
Multi-input Functional Encryption
with Unbounded-Message Security

Vipul Goyal1(B), Aayush Jain2, and Adam O’Neill3

1 Microsoft Research, Bengaluru, India
vipul@microsoft.com

2 Center for Encrypted Functionalities, University of California, Los Angeles, USA
aayushjainiitd@gmail.com

3 Georgetown University, Washington, D.C., USA
adam@cs.georgetown.edu

Abstract. Multi-input functional encryption (MIFE) was introduced
by Goldwasser et al. (EUROCRYPT 2014) as a compelling extension of
functional encryption. In MIFE, a receiver is able to compute a joint func-
tion of multiple, independently encrypted plaintexts. Goldwasser et al.
(EUROCRYPT 2014) show various applications of MIFE to running
SQL queries over encrypted databases, computing over encrypted data
streams, etc.

The previous constructions of MIFE due to Goldwasser et al. (EURO-
CRYPT 2014) based on indistinguishability obfuscation had a major
shortcoming: it could only support encrypting an a priori bounded num-
ber of message. Once that bound is exceeded, security is no longer
guaranteed to hold. In addition, it could only support selective-security,
meaning that the challenge messages and the set of “corrupted” encryp-
tion keys had to be declared by the adversary up-front.

In this work, we show how to remove these restrictions by relying
instead on sub-exponentially secure indistinguishability obfuscation. This
is done by carefully adapting an alternative MIFE scheme of Goldwasser
et al. that previously overcame these shortcomings (except for selective
security wrt. the set of “corrupted” encryption keys) by relying instead on
differing-inputs obfuscation, which is now seen as an implausible assump-
tion. Our techniques are rather generic, and we hope they are useful in
converting other constructions using differing-inputs obfuscation to ones
using sub-exponentially secure indistinguishability obfuscation instead.

A. Jain–Research supported in part from a DARPA/ARL SAFEWARE award, NSF
Frontier Award 1413955, NSF grants 1228984, 1136174, and 1065276, a Xerox Fac-
ulty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through the ARL
under Contract W911NF-15-C-0205. The views expressed are those of the author
and do not reflect the official policy or position of the Department of Defense, the
National Science Foundation, or the U.S. Government. Research done in part while
visiting Microsoft Research, India.

c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part II, LNCS 10032, pp. 531–556, 2016.
DOI: 10.1007/978-3-662-53890-6 18

532 V. Goyal et al.

1 Introduction

In traditional encryption, a receiver in possession of a ciphertext either has a
corresponding decryption key for it, in which case it can recover the underlying
message, or else it can get no information about the underlying message. Func-
tional encryption (FE) [10,21,26,32] is a vast new paradigm for encryption in
which the decryption keys are associated to functions, whereby a receiver in pos-
session of a ciphertext and a decryption key for a particular function can recover
that function of the underlying message. Intuitively, security requires that it
learns nothing else. Due to both theoretical appeal and practical importance,
FE has gained tremendous attention in recent years.

In particular, this work concerns a compelling extension of FE called multi-
input functional encryption (MIFE), introduced by Goldwasser et al. [25]. In
MIFE, decryption operates on multiple ciphertexts, such that a receiver with
some decryption key is able to recover the associated function applied to all of
the underlying plaintexts (i.e., the underlying plaintexts are all arguments to
the associated function). MIFE enables an number of important applications
not handled by standard (single-input) FE. On the theoretical side, MIFE has
interesting applications to non-interactive secure multiparty computation [7]. On
the practical side, we reproduce the following example from [25].

Running SQL queries over encrypted data: Suppose we have an encrypted
database. A natural goal in this scenario would be to allow a party Alice to
perform a certain class of general SQL queries over this database. If we use
ordinary functional encryption, Alice would need to obtain a separate secret key
for every possible valid SQL query, a potentially exponentially large set. Multi-
input functional encryption allows us to address this problem in a flexible way.
We highlight two aspects of how Multi-Input Functional Encryption can apply
to this example:

– Let f be the function where f(q, x) first checks if q is a valid SQL query from
the allowed class, and if so f(q, x) is the output of the query q on the database
x. Now, if we give the decryption key corresponding to f and the encryption
key ek1 (corresponding to the first input of the function f) to Alice, then Alice
can choose a valid query q and encrypt it under her encryption key EK1 to
obtain ciphertext c1. Then she could use her decryption key on ciphertexts c1
and c2, where c2 is the encrypted database, to obtain the results of the SQL
query.

– Furthermore, if our application demanded that multiple users add or manip-
ulate different entries in the database, the most natural way to build such a
database would be to have different ciphertexts for each entry in the database.
In this case, for a database of size n, we could let f be an (n+1)-ary function
where f(q, x1, . . . , xn) is the result of a (valid) SQL query q on the database
(x1, . . . , xn).

Goldwasser et al. [25] discuss various other application of MIFE to non-
interactive differentially private data release, delegation of computation, and,

Multi-input Functional Encryption with Unbounded-Message Security 533

computing over encrypted streams, etc. We refer the reader to [25] for a more
complete treatment. Besides motivating the notion, Goldwasser et al. [25] gave
various flavors of definitions for MIFE and its security, as well as constructions
based on different forms of program obfuscation. First of all, we note a basic
observation about MIFE: in the public-key setting, functions for which one can
hope to have any security at all are limited. In particular, a dishonest decryptor
in possession of public key PP, a secret key SKf for (say) a binary function
f , and ciphertext CT encrypting message m, can try to learn m by repeatedly
choosing some m′ and learning f(m,m′), namely by encrypting m′ under PP
to get CT′ and decrypting C,C′ under SKf . This means one can only hope for
a very weak notion of security in such a case. As a result, in this work we
focus on a more general setting where the functions have say a fixed arity n
and there are encryption keys EK1, . . . ,EKn corresponding to each index (i.e.,
EKi is used to encrypt a message which can then be used as an i-th argument
in any function via decryption with the appropriate key). Only some subset of
these keys (or maybe none of them) are known to the adversary. Note that this
subsumes both the public key and the secret key setting (in which a much more
meaningful notion of security maybe possible). In this setting, [25] presented an
MIFE scheme based on indistinguishability obfuscation (iO) [6,21].

Bounded-message security: The construction of Goldwasser et al. [25] based
on iO has a severe shortcoming namely that it could only support security for an
encryption of an a priori bounded number of messages1. This bound is required
to be fixed at the time of system setup and, if exceeded, would result in the
guarantee of semantic security not holding any longer. In other words, the num-
ber of challenge messages chosen by the adversary in the security game needed
to be a priori bounded. The size of the public parameters in [25] grows linearly
with the number of challenge messages.

Now we go back to the previous example of running SQL queries over
encrypted databases where each entry in the database is encrypted individu-
ally. This bound would mean that the number of entries in the database would
be bounded at the time of the system setup. Also, the number of updates to the
database would be bounded as well. Similar restrictions would apply in other
applications of MIFE: e.g., while computing over encrypted data streams, the
number of data streams would have to be a priori bounded, etc. In addition, the
construction of Goldwasser et al. [25] could only support Selective-security: The
challenge messages and the set of “corrupted” encryption keys needed by the
adversary is given out at the beginning of the experiment.2

Let us informally refer to an MIFE construction that does not have these
shortcomings as unbounded-message secure or simply fully-secure. In addition

1 We note that, since we do not work in the public-key setting, there is no generic
implication of single-message to multi-message security.

2 Corruption of encryption keys EK1, . . . ,EKn is an aspect of MIFE security not
present for single-input FE; note that in [25], some subset of these keys could not
be requested adaptively by the adversary - they were to be chosen even before the
setup was done.

