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Abstract. In any setting in which observable properties have a quanti-
tative flavor, it is natural to compare computational objects by way of
metrics rather than equivalences or partial orders. This holds, in partic-
ular, for probabilistic higher-order programs. A natural notion of com-
parison, then, becomes context distance, the metric analogue of Morris’
context equivalence. In this paper, we analyze the main properties of the
context distance in fully-fledged probabilistic A-calculi, this way going
beyond the state of the art, in which only affine calculi were considered.
We first of all study to which extent the context distance trivializes,
giving a sufficient condition for trivialization. We then characterize con-
text distance by way of a coinductively-defined, tuple-based notion of
distance in one of those calculi, called AfB. We finally derive pseudomet-
rics for call-by-name and call-by-value probabilistic A-calculi, and prove
them fully-abstract.

1 Introduction

Probability theory offers computer science models which enable system abstrac-
tion (at the price of introducing uncertainty), but which can also be seen as a
a way to compute, like in randomized computation. Domains in which proba-
bilistic models play a key role include machine learning [27], robotics [34], and
linguistics [24]. In cryptography, on the other hand, having access to a source of
uniform randomness is essential to achieve security, e.g., in the public key set-
ting [20]. This has stimulated the development of concrete and abstract program-
ming languages, which most often are extensions of their deterministic siblings.
Among the many ways probabilistic choice can be captured in programming, the
simplest one consists in endowing the language of programs with an operator
modeling the flipping of a fair coin. This renders program evaluation a proba-
bilistic process, and under mild assumptions the language becomes universal for
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probabilistic computation. Particularly fruitful in this sense has been the line of
work on the functional paradigm, both at a theoretical [22,26,29] and at a more
practical level [21].

We are still far, however, from a satisfactory understanding of higher-order
probabilistic computation. As an example, little is known about how much of the
classic, beautiful, theory underlying the A-calculus [1] can be lifted to probabilis-
tic A-calculi, although the latter have been known from forty years now [30]. Until
the beginning of this decade, indeed, most investigations were directed towards
domain theory, which has been proved to be much more involved in presence of
probabilistic choice than in a deterministic scenario [23]. In the last ten years,
however, some promising results have appeared. As an example, both quanti-
tative semantics and applicative bisimilarity have been shown to coincide with
context equivalence for certain kinds of probabilistic A-calculi [5,14]. This not
only provides us with new proof methodologies for program equivalence, but also
sheds new light on the very nature of probabilistic higher-order computation. As
an example, recent results tell us that program equivalence in presence of prob-
abilistic choice lies somehow in between determinism and non-determinism [5].

But are equivalences the most proper way to compare terms? Actually, this
really depends on what the underlying observable is. If observables are boolean,
then equivalences (and preorders) are indeed natural choices: two programs are
dubbed equivalent if they give rise to the same observable (of which there are
just two!) in any context. If, on the other hand, the observable is an element
of a metric space, which happens for example when we observe (the probability
of) convergence in a probabilistic setting, one may wonder whether replacing
equivalences with metrics makes sense. This is a question that has recently been
given a positive answer in the affine setting [6], i.e., in a A-calculus in which
copying is simply not available. More specifically, a notion of context distance has
been shown to model differences between terms satisfactorily, and has also been
shown to be characterized by notions of trace metrics, and to be approximated
from below by behavioral metrics.

Affine A-calculi are very poor in terms of the computations they are able to
model. Measuring the distance between terms in presence of copying, however,
is bound to be problematic. On the one hand, allowing contexts to copy their
argument has the potential risk of t¢rivializing the underlying metric. On the
other hand, finding handier characterizations of the obtained notion of metric
in the style of behavioral or trace metrics is inherently hard. A more thorough
discussion on these issues can be found in Sect. 2 below.

In this paper, we attack the problem of analyzing the distance between A-
terms in its full generality. More specifically, the contributions of this paper are
fourfold:

e First of all, we define a linear probabilistic A-calculus, called /1!@’9H7 in which
copying and a nonstandard construct, namely Plotkin’s parallel disjunction,
are both available. A very liberal type system prevents deadlocks, but never-
theless leaves the expressive power of the calculus very high. This choice has
been motivated by our will to put ourselves in the most general setting, so as
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to be able to talk about different fragments. The calculus is endowed with a
notion of context distance, in Morris’ style. This is covered in Sect. 3 below.

e We study trivialization of the obtained notion(s) of metric for different frag-
ments of A?é”, showing that both parallel disjunction and strong normaliza-
tion give us precisely the kind of discriminating power we need to arbitrarily
amplify distances, while in the most natural fragment, namely /1!@, trivializa-
tion does not hold. This is the subject of Sect. 4.

e In Sect.5, we prove that context distance can be characterized as a co-
inductively-defined distance on a labeled Markov chain of tuples. The way
(tuples of) terms interact with their environment makes proofs of soundness
laborious and different from their affine counterparts from [6]. An up-to-
context notion of bisimulation is proved to be sound, and to be quite useful
when evaluating the distance between concrete programs.

e Finally, we show that the results from Sect.5 can be lifted back to ordi-
nary probabilistic A-calculi from the literature [5,10]. Both when call-by-name
evaluation and call-by-value are considered, our framework can be naturally
adapted, and helps in facilitating concrete proofs. This is in Sect. 6.

More details can be found in a long version of this paper, available online [7].

2 DMetrics and Trivialization, Informally

The easiest way to render the pure A-calculus a universal probabilistic computa-
tion model [10] consists in endowing it with a binary construct @ for probabilis-
tic choice. The term M @ N evolves as either M or N, each with probability %
The obtained calculus can be given meaning by an operational semantics which
puts terms in correspondence with distributions of values. The natural notion
of observation, at least in an untyped setting like the one we will consider in
this paper, is thus the probability of convergence of the observed term M, which
will be denoted as Z[[ M- One could then define a notion of context equivalence
following Morris’ pattern, and stipulate that two terms M and N should be
equivalent whenever they terminate with ezactly the same probability when put
in any context:

M=N & Y03 1 oom= 2w

The anatomy of the obtained notion of equivalence has been recently studied
extensively, the by-products of this study being powerful techniques for it in the
style of bisimilarity and logical relations [3,5,9].

As observed by various authors (see, e.g., [25] for a nice account), proba-
bilistic programs and processes are naturally compared by metrics rather than
equivalences: the latter do not give any quantitative information about how dif-
ferent two non-equivalent programs are. Given that the underlying notion of
observation is inherently quantitative, on the other hand, generalizing context
equivalence to a pseudometric turns out to be relatively simple:

5(M, N) = - .
(M, N) S‘ép‘zﬂcwm Z[[C[Nm’
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Observe that the obtained notion of context distance between two terms is a real
number between 0 and 1, which is minimal precisely when the considered terms
are context equivalent. It is the least discriminating pseudometric which is non-
expansive and adequate, and as such it provides some quite precise information
about how far the two argument programs are, observationally. A similar notion
has recently been studied by the authors [6], but only in a purely affine setting.

Let us now consider two prototypical examples of non-equivalent terms,
namely I = Az.z (the identity) and 2 (the always-divergent term). The context
distance §¢(I, {2) between them is maximal: when applied, e.g., to the trivial
context [], they converge with probability 1 and 0, respectively. A term which
is conceptually “in the middle” of them is M = I & (2. Indeed, in a purely affine
A-calculus, 6¢(1, M) = 6°(M, §2) = .

