
Asymptotically Tight Bounds for Composing
ORAM with PIR

Ittai Abraham1, Christopher W. Fletcher2, Kartik Nayak3(B), Benny Pinkas4,
and Ling Ren5

1 VMware Research, Herzliya, Israel
iabraham@vmware.com

2 University of Illinois, Urbana-Champaign, IL, USA
cwfletch@illinois.edu

3 University of Maryland, College Park, MD, USA
kartik@cs.umd.edu

4 Bar IIan University, Ramat Gan, Israel
benny@pinkas.net

5 MIT, Cambridge, MA, USA
renling@mit.edu

Abstract. Oblivious RAM (ORAM) is a cryptographic primitive that
allows a trusted client to outsource storage to an untrusted server while
hiding the client’s memory access patterns to the server. The last three
decades of research on ORAMs have reduced the bandwidth blowup
of ORAM schemes from O(

√
N) to O(1). However, all schemes that

achieve a bandwidth blowup smaller than O(log N) use expensive com-
putations such as homomorphic encryptions. In this paper, we achieve
a sub-logarithmic bandwidth blowup of O(logd N) (where d is a free
parameter) without using expensive computation. We do so by using a
d-ary tree and a two server private information retrieval (PIR) protocol
based on inexpensive XOR operations at the servers. We also show a
Ω(logcD N) lower bound on bandwidth blowup in the modified model
involving PIR operations. Here, c is the number of blocks stored by the
client and D is the number blocks on which PIR operations are per-
formed. Our construction matches this lower bound implying that the
lower bound is tight for certain parameter ranges. Finally, we show that
C-ORAM (CCS 15) and CHf-ORAM violate the lower bound. Com-
bined with concrete attacks on C-ORAM/CHf-ORAM, we claim that
there exist security flaws in these constructions.

1 Introduction

Oblivious RAM is a cryptographic primitive that allows a client to privately
outsource storage to an untrusted server without revealing any information about
its data accesses, i.e., the server learns nothing about the data or the sequence
of addresses accessed. It was first proposed by Goldreich and Ostrovsky [22,23].
Since the initial theoretical work three decades ago, there has been a lot of effort
to improve ORAMs either as a stand-alone primitive [2,9,12,19,24,25,27,37,39,
c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part I, LNCS 10174, pp. 91–120, 2017.
DOI: 10.1007/978-3-662-54365-8 5



92 I. Abraham et al.

40,42,44,48,51,53,58] or for applications including secure outsourced storage [3,
33,41,49,50,59], secure processors [15–17,36,43,45,46] and secure multi-party
computation [20,34,35,54,55,60].

The standard ORAM model assumes the server to be a simple storage device
that only supports read and write operations. In this model, numerous works
have improved the bandwidth blowup (or bandwidth overhead) — the amount of
communication between the client and the server relative to an insecure scenario
that does not protect access patterns — from O(log3 N) to O(log N) where N
is the number of logical data blocks. But none could achieve sub-logarithmic
bandwidth blowup so far. In this sense, though not provably insurmountable [5],
the Ω(log N) bandwidth blowup barrier does seem hard to surpass.

To this end, a line of work deviates from the standard model and assumes
the existence of two non-colluding servers [34,41,49] with inexpensive server
computation (e.g., XOR) or no server computation. But these constructions
have been unable to surpass the Ω(log N) bandwidth blowup barrier.

Another line of work allows the server to perform some computation.
The most recent works involving server computation achieved O(1) width
blowup [2,12,39,40]. But this improvement in bandwidth comes with a huge
cost in the amount of server computation. In both Apon et al. [2] and Devadas
et al. [12], the server runs the ORAM algorithm using homomorphic encryp-
tion (fully homomorphic and additively homomorphic, respectively) with little
client intervention. In practice, in both schemes, the time for server computa-
tion will far exceed the time for server-client communication and become the
new bottleneck.

Thus, the state of the art leaves the following natural question:

Can we construct a sub−logarithmic ORAM without expensive computation?

A recent construction called CHf-ORAM [39] claims to have solved the
above challenge by combining ORAM with private information retrieval (PIR).
Using four non-colluding servers, CHf-ORAM claims to achieve O(1) bandwidth
blowup using simple XOR-based PIR protocols. However, we realized that there
exist security flaws in CHf-ORAM and its predecessor C-ORAM [40]. We give
two concrete attacks on a slight variant of C-ORAM, highlighting some subtleties
that the current C-ORAM proof does not capture.

Private information retrieval (PIR) and Oblivious RAM (ORAM) are two
closely related concepts, and they both hide access patterns. In fact, PIR
is frequently applied to ORAM constructions to improve bandwidth blowup
[37,39–41,61]. This led us to ask the following question:

What is the asymptotically optimal bandwidth blowup one can achieve by using

PIR in an ORAM construction?

In order to answer this question, we build on the seminal work of Goldreich
and Ostrovsky [23] and derive a Ω(logcD N) bandwidth lower bound for ORAMs
that leverage only PIR and PIR-write on top of the traditional model. Here, c
is the number of blocks stored by the client and D is the number of blocks



Asymptotically Tight Bounds for Composing ORAM with PIR 93

on which PIR/PIR-write operations are performed. C-ORAM and CHf-ORAM
violate this lower bound, and thus cannot be secure.

Given the insecurity of C-ORAM and CHf-ORAM, the former question
remains open. We then positively answer the former question with a concrete
and provably secure construction. Our construction relies on a d-ary ORAM tree
and a private information retrieval (PIR) protocol involving two non-colluding
servers, where the servers perform simple XOR computations. Our construction
achieves O(logd N) bandwidth blowup with c = O(1) blocks of client storage
and PIR operations on D = d · polylog(N) blocks. Therefore, it matches the
Ω(logcD N) lower bound when d = Ω(log N), implying that under certain para-
meter ranges our construction is asymptotically optimal and the lower bound is
asymptotically tight.

We remark that there is a concurrent and independent work, MSKT-ORAM,
that achieves comparable bandwidth blowup using similar techniques [62].1 Our
construction has several advantages over the concurrent work and we make a
more detailed comparison in Sect. 2.

1.1 Our Contributions

Our contributions in this paper can be summarized as follows:

1. ORAM with sub-logarithmic bandwidth blowup. We show a provably
secure ORAM construction that achieves a bandwidth blowup of O(logd N)
(where d is a parameter) using O(1) blocks of client storage. Our construction
uses a d-ary tree and a PIR protocol (Sect. 4).

2. Extending the Goldreich-Ostrovsky lower bound to allow PIR oper-
ation. For a client storing c blocks of data and performing a PIR on D blocks
at a time, we show that the ORAM bandwidth blowup is lower bounded by
Ω(logcD N) (Sect. 5). Our construction matches this lower bound implying
that the lower bound is tight and that our construction is asymptotically
optimal for certain parameter ranges.

3. Security flaws in prior works. Using our lower bound and other concrete
attacks, we show that the bandwidth blowup claimed by C-ORAM and CHf-
ORAM [39,40] is not achievable (Sect. 6).

1.2 Overview of Our Construction

On a high level, an ORAM access has two phases. The first phase, called retrieval,
fetches and possibly updates the data block requested by the client. The second
phase, called eviction, reshuffles some data blocks on the server. Many recent

1 The title of that paper claims “constant bandwidth”, which would have been imme-
diately ruled out by our lower bound. On a closer look, the bandwidth blowup is
actually O(logd N). This calls for our lower bound to clear the confusion in this
direction.



94 I. Abraham et al.

Table 1. Comparison with existing Oblivious RAM schemes. N denotes the
number of logical blocks stored by the ORAM. In [44,53], a stash of Ω(λ) blocks ensures
a failure probability of eΩ(−λ). For a negligible (in N) failure probability, these works
set λ = ω(log N).

Construction Bandwidth Client Block Server #Servers

blowup storage size computation

Path ORAM [53] 8 logN O(λ) Ω(log2 N) - 1

Ring ORAM [44] 2.5 logN O(λ) Ω(log2 N) XOR 1

Onion ORAM [12] O(1) O(1) Ω̃(log5 N) Homomorphic enc. 1

This work 4 logd N O(1) Ω(dλ logN) XOR 2

(with d = logN) 4 logN/ log logN Ω(λ log2 N)

ORAM constructions [12,44,53,54] are based on binary trees, in which the band-
width overhead on retrieval and eviction are both Θ(log N) due to the tree height.

Our construction uses a tree with larger fan-out d = ω(1), which decreases
the tree height to O(logd N) = O( log N

log d ). Based on a d-ary tree, we design a new
eviction algorithm whose bandwidth overhead is O(logd N). However, it increases
the bandwidth overhead by more than a factor of d on retrieval in the standard
model. We then use two-server private information retrieval (Sect. 3.3) to reduce
the retrieval bandwidth to O(1) (assuming moderately large block size). Our
basic eviction algorithm also requires Ω(d log N) blocks of client storage. We
again rely on two-server PIR to reduce the client storage to O(1). Overall, we
obtain a two-server ORAM with O(1) client storage and O(logd N), i.e., sub-
logarithmic bandwidth overhead (Table 1).

Although our bandwidth blowup decreases with the tree fan-out d, we can-
not keep increasing d for free due to block metadata. We discuss the trade-off
regarding d in Sect. 4.4.

2 Related Work

Oblivious RAM was first introduced by Goldreich and Ostrovsky around three
decades ago [22,23]. They proposed two constructions. The latter of the two used
a hierarchy of buffers of exponentially increasing size, which was later known as
the hierarchical ORAM framework.