534 V. Goyal et al.

to the main construction based on iO, Goldwasser et al. [25] also showed a
construction of adaptively-secure MIFE (except wrt. the subset of encryption
keys given to the adversary, so we still do not call it fully-secure) that relies on a
stronger form of obfuscation called differing-inputs obfuscation (diO) [1,6,12].3

Roughly, diO says that for any two circuits C0 and C1 for which it is hard to
find an input on which their outputs differ, it should be hard to distinguish their
obfuscations, and moreover given such a distinguisher one can extract such a
differing input. Unfortunately, due to recent negative results [22], diO is now
viewed as an implausible assumption. The main question we are concerned with
in this work is: Can fully-secure MIFE can be constructed from iO?

1.1 Our Contributions

Our main result is a fully-secure MIFE scheme from sub-exponentially secure iO.
More specifically, we use the following primitives: (1) sub-exponentially secure
iO, (2) sub-exponentially secure injective one-way functions, and (3) standard
public-key encryption (PKE). Here “sub-exponential security” refers to the fact
that advantage of any (efficient) adversary should be sub-exponentially small.
For primitive (2), this should furthermore hold against adversaries running in
sub-exponential time.

A few remarks about these primitives are in order. First, the required security
will depend on the function arity, but not on the number of challenge messages.
Indeed, Goldwasser et al. already point out that selective-security (though not
bounded-message security, which instead has to do with their use of statistically
sound non-interactive proofs) of their MIFE scheme based on iO can be overcome
by standard complexity leveraging. However, in that case the required security
level would depend on the the number of challenge messages. As in most appli-
cations we expect the number of challenge messages to be orders of magnitude
larger than the function arity, this would result in much larger parameters than
our scheme. Second, we only use a sub-exponentially secure injective one-way
function (i.e., primitive (2)) in our security proof, not in the scheme itself. Thus
it suffices for such an injective one-way function to simply exist for security of
our MIFE scheme, even if we do not know an explicit candidate.

1.2 Our Techniques

The starting point of our construction is the fully-secure construction of MIFE
based on diO due to Goldwasser et al. [25] mentioned above. In their scheme,
the encryption key for an index i ∈ [n] (where n is the function arity) is a
pair of public keys (pk0

i , pk1
i) for an underlying PKE scheme, and a ciphertext

for index i consists of encryptions of the plaintext under pk0
i , pk1

i respectively,
along with a simulation-sound non-interactive zero knowledge proof that the two
ciphertexts are well-formed (i.e., both encrypting the same underlying message).

3 Actually, [25] required even a stronger form of diO called strong differing-inputs
obfuscation or differing-inputs obfuscation secure in presence of an oracle.

Multi-input Functional Encryption with Unbounded-Message Security 535

The secret key for a function f is an obfuscation of a program that takes as
input n ciphertext pairs with proofs (c01, c

1
1, π1), . . . , (c0n, c1n, πn), and, if the proofs

verify, decrypts the first ciphertext from each pair using the corresponding secret
key, and finally outputs f applied to the resulting plaintexts. Note that it is
important for the security proof to assume diO, since one needs to argue when
the function keys are switched to decrypting the second ciphertext in each pair
instead, an adversary who detects the change can be used to extract a false
proof.

We will develop modifications that this scheme so that we can instead lever-
age a result of [12] that any indistinguishability obfuscator is in fact a differing-
inputs obfuscator on circuits which differ on polynomially many points. In fact,
we we will only need to use this result for circuits which differ on a single point.
But, we will need to require the extractor to work given an adversary with even
exponentially-small distinguishing gap on the obfuscations of two such circuits,
due to the exponential number of hybrids in our security proof. Fortunately, [17]
showed the result of [12] extends to this case of we start with an indistinguisha-
bility obfuscator that is sub-exponentially secure.

Specifically, we need to make the proofs of well-formedness described above
unique for every ciphertext pair, so that there is only one differing input point in
the corresponding hybrids in our security proof. To achieve this, we design novel
“special-purpose” proofs built from iO and punctured pseudorandom functions
(PRFs) [11,13,29],4 which works as follows. We include in the public parame-
ters an obfuscated program that takes as input two ciphertexts and a witness
that they are well-formed (i.e., the message and randomness used for both the
ciphertexts), and, if this check passes, outputs a (puncturable) PRF evaluation
on those ciphertexts. Additionally, the secret key for a function f will now be
an obfuscation of a program which additionally has this PRF key hardwired
keys and verifies the “proofs” of well-formedness by checking that PRF evalu-
ations are correct. Interestingly, in the security proof, we will switch to doing
this check via an injective one-way function applied to the PRF values (i.e., the
PRF values themselves are not compared, but rather the outputs of an injective
one-way function applied to them). This is so that extracting a differing input at
this step in the security proof will correspond to inverting an injective one-way
function; otherwise, the correct PRF evaluation would still be hard-coded in the
obfuscated function key and we do not know how to argue security.

We now sketch the sequence of hybrids in our security proof. The proof starts
from a hybrid where each challenge ciphertext encrypts m0

i for i ∈ [n]. Then we
switch to a hybrid where each c1i is an encryption of m1

i instead. These two
hybrids are indistinguishable due to security of the PKE scheme. Let � denote
the length of a ciphertext. For each index i ∈ [n] we define hybrids indexed by x,
for all x ∈ [22n�], in which function key SKf decrypts the first ciphertext in the
pair using SK0

i when (c01, c
1
1, .., c

0
n, c1n) < x and decrypts the second ciphertext

4 Due to the number of hybrids in our proof, we will also need the punctured PRFs to
be sub-exponentially secure, but this already follows from a sub-exponentially secure
injective one-way function.

536 V. Goyal et al.

in the pair using SK1
i otherwise. Parse x = (x0

1, x
1
1, .., x

0
n, x1

n). Hybrids indexed
by x and x + 1 can be proven indistinguishable as follows: We first switch to
sub-hybrids that puncture the PRF key at {x0

i , x
1
i }, changes a function key SKf

to check correctness of an PRF value by applying an injective one-way function
as described above, and hard-coded the output of the injective one-way function
at the PRF evaluation at the punctured point. Now if the two hybrids differ at
an input of the form (x0

1, x
1
1, α1, .., x

0
n, x1

n, αn) where αi is some fixed value (a
PRF evaluation of (x0

i , x
1
i)), extracting the differing input can be used to invert

the injective one-way function on random input (namely the αi).
Finally, we note that exponentially many hybrids are indexed by all possible

ciphertext vectors that could be input to decryption (i.e., vectors of length the
arity of the functionality) and not all possible challenge ciphertext vectors. This
allows us to handle any unbounded (polynomial) number of ciphertexts for every
index.

Our techniques further demonstrate the power of the exponentially-many
hybrids technique, together with the iO ⇒ one-point-diO, which have also been
used recently in works such as [8,17].

1.3 Related Work, Open Problems

In this work we focus on an indistinguishability-based security notion for MIFE.
This is justified as Goldwasser et al. [25] show that an MIFE meeting a stronger
simulation-based security definition in general implies black-box obfuscation [6]
and hence is impossible. They also point out that in the secret-key setting with
small function arity, an MIFE scheme meeting indistinguishability-based security
notion can be “compiled” into a simulation-secure one, following the work of De
Caro et al. [16]; in such a setting we can therefore achieve simulation-based
security as well. We note that a main problem left open by our work is whether
iO without sub-exponential security implies MIFE, which would in some sense
show these two primitives are equivalent (up to the other primitives used in
the construction). Another significant open problem is removing the bound a
function’s arity in our construction, as well as the bound on the message length,
perhaps by building on recent work in the setting of single-input FE [30].

Initial constructions of single-input FE from iO [21] also had the shortcom-
ings we are concerned with removing for constructions of MIFE in this work,
namely selective and bounded-message security. These restrictions were simi-
larly first overcome using differing-inputs obfuscation [1,12], and later removed
while only relying on iO [2,33]. Unfortunately, we have not been able to make
the techniques of these works apply to the MIFE setting, which is why we have
taken a different route. If they could, this would be a path towards solving the
open problem of relying on iO with standard security mentioned above.

