]B and
[[σ ⇒ τ]]B = {Aσ⇒τ | A ⊆ [[σ]]B × [[τ]]B}. We call the elements of any [[σ]]B
non-deterministic extensional values.

Where the elements of 〈|σ ⇒ τ |〉B are partial functions, [[σ ⇒ τ]]B contains
arbitrary relations: a value v is associated to a set of pairs (e, u) such that v e
might evaluate to u. The notions of extensional expression, e(u1, . . . , un) and �
immediately extend to non-deterministic extensional values. Thus we can define:

Algorithm 13. Let p be a fixed, non-deterministic cons-free program, with f1 :
κ1 ⇒ . . . ⇒ κM ⇒ κ ∈ F .

Input: data expressions d1 : κ1, . . . , dM : κM .
Output: The set of values b with [[p]](d1, . . . , dM) 	→ b.
Execute Algorithm 7, but using [[σ]]B in place of 〈|σ|〉B.

The Power of Non-determinism in Higher-Order Implicit Complexity 691

In Sect. 6.3, we will see that indeed [[p]](d1, . . . , dM) 	→ b if and only if Algo-
rithm 13 returns a set containing b. But as before, we first consider complexity.
To properly analyse this, we introduce the new notion of arrow depth.

Definition 18. A type’s arrow depth is given by: depth(ι) = 0, depth(σ × τ) =
max(depth(σ), depth(τ)) and depth(σ ⇒ τ) = 1 + max(depth(σ), depth(τ)).

Now the cardinality of each [[σ]]B can be expressed using its arrow depth:

Lemma 14. If 1 ≤ Card(B) < N , then for each σ of length L, with depth(σ) ≤
K: Card([[σ]]B) < expK

2 (NL). Testing e � u for e, u ∈ [[σ]]B takes at most
expK

2 (N (L+1)3) comparisons.

Proof (Sketch). A straightforward induction on the form of σ, like Lemma 9. ��
Thus, once more assuming correctness for now, we may conclude:

Lemma 15. Every decision problem accepted by a non-deterministic cons-free
program p is in ELEMENTARY.

Proof. We will see in Lemma 18 in Sect. 6.3 that [[p]](d1, . . . , dM) 	→ b if and
only if Algorithm 13 returns a set containing b. Since all types have an arrow
depth and the set Σ in Lemma 8 is finite, Algorithm 13 operates in some
TIME

(
expK

2 (n)
)
. Thus, the problem is in EXPKTIME ⊆ ELEMENTARY. ��

Theorem 2. The class of non-deterministic cons-free programs with data order
K characterises ELEMENTARY for all K ∈ N \ {0}.
Proof. A combination of Lemmas 12 and 15. ��

6.3 Correctness proofs of Algorithms 7 and 13

Algorithms 7 and 13 are the same—merely parametrised with a different set of
extensional values to be used in step 1b. Due to this similarity, and because
〈|σ|〉B ⊆ [[σ]]B, we can largely combine their correctness proofs. The proofs are
somewhat intricate, however; details are provided in [15, Appendix E].

We begin with soundness:

Lemma 16. If Algorithm 7 or 13 returns a set A∪{b}, then [[p]](d1, . . . , dM) 	→ b.

Proof (Sketch). We define for every value v : σ and e ∈ [[σ]]B: v⇓e iff: (a) σ ∈ S
and v = e; or (b) σ = σ1 × σ2 and v = (v1, v2) and e = (e1, e2) with v1⇓e1 and
v2 ⇓ e2; or (c) σ = σ1 ⇒ σ2 and e = Aσ with A ⊆ {(u1, u2) | u1 ∈ [[σ1]]B ∧ u2 ∈
[[σ2]]B∧ for all values w1 : σ1 with w1⇓u1 there is some value w2 : σ2 with w2⇓u2

such that p′ �call v w1 → w2}.
We now prove two statements together by induction on the confirmation time

in Algorithm 7, which we consider equipped with unspecified subsets [σ] of [[σ]]B:

692 C. Kop and J.G. Simonsen

1. Let: (a) f : σ1 ⇒ . . . ⇒ σm ⇒ κ ∈ F be a defined symbol; (b) v1 : σ1, . . . , vn :
σn be values, for 1 ≤ n ≤ arityp(f); (c) e1 ∈ [[σ1]]B, . . . , en ∈ [[σn]]B be such
that each vi ⇓ ei; (d) o ∈ [[σn+1 ⇒ . . . ⇒ σm ⇒ κ]]B. If � f e1 · · · en � o is
eventually confirmed, then p′ �call f v1 · · · vn → w for some w with w⇓o.