They achieved O(log3 N) amortized bandwidth blowup under constant client
storage, Ω(log N) block size and computational security. Their model assumes
the server to be a simple storage device that is capable of only “read” and
“write” operations. In this model, they show an Ω(logc N) lower bound on the
bandwidth blowup, where c is the number of blocks stored by the client.

Follow-up works [24,25,27,57,58] in the hierarchical ORAM framework
reduced the bandwidth blowup from O(log3 N) to O(log2 N/ log log N). Most
of these works also used constant client storage and computational security, and
bandwidth blowups are amortized and holds for Ω(log N) block size. Ajtai [1]



Asymptotically Tight Bounds for Composing ORAM with PIR 95

and Damg̊ard et al. [10] showed ORAM constructions that are statistically
secure. This was followed by the statistically secure ORAM construction by Shi
et al. [48], who introduced the tree-based paradigm. ORAM constructions in the
tree-based paradigm have improved the bandwidth blowup from O(log3 N) to
O(log N) [9,19,44,48,53,54]. Circuit ORAM [54] gets very close to the Goldreich-
Ostrovsky lower bound, achieving O(log N)ω(1) bandwidth blowup with con-
stant client storage for moderately large blocks of size Ω(log2 N). Most tree-
based ORAMs achieved statistical access pattern security, and obtained the
desired bandwidth blowup in the worst-case instead of an amortized blowup.
But the reported bandwidth results only hold for moderately large blocks of size
Ω(log2 N) due to the use of the ORAM recursion technique [48].

It is worth noting that our d-ary tree idea is similar to the techniques in the
following papers. Kushilevitz et al. [27] achieves O(log2 N/ log log N) bandwidth
blowup using Θ(log N) buffers for every large level. Gentry et al. [19] uses a
Θ(log N)-ary tree and a push-to-leaf procedure along a deterministic path to
achieve O(log2 N/ log log N) blowup. An concurrent work [62] uses a Θ(log N)-
ary tree, which we compare to in detail later. In all cases, the idea is to balance
the (sometimes implicit) bandwidth mismatch between the retrieval phase and
the eviction phase.

Many works deviated from the traditional ORAM model defined by Goldreich
and Ostrovsky by introducing multiple non-colluding servers and/or server-side
computation. Some of these papers refer to their work as oblivious outsourced
storage, but we still refer to them as ORAMs. We review these works below.

ORAMs using multiple non-colluding servers. Constructions in this cat-
egory so far have not been able to surpass the Ω(log N) bandwidth barrier
(except CHf-ORAM [39] which we discuss later in this section) [34,41,49]. Lu
and Ostrovsky [34] achieved a bandwidth blowup of O(log N). In their scheme,
each non-colluding server performs permutations that are hidden to the other
server due to which the Goldreich-Ostrovsky lower bound does not apply. Ste-
fanov and Shi [49] implemented a practical system using two servers and O(

√
N)

client storage. Their client storage can be reduced to O(1) using the standard
recursion technique [48]. Their construction required O(1) client-to-server band-
width blowup and O(log N) server-to-server bandwidth blowup.

ORAMs with server computation. There exist many ORAM schemes that
allow the server to do computation on data blocks [2,11,12,20,37,40,44,50,
51,57,59,61]. Most of these works still require Ω(log N) bandwidth blowup,
except the following ones. Apon et al. [2] use fully homomorphic encryption
to achieve an O(1) bandwidth blowup. However, the large overhead of FHE
makes the scheme impractical. Onion ORAM [12] improves upon Apon et al.
to achieve an O(1) bandwidth blowup by using only additively homomorphic
encryption or somewhat homomorphic encryption. The amount of server com-
putation is significantly reduced (compared to FHE) but is still quite large. In
addition, the O(1) bandwidth blowup of Onion ORAM can only be achieved for
very large block sizes (B = Ω(log5 N)). Both these schemes circumvent the



96 I. Abraham et al.

Goldreich-Ostrovsky lower bound by using homomorphic operations on the
server side that require little client intervention.

Independent and concurrent work. MSKT-ORAM [62] is an independent
and concurrent work that achieves comparable bandwidth blowup using similar
techniques, i.e., a d-ary tree and two-server PIR applied to a poly-logarithmic
number of blocks. Our construction has several advantages stemming from
the following major differences: While we extended the most recent tree-based
ORAM, Onion ORAM [12], to a d-ary tree, MSKT-ORAM builds on top of the
very first tree-based ORAM by Shi et al. [48] and extends it to a d-ary tree.
Thus, MSKT-ORAM does not take advantage of the new techniques invented
afterwards, such as small block recursion [52], reverse lexicographical order [19],
higher bucket load [44], reduced eviction frequency [44], and an empty bucket
invariant [12]. As a result, MSKT-ORAM requires a block size as large as Ω(N ε)
for some constant ε, while we only require blocks of size polylog(N) bits; MSKT-
ORAM has a ω(log N) server storage blowup, while our construction has a
constant size server storage blowup (Sect. 4.1); MSKT-ORAM needs a PIR, a
physical read and a physical write operation to evict each block, while we can
eliminate the need for the physical read due to the empty bucket/slice invariant
(cf. Lemma 2 and Sect. 4.3); MSKT-ORAM also spends at least 2× more band-
width for both blocks and metadata during eviction, since Shi et al. [48] requires
two evictions after every access.

Oblivious RAM lower bound. As mentioned earlier, Goldreich and Ostrovsky
presented a lower bound of Ω(logc N) where c is the amount of client storage in
blocks. Their lower bound modeled the server as a simple storage device capable
of reading and writing blocks. Boyle and Naor revisit the ORAM lower bound
to relate it to the size of circuits for sorting [5]. In our work, we extend the lower
bound suggested by Goldreich and Ostrovsky to encompass private information
retrieval (PIR) as a possible operation performed by the client and obtain a lower
bound of Ω(logcD(N)) in Sect. 5. Here, c is the number of blocks stored by the
client and D is the number of blocks that a PIR is performed on. C-ORAM [40]
and CHf-ORAM [39] violate the lower bound and must have security flaws. Boyle
and Naor showed that an ORAM lower bound is difficult to obtain in a general
model, i.e., if the client is not restricted to a small set of operations.

Other related work. There has also been work to optimize ORAM for the num-
ber of rounds of communication [14,18,57], response time [11], parallelism [4,7]
and various other parameters [3,47]. Liu et al. developed compiler techniques to
achieve obliviousness with fewer ORAM accesses [30–32]. Some data structures
can be made oblivious without using a full ORAM [26,38,56].

Private information retrieval. A Private information retrieval (PIR) protocol
allows a user to retrieve some data block from a server without revealing the
block that was retrieved. It was first introduced by Chor et al. [8]. In our work,
we use a simple two server O(N) scheme from [8] to reduce the bandwidth cost
of accessing a block.



Asymptotically Tight Bounds for Composing ORAM with PIR 97

3 Preliminaries

3.1 Problem Definition

Consider a scenario where a trusted client wishes to store data to a remote
untrusted server while preserving privacy. First, the client can protect confi-
dentiality of the data using standard encryption schemes. However, the access
pattern of the client, i.e., the order in which the client accesses the data, can
also reveal information. Oblivious RAM algorithms address this problem by hid-
ing the data access pattern, i.e., hiding which blocks were read/written from the
server. Intuitively, a server observing the resulting physical access pattern should
not be able to learn anything about the logical access pattern of the client.

The ORAM model traditionally treats the server as a simple storage
device [22,23]. But recent works have extended the ORAM model to allow for
server computation [2,12]. Informally, an ORAM that allows server computation
can be defined as follows:

Definition 1 (Informal). Let y = ((a1, op1, data1), . . . , (at, opt, datat)) be
the client’s logical data request sequence of length t. For each tuple yi =
(ai, opi, datai), ai represents the logical address of the data block accessed by
the client, opi ∈ {Read,Write} and datai is the data being written (datai = ⊥ if
opi = Read).

Let ORAM(y) represent the ORAM client’s sequence of interactions with
the server. We say an ORAM algorithm is correct if for each access i ∈ [t],
ORAM(yi) returns data that is consistent with yi except with negl(|y|) prob-
ability. We say an ORAM algorithm is secure if for two access patterns y and
z with |y| = |z|, their access patterns ORAM(y) and ORAM(z) are compu-
tationally or statistically indistinguishable. Respectively, the ORAM algorithms
are called computationally or statistically secure.

The sequence of interaction ORAM(y) may include simple physical read/
write requests, PIR requests, or any other complex protocols between the client
and the server.

Bandwidth blowup. In order to hide data access patterns, ORAM(y) involves
more communication between the server and the client than y. We define band-
width blowup as the ratio between the amount of communication (measured in
bits) in ORAM(y) to the amount of communication in y. Each unit of logic
data accessed by a client is referred to as a block. We denote N to be the total
number of logic data blocks in the ORAM.

3.2 Tree-Based ORAMs

In a tree-based ORAM, server storage is organized as a binary tree [48]. As
mentioned in the introduction, instead of a binary tree, in this work we use a
d-ary tree. Hence this brief introduction presents the general case and considers
d as an independent parameter.



98 I. Abraham et al.

1: function Access(a, op, data)
2: l ← PosMap[a]
3: data ← ReadBlock(l, a)
4: l′ ← UniformRandom(0, dL − 1)
5: PosMap[a] ← l′

6: if op = read then
7: return data to client
8: else
9: data ← data′

10: Write data to the root bucket
11: evict()

Fig. 1. Tree-based ORAM data access algorithm. Here, PosMap is a map from
an address a to a leaf l of the tree. ReadBlock(l, a) retrieves a block of data with address
a from a path of buckets along leaf l.