[14] construct an adaptively secure multi-input functional encryption scheme
in the secret key setting for any number of ciphertexts from any secret key
functional encryption scheme. Their construction builds on a clever observation
that function keys of a secret-key function-hiding functional encryption can be
used to hide any message. This provides a natural ‘arity amplification’ procedure

Multi-input Functional Encryption with Unbounded-Message Security 537

that allows us to go from a t arity secret key MIFE to a t+1 arity MIFE. However,
because the arity is amplified one by one, it leads to a blow up in the scheme,
so the arity of the functions had to be bounded by O

(
log(logk)

)
. [4] builds on

similar techniques but considers construction of secret key MIFE from a different
view-point (i.e. building iO from functional encryption).

The existence of indistinguishability obfuscation is still a topic of active
research. On one hand there has been recent works such as [31] which break many
of the existing IO candidates using [20]. However, there have been new/modified
constructions which provably resist these attacks under a strengthened model of
security [23].

There has also been progress on constructing universal constructions and
obfuscation combiners [3,19]. An almost updated list of candidates along with
their status can be found here [3]. Since, Multi-Input Functional Encryption
implies indistinguishability obfuscation (as shown in [25]) assuming IO is nec-
essary. Finally, we note that the source of trouble in achieving differing-inputs
obfuscation is the auxiliary input provided to the distinguisher. Another alter-
native to using differing-inputs obfuscation is public-coin diO [28], where this
auxiliary input is simply a uniform random string as done in [5] (they however
achieve selective security). There are no known implausibility results for public-
coin diO, and it is interesting to give an alternative construction of fully-secure
MIFE based on it. Our assumption seems incomparable, as we only need iO but
also sub-exponential security.

1.4 Organisation

The rest of this paper is organized as follows: In Sect. 2, we recall some definitions
and primitives used in the rest of the paper. In Sect. 3 we formally define MIFE
and present our security model. Finally in Sect. 4, we present our construction
and a security proof.

2 Preliminaries

In this section we recall various concepts on which the paper is built upon. We
assume the familiarity of a reader with concepts such as public key encryp-
tion, one way functions and omit formal description in the paper. For the
rest of the paper, we denote by N the set of natural numbers {1, 2, 3, ..}. Sub-
exponential indistinguishability obfuscation and sub-exponentially secure punc-
turable pseudo-random functions have been used a lot recently such as in the
works of [9,15,30]. For completeness, we present these notions below:

2.1 Indistinguisability Obfuscation

The following definition has been adapted from [21]:

538 V. Goyal et al.

Definition 1. A uniform PPT machine iO is an indistinguishability obfuscator
for a class of circuits {Cn}n∈N if the following properties are satisfied.

Correctness: For every k ∈ N, for all {Ck}k∈N, we have

Pr[C ′ ← iO(1k, C) : ∀x,C ′(x) = C(x)] = 1

Security: For any pair of functionally equivalent equi-sized circuits C0, C1 ∈ Ck

we have that: For every non uniform PPT adversary A there exists a negligible
function ε such that for all k ∈ N,

| Pr[A(1n, iO(1k, C0), C0, C1, z) = 1] − Pr[A(1k, iO(1k, C1), C0, C1, z) = 1] |≤ ε(k)

We additionally say that iO is sub-exponentially secure if there exists some con-
stant α > 0 such that for every non uniform PPT A the above indistinguishability
gap is bounded by ε(k) = O(2−kα

).

Definition 2 (Indistinguishability obfuscation for P/poly). iO is a
secure indistinguishability obfuscator for P/Poly, if it is an indistinguishabil-
ity obfuscator for the family of circuits {Ck}k∈N where Ck is the set of all circuits
of size k.

2.2 Puncturable Psuedorandom Functions

A PRF F : Kk∈N × X → Yk∈N is a puncturable pseudorandom function if
there is an additional key space Kp and three polynomial time algorithms
(F.setup, F.eval, F.puncture) as follows:

– F.setup(1k) a randomized algorithm that takes the security parameter k as
input and outputs a description of the key space K, the punctured key space
Kp and the PRF F .

– F.puncture(K,x) is a randomized algorithm that takes as input a PRF key
K ∈ K and x ∈ X , and outputs a key K{x} ∈ Kp.

– F.Eval(K,x′) is a deterministic algorithm that takes as input a punctured key
K{x} ∈ Kp and x′ ∈ X . Let K ∈ K, x ∈ X and K{x} ← F.puncture(K,x).

The primitive satisfies the following properties:

1. Functionality is preserved under puncturing: For every x∗ ∈ X ,

Pr[F.eval(K{x∗}, x) = F (K,x)] = 1

here probability is taken over randomness in sampling K and puncturing it.
2. Psuedo-randomness at punctured point: For any poly size distinguisher

D, there exists a negligible function μ(·), such that for all k ∈ N and x∗ ∈ X ,

| Pr[D(x∗,K{x∗}, F (K,x∗)) = 1] − Pr[D(x∗,K{x∗}, u) = 1] |≤ μ(k)

where K ← F.Setup(1k), K{x∗} ← F.puncture(K,x∗) and u
$←− Yk

We say that the primitive is sub-exponentially secure if μ is bounded by
O(2−kcP RF), for some constant 0 < cPRF < 1. We also abuse the notation
slightly and use F (K, ·) and F.Eval(K, ·) to mean one and same thing irrespec-
tive of whether key is punctured or not.

Multi-input Functional Encryption with Unbounded-Message Security 539

2.3 Injective One-Way Function

A one-way function with security (s, ε) is an efficiently evaluable function P :
{0, 1}∗ → {0, 1}∗ and Pr

x
$←−{0,1}n

[P (A(P (x))) = P (x)] < ε(n) for all circuits A

of size bounded by s(n). It is called an injective one-way function if it is injective
in the domain {0, 1}n for all sufficiently large n.

In this work we require that there exists5 (s, ε) injective one-way function
with s(n) = 2ncowp1 and ε = 2−ncowp2 for some constants 0 < cowp1, cowp2 < 1.
This assumption is well studied, [27,35] have used (2cn, 1/2cn) secure one-way
functions and permutations for some constant c.

This is a reasonable assumption due to following result from [24].

Lemma 1. Fix s(n) = 2n/5. For all sufficiently large n, a random permutation
π is (s(n), 1/2n/5) secure with probability at least 1 − 2−2n/2

.

Such assumptions have been made and discussed in works of [27,34,35]. In par-
ticular, we require the following assumption:

Assumption 1: For any adversary A with running time bounded by s(n) =
O(2ncowp1), for any apriori bounded polynomial p(n) there exists an injective
one-way function P such that,

Pr[ri
$←− {0, 1}n∀i ∈ [p],AO(P (r1), .., P (rp)) = (r1, .., rp)] < O(2−ncowp2)

for some constant 0 < cowp1 , cowp2 < 1. Here, oracle O can reveal at most p − 1
values out of r1, .., rp. Note that this assumption follows from the assumption
described above with a loss p in the security gap.

2.4 (d, δ)-Weak Extractability Obfuscators

The concept of weak extractability obfuscator was first introduced in [12] where
they claimed that if there is an adversary that can distinguish between indis-
tinguishability obfuscations of two circuits that differ on polynomial number of
inputs with noticable probability, then there is a PPT extractor that extracts
a differing input with overwhelming probability. [17] generalised the notion to
what they call (d, δ) weak extractability obfuscator, where they require that
if there is any PPT adversary that can distinguish between obfuscations of
two circuits (that differ on at most d inputs) with atleast ε > δ probability,
then there is an explicit extractor that extracts a differing input with over-
whelming probability and runs in time poly(1/ε, d, k) time. Such a primitive can
be constructed from a sub-exponentially secure indistinguishability obfuscation.
(1, 2−k) weak extractability obfuscation will be crucially used in our construc-
tion for our MIFE scheme. We believe that in various applications of differing
inputs obfuscation, it may suffice to use this primitive along with other sub-
exponentially secure primitives.
5 We however do not require that the injective one-way function can be sampled

efficiently.