2. Let: (a) ρ : f � = s be a clause in p′; (b) t : τ be a sub-expression of s; (c) η
be an ext-environment for ρ; (d) γ be an environment such that γ(x)⇓ η(x)
for all x ∈ Var(f �); (e) o ∈ [[τ]]B. If the statement η � t � o is eventually
confirmed, then p′, γ � t → w for some w with w⇓o.

Given the way p′ is defined from p, the lemma follows from the first statement.
The induction is easy, but requires minor sub-steps such as transitivity of �. ��

The harder part, where the algorithms diverge, is completeness:

Lemma 17. If [[p]](d1, . . . , dM) 	→ b, then Algorithm 13 returns a set A ∪ {b}.
Proof (Sketch). If [[p]](d1, . . . , dM) 	→ b, then p′ �call start d1 · · · dM → b. We
label the nodes in the derivation trees with strings of numbers (a node with
label l has immediate subtrees of the form l · i), and let > denote lexicographic
comparison of these strings, and � lexicographic comparison without prefixes
(e.g., 1 · 2 > 1 but not 1 · 2 � 1). We define the following function:

– ψ(v, l) = v if v ∈ B, and ψ((v1, v2), l) = (ψ(v1, l), ψ(v2, l));
– for f v1 · · · vn : τ = σn+1 ⇒ . . . ⇒ σm ⇒ κ with m > n, let ψ(f v1 · · · vn, l) =

{(en+1, u) | ∃q � p > l [the subtree with index p has a root p′ �call

f v1 · · · vn+1 → w with ψ(w, q) = u and en+1 �′ ψ(vn+1, p)]}τ .

Here, �′ is defined the same as �, except that Aσ �′ Bσ iff A ⊇ B. Note that
clearly A �′ B implies A � B, and that �′ is transitive by transitivity of ⊇.
Then, using induction on the labels of the tree in reverse lexicographical order
(so going through the tree right-to-left, top-to-bottom), we can prove:

1. If the subtree labelled l has root p′ �call f v1 · · · vn → w, then for all e1, . . . , en

such that each ei �′ ψ(vi, l), and for all p � l there exists o �′ ψ(w, p) such
that � f e1 · · · en � o is eventually confirmed.

2. If the subtree labelled l has root p′, γ � t → w and η(x) �′ ψ(γ(x), l) for all
x ∈ Var(t), then for all p � l there exists o �′ ψ(w, p) such that η � t � o is
eventually confirmed.

Assigning the main tree a label 0 (to secure that p � 0 exists), we obtain that �
start d1 · · · dM � b is eventually confirmed, so b is indeed returned. ��

By Lemmas 16 and 17 together we may immediately conclude:

Lemma 18. [[p]](d1, . . . , dM) 	→ b iff Algorithm 13 returns a set containing b.

The proof of the general case provides a basis for the deterministic case:

Lemma 19. If [[p]](d1, . . . , dM) 	→ b and p is deterministic, then Algorithm 13
returns a set A ∪ {b}.

The Power of Non-determinism in Higher-Order Implicit Complexity 693

Proof (Sketch). We define a consistency measure � on non-deterministic exten-
sional values: e � u iff e = u ∈ B, or e = (e1, e2), u = (u1, u2), e1 � u1 and e2 � u2,
or e = Aσ, u = Bσ and for all (e1, u1) ∈ A and (e2, u2) ∈ B: e1 � e2 implies
u1 � u2.

In the proof of Lemma 17, we trace a derivation in the algorithm. In a deter-
ministic program, we can see that if both � f e1 · · · en → o and � f e′

1 · · · e′
n → o′

are confirmed, and each ei � e′
n, then o �o′—and similar for statements η � s ⇒ o.

We use this to remove statements which are not necessary, ultimately leaving
only those which use deterministic extensional values as used in Algorithm 7. ��
Lemma 20. [[p]](d1, . . . , dM) 	→ b iff Algorithm 7 returns a set containing b.

Proof. This is a combination of Lemmas 16 and 19. ��
Note that it is a priori not clear that Algorithm 7 returns only one value;

however, this is obtained as a consequence of Lemma 20.