Server storage. We consider d-ary tree with L + 1 levels, from level 0 to level
L. Thus, level i has di nodes. Recall that N is the total number of logical blocks
stored by the client. Then L is roughly logd N . Each node in the tree is called
a bucket and each bucket contains Z slots for logical blocks. A slot can also be
empty — in this case, we say it contains a dummy block; otherwise, we say it
contains a real block. Each block stores B bits of information. Dummy blocks
and real blocks are both encrypted using randomized symmetric encryption.

Metadata. Aside from the B bits of block data, tree-based ORAMs also store
some metadata for each block. The metadata stores the block identifier and
whether the block is real or dummy. The client also maintains a position map
PosMap that maps each real block to a random leaf in the tree.

In this work, we first assume that the client stores all the metadata locally.
We then describe how this metadata can be offloaded to the server (Sect. 4.3) to
achieve O(1) client storage.

Invariant. Tree-based ORAM maintains the invariant that if a block is mapped
to a leaf l of the tree, the block must be in some bucket on the path from the
root to the leaf l. Since a leaf uniquely determines a path and vice versa, we use
the two terms interchangeably.

Access. The pseudo-code for an access algorithm in a tree-based ORAM is
described in Fig. 1. To access a block with logical address a, the client performs
the following operations:

1. Look up the local PosMap to figure out the path l it is mapped to (line 2).
2. Download and decrypt every block on path p, discarding every block that

does not have address a. Due to the invariant, the client is guaranteed to find
block a on path l. This is done by ReadBlock(l, a) in Fig. 1 line 3.

3. Remap block a to a new random path l′ (i.e., update PosMap), i.e. logically
remove block a from its old position (lines 4 and 5).



Asymptotically Tight Bounds for Composing ORAM with PIR 99

4. Re-encrypt block a and append it to the root bucket (line 10, encryption is
not shown in the figure).

5. Invoke an eviction procedure to percolate blocks towards leaves (line 11).

The first four steps correspond to the retrieval phase, and are similar for
many tree-based ORAMs [12,48,53]. Tree-based ORAMs differ in their eviction
procedures (which also affect the bucket size Z). Existing tree-based ORAM
schemes when extended to use a d-ary tree do not achieve sub-logarithmic band-
width blowup due to inefficient eviction. Hence, a main contribution of this paper
is to construct such an eviction scheme (Sect. 4).

3.3 Private Information Retrieval

Private information retrieval (PIR) allows a user to download one item from an
unprocessed database known to a server, without revealing to the server which
item is downloaded [8]. More formally, the setting has a server which is holding a
list of records Y = (y1, y2, · · · , ym), and a user who wants to download record yi

without revealing i to the server. A PIR scheme must enable this operation while
requiring communication that is strictly smaller than the size of the database
(otherwise, a trivial solution could have the user hide i by simply downloading
the entire database.) The database records are usually public data records, or
records which are owned by the server, and therefore the user cannot encrypt or
otherwise preprocess them.

Two categories of PIR techniques exist – one operates in a setting with a
single server and the other requires the existence of two or more non-colluding
servers. Single-server PIR protocols, such as [6,21,28], have been adopted by
Path-PIR [37] and Onion ORAM [12] to improve bandwidth. A downside, how-
ever, is that they require the server to perform operations on homomorphically
encrypted ciphertexts [29], making server computation the new bottleneck. PIR
in the presence of two or more non-colluding servers is conceptually simpler
and involves much less computation — typically only simple XOR operations.
It can also guarantee information-theoretic security (whereas it is known that
single-server PIR cannot be unconditionally secure).

The original investigation of two-server PIR assumed that each database
record is a single bit. The initial PIR paper described a two-server PIR protocol
with O(m1/3) communication [8] (and more efficient protocols with more than
two servers). This result was only recently improved to obtain a communication
of mO(

√
log log m/ log m) [13].

In the setting of ORAM, we are interested in a PIR of long records, where
the number of bits in each record |yj | is in the same order as the total number
of records m. In this case there is a simple PIR protocol that was adopted
in [41]: The database of records is replicated across the two servers, S1 and S2.
Suppose that the user is interested in retrieving record i. For the request, the
user generates a random bit string of length m, X = (x1, x2, · · · , xm). He then
generates X ′ = (x′

1, x
′
2, · · · , x′

m) by flipping the i-th bit in X, i.e., x′
i = x̄i and

x′
j = xj for j �= i. The user then sends X to S1, and X ′ to S2. S1 computes



100 I. Abraham et al.

and responds with
∑

j xj · yj while S2 computes and responds with
∑

j x′
j · yj .

Here, the sums represent a bit-wise XOR, and · represents a bit-wise AND. The
user then sums up (XORs) the two responses to obtain

∑
j(xj + x′

j) · yj = yi.
The above protocol is denoted as TwoServerPIR(S1,S2, Y, i). The communication
overhead is O(|yj | + m) = O(|yj |).
PIR-writes. Analogous to PIR, we can define PIR-write operations. Our con-
struction in this paper does not use PIR-writes, but we briefly mention it below
since our lower bound in Sect. 5 allows PIR-writes.

A PIR-write operation lets a user update one record among a list of records on
a server without revealing to the server which record is updated. Notice that now
the records can no longer be public data; they have to be encrypted. Otherwise,
the server can trivially figure out which record is updated by comparing their
values before and after the update.

4 The Construction

Our construction follows the tree-based ORAM paradigm in the previous section
(Sect. 3.2). In this section, we present the changes in server storage and the
retrieval and eviction strategies to obtain a sub-logarithmic bandwidth overhead.
Figure 2 shows the pseudocode of our construction. Figure 3 shows how servers
store blocks and an example eviction for our construction.

Server storage. Our construction uses two servers S1 and S2, both storing
identical information (hence, Fig. 3 shows only one tree). Our d-ary tree has
L + 1 levels, numbered from 0 (the root) to L (the leaves). Each node in the
tree is called a bucket. Each bucket consists of Z slots that can each store one
block. Slots from the non-root buckets are equally divided into d slices, each of
size Z/d. Each leaf bucket has an bucket aux that can store Z blocks.

Metadata. Our construction requires metadata similar to the description in
Sect. 3.2, i.e., the position map PosMap and a block identifier for each slot. As
mentioned, we assume the client stores all metadata locally for the cloud storage
application, but can easily outsource them to the server without asymptotically
increasing bandwidth blowup (Sect. 4.3).

Initialization. Initially, the ORAM tree at both servers contain all dummy
blocks. The position map is initialized to contain independent and uniformly
random numbers for each block. The client initializes each block using a logical
write operation. If the client issues a logical read operation to a block that has
never been initialized, the behavior of the ORAM is undefined.

Access. Each client request is represented as a tuple (a, op, data′) where a is
the address of the block, op ∈ {Read,Write} and data′ is the data to be written
(data′ = ⊥ if op = Read). The client maintains a counter cnt for the total number
of accesses made so far. For each access (a, op, data′), the client does the following
(refer Fig. 2):



Asymptotically Tight Bounds for Composing ORAM with PIR 101

1: Persistent variables cnt, G initialized to 0
2: cnt is the number of accesses performed so far since the previous eviction
3: G is the number of evictions performed so far, represented in base d
4: Let P(l) be the path from root to leaf l, and P(l, k) be the k-th bucket on P(l).

5: function Access(a, op, data′)
6: l ← PosMap[a]
7: data ← ReadBlock(l, a)
8: if op = read then
9: return data to client

10: else
11: data ← data′

12: l′ ← UniformRandom(0, dL − 1)
13: PosMap[a] ← l′

14: Write data to the cnt-th slot of the root bucket
15: cnt := cnt + 1 mod Z/2
16: if cnt = 0 then
17: le ← reverse(G)
18: EvictAlongPath(le)
19: G ← G + 1 mod dL

20: function ReadBlock(l, a)
21: (id1, id2, . . . , idZL) ← Retrieve block identifiers on P(l)
22: Suppose idi = a
23: return TwoServerPIR(S1,S2,P(l), i)

24: function EvictAlongPath(le)
25: for k ← 0 to L − 1 do
26: Let s be the (k+ 1)-th digit of G // For each bucket, (k+ 1)-th digit accesses

slices in a round-robin manner.
27: EvictToSlices(le, k, s)
28: // Additional processing for the leaf bucket P(le, L) to make it empty
29: Read all blocks in P(le, L) and its auxiliary bucket P(le, aux)
30: Move all real blocks from P(le, L) to P(le, aux)

31: function EvictToSlices(le, k, s)
32: // Evict from bucket P(le, k) to the s-th slice of each of its d children
33: Download all blocks in P(le, k)
34: for t ← 1 to d
35: Let S be the s-th slice of the t-th child of P(le, k)
36: Let T be the set of real blocks in P(le, k) that can be evicted to S
37: Upload T to S and pad remaining slots in S with dummy blocks

Fig. 2. Access and eviction algorithm for our oblivious RAM construction.

1. The client looks up position map PosMap[a] to obtain the leaf l associated
with block a (line 6).

2. Let P(l) represent the path from root to leaf l, and P(l, k) represent
the k-th bucket on P(l). The client retrieves the block identifiers on the
path (id1, id2 . . . , idZL) from its local storage. Due to the tree-based ORAM



102 I. Abraham et al.

Fig. 3. Example eviction path for a three-level 4-ary tree at G = 2 i.e. G =
(02)4. For evicting the root bucket into its children buckets, the client downloads blue
colored root bucket and writes to the blue colored slices of its children. The figure shows
load of the buckets just before eviction from the root bucket. (Color figure online)

invariant, one of the identifiers on the path will be a. Without loss of gener-
ality, assume idi = a (lines 21 and 22).