540 V. Goyal et al.

Definition 3. A uniform transformation weO is a (d, δ) weak extractability
obfuscator for a class of circuits C = {Ck} if the following holds. For every
PPT adversary A running in time tA and 1 ≥ ε(k) > δ, there exists a algorithm
E for which the following holds. For all sufficiently large k, and every pair of
circuits on n bit inputs, C0, C1 ∈ Ck differing on at most d(k) inputs, and every
auxiliary input z,

| Pr[A(1k, weO(1k, C0), C0, C1, z) = 1] − Pr[A(1k, weO(1k, C1), C0, C1, z) = 1] |≥ ε

⇒ Pr[x ← E(1k, C0, C1, z) : C0(x) �= C1(x) ≥ 1 − negl(k)

and the expected runtime of E is O(pE(1/ε, d, tA, n, k)) for some fixed polynomial
pE. In addition, we also require the obfuscator to satisfy correctness.

Correctness: For every n ∈ N, for all {Cn}n∈N, we have

Pr[C ′ ← weO(1n, C) : ∀x,C ′(x) = C(x)] = 1

We now construct a (1, 2−k) input weak extractability obfuscator from
sub-exponentially secure indistinguishability obfuscation. Following algorithm
describes the obfuscation procedure.

weO(1k, C) : The procedure outputs C ′ ← iO(1k1/α

, C). Here, α > 0 is a con-
stant chosen such that any polynomial time adversary against indistinguishabil-
ity obfuscation has security gap upper bounded by 2−k/4.

The proof of the following theorem is proven in [17].

Theorem 1. Assuming sub-exponentially secure indistinguishability obfusca-
tion, there exists (1, δ) weak obfuscator for P/poly for any δ > 2−k, where k
is the size of the circuit.

In general, assuming sub-exponential security one can construct (d, δ)
extractability obfuscator for any δ > 2−k. Our construction is as follows:
weO(C) : Let α be the security constant such that iO with parameter 1k1/α

has security gap upper bounded by O(2−3k). This can be found due to sub
exponential security of indistinguishability obfuscation. The procedure outputs
C ′ ← iO(1k1/α

, C).
We cite [12] for the proof of the following theorem.

Theorem 2 ([12]). Assuming sub-exponentially secure indistinguishability
obfuscation, there exists (d, δ) weak extractability obfuscator for P/poly for any
δ > 2−k.

3 Multi-input Functional Encryption

Let X = {Xk}k∈N and Y = {Yk}k∈N denote ensembles where each Xk and Yk

is a finite set. Let F = {Fk}k∈N denote an ensemble where each Fk is a finite
collection of n-ary functions. Each f ∈ Fk takes as input n strings x1, .., xn where
each xi ∈ Xk and outputs f(x1, .., xn) ∈ Yk. We now describe the algorithms.

Multi-input Functional Encryption with Unbounded-Message Security 541

– MIFE.Setup(1κ, n): is a PPT algorithm that takes as input the security para-
meter κ and the function arity n. It outputs n encryption keys EK1, ..,EKn and
a master secret key MSK.

– MIFE.Enc(EK,m): is a PPT algorithm that takes as input an encryption key
EKi ∈ (EK1, ..,EKn) and an input message m ∈ Xk and outputs a ciphertext
CTi which denotes that the encrypted plaintext constitutes an ith input to a
function f.

– MIFE.Keygen(MSK, f): is a PPT algorithm that takes as input the master
secret key MSK and a n−ary function f ∈ Fk and outputs a corresponding
decryption key SKf .

– MIFE.Dec(SKf ,CT1, ..,CTn) : is a deterministic algorithm that takes as input a
decryption key SKf and n ciphertexts CTi, ..,CTn and outputs a string y ∈ Yk.

The scheme is said to satisfy correctness if for honestly generated encryption
and function key and any tuple of honestly generated ciphertexts, decryption
of the cipher-texts with function key for f outputs the joint function value of
messages encrypted inside the ciphertexts with overwhelming probability.

Definition 4. Let {f} be any set of functions f ∈ Fκ. Let [n] = {1, .., n} and I ⊆
[n]. Let X0 and X1 be a pair of input vectors, where Xb = {xb

1,j , .., x
b
n,j}q

j=1. We
define F and (X0,X1) to be I-compatible if they satisfy the following property:
For every f ∈ {f}, every I

′
= {i1, .., it} ⊆ I, every j1, .., jn−t ∈ [q] and every

x
′
i1

, .., x
′
it

∈ Xκ,

f(< x0
i1,j1 , .., x

0
in−t,jn−t

, x
′
i1 , .., x

′
it

>) = f(< x1
i1,j1 , .., x

1
in−t,jn−t

, x
′
i1 , .., x

′
it

>)

where < yi1 , ..., yin
> denotes a permutation of the values yi1 , .., yin

such that
the value yij

is mapped to the lth location if yij
is the lth input (out of n inputs)

to f .

IND-Secure MIFE: Security definition in [25] was parameterized by two parame-
ters (t, q) where t denotes the number of encryption keys known to the adversary,
and q denotes the number of challenge messages per encryption key. Since, our
scheme can handle any unbounded polynomial q and any t ≤ n, we present a
definition independent of these parameters.

Definition 5 (Indistinguishability based security). We say that a multi-
input functional encryption scheme MIFE for for n ary functions F is fully IND-
secure if for every PPT adversary A, the advantage of A defined as

AdvMIFE,IND
A (1κ) = |Pr[INDMIFE

A] − 1/2|
is negl(κ), where:

Valid adversaries: In the above experiment, O(EK, ·) is an oracle that takes an
index i and outputs EKi. Let I be the set of queries to this oracle. E(EK, b, ·) on
a query (x0

1,j , .., x
0
n,j), (x

1
1,j , .., x

1
n,j) (where j denotes the query number) outputs

CTi,j ← MIFE.Enc(EKi, x
b
i,j) ∀i ∈ [n]. If q is the total number of queries to this

542 V. Goyal et al.

Experiment INDMIFE
A (1κ)

(EK, MSK) ← MIFE.Setup(1κ, n)
b ← {0, 1}
b

′ ← AMIFE.Keygen(MSK,·),O(EK,·),E(EK,b,·)(1κ)
Output (b = b

′
)

Fig. 1. Security game

oracle then let Xl = {xl
1,j , .., x

l
n,j}q

j=1 and l ∈ {0, 1}. Also, let {f} denote the
entire set of function key queries made by A. Then, the challenge message vectors
X0 and X1 chosen by A must be I−compatible with {f}. The scheme is said to
be secure if for any valid adversary A the advantage in the game described above
is negligible (Fig. 1).

4 Our MIFE Construction

Notation: Let k denote the security parameter and n = n(k) denote
the bound on arity of the function for which the keys are issued. By
PRF = (PRF.Setup,PRF.Puncture,PRF.Eval) denote a sub-exponentially secure
puncturable PRF with security constant cPRF and PKE denote a public key
encryption scheme. Let P be any one-one function (in the security proof we
instantiate with a sub-exponentially secure injective one-way function with
security constants cowp1 and cowp2). Finally, let O denote a (1, 2−3nl−k) weak
extractability obfuscator (here l is the length of the cipher-text of PKE). In par-
ticular, for any two equivalent circuits security gap of the obfuscation is bounded
by 2−3nl−k (any algorithm that distinguishes obfuscations of two circuits with
more than this gap will yield an algorithm that extracts a differing point).