7 Recovering the EXPTIME hierarchy

While interesting, Lemma 12 exposes a problem: non-determinism is unexpect-
edly powerful in the higher-order setting. If we still want to use non-deterministic
programs towards characterising non-deterministic complexity classes, we must
surely start by considering restrictions which avoid this explosion of expressivity.

One direction is to consider arrow depth instead of data order. Using
Lemma 14, we easily recover the original hierarchy—and obtain the last line
of Fig. 1.

arrow depth 0 arrow depth 1 arrow depth 2 . . .

cons-free P = EXP0TIME EXP = EXP1TIME EXP2TIME . . .

Theorem 3. The class of non-deterministic cons-free programs where all vari-
ables are typed with a type of arrow depth K characterises EXPKTIME.

Proof (Sketch). Both in the base program in Fig. 7, and in the counting modules
of Lemmas 4 and 5, type order and arrow depth coincide. Thus every decision
problem in EXPKTIME is accepted by a cons-free program with “data arrow
depth” K. For the other direction, the proof of Lemma 1 is trivially adapted
to use arrow depth rather than type order. Thus, altering the preparation step
in Algorithm 13 gives an algorithm which determines the possible outputs of a
program with data arrow depth K, with the desired complexity by Lemma 14.

��
A downside is that, by moving away from data order, this result is hard to

compare with other characterisations using cons-free programs. An alternative
is to impose a restriction alongside cons-freeness: unitary variables. This gives
no restrictions in the setting with data order 0—thus providing the first column
in the table from Sect. 6—and brings us the second-last line in Fig. 1:

694 C. Kop and J.G. Simonsen

data order 0 data order 1 data order 2 data order 3

cons-free
unitary variables

P = EXP0TIME EXP = EXP1TIME EXP2TIME EXP3TIME

Definition 19. A program p has unitary variables if clauses are typed with an
assignment mapping each variable x to a type κ or σ ⇒ κ, with ord(κ) = 0.

Thus, in a program with unitary variables, a variable of a type (list ×
list × list) ⇒ list is admitted, but list ⇒ list ⇒ list ⇒ list is not.
The crucial difference is that the former must be applied to all its arguments at
the same time, while the latter may be partially applied. This avoids the problem
of Lemma 11.

Theorem 4. The class of (deterministic or non-deterministic) cons-free pro-
grams with unitary variables of data order K characterises EXPKTIME.

Proof (Sketch). Both the base program in Fig. 7 and the counting modules of
Lemmas 4 and 5 have unitary variables, and are deterministic—this gives one
direction. For the other, let a recursively unitary type be κ or σ ⇒ κ with
ord(κ) = 0 and σ recursively unitary. The transformations of Lemma 1 are
easily extended to transform a program with unitary variables of type order
≤K to one where all sub-expressions have a recursively unitary type. Since
here data order and arrow depth are the same in this case, we complete with
Theorem 3. ��

8 Conclusion and Future Work

We have studied the effect of combining higher types and non-determinism
for cons-free programs. This has resulted in the—highly surprising—conclusion
that naively adding non-deterministic choice to a language that characterises
the EXPKTIME hierarchy for increasing data orders immediately increases
the expressivity of the language to ELEMENTARY. Recovering a more fine-
grained complexity hierarchy can be done, but at the cost of further syntactical
restrictions.

The primary goal that we will pursue in future work is to use non-
deterministic cons-free programs to characterise hierarchies of non-deterministic
complexity classes such as NEXPKTIME for K ∈ N. In addition, it would be
worthwhile to make a full study of the ramifications of imposing restrictions
on recursion, such as tail-recursion or primitive recursion, in combination with
non-determinism and higher types (akin to the study of primitive recursion in a
successor-free language done in [16]). We also intend to study characterisations
of classes more restrictive than P, such as LOGTIME and LOGSPACE.

Finally, given the surprising nature of our results, we urge readers to investi-
gate the effect of adding non-determinism to other programming languages used
in implicit complexity that manipulate higher-order data. We conjecture that
the effect on expressivity there will essentially be the same as what we have
observed.