3. The client invokes a two-server PIR protocol TwoServerPIR(S1,S2,P(l), i) to
retrieve the block with address a (line 23).

4. The client updates the data field of the block a to data′ if op = Write. It sets
a new leaf l′ for the block and updates PosMap. It updates the metadata to
remove the block from the tree. It appends the block a to the cnt-th slot of
the root bucket (lines 8–14).

5. The client increments cnt. If cnt = Z/2, the client resets cnt and performs
the eviction procedure described below (lines 15–19).

Eviction. The eviction procedure of our construction is a generalization of the
eviction procedure of Onion ORAM [12]. It differs from Onion ORAM in the
following two ways. First, we apply the eviction scheme on a reverse lexico-
graphical ordering [19] over a d-ary tree instead of a binary tree. Second, when
evicting from each bucket along a path, we write to only one slice of each child
bucket (instead of writing to the entire child buckets). This is essential for our
construction to achieve sub-logarithmic bandwidth blowup.

As shown in Fig. 2, we evict every Z/2 accesses along reverse lexicographical
ordering of paths. Given that we have a d-ary tree instead of a binary tree, we
represent the paths as numbers with base d. We use a counter G to maintain
the next path le that should be evicted. Eviction is performed for each non-leaf
bucket on path P(le). For the k-th bucket from the root, denoted P(le, k), the
client first downloads the bucket P(le, k). It then uploads all real blocks to the
s-th slice (which will be empty before this operation) of each of its children



Asymptotically Tight Bounds for Composing ORAM with PIR 103

G = (02)4 G = (03)4 G = (10)4 G = (11)4

G = (12)4

2

0

3 0 1

2

0 1 1

1

G = (13)4

3

1

G = (20)4

0

2

G = (21)4

1

2

Fig. 4. Buckets and slices accessed for 2d consecutive evictions. Here, d = 4
and G = # evictions mod dL. (x)a denotes the number x represented in base a. The
dots in the slices represent real blocks at the end of the eviction operation. Note that for
each bucket, slices are accessed (written into) in a round-robin manner. If an eviction
path passes through a bucket at level i at t-th eviction then it passes through it again
at t + di evictions.

where s is the (k + 1)-th digit of G. (We show in Sect. 4.2 that there will be
sufficient room in these slices.) After this operation, the bucket P(le, k) will be
empty. Due to the reverse lexicographical order of eviction paths, P(le, k) will
be a child bucket for the next d − 1 evictions involving it (refer Fig. 4 for an
example), during each of which the slice being written to will be empty. For the
last level (level L), the client downloads all blocks in the leaf bucket P(le, L) and
its auxiliary bucket P(le, aux). It moves all real blocks to the auxiliary bucket
P(le, aux) and uploads both buckets to the server.

Example. An example showing 2d consecutive evictions is in Fig. 4 for d = 4. In
the example, we start with eviction number G = (02)4. Observe that the third
child of the root bucket is emptied at G = (02)4 as the reverse lexicographic
eviction path (20)4 passes through it. In the next d − 1 evictions, one slice of
the bucket is written to in a round-robin manner. Finally, at eviction number
G = (12)4, when the path (21)4 passes through it again, the last slice is written
into after which the entire bucket is emptied again. Similarly, it can be easily
seen that for each bucket at level i, a slice is written into every di−1 evictions
and the bucket is emptied every di evictions.

4.1 Parameterization and Overflow Analysis

We show that the buckets (and slices) in the tree overflow with negligible proba-
bility. In our construction, the root bucket and the auxiliary buckets are not par-
titioned into slices. Eviction is performed every Z/2 accesses, so the root bucket



104 I. Abraham et al.

never overflows. Below, Lemma 1 analyzes auxiliary buckets while Lemma 2
analyzes slices in non-root non-auxiliary buckets.

Lemma 1. If the size of auxiliary buckets Zaux satisfies N ≤ dL · Zaux/2, the
probability that an auxiliary bucket overflows is bounded by e− Zaux

6 .

Proof. For an auxiliary bucket b, define Y (b) to be the number of real blocks in
b. Each of the N blocks in the ORAM has a probability of d−L to be mapped
to b independently. Thus, E[Y (b)] ≤ N · d−L ≤ Zaux/2, and a simple Chernoff
bound completes the proof. ��

The following lemma generalizes Onion ORAM [12] Lemma 1 to the scenario
of a d-ary tree.

Lemma 2. The probability that a slice of a non-root and non-auxiliary bucket
overflows after an eviction operation is bounded by e− Z

6d .

Proof. Consider a bucket b, and its i-th slice bi. Define Y (b) to be the number
of real blocks in b, and Y (bi) to be the number of blocks in bi after an eviction
operation.

We will first assume that all slices have infinite capacity and show that
E[Y (bi)] ≤ Z/2d, i.e., the expected number of blocks in a non-root slice after
an eviction operation is no more than Z/2d at any time. Then, we bound the
overflow probability given a finite capacity.

For a non-root and non-auxiliary bucket b, we define variables m and mi, 1 ≤
i ≤ d: the last EvictAlongPath operation where b is on the eviction path is the
m-th EvictAlongPath operation, and the EvictAlongPath operation where b is a
sibling bucket with eviction happening to slice i is the mi-th EvictAlongPath
operation. Clearly, during eviction to one of the d slices, the bucket b is on the
eviction path. Thus, one of mi is equal to m. We also time-stamp the blocks as
follows. When a block is accessed and remapped, it gets a time stamp m∗, if the
next EvictAlongPath would be the m∗-th EvictAlongPath operation.

Now consider bi and Y (bi). There exist the following cases:

1. If m ≥ mi, then Y (bi) = 0, because the entire bucket b becomes empty when
it is a parent bucket during the m-th EvictAlongPath operation, and the next
eviction that evicts blocks to slice bi has not occurred.

2. If m < mi, we must have mi−1 < mi. Otherwise, mi is the smallest among
m1, . . . , md and it must be that m ≥ mi. We consider blocks with what time
stamp range can end up in bi.
– Blocks with time stamp m∗ ≤ m will not be in bi as these blocks would

have been evicted out of b in the m-th EvictAlongPath operation.
– Blocks with time stamp m < m∗ ≤ mi−1 or m∗ > mi will not be in bi as

these blocks are evicted to either slices ≤ i − 1 or slices > i respectively.
– Blocks with time stamp mi−1 < m∗ ≤ mi can be evicted to bi.



Asymptotically Tight Bounds for Composing ORAM with PIR 105

There are at most (mi −mi−1)Z/2 blocks with time stamp mi−1 < m∗ ≤ mi.
Each of these blocks go to bucket b independently with probability d−j , where
j is the level of b. Due to the deterministic reverse lexicographic ordering of
eviction paths, it is easy to see that mi −mi−1 = dj−1. Therefore, E[Y (bi)] ≤
dj−1 · Z/2 · d−j = Z/2d.

In either case, we have μ = E[Y (bi)] ≤ Z/2d. Now that we have independence
and the expected number of blocks in a bucket, using a Chernoff bound with
δ = 1, a slice bi overflows with probability

Pr[Y (bi) > (1 + δ)u] ≤ e− δ2μ
3 = e− Z

6d . ��
Combining the two lemmas, we can set Z = Ω(dλ) and Zaux = Ω(λ). The

probability that any slice or any bucket overflows is e−Ω(λ). Following prior
work [12,44,53], it suffices to set λ = ω(log N) for N−ω(1) failure probability,
i.e., negligible in N .

Server Storage. The amount of server storage in our construction is

Zaux · dL + Z · ΣL
i=0d

i = Θ(N).

4.2 Security Analysis

Similar to all tree based ORAMs, for each access, the client performs the retrieval
phase on a random path. The use of PIR hides the location of the requested
block on that random path. Eviction is performed on a publicly known reverse
lexicographical ordering of paths. Along the eviction path, each bucket and a
predetermined slice in each child buckets are downloaded/uploaded. Thus, all
client operations observed by the servers are independent of the logical client
access patterns.

4.3 Reducing Client Storage

In the construction described so far, the client stores the Θ(N log N)-bit position
map, Θ(N log N)-bit metadata for all block and uses Θ(dλ) blocks of temporary
storage during the eviction operation. In this section, we optimize our scheme
to reduce the client storage to O(1) blocks.

A. Position map. The position map for the main ORAM has a Θ(log N)-bit
entry for each of the N blocks, amounting to Θ(N log N) bits of storage.

Position map can be stored recursively in smaller ORAMs as discussed by
Shi et al. [48]. As discussed in [52], when the data block size is Ω(log2 N) (which
is the case for our scheme), using a small block size for recursive position map
ORAMs, the asymptotic cost of recursion would be insignificant compared to the
main ORAM tree. Hence, recursion does not increase to the bandwidth blowup
asymptotically.



106 I. Abraham et al.

1: function EvictToSlices(le, k, s)
2: // Evict from bucket P(le, k) to the s-th slice of each of its d children
3: Download metadata for bucket P(le, k) from S1

4: for t ← 1 to d
5: Let S be the s-th slice of the t-th child of P(le, k) and Si be its i-th slot //

S is empty
6: for each Si ∈ S
7: if ∃j such that the j-th block in P(le, k) can be evicted to S then
8: block = TwoServerPIR(S1,S2,P(le, k), j)
9: Locally update the metadata for the j-th block in P(le, k) to be dummy

10: Upload block along with its metadata to Si on both servers
11: else // no such j exists, do a dummy PIR and a dummy upload
12: Run TwoServerPIR(S1,S2,P(le, k), 1) and discard its output
13: Upload a dummy block with a dummy identifier to Si on both servers
14: Upload the updated metadata of P(le, k) to S1

Fig. 5. Evicting to children slices using O(1) blocks of client storage.