MIFE.Setup(1k, n) : Sample Ki ← PRF.Setup(1λ) and {(PKb
i , SKb

i)}b∈{0,1} ←
PKE.Setup(1k). Let PPi be the circuit as in Fig. 2. EKi is declared as the set
EKi = {PK0

i , PK1
i , ˜PPi = O(PPi), P} and MSK = {SK0

i , SK1
i ,Ki, P}i∈[n].

Here injective function P takes as input elements from the co-domain the PRF.
λ is set greater than (3nl + k)1/cP RF and so that the length of output of the
PRF is at least max{(5nl + 2k)1/cowp1 , (3nl + k)1/cowp2} long.

MIFE.Enc(EKi,m) : To encrypt a message m, encryptor does the following:

– Compute c0i = PKE.Enc(PK0
i ,m; r0) and c1i = PKE.Enc(PK1

i ,m; r1).
– Evaluate πi ← ˜PPi(c0i , c

1
i ,m, r0, r1).

Output CTi = (c0i , c
1
i , πi).

MIFE.KeyGen(MSK, f) : Let G0
f be the circuit described below. Key for f is

output as Kf ← O(G0
f).

MIFE.Decrypt(Kf , {c0i , c
1
i , πi}i∈[n]) : Output Kf (c01, c

1
1, π1, .., c

0
n, c1n, πn).

Multi-input Functional Encryption with Unbounded-Message Security 543

Hard-wired: PK0
i , PK1

i , Ki.
Input: c0i , c

1
i ,m, r0i , r1i

The program does the following:

– Check that c0i = PKE.Enc(PK0
i , m; r0i) and c1i = PKE.Enc(PK1

i , m; r1i).
If the check fails output ⊥.

– Output PRF.Eval(Ki, c
0
i , c

1
i)

Fig. 2. Program encrypt

Hard-wired: {SK0
i , Ki, P}i∈[n].

Input: {c0i , c
1
i , πi}i∈[n]

The program does the following:

– For all i ∈ [n], check that P (PRF.Eval(Ki, c
0
i , c

1
i)) = P (πi). If the check

fails output ⊥.
– Output f(PKE.Dec(SK0

1 , c01), ..,PKE.Dec(SK0
n, c0n)).

Fig. 3. Program G0
f

Remark

1. We also assume that the circuits are padded appropriately before they are
obfuscated.

2. Note that in the scheme, circuit for the key for a function f , G0
f is instantiated

with any one-one function (denoted by P). In the proofs we replace it with
a sub-exponentially secure injective one-way function. We see that the input
output behaviour of G0

f do not change when it is instantiated with any one-
one function, hence we can switch to a hybrid when it is instantiated by
sub-exponentially secure injective one way function and due to the security
of obfuscation these two hybrids are close.

4.1 Proof Overview

The starting point of our construction is the fully-secure construction of MIFE
based on diO due to Goldwasser et al. [25] mentioned above. In their scheme,
the encryption key for an index i ∈ [n] (where n is the function arity) is a
pair of public keys (pk0

i , pk1
i) for an underlying PKE scheme, and a ciphertext

for index i consists of encryptions of the plaintext under pk0
i , pk1

i respectively,
along with a simulation-sound non-interactive zero knowledge proof that the two
ciphertexts are well-formed (i.e., both encrypting the same underlying message).
The secret key for a function f is an obfuscation of a program that takes as
input n ciphertext pairs with proofs (c01, c

1
1, π1), . . . , (c0n, c1n, πn), and, if the proofs

verify, decrypts the first ciphertext from each pair using the corresponding secret
key, and finally outputs f applied to the resulting plaintexts. Note that it is

544 V. Goyal et al.

important for the security proof to assume diO, since one needs to argue when
the function keys are switched to decrypting the second ciphertext in each pair
instead, an adversary who detects the change can be used to extract a false
proof.

We develop modifications to this scheme so that we can instead leverage a
result of [12] that any indistinguishability obfuscator is in fact a differing-inputs
obfuscator on circuits which differ on polynomially many points. In fact, we
we will only need to use this result for circuits which differ on a single point.
But, we will need to require the extractor to work given an adversary with even
exponentially-small distinguishing gap on the obfuscations of two such circuits,
due to the exponential number of hybrids in our security proof. We make use of
sub-exponentially secure obfuscation to achieve this.

Specifically, we make the proofs of well-formedness described above unique
for every ciphertext pair, so that there is only one differing input point in the
corresponding hybrids in our security proof. To achieve this, we design novel
“special-purpose” proofs built from iO and punctured pseudorandom functions
(PRFs) [11,13,29],6 which works as follows. We include in the public parameters
an obfuscated program that takes as input two cipher-texts and a witness that
they are well-formed (i.e., the message and randomness used for both the cipher-
texts), and, if this check passes, outputs a (puncturable) PRF evaluation on
those ciphertexts. Additionally, the secret key for a function f will now be an
obfuscation of a program which additionally has this PRF key hardwired keys
and verifies the “proofs” of well-formedness by checking that PRF evaluations
are correct. Interestingly, in the security proof, we will switch to doing this
check via an injective one-way function applied to the PRF values (i.e., the
PRF values themselves are not compared, but rather the outputs of injective
one-way function applied to them). This is so that extracting a differing input
at this step in the security proof will correspond to inverting a injective one-way
function; otherwise, the correct PRF evaluation would still be hard-coded in the
obfuscated function key and we do not know how to argue security.

We now sketch the sequence of hybrids in our security proof. The proof starts
from a hybrid where each challenge ciphertext encrypts m0

i for i ∈ [n]. Then we
switch to a hybrid where each c1i is an encryption of m1

i instead. These two
hybrids are indistinguishable due to security of the PKE scheme. Let � denote
the length of a ciphertext. For each index i ∈ [n] we define hybrids indexed by x,
for all x ∈ [22n�], in which function key SKf decrypts the first ciphertext in the
pair using SK0

i when (c01, c
1
1, .., c

0
n, c1n) < x and decrypts the second ciphertext

in the pair using SK1
i otherwise. Parse x = (x0

1, x
1
1, .., x

0
n, x1

n). Hybrids indexed
by x and x + 1 can be proven indistinguishable as follows: We first switch to
sub-hybrids that puncture the PRF key at {x0

i , x
1
i }, changes a function key

SKf to check correctness of an PRF value by applying an injective one-way
function as described above, and hard-coded the output of the injective one-way

6 Due to the number of hybrids in our proof, we will also need the punctured PRFs to
be sub-exponentially secure, but this already follows from sub-exponentially secure
injective one-way functions.

Multi-input Functional Encryption with Unbounded-Message Security 545

function at the punctured point. Now if the two hybrids differ at an input of the
form (x0

1, x
1
1, α1, .., x

0
n, x1

n, αn) where αi is some fixed value (a PRF evaluation
of (x0

i , x
1
i)), extracting the differing input can be used to invert the injective

one-way function on random input (namely the αi). As in [12], this inverter
runs in time inversely proportional to the distinguishing gap between the two
consecutive hybrids (which is sub-exponentially small). Hence, we require a sub-
exponential secure injective one-way function to argue security.

Finally, we note that exponentially many hybrids are indexed by all possible
ciphertext vectors that could be input to decryption (i.e., vectors of length the
arity of the functionality) and not all possible challenge ciphertext vectors. This
allows us to handle any unbounded (polynomial) number of ciphertexts for every
index.

4.2 Proof of Security

Theorem 3. Assuming an existence of a sub-exponentially secure indistin-
guishability obfuscator, injective one-way function and a polynomially secure
public-key encryption scheme there exists a fully IND secure multi-input func-
tional encryption scheme for any polynomially apriori bounded arity n.