The Power of Non-determinism in Higher-Order Implicit Complexity 695

References

1. Bellantoni, S.: Ph.D. thesis, University of Toronto (1993)
2. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime

functions. Comput. Complex. 2, 97–110 (1992)
3. Ben-Amram, A.M., Petersen, H.: CONS-free programs with tree input. In:

Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
271–282. Springer, Heidelberg (1998). doi:10.1007/BFb0055060

4. Bonfante, G.: Some programming languages for Logspace and Ptime. In:
Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 66–80. Springer,
Heidelberg (2006). doi:10.1007/11784180 8

5. Clote, P.: Computation models and function algebras. In: Handbook of Com-
putability Theory, pp. 589–681. Elsevier (1999)

6. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded
computers. J. ACM 18(1), 4–18 (1971)

7. de Carvalho, D., Simonsen, J.G.: An implicit characterization of the polynomial-
time decidable sets by cons-free rewriting. In: Dowek, G. (ed.) RTA 2014. LNCS,
vol. 8560, pp. 179–193. Springer, Cham (2014). doi:10.1007/978-3-319-08918-8 13

8. Goerdt, A.: Characterizing complexity classes by general recursive definitions in
higher types. Inf. Comput. 101(2), 202–218 (1992)

9. Goerdt, A.: Characterizing complexity classes by higher type primitive recursive
definitions. Theor. Comput. Sci. 100(1), 45–66 (1992)

10. Immerman, N.: Descriptive Complexity. Springer, New York (1999)
11. Jones, N.: Computability and Complexity from a Programming Perspective. MIT

Press, Cambridge (1997)
12. Jones, N.: The expressive power of higher-order types or, life without CONS. J.

Funct. Program. 11(1), 55–94 (2001)
13. Kfoury, A.J., Tiuryn, J., Urzyczyn, P.: An analysis of ML typability. J. ACM 41(2),

368–398 (1994)
14. Kop, C., Simonsen, J.: Complexity hierarchies and higher-order cons-free rewriting.

In: Kesner, D., Pientka, B. (eds.) FSCD. LIPIcs, vol. 52, pp. 23:1–23:18 (2016). 10.
4230/LIPIcs.FSCD.2016.23

15. Kop, C., Simonsen, J.: The power of non-determinism in higher-order implicit
complexity (extended version). Technical report, University of Copenhagen (2017).
https://arxiv.org/pdf/1701.05382.pdf

16. Kristiansen, L., Mender, B.M.W.: Non-determinism in Gödel’s system T. Theory
Comput. Syst. 51(1), 85–105 (2012)

17. Kristiansen, L., Niggl, K.-H.: Implicit computational complexity on the compu-
tational complexity of imperative programming languages. Theor. Comput. Sci.
318(1), 139–161 (2004)

18. Kristiansen, L., Voda, P.J.: Programming languages capturing complexity classes.
Nord. J. Comput. 12(2), 89–115 (2005)

19. Dal Lago, U.: A short introduction to implicit computational complexity. In:
Bezhanishvili, N., Goranko, V. (eds.) ESSLLI 2010-2011. LNCS, vol. 7388, pp.
89–109. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31485-8 3

20. Oitavem, I.: A recursion-theoretic approach to NP. Ann. Pure Appl. Log. 162(8),
661–666 (2011)

21. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
22. Sipser, M.: Introduction to the Theory of Computation. Thomson Course Technol-

ogy, Boston (2006)

http://dx.doi.org/10.1007/BFb0055060
http://dx.doi.org/10.1007/11784180_8
http://dx.doi.org/10.1007/978-3-319-08918-8_13
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.23
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.23
https://arxiv.org/pdf/1701.05382.pdf
http://dx.doi.org/10.1007/978-3-642-31485-8_3

	The Power of Non-determinism in Higher-Order Implicit Complexity
	1 Introduction
	1.1 Overview and Contributions
	1.2 Overview of the Ideas in the Paper
	1.3 Related Work

	2 A Purely Functional, Non-deterministic, Call-by-Value Programming Language
	2.1 Syntax
	2.2 Typing
	2.3 Semantics

	3 Cons-Free Programs
	4 Turing Machines, Decision Problems and Complexity
	4.1 (Deterministic) Turing Machines
	4.2 Decision Problems
	4.3 Complexity and the EXPTIME Hierarchy
	4.4 Decision Problems and Programs

	5 Deterministic Characterisations
	5.1 Simulating TMs Using Deterministic Cons-Free Programs
	5.2 Simulating Deterministic Cons-Free Programs Using an Algorithm

	6 Non-deterministic Characterisations
	6.1 Simulating TMs Using (Non-deterministic) Cons-Free Programs
	6.2 Simulating Cons-Free Programs Using an Algorithm
	6.3 Correctness proofs of Algorithms 7 and 13

	7 Recovering the EXPTIME hierarchy
	8 Conclusion and Future Work
	References