If we render the three terms duplicable (by putting them in the scope of a !-
operator), however, the situation becomes much more complicated. Consider the
terms T and (I @ £2). One can easily define a family of contexts {C), }nen such
that the probability of convergence of Cy,[!I] and C,[!(I & £2)] tend to 1 and 0
(respectively) when n tends to infinity. It suffices to take C), as (Alz. ...z )[-].

n times

Allowing contexts to have the capability to duplicate their argument seems to
mean that they can arbitrarily amplify distances. Indeed, the argument above
also works when (I @ {2) is replaced by any term which behaves as (2 with
probability € and as I with probability 1 — ¢, provided of course € > 0. But how
about 142 and (I & £2)? Are they at maximal distance, i.e. is it that §¢(102,1(I ®
2)) = 17 Apparently, this is not the case. The previously defined contexts C,,
cannot amplify the “linear” distance between the two terms above, namely %,
up to 1. But what is the distance between {2 and (I @ (2), then? Evaluating it is
hard, since you need to consider all contexts, which do not have a nice structure.
In Sect. 5, we will introduce a different, better behaved, notion of distance, this
way being able to prove that, indeed, §°(142,!(I & 2)) = 1.

All this hints at even more difficult examples, like the one in which M. =
1(£2 @° I), where @&° is the natural generalization of @ to a possibly unfair coin
flip, and one is interested in evaluating §°(M., M,,). In that case, we can easily
see that the “linear” distance between them is |e — u|. In some cases, it is possible
to amplify it: the most natural way is again to consider the contexts C,, defined
above. Indeed, we see that the probabilities of convergence of C,,[M,] and C), [M,]
are " and u", respectively. It follows that 0(M., M) > sup,,cy [e" — p™|. For
some ¢ and p (for example if e+ > 1), the context distance can be greater than
|e — |- But there is no easy way to know how far amplification can lead us. The
terms M. and M,, will be running examples in the course of this paper. Despite
their simplicity, evaluating the distance between them is quite challenging.

We are also going to consider the case in which contexts can evaluate terms
in parallel, converging if and only if at least one of the copies converges. This
behavior is not expressible in the usual A-calculus, but is captured by well-
known constructs and in particular by Plotkin’s parallel disjunction [28]. In
Sect. 4 below, we prove that all this is not accidental: the presence of parallel
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disjunction turns a non-trivializing metric into a trivializing one. The proof of it,
by the way, relies on building certain amplifying contexts which are then shown
to be universal using tools from functional analysis.

3 A Linear Probabilistic A-Calculus

In this section, we present the syntax and operational semantics of our language
A!efauv on which we will later define metrics. AIG;H is a probabilistic and linear \-
calculus, designed not only to allow copying, but to have a better control on it.
It is based on a probabilistic variation of the calculus defined in [33], whose main
feature is to never reduce inside exponential boxes. As we will see in Sect. 6, the
calculus is capable of encoding both call-by-value and call-by-name fully-fledged
probabilistic A-calculi. We add a parallel disjunction construct to the calcu-
lus, being inspired by Plotkin’s parallel disjunction [28]. Noticeably, it has been
recently shown [8] that adding parallel disjunction to a (non-linear) A-calculus
increases the expressive power of contexts to the point of enabling coincidence
between the contextual preorder and applicative similarity. The choice of study-
ing a very general calculus is motivated by our desire to be as general as possible.
This being said, many of our results hold only in absence of parallel disjunction.

Definition 1. We assume a countable set of variables & . The set of terms of
A!éH (denoted T ) is defined by the following grammar:

MeZu=z | MM | Xe.M | NaM | M | Mo M

| (M| M)~ M),

where x € X . The fragment of Alé‘l without the ([- || ] — ) construct will be
indicated as A!@. Values are those terms derived from the following grammar:

Veyi= xM | NeM | M.

As already mentioned, M & N can evolve to either M or N, each with probability
%. The term !M is a duplicable version of M, often called an (ezponential) box.
We have two distinct abstraction operators: Axz.M is a linear abstraction, while
the non-linear abstraction Alx.M requires exponential boxes as arguments. The
term ([M || N] — L) behaves as L if either M or N converges. Please observe
that both abstractions and boxes are values—our notion of reduction is weak
and surface [33].

We are now going to define an operational semantics for the closed terms of
A!éH in a way similar to the one developed for a (non-linear) A-calculus in [10].
We need to first define a family of approzimation semantics, and then to take
the semantics of a term as the least upper bound of all its approximations. The
approximation semantics relation is denoted M = D, where M is a closed term
of Alé‘l, and D is a (sub)distribution on values with finite support, i.e., a function
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from 7 to Ry ;; which sums to a real number } 3, < 1. For any distribution D
on a set X, we call support of D, and we note S(D), the set {x € X | D(z) > 0}.
We say that D is finite if S(D) is a finite set.

The rules deriving the approximation semantics relation are given in Fig. 1,
and are based on the notion of an evaluation context, which is an expression
generated from the following grammar:

E:=[] | EV | ME | (M| E]—N) | ([E| M]— N).

As usual, E[M] stands for the term obtained by filling the sole occurrence of [/]
in E with M. In Fig. 1 and elsewhere in this paper, we indicate the distribution
assigning probability p; to V; for every i € {1,...,n} as {V{*,..., VP }. We pro-
ceed similarly for the expression {V*};cr, where I is any countable index set.
Observe how we first define a one-step reduction relation - — - between closed
terms and sequences of terms, only later extending it to a small-step reduction
relation - = - between closed terms and distributions on values. A reduction step
can be a linear or non-linear B-reduction, or a probabilistic choice. Moreover,
there can be more than one active redex in any closed term M, due to the pres-
ence of parallel disjunction. For any term M, the set of sub-distributions D such
that M = D is a countable directed set. Since the set of sub-distributions (with
potentially infinite support) is an w-complete partial order, we can define the
semantics of a term M as [M] = sup{D | M = D}. We could also define alter-
natively a big-step semantics, again in the same way as that of the probabilistic
A-calculus considered in [10].

M&N < MN (Az. M)V — M{z/V} (Az.M)IN — M{z/N}

M < Ni,...,Ny
(VIM—N) =N (M|V]—N) >N  E[M — E[Ni],...E[Nn]

M — Ni,...,N, (N1 = Di)lgign
V= {V'} M= M:>21§ign%'pi

Fig. 1. Approximation semantics for A!@

Not all irreducible terms are values in A!éH, e.g. (Mlz.x)(Az.x). We thus need
a type-system which guarantees the absence of deadlocks. Since we want to be
as general as possible, we consider recursive types as formulated in [2], which are
expressive enough to type the image of the embeddings we will study in Sect. 6.
The grammar of types is the following:

o€ = ua.a—ogl,ua.!a|o—oa‘!o
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pa.oc — 7 =7 gla = (oo —o 7)] —o T[a = (.o —o 7))

o

o= vla = o] =" ya— 7]

palo = (ola = pa.lo]) o =2 r

Fig. 2. Equality of types

Types are defined up to the equality =<, defined in Fig.2. o[a — 7] stands
for the type obtained by substituting all free occurrences of o by 7 in o. An
environment is a set of expressions in the form x : o or !z :!o in which any variable
occurs at most once. Environments are often indicated with metavariables like
I, which stands for an environment in which all variables occur as !z, or A
in which, on the contrary, variables can only occur with the shape z, so that
A is of the form xy : o1,...,2, : on. Typing judgments are thus of the form
A = M : 0. The typing system is given in Fig.3. The role of this type
system is not to guarantee termination, but rather to guarantee a form of type
soundness:

Lemma 1. If- M : 0 and M = D, then =V : o for every V in the support of
D. Moreover, if = M : o and M is irreducible (i.e. M > N for every N ), then
M is value.