Proof. We start by giving a lemma that will be crucial to the proof.

Lemma 2. Let X and Y denote two (possibly correlated) random variables
from distribution X and Y, with support |X | and |Y|, and U(X,Y) denote an
event that depends on X,Y . We say that U(X,Y) = 1 if the event occurs, and
U(X,Y) = 0 otherwise. Suppose Pr(X,Y)∼X ,Y [U(X,Y) = 1] = p. We say that a
transcript X falls in the set ‘good’ if PrY ∼Y [U(X,Y |X = X) = 1] ≥ p/2. Then,
PrX∼X [X ∈ good] ≥ p/2.

Proof. We prove the lemma by contradiction. Suppose PrX∼X [X ∈ good] = c <
p
2 . Then,

Pr(X,Y)∼(X ,Y)[U(X, Y) = 1] = Pr(X,Y)∼(X ,Y)[U(X, Y) = 1|X ∈ good] · Pr
X∼X

[X ∈ good]

+ Pr(X,Y)∼(X ,Y)[U(X, Y) = 1|X �∈ good] · PrX∼X [X �∈ good]

By definition of the set good, Pr(X,Y)∼(X ,Y)[U(X,Y) = 1|X �∈ good] < p
2 . Then,

p = Pr[U(X,Y) = 1] < 1 · c + (1 − c) · p/2. Then, if c < p
2 , we will have that

p < p
2 + p

2 , which is a contradiction. This proves our lemma.
We proceed listing hybrids where the first hybrid corresponds to the hybrid
where the challenger encrypts message m0

i,j for all i ∈ [n] and the last hybrid
corresponds to the hybrid where the challenger encrypts m1

i,j . We then prove
that each consecutive hybrid is indistinguishable from each other. Then, we sum
up all the advantages between the hybrids and argue that the sum is negligible.

H0

1. Challenger does setup to compute encryption keys EKi∀i ∈ [n] and MSK as
described in the algorithm.

546 V. Goyal et al.

Hard-wired: {SK0
i , SK1

i , Ki, x, P}i∈[n].
Input: {c0i , c

1
i , πi}i∈[n]

The program does the following:

– For all i ∈ [n], check that P (PRF.Eval(Ki, c
0
i , c

1
i)) = P (πi). If the check

fails output ⊥.
– If (c01, c

1
1, .., c

0
n, c1n) < x − 2, output

f(PKE.Dec(SK1
1 , c11), ..,PKE.Dec(SK1

n, c1n)) otherwise output
f(PKE.Dec(SK0

1 , c01), ..,PKE.Dec(SK0
n, c0n)).

Fig. 4. Program Gf,x

2. A may query for encryption keys EKi for some i ∈ [n], function keys for
function f and ciphertext queries in an interleaved fashion.

3. If it asks for an encryption key for index i, it is given EKi.
4. When A queries keys for n ary function fj and challenger computes keys

honestly using MSK.
5. A may also ask encryptions of message vectors Mh = {(mh

1,j , ..,m
h
n,j)} where

h ∈ {0, 1}, where j denotes the encryption query number. The message vec-
tors has to satisfy the constraint as given in the security definition.

6. For all queries j, challenger encrypts CTi,j∀i ∈ [n] as follows: c0i,j =
PKE.Enc(PK0

i ,m0
i,j) and c1i,j = PKE.Enc(PK1

i ,m0
i,j) and πi,j ←

PRF.Eval(Ki, c
0
i,j , c

1
i,j). Then the challenger outputs CTi,j = (c0i,j , c

1
i,j , πi,j).

7. A can ask for function keys for functions fj , encryption keys EKi’s and cipher-
texts as long as they satisfy the constraint given in the security definition.

8. A now outputs a guess b′ ∈ {0, 1}.

H1: Let q denote the number of cipher-text queries. This hybrid is same as the
previous one except that for all indices i ∈ [n], j ∈ [q] challenge cipher-text
cipher-text component c1i,j is set as c1i,j = PKE.Enc(PK1

i ,m1
i,j).

Hx∈[2,22ln+2]: This hybrid is same as the previous one except key for every func-
tion query f is generated as an obfuscation of program (Fig. 4) by hard-wiring
x (along with SK0

i , SK1
i ,Ki, P).

H22ln+3: This hybrid is same as the previous one except that function keys for
any function f is generated by obfuscating program (Fig. 5).

H22ln+4: Let q denote the number of cipher-text queries made by the adversary.
This hybrid is same as the previous one except that for all indices i ∈ [n], j ∈ [q],
challenge cipher-text component c0i,j is generated as c0i,j = PKE.Enc(PK0

i ,m1
i,j).

H22ln+4+x|x∈[22ln+1] : This hybrid is same as the previous one except key for a
function f is generated by obfuscating program (Fig. 4) by hard-wiring 22ln+3−x
(along with SK0

i , SK1
i ,Ki, P).

Multi-input Functional Encryption with Unbounded-Message Security 547

Hard-wired: {SK1
i , Ki, P}i∈[n].

Input: {c0i , c
1
i , πi}i∈[n]

The program does the following:

– For all i ∈ [n], check that P (PRF.Eval(Ki, c
0
i , c

1
i)) = P (πi). If the check

fails, output ⊥.
– Output f(PKE.Dec(SK1

1 , c11), ..,PKE.Dec(SK1
n, c1n)).

Fig. 5. Program G1
f

H2.22ln+6: This hybrid corresponds to the real security game when b = 1.

We now argue indistinguishability by describing following lemmas.

Lemma 3. For any PPT distinguisher D, | Pr[D(H0) = 1] − Pr[D(H1) = 1] |
< negl(k).

Proof. This lemma follows from the security of the encryption scheme PKE.
In these hybrids, all function keys only depend on one secret key SK0

i for all
i ∈ [n] and SK1

i never appears in the hybrids. If there is a distinguisher D
that distinguishes between the hybrids then there exists an algorithm A that
breaks the security of the encryption scheme with the same advantage. A gets
set of public keys PK1, .., PKn from the encryption scheme challenger and sam-
ples public keys (PK0

i , SK0
i)∀i ∈ [n] himself and sets PK1

i = PKi∀i ∈ [n]. It
also samples PRF keys Ki∀i ∈ [n]. Using these keys, it generates encryption
keys EKi∀i ∈ [n]. Then, it invokes D and answers queries for encryption keys
EKi’s and function keys. A generates function keys using only as obfuscation of
G0

f . Finally, D declares M b = {(mb
1,j , ..,m

b
n,j)}j∈[q]. A sends (M0,M1) to the

encryption challenger and gets ci,j∀i ∈ [n], j ∈ [q] from the challenger. A com-
putes c0i,j ← PKE.Enc(PK0

i ,m
0
i,j). Then evaluates πi,j ← PRF.Eval(Ki, c

0
i,j , ci,j).

Then it sets, CTi,j = (c0i,j , ci,j , πi,j) and sends it to D. After that D may query
keys for functions and encryption keys and the response is given as before. D
now submits a guess b′ which is also output by A as its guess for the encryption
challenge. If ci,j is an encryption of m0

i,j then D′s view is identical to the view in
H1 otherwise its view is identical to the view in H2. Hence, distinguishing advan-
tage of D in distinguishing hybrids is less than the advantage of A in breaking
the security of the encryption scheme.

Lemma 4. For any PPT distinguisher D, | Pr[D(H1) = 1] − Pr[D(H2) = 1] |
< negl(k).