B. Metadata for each block in the tree. For each block of the tree, we store
whether the block is real or dummy. If it is real, the identifying address is stored.
This amounts to another Θ(N log N) bits of storage.

We can store the metadata of each block along with the block data on the
server. However, this would require downloading metadata from the server during
retrieval before performing each PIR operation. For Z = O(dλ), L < logd N and
a size of O(log N) bits for storing the identifier and whether the block is dummy,
the total amount of metadata downloaded for an access is O(dλ log N logd N).
Thus, for a block size of Ω(dλ log N logd N) bits, the asymptotic bandwidth for
downloading this metadata is absorbed.

C. Temporary storage for an eviction operation. During an eviction oper-
ation, the client downloads a bucket and a slice from each of its d children. This
is equivalent to downloading two buckets. Thus, for each step of the eviction
operation the client needs to store Z = O(dλ) blocks.

We now show how this client storage can be reduced to O(1). At a high level,
the client needs to perform the eviction from a bucket to its children buckets
without downloading the entire buckets. If the client can only store one block,
it needs to download one block at a time from the parent bucket and upload
it to one of its children buckets. And the client needs to do so obliviously. We
achieve this by hiding which block from the parent bucket is downloaded, again
using PIR, and letting the client upload to the children buckets in a deterministic
order. The new EvictToSlices algorithm for evicting a parent bucket to its children
slices is shown in Fig. 5.

To perform the eviction from a bucket P(le, k) to a slice S of its t-th child, the
client first downloads the metadata corresponding to P(le, k) (line 3). The client
uploads to each slot i in S (denoted Si) sequentially, one slot at a time (line 3).



Asymptotically Tight Bounds for Composing ORAM with PIR 107

Before this eviction, each slot Si will be empty due to Lemma 2. There are two
cases:

1. If there exists a real block in P(le, k) that can be evicted to S, the client
downloads that block from P(le, k) using PIR (thus hiding its location in
P(le, k)), and uploads it (re-encrypted) to Si (lines 7–10).

2. If no real block in P(le, k) can be evicted to S, the client performs a dummy
PIR to download an arbitrary block from P(le, k), discards the PIR output,
and uploads an encrypted dummy block to Si (lines 11–13).

Thus, for each Si ∈ S in order, the client downloads a block from the parent
bucket using PIR (without revealing its position or whether its a dummy PIR)
and uploads a block to Si. This eviction process requires O(1) blocks of storage.

4.4 Bandwidth Analysis

Bandwidth blowup. We analyze the bandwidth blowup of our construction
while temporarily ignoring metadata for simplicity. The bandwidth blowup for
retrieving a block using PIR is O(1). On evictions, for each bucket on the path,
the client downloads the parent bucket and uploads to one slice from each of
the d child buckets, which is equivalent to two buckets of bandwidth. Thus, an
eviction costs 2ZL blocks of bandwidth and it is performed every Z/2 accesses,
giving an amortized bandwidth blowup of 4L < 4 logd N . Overall, the bandwidth
blowup of our scheme is O(logd N).

Trade-off regarding d. Although our bandwidth blowup decreases with d,
we cannot keep increasing d for free. The reason is that the client needs to
download a Θ(log N)-bit metadata for all dλ logd N blocks on a path, on each
access and eviction. Recursion contributes another O(log3 N) bits, but that is
no greater than the metadata overhead. So the raw bandwidth (in bits) per
access is O(B logd N + dλ logd N log N). While we usually focus on the multi-
plicative blowup term, when d becomes too large, the additive term will domi-
nate. Thus, the aforementioned bandwidth blowup only holds if the block size
is B = Ω(dλ log N). (If the client has large local storage and stores metadata
locally, the block size B can be a log N factor smaller.)

In other words, the optimal d should be determined as a function of the
block size B and the number of blocks N . For instance, for an application using
moderately large block size B = Ω(λ log2 N), we can set d = Θ(log N) and the
bandwidth blowup is O(log N/ log log N). If some application uses very large
blocks such as B = Ω(

√
Nλ log N), then we can set d = Θ(

√
N) and achieve a

bandwidth blowup of O(1).

5 Extending the Goldreich-Ostrovsky Lower Bound

Goldreich and Ostrovsky [23] gave an Ω(logc N) lower bound on the bandwidth
overhead assuming perfect correctness, perfect security and assuming the client



108 I. Abraham et al.

to be restricted to the following operations: reading from a memory location and
writing to a memory location. Here, N represents the number of logical blocks
stored on the server and c is the number of logical blocks stored by the client.

In this section, we first review (a slight variant of) the original Goldreich-
Ostrovsky lower bound and its proof from [23]. We then extend the model to
include PIR and PIR-write as possible client operations, and analyze how this
changes the bound.

Following Goldreich-Ostrovsky and Boyle-Naor [5,23] (both papers consid-
ered the client as a CPU) we will use client and CPU interchangeably, and refer
to client storage as c registers.

5.1 Original Lower Bound

We present a slight variant of the CPU used in the original lower bound work [23]:

Definition 2. A CPU is modeled as a probabilistic random-access-machine
(RAM) which has c registers and is restricted to the following operations:

– READi reads a block from memory into a CPU register: For an addr ∈ [N ],
set Reg[i] ← val, where val is the content of the memory at location addr.

– WRITEi moves a block from a CPU register to memory: For some i ∈ [c] and
addr ∈ [N ], write the data in Reg[i] to location addr in the memory.

Our RAM model has slightly different operations than the original analysis
in [23] to simplify the exposition. This will cause only constant factor differences
in the bound. Given this model, the original lower bound can be stated as:

Theorem 1. Every statistically oblivious simulation of a probabilistic RAM
(Definition 2), which can access N blocks of data and hold c blocks in the CPU,
on input y makes at least max{|y|, Ω(t·logc N)} accesses to simulate t = poly(N)
steps.

Proof. As described by Goldreich and Ostrovsky [23], the task of simulating an
ORAM can be modeled as a game in between three players

1. The CPU, which can hold at most c blocks and has access to a random
function f

2. the program request sequence of length t
3. the observer

The CPU knows the program request sequence ahead of time. Suppose the
request access sequence is represented as r1, . . . , rt. The game takes place on a
memory consisting of N cells, each capable of storing a single block.

The game proceeds for t rounds. In each round i, the CPU loads ri in one
of its registers in such a way that the observer does not learn ri. The CPU does
so by making a sequence of operations as described in Definition 2. At any time
during the game, the CPU can store at most c blocks in memory. Round i ends
when the CPU holds block ri.



Asymptotically Tight Bounds for Composing ORAM with PIR 109

For a t sized request sequence, the CPU’s response can be represented by
two q sized sequences. The first sequence consists of an externally visible access
pattern. Each entry in this sequence is a single address (each of which is sufficient
to implement either READi or WRITEi). The second sequence consists of hidden
operations performed by the CPU. Let us consider the possible number of hidden
actions that can be taken by the CPU, for a fixed visible access pattern. For each
visible read address, the block that is read can be stored in one of the c registers
in the CPU. Likewise, for each visible write address, the block written back could
have been removed from any one of the c registers in the CPU. Thus, hidden
from the observer, the system can evolve in c ways on a READ and c ways on a
WRITE.

Given that the CPU stores c blocks, a q length sequence can satisfy at most cq

program access sequences. Therefore, each visible access sequence can satisfy at
most (2c)qcq program request sequences. For perfect security, the visible access
sequence should be able to satisfy all N t possible request sequences, i.e.,

N t ≤ (2c)qcq

or q ≥ t log N
log c+log(2c) = Ω (t logc N). ��

The above is a bound on the number of operations. Since each operation
incurs at least 1 block of bandwidth, we also obtain an amortized bandwidth
blowup lower bound of Ω(logc N).2

5.2 Augmented Lower Bound (After Adding PIR)

We now extend the above result to allow the CPU to perform PIR and PIR-write.

Definition 3. A PIR-augmented CPU is modeled as a probabilistic random-
access-machine PIR-RAM which has c registers and is restricted to the following
operations:

– READi as described in Definition 2.
– WRITEi as described in Definition 2.
– PIR-READi reads a block from memory into a CPU register using PIR: For a

set of at most D addresses, set Reg[i] ← val, where val can be the content of
the memory at any of the locations in the set.

– PIR-WRITEi moves a block from a CPU register into memory privately using
a PIR-WRITE operation: For a set of at most D addresses, write the data in
Reg[i] to a location among one of the D addresses.

Theorem 2. Every statistically oblivious simulation of a probabilistic PIR-RAM
(Definition 3), which can access N blocks of data and hold c blocks in the
CPU and perform PIR on a maximum of D blocks, on input y makes at least
max{|y|, Ω(t · logcD N)} accesses to simulate t = poly(N) steps.
2 If we assume that the memory is initially permuted by the CPU unknown to the

server, then the total number of program request sequences is at most MM (2c)qcq

where M = poly(N) is the physical memory size. Hence, we have q = Ω((t −
M) logc N).



110 I. Abraham et al.

Proof. The proof follows the same framework as the original lower bound. The
number of operations in the visible and hidden sequences due to READi or
WRITEi operations is unchanged. Now, the visible sequence additionally reveals
the set of D addresses accessed on a PIR request for PIR-READi/PIR-WRITEi.
In each of these operations, the client can select one out of D possible memory
blocks to read/write in the visible memory. Furthermore, for each of the above
D outcomes, the client can add the read block to (or remove the written block
from) any one of the c local registers. Thus, the system can evolve in cD possible
ways for each of the PIR-READ and PIR-WRITE operations.