\Ne:00AFM: T

\Nlzlokx:0

lo o, \[VAEM: 7

Nzx:obx:0o

IINAFM:0—oT1

INAF X .M :0 —T
INOFN:o

A Mz M lo — 1

\NA,©OF MN : 7

I'EM:o INAFM:o IINAFN:o
\I'HIM o INAFM @& N:o
INAEM:o IINOFN:o \N=FL:T

NA6,EF ([M||NJ—L):7

Fig. 3. Typing rules

Example 1. The term I = Ax.x can be typed as - I : ¢ —o ¢ for every o € &/.
We define 2 to be the term (Alz.zlz)(!(Alz.x!lz)), which is the counterpart in
our linear calculus of the prototypical diverging term of the A-calculus, namely
2 = (Az.zz)(Az.xzx). We can type this divergent term with any possible type:
indeed, if we take 7::=pa.la —o o, then 7 =77 — ¢ and F Mz.zlz : 0. Using
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that, we can see that - (2, : o for every type 0. We will see in Sect. 6 that, more
generally, there are several ways to turn any pure A-term M into a /1I69 term in
such a way as to obtain meaningful typing and semantics: /1!EB is actually at least
as powerful as the usual untyped probabilistic A-calculus [10].

Termination could in principle be guaranteed if one considers strictly positive
types, as we will do in Sect. 4.1 below. Let D be the set of dyadic numbers (i.e.
those rational numbers in the form 5% (with n,m € N and n < 2™). It is easy
to derive, for every ¢ € D, a new binary operator on terms - @&° - such that
[M &° N = (1—¢)[M] +¢[N] for every closed M, N.

Ezample 2. We define here a family of terms that we use as a running example.
We consider terms of the form M, =1(£2, @° I), for € € D. It holds that - M. :
(0 — o) for every o. M. corresponds to a duplicable term, each copy of which
behaves as I with probability €, and does not terminate with probability 1 — €.

3.1 Some Useful Terminology and Notation

In this paper, we will make heavy use of sequences of terms and types. It is thus
convenient to introduce some terminology and notation about them.

A finite (ordered) sequence whose elements are eq, ..., e, will be indicated
as e = [e1,...,ey], and called an n-sequence. Metavariables for sequences are
boldface variations of the metavariables for their elements. Whenever £ =
{i1,..yim} C {1,...,n} and i; < ... < 4, the sub-sequence [e;,,...,e; ] of
an n-sequence e will be indicated as eg. If the above holds, F¥ will be called an
n-set. If e is an n-sequence, and ¢ is a permutation on {1,...,n}, we note e, the
n-sequence [€,(1), - - -, €u(n)]. We can turn an n-sequence into an (n+1)-sequence
by adding an element at the end: this is the role of the semicolon operator. We
denote by [e™] the n-sequence in which all components are equal to e.

Whenever this does not cause ambiguity, notations like the ones above will
be used in conjunction with syntactic constructions. For example, if o is an
n-sequence of types, then lo stands for the sequence [loy,...,!o,]. As another
example, if o is an n-sequence of types and FE is an n-set, then &g : o stands
for the environment assigning type o; to z; for every i € E. As a final example,
if M is an n-sequence of terms and o is an n-sequence of types, - M : o holds
iff F M; : 0; is provable for every i € {1,...,n}.

3.2 Context Distance

A context of type o for terms of type T is a term C' which can be typed as
hole : T+ C': o, where hole is a distinguished variable. C collects all such terms.
If C € C7 and M is a closed term of type 7, then the closed term C{hole/M}
has type ¢ and is often indicated as C[M].

The context distance [6] is the natural quantitative refinement of context
equivalence. Intuitively, it corresponds to the maximum separation that con-
texts can induce between two terms. Following [6], we take as observable the
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probability of convergence: for any term M, we define its observable Obs(M) as
ZHM]]' Then, for any terms M, N such that - M : ¢ and - N : g, we define:

95,1, (M. N) = sup [Obs(C[M]) - Obs(C[N)).

Please observe that this distance is a pseudometric, and that moreover we can
recover context equivalence by considering its kernel, that is the set of pairs of
terms which are at distance 0. The binary operator (53’7! is defined similarly, but
referring to terms (and contexts) from A%

Ezample 3. What can we say about 47 , I (M., M,,)? Not much apparently, since

all contexts should be considered. Even if we put ourselves in the fragment /1!@,
the best we can do is to conclude that 5 (M, N) > sup,,cy|e” —pu"], as explained
in Sect. 2.

4 On Trivialization

As we have already mentioned, there can well be classes of terms such that the
context distance collapses to context equivalence, due to the copying abilities
of the language. The question of trivialization can in fact be seen as a question
about the expressive power of contexts: given two duplicable terms, how much
can a context amplify the observable differences between their behaviors?

More precisely, we would like to identify trivializing fragments of /1””7 that
is to say fragments such that for any pair of duplicable terms, their context
distance (with respect to the fragment) is either 0 or 1. This is not the case in
Al (see Example 8 below).

In fact, a sufficient condition to trivialization is to require the existence of
amplification contexts: for every observable type o, for every a, 8 € [0, 1] distinct,
for every v > 0, we want to have a context C2#7 such that:

FM,N:o
Obs(M) = a 3 = |Obs(C2PY[1M]) — Obs(C2PT[IN])| > 1 — 7.
Obs(N) =0

Fact 1. Any fragment of Ale’a” admitting all amplifications contexts trivializes.

4.1 Strictly Positive Types

First, let us consider the case of the fragment /12"9l of AI@ obtained by considering
strictly positive types, only (in a similar way to [2]), and by dropping parallel
disjunction. Every term M of Alél is terminating (i.e. > [M] = 1), so we need to
adapt our notion of observation: we define the type B =!a —ola —o «, which can
be seen as boolean type using a variant of the usual boolean encoding in A-calculi.
Our new notion of observation, defined only at type B, is Obs(M) = Z[[M,I!Q!]],
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which corresponds to the probability that M evaluates to true. While this notion
of observation uses the full power of /1!@, the context distance d7 | based on it

only consider contexts in Ale’al.
Theorem 1. &7 trivializes.

The proof of Theorem 1 is based on the construction of amplification contexts.
We are going to use Bernstein constructive proof of the Stone-Weierstrass theo-
rem. Indeed, Bernstein showed that for every continuous function f : [0,1] — R,
the following sequence of polynomials converges uniformly towards f:

Pl(z) = Zogkgn f (%) - By (x), where By (z) = (Z) A G )

Let us consider the following continuous function: we fix f(a) = 0, f(8) = 1,
and f defined elsewhere in such a way that it is continuous, that it has values in
[0,1], and that moreover f(Q) C Q. We can easily implement P/ by a context,
i.e. define C' such that for every M, Obs(C[M]) = PJ(Obs(M)). In Ale’al, we
can indeed copy an argument n times, then evaluate it, and then for every k
between 0 and n, if the number of trues obtained is exactly k, return the term
false /(%) true (that corresponds to a term returning true with probability
f (%)) Please observe that this construction works only because in Alg all terms
converge with probability 1.