Proof. For simplicity, we consider the case when there is only single function key
query f . General case can be argued by introducing v many intermediate hybrids
where v is the number of keys issued to the adversary. Indistinguishability of
these hybrids follows from the fact that circuit G0

f and Gf,x=2 are functionally

548 V. Goyal et al.

equivalent. Hence, due to the security of indistinguishability obfuscation prop-
erty of the weak extractability obfuscator the lemma holds. For completeness,
we describe the reduction. Namely, we construct an adversary A that uses D
to break the security of weak extractability obfuscator. A invokes D and does
setup (by sampling PKE encryption key pairs and PRF keys for all indices) and
answers cipher-text queries as in the previous hybrid H1. On query f from D,
it sends G0

f and Gf,x to the obfuscation challenger. It receives Kf and sends it
to A. A sends it to D. It replies to the encryption key queries to D using the
sampled PKE keys and PRF keys. Then it outputs whatever D outputs. Note
that view of D is identical to the view in H1 (if Kf is an obfuscation of G0

f) or
H2 (if Kf is an obfuscation of Gf,x=2). Hence, advantage of A is at least the
advantage of D in distinguishing hybrids. Due to security of obfuscation claim
holds.

Lemma 5. For any PPT distinguisher D, | Pr[D(H22ln+2) = 1] − Pr[D
(H22ln+3) = 1] |< negl(k).

Proof. This follows from the indistinguishability obfuscator O. For any function
f , G1

f is functionally equivalent to Gf,x=22ln+2. Proof of the lemma is similar to
the proof of Lemma 4.

Lemma 6. For any PPT distinguisher D, | Pr[D(H22ln+3) = 1] − Pr[D
(H22ln+4) = 1] |< negl(k).

Proof. This follows from the security of encryption scheme PKE. Note that in
both the hybrids SK0

i is not used anywhere. Proof is similar to the proof of
Lemma 3.

Lemma 7. For any PPT distinguisher D, | Pr[D(H22ln+4) = 1] − Pr[D
(H22ln+5) = 1] |< negl(k).

Proof. This follows from the security of indistinguishability obfuscator O. Proof
is similar to the proof of Lemma 4.

Lemma 8. For any PPT distinguisher D, | Pr[D(H2.22ln+5) = 1] − Pr[D
(H2.22ln+6) = 1] |< negl(k).

Proof. This follows from the security of indistinguishability obfuscator O. Proof
is similar to the proof of Lemma 4.

Lemma 9. For any PPT distinguisher D and x ∈ [2, 22ln + 1], | Pr[D(Hx) =
1] − Pr[D(Hx+1) = 1] |< O(v · 2−2ln−k) for some polynomial v.

Proof. We now list following sub hybrids and argue indistinguishability between
these hybrids.

Multi-input Functional Encryption with Unbounded-Message Security 549

Hx,1

1. Challenger samples key pairs (PK0
i , SK0

i), (PK1
i , SK1

i) for each i ∈ [n].
2. Parses x − 2 = (x0

1, x
1
1, .., x

0
n, x1

n) and computes (a0
i , a

1
i) ←

(PKE.Dec(SK0
i , x0

i),PKE.Dec(SK1
i , x1

i)).
3. Samples puncturable PRF’s keys Ki∀i ∈ [n].
4. Denote by set Z ⊂ [n] such that i ∈ Z if a0

i �= a1
i . Computes αi ←

PRF.Eval(Ki, x
0
i , x

1
i) and derives punctured keys K ′

i ← PRF.Puncture(Ki,
x0

i , x
1
i) for all i ∈ [n].

5. If A queries for encryption keys for any index i, for any i in Z, ˜PPi is generated
as an obfuscation of circuit in Fig. 2 instantiated with the punctured key K ′

i

(αi will never be accessed by the circuit PPi in this case). For all other
indices i, P̃P i is constructed by using the punctured key K ′

i and hard-coding
the value αi (for input (x0

i , x
1
i)) as done in Fig. 6. These P̃P i are used to

respond to the queries for EKi.
6. If A queries keys for n ary function fj and challenger computes keys honestly

as in Hx using MSK.
7. If A releases message vectors Mh = {(mh

1,j , ..,m
h
n,j)} where h ∈ {0, 1}, chal-

lenger encrypts CTi,j∀i ∈ [n], j ∈ [q] as follows: c0i,j = PKE.Enc(PK0
i ,m0

i,j)
and c1i,j = PKE.Enc(PK1

i ,m1
i,j). If (c0i,j , c

1
i,j) = (x0

i , x
1
i) set πi,j = αi other-

wise set πi,j ← PRF.Eval(Ki, c
0
i,j , c

1
i,j). Then the challenger outputs CTi,j =

(c0i,j , c
1
i,j , πi,j). Here q denotes the total number of encryption queries.

8. Challenger can ask for function keys for functions fj and encryption keys
EKi as long as they satisfy the constraint with the message vectors.

9. A now outputs a guess b′ ∈ {0, 1}.

Hard-wired: PK0
i , PK1

i , K ′
i, αi, x

0
i , x

1
i .

Input: c0i , c
1
i ,m, r0i , r1i

The program does the following:

– Checks that c0i = PKE.Enc(PK0
i , m; r0i) and c1i =

PKE.Enc(PK1
i , m; r1i). If the check fails output ⊥.

– If (c0i , c
1
i) = (x0

i , x
1
i) output αi otherwise output PRF.Eval(K ′

i, c
0
i , c

1
i)

Fig. 6. Program Encrypt*

Hx,2 : This hybrid is similar to the previous one except that function key for
any function f is generated as an obfuscation of program (Fig. 7) by hard-wiring
(SK0

i , SK1
i ,K

′
i , P, P (αi), x0

i , x
1
i)∀i ∈ [n].

Hx,3 This hybrid is similar to the previous hybrid except that for all i ∈ [n], αi

is chosen randomly from the domain of the injective one way function P .

Hx,4: This hybrid is similar to the previous hybrid except that the function key
is generated as an obfuscation program (Fig. 7) initialised x + 1.

550 V. Goyal et al.

Hard-wired: {SK0
i , SK1

i , K
′
i , P, P (αi), x0

i , x
1
i }i∈[n].

Input: {c0i , c
1
i , πi}i∈[n]

The program does the following:

– For any i ∈ [n], if (c0i , c
1
i) = (x0

i , x
1
i) check that P (αi) = P (πi). If the

check fails output ⊥.
– Otherwise, for i ∈ [n], check that P (PRF.Eval(Ki, c

0
i , c

1
i)) = P (πi). If

the check fails output ⊥.
– If (c01, c

1
1, .., c

0
n, c1n) < x − 2, output

f(PKE.Dec(SK1
1 , c11), ..,PKE.Dec(SK1

n, c1n)) otherwise output
f(PKE.Dec(SK0

1 , c01), ..,PKE.Dec(SK0
n, c0n)).

Fig. 7. Program G∗
f,x

Hx,5: This hybrid is the same as the previous one except that αi∀i ∈ [n] is chosen
as actual PRF values at (x0

i , x
1
i) using the key Ki.

Hx,6: This hybrid is the same as the previous one except that key for the function
f , keys are generated as obfuscation of program (Fig. 4) initialised with x + 1.

Hx,7: This hybrid is the same as the previous one except for all i ∈ [n], P̃P i

is generated as an obfuscation of (Fig. 2) initialised with genuine PRF key Ki.
This hybrid is identical to the hybrid Hx+1.

Claim. For any PPT distinguisher D, | Pr[D(Hx) = 1] − Pr[D(Hx,1) = 1] |<
O(n · 2−3nl−k).

Proof. This claim follows from the indistinguishability security of weak
extractability obfuscator. We have that circuits for i ∈ Z, circuit in Fig. 2 ini-
tialised with regular PRF key Ki is functionally equivalent to when it is ini-
tialised with punctured key K ′

i. This is because for i ∈ Z, (x0
i , x

1
i) never satisfies

the check and the PRF is never evaluated at this point and also the fact the
punctured key outputs correctly at all points except the point at which the PRF
is punctured. For i ∈ [n]\Z, program in Fig. 2 initialised with Ki is functionally
equivalent to the program in Fig. 6 initialised with (K ′

i, αi).
From the above observation, we can prove the claim by at most n intermediate

hybrids where we switch one by one obfuscation P̃P i to use the punctured
key and each intermediate hybrid is indistinguishable due to the security of
obfuscation.