Extending the original argument, each visible access sequence can satisfy
(2c+2cD)qcq program request sequences. For perfect security, the visible access
sequence should be able to satisfy all N t possible request sequences, i.e.,

N t ≤ (2c + 2cD)qcq

or q ≥ t log N
log c+log(2c+2cD) = Ω

(
t log N
log(cD)

)
. ��

Again, the bound is on the number of operations. Since each of the four
operations incurs at least 1 block of bandwidth, a bound on the number of
operations translates to a bound on amortized bandwidth blowup.

5.3 Discussion

Accounting for failure probability. The above lower bound assumes per-
fect security, i.e., each visible physical access sequence should be able to satisfy
all possible program request sequences. However, using an argument similar to
Wang et al. [54], the same lower bound can be extended to work for up to O(1)
failure probability (and hence, negligible failure probability).

PIR as a black box. Our lower bound is independent of the implementation
details of the PIR and PIR-write operations. The bound is applicable to any
statistically secure PIR construction that meets the interface in Definition 3,
regardless of the number of servers it uses. We also note that although the lower
bound considers PIR-WRITE as a possible operation, our construction does not
use this primitive.

Our construction and the lower bound. Our construction matches this
lower bound for certain parameter ranges. We use c = 1 register and perform
a PIR operation on D = O(d · poly(log N)) blocks. Thus, our lower bound is
asymptotically tight for d = Ω(log N) when the data block size B = Ω(d log2 N).

C-ORAM, CHf-ORAM and the lower bound. We discuss how the lower
bound is applicable to C-ORAM [40] and CHf-ORAM [39] in Sect. 6.2.

Circumventing the lower bound. The lower bound on bandwidth only
applies to black-box usage of PIR. Onion ORAM [12] circumvents the lower
bound and achieves O(1) bandwidth blowup. The reason is that the homomor-
phic select operation in Onion ORAM (a non-black-box usage of PIR) does not



Asymptotically Tight Bounds for Composing ORAM with PIR 111

consume one unit of bandwidth. Therefore, while the number of operations in
Onion ORAM is still subject to the bound, the bound does not translate to a
bound on bandwidth blowup. It is also possible to circumvent the lower bound
by adding other operations (e.g., FHE [2]).

6 Security Analysis of C-ORAM

C-ORAM [40] is a CCS’15 paper that achieves constant bandwidth blowup over
smaller block sizes and performs less server computation (compared to Onion
ORAM [12]). C-ORAM introduces an eviction procedure that publicly and
homomorphically merges bucket contents. CHf-ORAM [39] extends C-ORAM
with four non-colluding servers to avoid homomorphic encryption. In this section,
we first give a short review of C-ORAM and CHf-ORAM. We then use the lower
bound described in the previous section to show that the results obtained by
C-ORAM and CHf-ORAM are impossible. Lastly, we give two concrete attacks
that apply to both C-ORAM and CHf-ORAM.

6.1 A Review of C-ORAM

C-ORAM follows the tree-based ORAM framework in Sect. 3.2. It has a large
bucket size Z = ω(log N) and performs one eviction every χ = O(Z) accesses.
On accesses, it relies on single-server PIR (or 2-server PIR in the case of CHf-
ORAM) to achieve constant bandwidth. Each eviction goes down a path in the
reverse lexicographical order. For each bucket on the path, C-ORAM moves
all blocks in it into the two child buckets. To perform this eviction procedure
using constant bandwidth, C-ORAM proposes the following “oblivious merge”
operation.

Each bucket may contain three types of blocks: real, noisy and zero. Essen-
tially, C-ORAM has two types of dummy blocks. A zero block is a dummy block
whose plaintext value is 0; a noisy block is a dummy block whose plaintext value
is arbitrary. Metadata in each bucket or maintained by the client tracks the type
of each block. C-ORAM then encrypts each block using an additive homomor-
phic encryption. Notice that if the server homomorphically merges an encrypted
real block with an encrypted zero block, the result would be an encryption of
the real block, i.e., E(r) + E(0) = E(r) for a plaintext real block r. However, if
a real block is merged with a noisy block or another real block, then the content
cannot be recovered. If a zero block is merged with a noisy block, it is “conta-
minated” and becomes a noisy block. Therefore, in order to merge two buckets,
C-ORAM needs to permute and align the two buckets in a very specific way, i.e.,
a real block in one bucket must always be aligned with a zero block in the other
bucket. Crucially, C-ORAM also prioritizes aligning two noisy blocks such that
it contaminates as few zero blocks as possible.

To make the presentation clear, we distinguish “permute” and “shuffle” oper-
ations. Whenever we say a set of blocks are “shuffled”, we mean the client down-
loads all the blocks, shuffles them secretly and uploads them back to the server;



112 I. Abraham et al.

the server has no idea how the blocks are shuffled. Whenever we say a set of blocks
are “permuted”, we mean the client instructs the server to permute them, and
the server sees the permutation. Therefore, permuting a set of blocks does not
provide any obfuscation effect. Its only purpose is to enforce the merging rules
in C-ORAM, i.e., a real block should be merged with a zero block, and a noisy
block should be merged with another noisy block if possible.

Each eviction goes down a path, and merges each bucket on the path into
its two children. Note that shuffling all buckets involved an eviction would take
more than constant bandwidth. Therefore, when two buckets need to be merged
in C-ORAM, they are permuted and not shuffled, and the server sees the permu-
tations. It is unnecessary to permute both buckets. It is equivalent to permuting
only the parent bucket and merging it into the child bucket. Now we try to
analyze whether these permutations leak information about the access pattern.
C-ORAM argues that if the client secretly and randomly shuffles the root bucket
before each eviction, then all permutations look random and leak no information
to the server. Unfortunately, this belief is incorrect.

6.2 C-ORAM, CHf-ORAM and the Lower Bound

C-ORAM and CHf-ORAM introduced three new operations on top of the stan-
dard ORAM model: download a block from a path of poly-logarithmic blocks
using PIR-READ, upload a block to one hidden location in a bucket using
PIR-WRITE, and an oblivious merge operation. In an oblivious merge opera-
tion, the server applies plaintext permutations (chosen by the client) to buckets
before merging them. This operation creates only one possible outcome to the
system state, since no action is hidden from the server. Thus oblivious merge
does not affect the lower bound in Sect. 5.

CHf-ORAM achieves statistical security with negligible failure probability
and is thus subject to the lower bound in Theorem 2. The number of operations
required for t logical accesses is Ω( t log N

log(cD) ) where c = O(1) and D = polylog(N).

Thus, its bandwidth blowup is lower bounded by Ω( log N
log log N ). Instead, CHf-

ORAM claims to have achieved O(1) bandwidth, implying a flaw in its con-
struction.

C-ORAM achieves computational security due to the use of single-server
PIR-READ/PIR-WRITE, and thus does not directly violate the lower bound. How-
ever, unless carefully shown otherwise, it is extremely unlikely that any security
flaw of CHf-ORAM can be fixed by merely replacing information theoretically
secure PIR with computationally secure PIR.

6.3 An Attack on the Optimized Construction of C-ORAM

This subsection and the next one give two concrete attacks to C-ORAM to
give some insights on why it is insecure. Before we start, the following analogy
may aid understanding. Imagine a trivially broken ORAM as follows. The client
randomly shuffles all N blocks only once initially and keeps track of the mapping



Asymptotically Tight Bounds for Composing ORAM with PIR 113

locally. Then for each request, the client simply retrieves the requested block.
Each access is clearly to a random location due to the initial shuffle. But if
the same block is requested multiple times, these accesses will go to the same
location and this correlation reveals information.

C-ORAM essentially used a flawed argument like the above. While each per-
mutation looks random in isolation, there is correlation among permutations,
and the correlation leaks information. Both of our attacks exploit this fact.

Our first attack is on the optimized construction of C-ORAM, i.e., the “Sec-
ond Construction” in Sect. 3.3. The goal of the second construction is to decrease
D, i.e., the number of blocks to perform PIR on. The idea is to, on every access,
“clone” the requested path to temporary memory, and perform a C-ORAM evic-
tion operation (which we call a “shadow eviction”) along the cloned path. By
the ORAM invariant, the block of interest now lives in the leaf bucket and PIR
to only the leaf bucket (not the entire path) is sufficient to retrieve the block.
The cloned path is thrown out after the PIR operation.

This scheme suffers from correlations among permutation operations when a
pair of buckets (a parent and its child) are part of multiple shadow evictions in
between being involved in two regular evictions. Note that due to randomness
(even if one eviction happens after every access, as suggested in C-ORAM),
there is non-negligible probability that a pair of buckets deep in the tree are
involved in more than 1 shadow evictions between two regular evictions. In each
shadow eviction, the normal C-ORAM eviction rules apply: a real block can
only be merged with a zero block, and a noisy block is prioritized to be merged
with another noisy block. Since the contents of the two buckets remain the same
across these shadow evictions, it is easy to see that certain slots in one bucket
(e.g., the real blocks) will repeatedly “prefer” certain slots in the other bucket
(e.g., zero blocks). This bias can reveal the number of real blocks in the bucket.
It is well known that revealing bucket load in tree ORAMs is sufficient to leak
the access pattern [48]: more recently accessed blocks will be in buckets higher
in the tree than less recently used blocks.