4.2 Parallel Disjunction

As we have seen, trivialization can be enforced by restricting the class of terms,
but we can also take the opposite road, namely increasing the discriminating
power of contexts. Indeed, consider the full language /1!G§H7 with the usual notion
of observation.

We can first see how parallel disjunction increases the expressive power of the
calculus on a simple example. Consider the following two terms: M =12, and
N =1(42y @ I). We will see later that these two terms are the simplest example of
non-trivialization in Al: indeed Or—ory 1 (M, N) = 1, while O —ory,, | (M, N) =

1. In A!’H7 we are able to define a family of contexts (C},)nen as follows:
[57]
Cn= Az ([zf (x| ...]—=1)]—=1))[]

Essentially, C,, makes n copies of its argument, and then converges towards [
if at least one of these copies itself converges. When we apply the context C),
to M and N, we can see that the convergence probability of C,[M] is always 0
independently of n, whereas the convergence probability of C,,[N] tends towards
1 when n tends to infinity.
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Theorem 2. 6!6” trivializes.

The proof is based on the construction of amplification contexts C%#7. If
max(«, 3) = 1, we can extend the informal argument from Sect. 2, by taking con-
texts that copy an arbitrary number of times their argument. If min(a, 3) = 0,
we can use the same idea as in the example above, by taking contexts that do
an arbitrary number of disjunctions. What remains to be done to obtain the
trivialization result is treating the case in which 0 < «a, 3 < 1. The overall idea
is to somehow mix the contexts we use in the previous cases. More precisely, we

define a family of contexts (C]"),men as follows:

=Ny (N V" w1

where
V' On. M) = (0| (0 - )= D)) = D)
N (M1 M) = Azt Azoe . Ay.(yz1 . 2a)) My .. M.
The term \/"(My,..., M,) behaves as a n-ary disjunction: it terminates if at

least one of the M; terminates. On the other hand, A"(Mji,..., M,) can be
seen as a m-ary conjunction: it terminates if all the M; terminates. The contexts
C& compute m-ary conjunctions of n-ary disjunctions. Now, let ¢ be such that
a <t < 8. We need to show that for every n, we can choose m(n,t) € N such
that:

lim Obs(C™™I[IM]) =

n— oo

1if Obs(M) > ¢;
0 if Obs(M) < ¢.

We can express this problem purely in terms of functional analysis, by observing
that Obs(CI'[!M]) = (1—(1—0Obs(M))™)™. Then the result is proved by applying
the dominated convergence theorem to a well-chosen sequence of functions.

5 Tuples and Full Abstraction

This section is structured as follows: first, we define a labeled Markov chain
(LMC) which expresses the semantics of our calculus in an interactive way, and
then we use it to give a coinductively-defined notion of distance on a labeled
transition system (LTS) of distributions, which coincides with the context dis-
tance defined in Sect. 3.2. We are not considering parallel disjunction here: the
motivations for that should be clear from Theorem 2.

5.1 A Labeled Markov Chain over Tuples

Labeled Markov chains are the probabilistic analogues to labeled transition sys-
tems. Formally, a LMC is a triple # = (S, A, P), where § is a countable set of
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states, A is a countable set of labels, and P : S x A — Distr(S) is a transition
probability matriz (where Distr(X) is the set of all distributions over X).
Following [9], the interactive behavior of probabilistic A-terms can be repre-
sented by a LMC whose states are the terms of the language, whose actions are
values, and where performing the action V starting from a state M corresponds
to applying the value V' to M. This approach is bound not to work in presence
of pairs when metrics take the place of equivalences, due to the unsoundness
of projective actions. In [6], this observation led us to introduce a new LMC
whose states are tuples of terms, and whose actions include one splitting a pair:
P([(M, N)])(destruct) = {[M,N]'}. This turns out to work well in an affine
setting [6]. We are going to define a LMC .#;, = (Slﬂé,A%é,P%éB) which is
an extension of the one from [6], and which is adapted to a language with copy-

ing capabilities. The idea is to treat exponentials in the spirit of Milner’s Law:
1A — AQ!A.

States. Tuples are pairs of the form K = (M,V) where M and V are a
sequence of terms and values, respectively. The set of all such tuples is indicated
as % . The first component of a tuple is called its exponential part, while the
second one is called its linear part. We write - (M, V) : (o,7) if F M : o and
F V : 7. We note T the set of pairs A = (o, 7), and we call tuple types the
elements of T. Moreover, we say that (o, 7) is a (n,m) tuple type if o and T are,
respectively, an n-sequence and an m-sequence. To any term M, we associate
a tuple in a natural way: we note M the tuple ([],[M]), and similarly if o is a
type, we indicate the tuple type ([],[o]) as . Please observe that if - M : o,
then it holds that F M : 6.

A sequence of the form (E, F,o, 7, M,) is said to be an applicative typing
judgment when o and 7 are, respectively, an n-sequence and an m-sequence of
types, E and F are respectively an n-set and an m-set, and moreover it holds
that lxep log,yp : 7r F M : v. Intuitively, this means that if we have a tuple
K = (N,V) of type (o, T), we can replace free variables of M by some of the
terms from K. More precisely, we can replace variables in linear position by the
V; with 7 € I, and variables in non linear position by IV;, with j € E. We note as
M[K] the closed term of type vy that we obtain this way. We note _# the set of
all applicative typing judgments. We are specially interested in those judgments
(E,F,o,7,M,v) in _# such that for every tuple K, the resulting term M[K]
is a value: that is when either M = y; for a i € N, or M is of the form A\z.N,
Alz.N, or IN. We note j“’/ the set of those judgments.

We are now in a position to define =///éB formally. The set of its states is indeed
defined as S 41 = {(K,A) | Ke%,AeT, - K: A}

Labels and Transitions. How do statesin S ,: interact with the environment?
This is captured by the labels in A R and the associated probability matrix.
We define 'A//’éa as the disjoint union of A-, A, and Aaq, where:

A= A; = {i|ieN} Aa={(ki)|ieN, ke 7"}
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In order to distinguish actions in A, and A, we write the action i € N as (7’)
if it comes from A;, and as (1) if it comes from A,. The action (k,i) € Aa is
often indicated as @’ . The probability matrix P L is defined formally in Fig. 4.

We give below some intuitions about it. The general idea is that //lé is designed
to express every possible effect that a context can have on tuples. A, and A,
are designed to model copying capabilities, while Aq corresponds to applicative
interactions.

Actions in A- take any term of the form !M from the linear part of the under-
lying tuple, unbox it and transfer M to the exponential part of the tuple. Please
observe that this action is in fact deterministic: the resulting tuple is uniquely
determined. Labels in A, on the other hand, model the act of copying terms
in the exponential part. We call its elements Milner’s actions. More specifically,
the action (!?) takes the i-th term in the exponential part of the tuple, makes a
copy of it, evaluates it and adds the result to the linear part. Please observe that,
contrary to (?"), this action can have a probabilistic outcome: the transferred
term is evaluated.

Labels in Aq are analogues of the applicative actions from applicative bisim-
ulation over terms (see, e.g. [9]). As such, they model environments passing
arguments to programs. Here, we have to adapt this idea to our tuple frame-
work: indeed, we can see the tuple as a collection of programs available to the
environment, who is free to choose with which of the programs to interact with
by passing it an argument. This argument, however, could depend on other
components of the tuple, which need to be removed from it if lying in its linear
part. Finally, please observe that all this should respect types. Labels in Aq are
indeed defined as a pair of an index i corresponding to the position in the tuple
of the term the environment chooses, and an applicative typing judgment, used
to specify the argument. Please observe that in the definition of the probability
matrix for applicative actions, in Fig. 4, the condition on i implies that the i-th
linear component of the tuple is not used to construct the argument term.

()

| (M N, W apviin)s

‘ (M, W), (a,7))

with W; =IN and ; =ly ‘

(M, W), (o, 7))

1

D)

‘ (@57, T\ (i})

M) (V)

[((M w; V), (0’,7’; o—z))j

((M7 W), (o, 7)) ax | (MW rogin: V),
with 7o =y =0 | [ (N[(M, W)D](V) | (@ T mnronin)
with K = (E,F,o,7,N,v) and it ¢ F

Fig. 4. Definition of P%é

Ezxample 4. We give in Fig.5 a fragment of ///6!9 illustrating our definitions
on an example. Let 7 be an element of &/. We consider terms of the form
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M. =!(y@° I), for € € D and we look at some of the possible evolutions in
M, from the associated state (M, N1 —o 1)) = ([],[M]), (], [!(T — 7)]). In
Fig. 5, we denote by o the type 7 —o 7.

([ve® 11, VD, (], [7])
with =V :7

(2 @ 17, [1), ([ @ 1], [1,1]),
([e], [o]) (o], [0, 0])

[T v < o
([11,0,[0), [0}, W,r) 7(([2r @° 1], [W{z1/2 @° 1}]),
([o], 7]

with lz; (lo b W @ 7

([ ®% 1]
([o],

-
o], 1)

Fig. 5. A fragment of 77‘/,{!89

5.2 Distributions as States

Now that we have a LMC P A modeling interaction between (tuple of) terms
and their environment, we could define notions of metrics following one of the
abstract definitions from the literature, e.g. by defining the trace distance or
the behavioral distance between terms. This is, by the way, the approach fol-
lowed in [6]. We prefer, however, to first turn P ,: into a transition system £
whose states are distributions of tuples. This supports both a simple, coinduc-
tive presentation of the trace distance, but also up-to techniques, as we will see
in Sect. 5.5 below. Both will be very convenient when evaluating the distance
between concrete terms, and in particular for our running example.

It turns out that the usual notion of LTS is not sufficient for our purposes,
since it lacks a way to ezpose the observables of each state, i.e., its sum. We thus
adopt the following definition:

Definition 2. A weighted labeled transition system (WLTS for short) is a
quadruple in the form & = (S, A, —,w) where:

e S is a set of states and A is a countable set of actions,

e — is a transition function such that, for everyt € S and a € A, there exists
at most one s € S such that t->s,

o w:S —[0,1] is a function.

Please observe how WLTSs are deterministic transition systems. We define the
WLTS 92% by the equations of Fig. 6.
Ift=(D,A) is in Sgé, we say that ¢ is a A-state. It is easy to check that

fé is nothing more than the natural way to turn P , into a deterministic
®

transition system. We illustrate this idea in Fig. 7, by giving a fragment of .i%
corresponding to (part of) the fragment of .#, given in Example 4.
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St = Uner Distr({K [F K : AD) x {A})  Agy = A UA[AET}  w(D,A) =%,
(D, )B(D,A) for AET (D, A)5E eq DIK) Py, (K, A))(a) for a € A g .

Fig. 6. The WLTS .2}, = (S%,A%,%,w)

({(nv@ 11 1 11)5 }j

U'

(Q/
o (2 &7 1. 1)), ({12 ®° 11, 1)),
SELR i) o (lo].0)) JW{ (o1 loh) J

(00[][]\/7)

({([Qv H D}
[0]

T]
with FV .7

Fig. 7. A fragment of .ffe!;

5.3 A Coinductively-Defined Metric

Following Desharnais et al. [13], we use a quantitative notion of bisimulation
on 36!5 to define a distance between terms. The idea is to stipulate that, for
any € € [0,1], a relation R is an e-bisimulation if it is, somehow, e-close to a
bistmulation. The distance between two states ¢t and s is just the smallest € such
that t and s are e-bisimilar. However, while in [13] the notion of e-bisimulation
is local, we want it to be more restricted by the global deviation we may accept
considering arbitrary sequences of actions.

Definition 3. Let .Z = (S, A, —,w) be a WLTS. Let R be a symmetric and
reflexive relation on S, and € € [0,1]. R is a e-bisimulation whenever the follow-
ing two conditions hold:

o iftRs, and t5u, then there exists v such that s—v, and it holds that uw Rv.
e iftRs, then |w(t) —w(s)| <e.

For every e € [0,1], there exists a largest e-bisimulation, that we indicate as RE.
Please observe that it is not an equivalence relation (since it is not transitive).
We can now define a metric on S: 6% (t,s) = inf {e | t R® s}. The greatest lower
bound is in fact reached as a 6%(t, s)-bisimulation [7).

How can we turn 55’% into a metric on terms? The idea is to consider the distri-
butions on fuples one naturally gets when evaluating the term. To every term
M of type o, we define §,(M) € nge as ({VIMIV) Yy ey ).

Definition 4. For every terms M and N such thatt+ M : o and - N : o, we
set 6% (M, N) = 55’%! (85(M), 85(N)).
- @
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Ezample 5. Consider again the terms M. and M, from Example 2. We fix a
type 7, and define ¢ = 7 — 7. As mentioned in Example 2, it holds that
F M. :lo. Let now e, u,« be in [0,1], and let R be any a-bisimulation, such
that $1,(M:) R8,(M,). Let {t;};en and {s;}ieny be families from Sféa such

that §10(M5)(L)t0(!ﬂ). . Qtz ... and §10(M“)(;)50Q. . Qsz .... Since R is an

a-bisimulation, for every ¢, it holds that ¢; R s;. Looking at the definition of ;f@g,
it is easy to realize that:

t={(2 e 1,[,....1), (o] [0, o) Vien:

si={([2e"1],,...,1]),(o],lo,...,0)" }ien-
By the definition of an a-bisimulation, we see that this implies that o > |&® — u/?|.
Since this reasoning can be done for every o such that M, and M, are o-
bisimilar, it means that: 6{’0’!(M5, M,,) > sup,;enle® — | Moreover, if we consider
the special case where € = 0, we can actually construct a u-bisimulation by taking

R = (815(Mo), 815(M,)) U {(to, 50)} U{((0,4), (D, A) | Y <}

We can easily check that R is indeed a p-bisimulation, which tells us that
5!170,1(M0’ MIL) = K.

5.4 Full Abstraction

In this section, we prove that 52,! coincides with d; . We first of all show that

the metric 53;,1 is sound with respect to 4, i.e. that 53;,1 discriminates at least
as much as Jg :

Theorem 3 (Soundness). For any terms M and N of Ay, such that- M : o
and = N : o, it holds that 6% (M, N) < 6% (M, N).