6.4 An Attack on the Basic Construction of C-ORAM

Our second attack applies to both the basic version and the optimized ver-
sion of C-ORAM. For this attack, we need the first three evictions. Recall that
the basic C-ORAM performs one eviction every χ accesses, so we need client
access sequences of length 3χ. Concretely, consider the following two client access
patterns:

1. Access the same block 3χ times, i.e., X = {a1, . . . , a3χ} where ai = a,∀i
2. Access 3χ distinct blocks, i.e., X ′ = {a1, . . . , a3χ} where ai �= aj , ∀i �= j.

In this attack, we assume that initially all blocks in the C-ORAM tree are
zero blocks. Our attack also works if initially the server stores all real blocks in
leaf buckets, and all non-leaf buckets only contain zero blocks. We believe these



114 I. Abraham et al.

Fig. 6. Public permutations in C-ORAM are correlated.

are the two most natural initial states for tree-based ORAMs.3 With access
pattern X, the root will contain 1 real block, χ − 1 noisy blocks and Z − χ zero
blocks before each eviction. With access pattern X ′, the root will contain χ real
blocks, 0 noisy block and Z − χ zero blocks before each eviction.

Figure 6 walks through the first three evictions in C-ORAM, and highlights
a pair of correlated permutations during the 2nd and 3rd eviction. The figure
shows the first three levels of the tree. O represents a bucket full of zero blocks.
Initially, all blocks are zero. A, B and C are the three buckets of blocks injected
into the root before the 1st, 2nd and 3rd eviction, respectively. A, B and C are
all randomly shuffled by the client.

On the first eviction (first row), A is injected to the root. The bottom of the
figure depicts an example of A assuming a small bucket size Z = 8 and χ = 4. It

3 Through personal communication with the C-ORAM authors, we learnt that
C-ORAM does not start in these two initial states. Instead, they assume each
bucket contains an equal number of noisy and zero blocks that are shuffled randomly.
However, the C-ORAM paper did not specify what the initial state is.



Asymptotically Tight Bounds for Composing ORAM with PIR 115

contains χ = 4 real blocks, denoted r, and 4 zero blocks, denoted o. This would
be the case when the original access pattern is X ′ and four distinct blocks are
accessed. A is then evicted to the next level, producing A1 and A2. They are
then merged with the two children (both are all-zero buckets O), leaving the
root empty. A1 contains the set of blocks mapped to the left half of the tree,
and A2 contains the set of blocks mapped to the right half of the tree. In the
example at the bottom, we assume 3 blocks are mapped to the left half and 1
block is mapped to the right half. Notice that A1 and A2 are correlated. All the
real blocks in A1 are noisy blocks (denoted n) in A2 and vice versa. On the other
hand, all the zero blocks in A1 are zero blocks in A2 as well. We remark that
A1 and A2 will be independently permuted (not shown in the figure). The two
permutations will be truly random because merging with empty buckets imposes
no restrictions on how the two buckets are aligned. But as we noted earlier the
permutations do not provide any security benefits since the attacker sees the
permutation in clear. The attacker can easily apply the inverse permutation to
get the same view as our example in which the correlation exists.

The first eviction continues down the leftmost path and evicts A1 into A3 and
A4, and further evicts A3 down the tree (not shown). Again, a public random
permutation is applied for every merge, and similar correlations exist among all
the derivative of A once the attacker applies the inverse permutation.

The second eviction (second row) injects another shuffled bucket B. B pro-
duces B1 and B2. B1 is randomly permuted and merged with a zero bucket. B2,
however, needs to be permuted according to the C-ORAM rules (described in
Sect. 6.1) to align with A2. After that, the eviction goes on to evict the merged
bucket A2 + B2 and its children (not shown).

On the third eviction (third row), we focus on the left half of the tree. C
similarly produces C1 and C2. C1 is permuted and merged with B1. The merged
bucket is then permuted again to be merged with A4. This latter permutation (to
align B4 + C4 with A4) will have a strong correlation with the one that aligns A2

and B2 in the second row. More crucially, the type of correlation is very different
depending on whether the client access pattern is X or X ′, thereby revealing
the access pattern.

First consider access pattern X. In this case, A2, B2, A4 and B4 mostly
contain noisy and zero blocks (there are at most 3 real blocks in the system).
Furthermore, the noisy blocks occupy the same set of locations in A2 and A4,
and also in B2 and B4. If two noisy blocks are aligned during A2 + B2, those two
slots are also likely to be aligned in A4 + B4 because C-ORAM prioritizes noisy-
noisy merge. Define the number of repetitions between two permutations π and
π′ to be the size of the set {i | π(i) = π′(i)}. If we simply count the number of
repetitions between the above two permutations, it will be significantly higher
than 1, which is the expected value for two random permutations.

Now consider access pattern X ′. In this case, A2, B2, A4 and B4 will all
contain a moderate number of real blocks. Recall that all real blocks in A2 (B2)
are noisy blocks in A4 (B4) and vice versa, while all zero blocks in A2 (B2) are
zero blocks in A4 (B4). Now once a real block in A2 is aligned with a zero block



116 I. Abraham et al.

in B2, that same slot in A4—a noisy block—tends to avoid that previous slot in
B4—a zero block—again because C-ORAM prioritizes noisy-noisy merge. If we
again count the number of repetitions between these two permutations, it will
be much lower than the expected value 1 for two random permutations.

Utilizing these two different types of correlation, the attacker can easily dis-
tinguish X and X ′ by counting the repeated entries between the two highlighted
permutations above. We implement the above attack and run the experiment
10000 times with Z = 60 and χ = 20. For access pattern (i), the average num-
ber of repetition we get is 1.96. For access pattern (ii), the average number of
repetition is merely 0.81. We repeat the same experiment with Z = 120 and
χ = 40, and reproduce the results: 1.94 and 0.86. This shows our attack easily
distinguishes the two access patterns.

7 Conclusion and Open Problems

In this work, we design an Oblivious RAM with sub-logarithmic overhead where
the servers only perform XOR operations. We achieve this by using a novel
eviction scheme over a d-ary tree to obtain an eviction overhead of O(logd N)
and using two-server PIR to reduce the cost to retrieve a block. We show a
lower bound of Ω(logcD N) for bandwidth blowup for a client storing c blocks
of data and performing a PIR on D blocks of data at a time. Our construction
matches our lower bound under certain parameter ranges. C-ORAM [40] and
CHf-ORAM [39] violate the lower bound and have security flaws.

While we do achieve a sub-logarithmic bandwidth blowup, we do so by using
a two server PIR and server computation. It is still an open question whether a
sub-logarithmic bandwidth blowup can be obtained in the original model defined
by Goldreich and Ostrovsky (the GO bound does not rule it out if the client
uses c = ω(1) storage). Also, all known ORAM schemes that achieve O(log N)
bandwidth blowup require a block size of Ω(log2 N). Whether this bound (or a
sub-logarithmic bound) can be obtained for smaller block sizes remains open.

Acknowledgements. We would like to thank authors of C-ORAM (Tarik Moataz,
Travis Mayberry and Erik-Oliver Blass) for discussions and inputs on algorithmic
details of C-ORAM. We would like to thank Dahlia Malkhi, Jonathan Katz, Elaine
Shi, Hubert Chan and Xiao Wang for helpful discussions on this work. This work is
funded in part by NSF awards #1111599, #1563722 and a Google Ph.D. Fellowship
award.

References

1. Ajtai, M.: Oblivious RAMs without cryptogrpahic assumptions. In: Proceedings
of the forty-second ACM symposium on Theory of computing, pp. 181–190. ACM
(2010)

2. Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious storage. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 131–148. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54631-0 8

http://dx.doi.org/10.1007/978-3-642-54631-0_8


Asymptotically Tight Bounds for Composing ORAM with PIR 117

3. Bindschaedler, V., Naveed, M., Pan, X., Wang, X., Huang, Y.: Practicing oblivious
access on cloud storage: the gap, the fallacy, and the new way forward. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pp. 837–849. ACM (2015)

4. Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM and applications.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 175–204.
Springer, Heidelberg (2016)

5. Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: Proceedings of the
ACM Conference on Innovations in Theoretical Computer Science, pp. 357–368.
ACM (2016)

6. Cachin, C., Micali, S., Stadler, M.: Computationally private information
retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT
1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). doi:10.1007/
3-540-48910-X 28

7. Chen, B., Lin, H., Tessaro, S.: Oblivious parallel RAM: improved efficiency and
generic constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9563, pp. 205–234. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 8

8. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM (JACM) 45(6), 965–981 (1998)

9. Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure ORAM with Õ(log2 n) over-
head. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
62–81. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 4

10. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011)

11. Dautrich, J., Stefanov, E., Shi, E.: Burst ORAM: Minimizing ORAM response
times for bursty access patterns. In: 23rd USENIX Security Symposium (USENIX
Security 14), pp. 749–764 (2014)

12. Devadas, S., Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion ORAM: a
constant bandwidth blowup oblivious RAM. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016. LNCS, vol. 9563, pp. 145–174. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49099-0 6

13. Dvir., Z., Gopi, S.: 2-server PIR with sub-polynomial communication. In: Serve-
dio, R.A., Rubinfeld, R. (eds.) Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC, Portland, OR, USA, 14–17 June, pp.
577–584. ACM (2015)

14. Fletcher, C., Naveed, M., Ren, L., Shi, E., Stefanov, E.: Bucket ORAM: single
online roundtrip, constant bandwidth oblivious RAM. Technical report (2015)

15. Fletcher, C.W., Dijk, M.V., Devadas, S.: A secure processor architecture for
encrypted computation on untrusted programs. In: Proceedings of the Seventh
ACM Workshop on Scalable Trusted Computing, pp. 3–8. ACM (2012)