Please remember that our definition of the tuple distance is based on the notion
of e-bisimulation. Proving the soundness theorem, thus, requires us to show that
for any terms M and N of type o such that §,(M) and §,(N) are e-bisimilar,
and for any context C, it holds that | > o — 2oy | S € Our proof
strategy is based on the fact that we can decompose every evaluation path of a
term in the form C[L] into external reduction steps (that is, steps that do not
affect L), and internal reduction steps (that is, reduction steps affecting L, but
which can be shown to correspond only to actions from fé) Intuitively, if we
reduce in parallel C[M] and C[N], we are going to have steps where only the
context is modified (and the modification does not depend on whether we are
considering the first program or the second), and steps where the internal part
is modified, but these steps cannot induce too much of a difference between the
two programs, since the two internal terms are e-bisimilar.

We first of all need to generalize the notion of context to deal with tuples
rather than with terms. In particular, we need contexts with multiple holes
having types which match those of the tuple (or, more precisely, the A-state)
they are meant to be paired with. More formally:
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Definition 5 (Tuple Contexts). Tuple contexts are triples of the form
(C,A,~), where C is an open term, A = (o,7) is a (n,m)-tuple type, and v
is a type such that '@y ny o, yg oyt T C iy We note €T the set of
tuple contexts. A tuple context (C,A,~) is said to be an open value if C is of
one of the following four forms: Ax.M, Na.M, M, y; (wherei € N).

We now want to define when a tuple context and an A-state can be paired
together, and the operational semantics of such an object, which will be derived
from that of Al@—terms. This is the purpose of the following definition:

Definition 6 (Tuple Context Pairs). We say that a pair v = (C,t) is a
tuple context pair iff t = (A, D) is an A-state, and 3y € o7, (C,A,v) € €7T.
We indicate as C x A(Z) the set of tuple context pairs. Moreover, given such
a pair u = (C, (A, D)), we define F(u) as the (potentially infinite) distribution
over I given by:

F(u) = {C{a/M}{y/N}Y"MN} 0r nyesio).-

Giving a notion of context distance for A-states is now quite easy and natural,
since we know how contexts for such objects look like. For the sake of being
as general as possible, this notion of a distance is parametric on a set of tuple
contexts € C €Y.

Definition 7. Let € C €T, A€ T, and t,s be two A-states. We define:

‘é(ta S) = sup Z[[F(C,t)]] - Z[[F(C,s)]]

(C,A,0)e¥€

Unsurprisingly, the context distance between terms equals dgr when applied to
A-states obtained through §,(+):

Proposition 1. If- M, N : o, then 65 (M, N) = 65r(35(M), 35(N)).

But why did we introduce C x A(%)? Actually, these pairs allow a fine
analysis of how tuples behave when put in a context, which in turn is precisely
what we need to prove Theorem 3. This analysis, however, is not possible without
endowing C x A(%) itself with an operational semantics, which is precisely
what we are going to do in the next paragraphs.

Two relations need to be defined. On the one hand, we need a one-step
labeled transition relation — gy a (%) which turns an element of C x A(%) into
a distribution over C x A(% ) by performing an action. Intuitively, one step of
reduction in —cxa(#) corresponds to at most one step of reduction in .Ze!a.
If that step exists, (i.e. if the term is reduced) then the label is the same, and
otherwise (i.e., if only the context is reduced), the label is just 7. We also need a
multi-step approximation semantics =>cy (%) between elements of C x A(%)
and subdistributions over the same set. The latter is based on the former, and
both are formally defined in Fig. 8, where
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(E[(A\=.N)M],0) D oxa@) {(BIN{z/M}],t)'} (E[(\2.N)IM], 1) Doxaan {(EIN{z/M}],)'}

(E[M & N|,0) S exa@ {(EIM], 0"} + {(EIN],6)"/*}

(9) (77)

t—'s t—'s C= E[()\!Z-N)!xn+l]remove({j})
") 77
(Elz;),) cxa@) {(Elym+], 5)'} (BINzN)y), 0D o acan {(Cs)' )
t=(MD,ANA=0c,T k=({1,..., n}, F,o,m,Vin)e 77
@t .
t=5s Ti=1—°L JEr

aj
(Ely; V], ) =S exa@) {EYmr1]) remove(Fu(i))» )

h in normal form for ¢y a ) h%cxa@)D k=cxa@)Er

h=>cxa@{t'} h=cxa()0 h=cxa@) Xresp) D(k) - Ex

Fig. 8. Rules for =cxa )

F is an evaluation context;
t is an (n, m)-state from S

h is a tuple-context pair from C x A(% );
For every context C, Cremove(r) stands for the context

C{yl/yl—#{jleE/\j<1}} cee {yn/yn—#{j|j€E/\j<n}}

We first show that this definition can indeed be related to the usual semantics
for terms. This takes the form of the following lemma:

Lemma 2. Let be u € C x A(%). Then:

o {D|u=cxa@)D} is a directed set. We define [u] ©A®)
bound;

e F(.): Distr(C x A(%)) — Distr(T) is continuous;
o [F)] = F([u]*2)).

as its least upper

Before proceeding, we need to understand how any reflexive and symmetric rela-
tion on C x A(% ) can be turned into a relation on distributions on C x A(% ).
If R is a reflexive and symmetric relation on C x A(%), we lift it to distri-
butions over C x A(%) by stipulating that D R & whenever there exists a
countable set I, a family (p;);cs; of positive reals of sum smaller than 1, and
families (hi)ieb (ki)iGI in C x A(%), such that D = {hipi}iej, &= {kzpl }ie],
and moreover h; R k; for every i € I.

We now want to precisely capture when a relation on C x A(%) can be used
to evaluate the distance between tuple-context pairs.
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Definition 8. Let R be a reflexive and symmetric relation on C X A(U).

e We say that R is preserved by —cxa) if, for any h,k € C x A(%) such
that h R k, if hﬂcXA(%)D, then there exists £ such that ki@xA(%)& and
that D R E.

o We say that R is e-bounding if h R k implies |3 py — > g | < €

o Let € be a set of tuple contexts, and t,s € Sgé be two A-states. We say
that R is €-closed with respect to t and s if, for every C' and =y such that
(C,A,v) € €, it holds that (C,t) R (C, s).

Please observe how any relation preserving —cxa(#) and being e-bounding
can be seen somehow as an e-bisimulation, but on tuple-context pairs. The way
we defined the lifting, however, makes it even a stronger notion, i.e., the ideal
candidate for an intermediate step towards Soundness.

As a first step, the conditions from Definition 8 are enough to guarantee that
two terms are at context distance at most ¢.

Proposition 2. Let M, N be two terms of type o. Suppose there exists a reflex-
e and symmetric relation R on C x A(% ), which is preserved by —cxa (), €-
bounding, and €T -closed with respect to 3,(M) and 3,(N). Then 05 (M,N) <e.

What remains to be done, then, is to show that if two terms are related by R®,
then they themselves satisfy Definition 8. Compulsory to that is showing that
any e-bisimulation can at least be turned into a relation on C x A(%). We need
to do that, in particular, in a way guaranteeing the %-closure of the resulting
relation, and thus considering all possible tuple contexts from %:

Definition 9. Let R be a reflexive and symmetric relation on Sfé' Let be € a

set of tuple contexts. We define its contextual lifting to C x A(% ) with respect
to € as the following binary relation on C x A(%):

~€ ~F ~C
Ry = U {((C,t),(C,9)) | t,s A-states, t R s}; R = U R,.
(C,A,0)e¥ AET

The following result tells us that, indeed, any e-bisimulation can be turned into
a relation satisfying Definition 8:

~€T
Proposition 3. Let R be ance-bisimulation. Then R is preserved by —cx a)
and e-bounding, and €T -closed with respect to everyt, s such thatt R s.