16. Fletcher, C.W., Ren, L., Kwon, A., van Dijk, M., Devadas, S.: Freecursive ORAM:
[nearly] free recursion and integrity verification for position-based oblivious RAM.
In: ACM SIGPLAN Notices, vol. 50, pp. 103–116. ACM (2015)

17. Fletcher, C.W., Ren, L., Kwon, A., van Dijk, M., Stefanov, E., Serpanos, D.,
Devadas, S.: A low-latency, low-area hardware oblivious RAM controller. In: IEEE
23rd Annual International Symposium on Field-Programmable Custom Comput-
ing Machines (FCCM), pp. 215–222. IEEE (2015)

18. Garg, S., Mohassel, P., Papamanthou, C., Tworam: Round-optimal oblivious RAM
with applications to searchable encryption. Cryptology ePrint Archive, Report
2015/1010 (2015)

http://dx.doi.org/10.1007/3-540-48910-X_28
http://dx.doi.org/10.1007/3-540-48910-X_28
http://dx.doi.org/10.1007/978-3-662-49099-0_8
http://dx.doi.org/10.1007/978-3-662-45608-8_4
http://dx.doi.org/10.1007/978-3-662-49099-0_6
http://dx.doi.org/10.1007/978-3-662-49099-0_6


118 I. Abraham et al.

19. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: Cristofaro, E.,
Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39077-7 1

20. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-
over-ORAM architecture. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychron-
akis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 172–191. Springer, Cham (2015).
doi:10.1007/978-3-319-28166-7 9

21. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005)

22. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pp. 182–194. ACM (1987)

23. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM (JACM) 43(3), 431–473 (1996)

24. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22012-8 46

25. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 157–167. SIAM (2012)

26. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45608-8 27

27. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 143–156. SIAM (2012)

28. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: 38th Annual Symposium on
Foundations of Computer Science, FOCS 1997, Miami Beach, Florida, USA, 19–22
October, pp. 364–373. IEEE Computer Society (1997)

29. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005). doi:10.1007/11556992 23

30. Liu, C., Harris, A., Maas, M., Hicks, M., Tiwari, M., Shi, E.: GhostRider: a
hardware-software system for memory trace oblivious computation. In: ACM
SIGARCH Computer Architecture News, vol. 43, pp. 87–101. ACM (2015)

31. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient RAM-model
secure computation. In: 2014 IEEE Symposium on Security and Privacy, pp. 623–
638. IEEE (2014)

32. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a programming
framework for secure computation. In: 2015 IEEE Symposium on Security and
Privacy, pp. 359–376. IEEE (2015)

33. Lorch, J.R., Parno, B., Mickens, J., Raykova, M., Schiffman, J.: Shroud: ensuring
private access to large-scale data in the data center. In: Presented as part of the
11th USENIX Conference on File and Storage Technologies (FAST 2013), pp. 199–
213 (2013)

http://dx.doi.org/10.1007/978-3-642-39077-7_1
http://dx.doi.org/10.1007/978-3-319-28166-7_9
http://dx.doi.org/10.1007/978-3-642-22012-8_46
http://dx.doi.org/10.1007/978-3-642-22012-8_46
http://dx.doi.org/10.1007/978-3-662-45608-8_27
http://dx.doi.org/10.1007/11556992_23


Asymptotically Tight Bounds for Composing ORAM with PIR 119

34. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013)

35. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-38348-9 42

36. Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: PHANTOM: practical oblivious computation in a secure processor. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security, pp. 311–324. ACM (2013)

37. Mayberry, T., Blass, E.-O., Chan, A.H.: Efficient private file retrieval by combining
ORAM and PIR. In: NDSS, Citeseer (2014)

38. Mitchell, J.C., Zimmerman, J.: Data-oblivious data structures. In: Theoretical
Aspects of Computer Science (STACS) (2014)

39. Moataz, T., Blass, E.-O., Mayberry, T.: CHf-ORAM: a constant communica-
tion ORAM without homomorphic encryption. Cryptology ePrint Archive, Report
2015/1116 (2015)

40. Moataz, T., Mayberry, T., Blass, E.-O.: Constant communication ORAM with
small blocksize. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 862–873. ACM (2015)

41. Ostrovsky, R., Shoup, V.: Private information storage. In: Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 294–303.
ACM (1997)

42. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 27

43. Rane, A., Lin, C., Tiwari, M.: Raccoon: closing digital side-channels through obfus-
cated execution. In: 24th USENIX Security Symposium (USENIX Security 15), pp.
431–446 (2015)

44. Ren, L., Fletcher, C., Kwon, A., Stefanov, E., Shi, E., Van Dijk, M., Devadas,
S., Constants count: practical improvements to oblivious RAM. In 24th USENIX
Security Symposium (USENIX Security 15), pp. 415–430 (2015)

45. Ren, L., Fletcher, C.W., Yu, X., Van Dijk, M., Devadas, S.: Integrity verifica-
tion for path oblivious-ram. In: High Performance Extreme Computing Conference
(HPEC). Institute of Electrical and Electronics Engineers (IEEE) (2013)

46. Ren, L., Yu, X., Fletcher, C.W., Van Dijk, M., Devadas, S.: Design space explo-
ration and optimization of path oblivious RAM in secure processors. In: ACM
SIGARCH Computer Architecture News, vol. 41, pp. 571–582. ACM (2013)

47. Sahin, C., Zakhary, V., El Abbadi, A., Lin, H.R., Tessaro, S.: TaoStore: overcoming
asynchronicity in oblivious data storage. In: IEEE Symposium on Security and
Privacy (SP) (2016)

48. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN )3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 11

49. Stefanov, E., Shi, E.: Multi-cloud oblivious storage. In Proceedings of the 2013
ACM SIGSAC Conference on Computer and Communications Security, pp. 247–
258. ACM (2013)

50. Stefanov, E., Shi, E.: ObliviStore: high performance oblivious cloud storage. In:
IEEE Symposium on Security and Privacy (SP), pp. 253–267. IEEE (2013)

51. Stefanov, E., Shi, E., Song, D.X.: Towards practical oblivious RAM. In: NDSS,
The Internet Society (2012)

http://dx.doi.org/10.1007/978-3-642-38348-9_42
http://dx.doi.org/10.1007/978-3-642-14623-7_27
http://dx.doi.org/10.1007/978-3-642-14623-7_27
http://dx.doi.org/10.1007/978-3-642-25385-0_11


120 I. Abraham et al.

52. Stefanov, E., van Dijk, M., Shi, E., Chan, T.-H.H., Fletcher, C., Ren, L., Yu, X.,
Devadas, S.: Path ORAM: an extremely simple oblivious RAM protocol. Cryp-
tology ePrint Archive, Report 2013/280 v. 3 (2013). http://eprint.iacr.org/2013/
280

53. Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path ORAM: an extremely simple oblivious RAM protocol. In: Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security, pp.
299–310. ACM (2013)

54. Wang, X., Chan, H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-
Ostrovsky lower bound. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pp. 850–861. ACM (2015)

55. Wang, X.S., Huang, Y., Chan, T.-H.H., Shelat, A., Shi, E.: SCORAM: oblivious
RAM for secure computation. In: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, CCS 2014, pp. 191–202, New York, NY,
USA. ACM (2014)

56. Wang, X.S., Nayak, K., Liu, C., Chan, T., Shi, E., Stefanov, E., Huang, Y.: Oblivi-
ous data structures. In: Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, pp. 215–226. ACM (2014)

57. Williams, P., Sion, R.: SR-ORAM: single round-trip oblivious RAM. ACNS, indus-
trial track, pp. 19–33 (2012)

58. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: Proceedings of the 15th
ACM Conference on Computer and Communications Security, pp. 139–148. ACM
(2008)

59. Williams, P., Sion, R., Tomescu, A.: PrivateFS: a parallel oblivious file system.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security, pp. 977–988. ACM (2012)

60. Zahur, S., Wang, X.S., Raykova, M., Gascón, A., Doerner, J., Evans, D., Katz, J.:
Revisiting square-root ORAM: efficient random access in multi-party computation.
In: IEEE Symposium on Security and Privacy, SP, San Jose, CA, USA, 22–26 May,
pp. 218–234 (2016)

61. Zhang, J., Ma, Q., Zhang, W., Qiao, D.: KT-ORAM: a bandwidth-efficient ORAM
built on K-ary tree of PIR nodes (2014)

62. Zhang, J., Ma, Q., Zhang, W., Qiao, D.: MSKT-ORAM: a constant band-
width ORAM without homomorphic encryption. IACR Cryptology ePrint Archive,
Report 2016/882 (2016)

http://eprint.iacr.org/2013/280
http://eprint.iacr.org/2013/280

	Asymptotically Tight Bounds for Composing ORAM with PIR
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Our Construction

	2 Related Work
	3 Preliminaries
	3.1 Problem Definition
	3.2 Tree-Based ORAMs
	3.3 Private Information Retrieval

	4 The Construction
	4.1 Parameterization and Overflow Analysis
	4.2 Security Analysis
	4.3 Reducing Client Storage
	4.4 Bandwidth Analysis

	5 Extending the Goldreich-Ostrovsky Lower Bound
	5.1 Original Lower Bound
	5.2 Augmented Lower Bound (After Adding PIR)
	5.3 Discussion

	6 Security Analysis of C-ORAM
	6.1 A Review of C-ORAM
	6.2 C-ORAM, CHf-ORAM and the Lower Bound
	6.3 An Attack on the Optimized Construction of C-ORAM
	6.4 An Attack on the Basic Construction of C-ORAM

	7 Conclusion and Open Problems
	References