We are finally ready to give a proof of soundness:

Proof (of Theorem 3). Consider two terms M and N of type o. Let ¢ be
82,(M,N). We take R® (defined in Definition 3 as the largest e-bisimulation),
and we see that §,(M) R°§,(N). Proposition 3 tells us that we can apply

T
Proposition 2 to M, N, and (R¢) . Doing so we obtain that 3 ,(M,N) < e,
which is the thesis. O
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We can actually show (see [7]) that 67, is also complete with respect to the
contextual distance:

Theorem 4 (Full Abstraction). For every o, &5, = (52,1.

5.5 On an Up-to-Context Technique

As we have just shown, context distance can be characterized as a coinductively-
defined metric, which turns out to be useful when evaluating the distance
between terms. In this section, we will go even further, and show how an up-
to-context [31] notion of e-bisimulation is precisely what we need to handle our
running example.

We first of all need to generalize our definition of a tuple: an open tuple is a
pair (M, N), where M and N are sequences of (not necessarily closed) typable
terms.

Definition 10. If K = (M,N) is an open tuple, and A = (v,m) is a tuple
type, we say that (o, T, K, A) is a substitution judgment iff:

o lx:lo-M,;:~;;

e if n and m are such that T is a n-sequence, and N a m-sequence, then there
exists a partition {E1, ... En} of {1,...,n} such that yg, : T, = Nj 1 for
every j € {1,...,m}.

I subst s the set of all substitution judgments.

Ifk =(o,7,K,A) € /S“b“7 and H € % is of type (o, 7), then there is a
natural way to form a tuple k[H]|, namely by substituting the free variables of K
by the components of H. In the following, we restrict _#*""s* to those judgments
k such that for every H, terms in the linear part of k[H] are values. Observe that
we always have - k[H] : A. We extend the notation x[H] to distributions over % :
if D is a distribution over tuples of type (o, T), we note k[D] = {K[H]D(H)}He%,
which is a distribution over tuples of type A. Moreover, we want to be able to
apply our substitution judgments to the states of 36!5. Ift=(D,(o,7)) € Sgé,

and k = (o, 7, K, A), the state of .,5% defined by (k[D], A) will be often indicated
as k[t].

Ezample 6. We illustrate on a simple example the use of substitution judgments.
Let be 7 any type. Consider ¢ = [r — 7], and 7 = [|. Moreover, let K =
([x1],[I]) and A = ([r — 7], [T —o 7]). Then k = (o, T, K, A) is a substitution
judgment. We consider now a tuple of type (o, 7). In fact, we take here a tuple
that will be useful in order to analyze our running example: H = ([{2, &° I], []).
By substituting H in , we obtain s[H]| = ([§2 &° I],[I]), and we can see easily
that we obtain indeed a tuple of type A.

The main idea behind up-to-context bisimulation is to allow for the freedom
of discarding any context when proving a relation to be a bisimulation. This is
captured by the following definition:
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Definition 11. Let R be a relation on Sgeze. R is an e-bisimulation up-to-
context if for every t and s such that t R s, the following holds:

o there exists C € T such thatt = (D,C), s = (£,C), and [Yp — > ¢ < e.
e for any a € AJ/L/QB, if t5u = (D, A) and s5v = (€, A), then there exists a
finite set I C N such that:
o there is a family of rationals (p;)ier such that 3 ;c;pi <1;
e there are families o', 7", and K", such that k;, = (o', 7", K", A) is a
substitution judgment for everyi € I;
e there are distributions over tuples D;, & such that (D;, B;) R (&;, B;);
and moreover D =3 . pi - ki[Ds], and € =3, . i - kil

The proof method we just introduced is indeed quite useful when handling
our running example.

Ezxample 7. We show that up-to bisimulations can handle our running example.
Please recall the definition of M. given in Example 2. First, we can see that,
for every a, for every type 7, Sir—ory(Ma) = ({([], 1221 & 1))'}, ([, ['r —o 7]))-
We define a relation R on Sgé) containing (3(r—or)(Mz), 81(r—or)(My)), and we
show that it is a 7-bisimulation up-to-context for an appropriate +. In order to
simplify the notations, we define B = ([t — 7], []), and t,, sy, € Sﬁ/pﬂ!} as:

to={([(2 e DLDLB),  s.={((2e" D), B).

Then, we define the relation R as R= {(8,(M),35(N))} U {(tn,sn) | n € N}.
One can check that R is indeed a ~v-bisimulation up-to-context (where v =
sup,enle™ — pu"|) by carefully analyzing [7] every possible action. The proof is
based on the following observations:

e The only action starting from 3,(M) or 3,(N) is a = (?'), passing a term to
the exponential part of the tuple, then we end up in ¢y and sg respectively.

e If we start from t,, or s, the only relevant action is Milner’s action a = (!!),
consisting in taking a copy of the term in the exponential part, evaluating
it, and putting the result in the linear part. We can see (using the substi-
tution judgment x defined in Example 6), that t, >k[t,1], and similarly
Sn—k[sp41], and the result follows.

Bisimulations up-to-context would be useless without a correctness result such
as the following one:

Theorem 5. If R is an e-bisimulation up-to context, then RCR®.

The proof is an extension of that of Theorem 3 (although technically more
involved), and can be found in [7].

Ezample 8. We can exploit the soundness of up-to-context bisimulation to obtain
the contextual distance for our running example. This allows us to conclude that
Ot —ory 1 (Mz, My) = sup,, enle™ — p"|. The context distance between M. and M),
is thus strictly between 0 and 1 whenever 0 < |e — p| < 1.
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6 Probabilistic A-Calculi, in Perspective

The calculus Aéé” we analyzed in this paper is, at least apparently, nonstandard,
given the presence of parallel disjunction, but also because of the linear refine-
ment it is based on. In this section, we will reconcile what we have done so
far with calculi in the literature, and in particular with untyped probabilistic
A-calculi akin to those studied, e.g., in [5,9].

We consider a language Ag defined by the following grammar:

Medgi=z | MM | xe.M | M & M.

6.1 On Stable Fragments of J/lé

Our objective in this section is to characterize various notions of context distance
for Ag by way of appropriate embeddings into A!®7 and thus by the LMC ///e!a- It
is quite convenient, then, to understand when any fragment of //{é is sufficiently
robust so as to be somehow self-contained:

Definition 12. We say that the pair (S, A), where S C S/”és’ and A C TXA//,E!B

is a stable fragment of .Z}, iff for every pair (A,a) € A, for every A-state t,
and for every s € S such that ’Pﬂée (t,a,s) >0, it holds that s € S.

Using a stable fragment of ///6!9, we can restrict the WLTS .,2”6!9 in a meaningful
way. The idea is that we only consider some of the states of 2., and we are
able to choose the possible actions depending on the type of the state of fé we
consider.

Definition 13. If .Z = (S, A) is a stable fragment of M, we define a WLTS
by Lo = (SXQ’AQ?&’_')?’U]?); as

Str =g DK | (K. A) €8x {AY Az, =, _{a}UT:

A,a)eA
Sz =-0{(D,A),a,s) | S(D) C S, (A,a) € A};

and wg is defined as expected.

We want to be able to define a notion of distance on a fragment of the original

language /1!@, so that it verifies the soundness property for a restricted set of

contexts. To do that, we need the restricted set of contexts % to be preserved
by the stable fragment:

Definition 14. Let .Z = (S, A) be a stable fragment of M. Let € be a set of
tuple contexts. We say that € is preserved by .7 if the following holds: for any
(C,A,v) € € that is not an open value and for any A-state t in Sy, , there
exists a such that (A,a) € AUY(T x {r}), (C, t)Soxa@)€, and moreover:

S5() C UBeT{(D,s) | s a B-state A 3n s.t. (D, B,n) € €}



Metric Reasoning About A\-Terms: The General Case 363

We are now able to provide guarantees that the contextual distance 05 with
respect to our restricted set of contexts % is smaller that the distance defined
on the WLTS Z% induced by our stable fragment .%. This is the spirit of the
following proposition.

Proposition 4. Let % = (S’ fl) be a stable fragment of ///e'a, € be a set of tuple
contexts preserved by F, and t,s € S, . Then 65(t,s) < 8%, L, (t,8).

In the following, we make use of Proposition 4 on stable fragments corresponding
to embeddings of Ag into /1!@. We will consider two different encodings depending
on the underlying notion of evaluation.

6.2 Call-by-Name

Ag can first of all be endowed with call-by-name semantics, as in Fig. 9. We use
it to define an approximation semantics exactly in the same way as in Fig. 1,
and we take as usual the semantics of a term to be the least upper bound of its
approximated semantics. Moreover, we denote by J¢, = the context distance on
Ag, defined the natural way. We are going, in the remainder of this section, to
use our results about A% to obtain a characterization of 6¢,

E =[] | EM
M@ N < M,N (A\.M)N — M{z/N} E[M] — E[N4], ... E[N,]

Fig. 9. One-step call-by-name semantics

The Call-By-Name Embedding. Girard’s translation [19] gives us an embed-
ding ()" : Agy — Al, defined as follows:

(@)™ =2 (A M) = Al (M)
< >cbn _< >cbn|< >cbn <M D N>cbn — <M>cbn @ <N>Cbn

Please observe that (-)°P" respects typing in the sense that, when we define
0P = pala —o a, it holds that for every term M of Ag whose free variables

are in {x1,...,2,}, we can show that !z :!1o®® ... Iz, :loP™ = (M)Pn ; goPr,

Metrics for A@ It is very tempting to define a metric on Ag just as follows:
S (M, N) =60 A (M)ebn 1(N)P1). We can easily see that it is sound with
respect to the context distance for Ag, since any context of this language can be
seen, through (-)P", as a context in A'. However, it is not complete, as shown
by the following example:

Ezample 9. We consider M = 2 & (Az.f2) and N = (Az.£2). We can see that
6f’gcbn)!(!<M>Cb“, I(N)P1) = 1: indeed, when we define a sequence of A} -contexts
by Cp = M. (Ay1. ... Ayn-(A2.291, . .. yn))T . .. ) [], we see that Obs(1(M)Pn) =
1/2" while Obs(!{(N)b®) = 1. But those contexts C,, have more expressive power
than any context in (Ag)°P", since they do something that none of the contexts
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from Ag can do: they evaluate a copy of the term, and then shift their focus to
another copy of the term. It can be seen in the embedding: a term in (Ag)c®
never has several redexes in linear position. It can actually be shown (see [7])
that 65, (M, N) = 3 < 6% (M, N).

The way out consists in using the notion of stable fragment to refine the Markov
Chain //{é by keeping only the states and actions we are interested in.

Definition 15. We define a stable fragment F°™ as specified in Fig. 10,
and a distance Scpy on Ag as Sepn(M,N) = 8%  (§"(M), §°"(N)), where

M) = ({([(M)77,[)'}, 4°). |

A= (™)) A= (0™ ) D) = (M), ), A°)
S/, bn = ({Ucbn 1) | M e Aﬂ;} U{ [(M)PR], [(V)PR)), AL | M € Ag,V € Ag a value }) msﬂéa
IX= 7V N {(E,Foo,7,M,7), M € (Ag)*"}
A gom ={A"} x{@} |k € L.} U{A"} x A

Fig. 10. The stable fragment .Z°*® = (S/ﬂébl.,Aﬂébx,).

We need now to define a set of tuple contexts preserved by .Z°P" the aim of
applying Proposition 4.

Definition 16. %, is the smallest set of tuple contexts such that:

o If M € Ag with FV(M) C {z}, then ((M)c*, A® 5°") € Copn;
o If (C, A% 5" € Copm, and C = E[xy], it holds that (E[y1], A*, ") € Copn-

©ebn is designed to allow us to link 6g,, and dg  : for any M, N € Ag closed
terms, it holds that 65, (M,N) = 0% (ACb“(M) 5P2(N)). Moreover, Gy is

cbn
preserved by the stable fragment .#°P (the proof can be found in [7]).

Theorem 6 (Call-by-Name Full Abstraction). 6%, and .y, coincide.

n

Proof. We first show that dcpy, is at least as discriminating d¢,,,. Let be M, N €

Ag. By definition of .Zzeon, we know that 5% (M), P*(N) € S Moreover,

‘cbn *
we know that €.y, is preserved by .Z°P". So we can apply Proposition 4, and we
see that 65, (8""(M), 8" (N)) < depn(M, N), and soundness follows. When
proving completeness part, we rely on an “intrinsic” characterization of d¢py-
The details can be found in [7]. O

6.3 Call-by-Value

In a similar way, we can endow Ag with a call-by-value semantics, and embed
it into /1!@. We are then able to define a suitable fragment of //lé, a suitable set
of tuple contexts preserving it, and a characterization of a call-by-value context
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distance for Ag follows [7]. While the construction of the stable fragment (and
the set of tuple contexts to consider) are more involved than in the call-by-name
case, we noticed that the characterization we obtain seems to have some simi-
larities with the way environmental bisimulation for a call-by-value probabilistic
A-calculus was defined in [32].

7 Related Work

This is definitely not the first work on metrics in the context of programming
languages semantics. A very nice introduction to the topic, together with a
comprehensive (although outdated) list of references can be found in [35]. One
of the many uses of metrics is as an alternative to order-theoretic semantics. This
has also been applied to higher-order languages, and to deterministic PCF [15].

If one focuses on probabilistic programming languages, the first attempts at
using metrics as a way to measure “how far” two programs are, algebraically
or behaviorally, are due to Giacalone et al. [18], and Desharnais et al. [11,12],
who both consider process algebras in the style of Milner’s CCS. Most of further
work in this direction has focused on concurrent specifications. Among the recent
advances in this direction (and without any hope of being comprehensive), we
can cite Gebler et al.’s work on uniform continuity as a way to enforce com-
positionality in metric reasoning [16,17]. Great inspiration for this work came
from the many contributions on metrics for labeled Markov chains and processes
appeared in the last twenty years (e.g. [13,36]).

8 Conclusions

We have shown how the context distance can be characterized so as to simplify
concrete proofs, and to which extent this metric trivializes. All this has been
done in a universal linear A-calculus for probabilistic computation. This clarifies
to which extent refining equivalences into metrics is worth in such a scenario.
The tuple-based techniques in Sect. 5.5 are potentially very interesting in view
of possible applications to cryptography, as hinted in [4]. This is indeed what we
are working on currently.
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