Claim. For any PPT distinguisher D, | Pr[D(Hx,1) = 1] − Pr[D(Hx,2) = 1] |<
O(p(k) · 2−3nl−k). Here, p(k) is some polynomial.

Proof. This follows from the indistinguishability obfuscation property of the
weak extractability obfuscator O. The proof follows by at most p intermedi-
ate hybrids where each queried Kf is switched to an obfuscation of program

Multi-input Functional Encryption with Unbounded-Message Security 551

(Fig. 4) (with hard-wired values SK0
i , SK1

i ,Ki, x, P) to an obfuscation of pro-
gram (Fig. 7) (with hard-wired values SK0

i , SK1
i ,K ′

i, P, P (αi), x). Note that in
this hybrids, both these programs are functionally equivalent. This reduction is
straight forward and we omit details.

Claim. For any PPT distinguisher D, | Pr[D(Hx,2) = 1] − Pr[D(Hx,3) = 1] |<
O(n · 2−2nl−k).

Proof. This claim follows from the property that puncturable PRF’s value is
psuedo-random at punctured point given the punctured key (sub-exponential
security of the puncturable PRF). This proof goes through by a sequence of at
most n hybrids where for each index i ∈ [n], (K ′

i, αi = PRF.Eval(Ki, x
0
i , x

1
i)) is

replaced with (K ′
i, αi ← R) for all i ∈ [n]. This can be done because in both

these hybrids, function keys and the encryption keys use only the punctured keys
and a the value of the PRF at the punctured point. Here R is the co-domain
of the PRF, which is equal to the domain of the injective one way function
P . Since, PRF is sub exponentially secure with parameter cPRF (cPRF be the
security constant of the PRF) when PRF is initialised with parameter greater
than (2nl+k)1/cP RF , distinguishing advantage between each intermediate hybrid
is bounded by O(2−2nl−k). The reduction is straight forward and we omit the
details.

Claim. For any PPT distinguisher D, | Pr[D(Hx,3) = 1] − Pr[D(Hx,4) = 1] |<
O(p(k).2−2nl−k). for some polynomial p(k).

Proof. We prove this claim for a simplified case when only one function key
is queried. The general case by considering a sequence of intermediate hybrids
where function keys are changed one by one, hence the factor p(k). Assume
that there is a PPT algorithm D such that | Pr[D(Hx,3) = 1] − Pr[D(Hx,4) =
1] |> ε > 2−2nl−k. Note that these hybrids are identical upto the point the
adversary asks for a key for a function f . We argue indistinguishability according
to following cases.

1. Case 0: Circuit given in Fig. 7 initialised with x is functionally equivalent to
circuit Fig. 7 initialised with x + 1.

2. Case 1: This is the case in which the two circuits described above are not
equivalent.

Let Q denote the random variable and Q = 0 if adversary is in case 0, otherwise
Q = 1. By εQ=b denote the value | Pr[D(Hx,3) = 1/Q = b] − Pr[D(Hx,4) =
1/Q = b] |. It is known that Pr[Q = 0]εQ=0 + Pr[Q = 1]εQ=1 > ε.

Now we analyse both these cases:

Pr[Q = 0]εQ=0 < 2−2nl−k: This claim follows due to the indistinguishability
security of (1, 2−3nl−k) weak extractability obfuscator. Consider an adversary D
with Q = 0 and challenger C, we construct an algorithm A that uses D and
breaks the indistinguishability obfuscation of the weak extractability obfuscator

552 V. Goyal et al.

with the same advantage. A works as follows: A invokes C that invokes D. C
does the setup as in the hybrid and responds to the queries of D. D outputs
f . A gives G∗

f,x and G∗
f,x+1 to the obfuscation challenger and gets back Kf

in return which is given to D. D’s queries are now answered by C. A outputs
whatever D outputs. A breaks the indistinguishability obfuscation security of
the weak extractability obfuscator with advantage at least εQ=0 as the view of
D is identical to Hx,3 if G∗

f,x was obfuscated and it is identical to Hx,4 otherwise.

Pr[Q = 1]εQ=1 < 2−2nl−k: The only point at which the two circuits G∗
f,x and

G∗
f,x+1 in this case may differ is (x0

1, x
1, α1, ..., x

0
n, xn, αn) where αi is the inverse

of a fixed injective one way function value P (αi). In this case, due to secu-
rity of weak extractability obfuscator the claim holds. Assume to the contrary
Pr[Q = 1]εQ=1 > δ > 2−2nl−k. In this case, let τ be the transcript (including
the randomness to generate PKE keys, PRF keys along with chosen α′

is) between
the challenger and the adversary till the point function key for function f is
queried. We denote τ ∈ good if conditioned on τ , ετ,Q=1 > εQ=1/2. Then, using
Lemma 2, one can show that Pr[τ ∈ good] > εQ=1/2.

Now, let us denote by set Z a set that contains indices in i ∈ [n] such that
a0

i �= a1
i . Note that αi can be requested by the adversary in one of the two

following ways: a0
i = a1

i and adversary queries for EKi or adversary queries for
an encryption of (a0

i , a
1
i) and challenger sends encryption as (x0

i , x
1
i , αi) with

some probability. Let E denote the set of indices for which αi’s queried by the
adversary through first method and S denote the set queried through second
method. Then it holds that S ∪E �= [n]. This is because adversary cannot query
for such cipher-texts and encryption keys in these hybrids since Q = 1 and in
particular it holds that f(< {a0

i }i∈S , {a0
i }i∈E >) �= f(< {a1

i }i∈S , {a0
i }E >). Here

<,> denotes the permutation which sends a variable with subscript i to index i.
Now we let T � [n] denote the set of αi for i ∈ [n] requested by D (either by

querying cipher-text or by querying for EKi such that a0
i = a1

i). We know that
conditioned on τ (randomness upto the point f is queried),

| Pr[D(Hx,3) = 1/Q = 1, τ] − Pr[D(Hx,4) = 1/Q = 1, τ] |> εQ=1/2

For all t � Z,

Σt | Pr[D(Hx,3) = 1 ∩ T = t/Q = 1, τ] − Pr[D(Hx,4) = 1 ∩ T = t/Q = 1, τ] | > εQ=1/2

Since number of proper subsets of [n] is bounded by 2n, there exists a set t such
that

| Pr[D(Hx,3) = 1∩T = t/Q = 1, τ]−Pr[D(Hx,4) = 1∩T = t/Q = 1, τ] | > εQ=1/2n+1

Now we construct an adversary A that breaks the security of injective one way
function with probability Pr[Q = 1]εQ=1/2n+1 that runs in time O(22n/ε2Q=1).
A runs as follows:

1. A invokes D. Then it does setup and generates PKE keys and punctured PRF
keys K ′

i for all indices in [n] according to hybrid Hx,3.

Multi-input Functional Encryption with Unbounded-Message Security 553

2. A gets injective one way function values from the injective one way function
challenger (P, P (α1), .., P (αn)).

3. A now guesses a random proper subset t ⊂ [n].
4. For all indices in i ∈ t it gets αi from the injective one way function challenger.
5. If EKi is asked for any i ∈ t ∪ Z, it is generated as in Hx,3 and given out.

Otherwise, A aborts. We call the transcript till here τ .
6. When D asks for a key for f . If f is such that Q = 0, A outputs ⊥. A now

constructs a distinguisher B of obfuscation of circuits G∗
f,x and G∗

f,x+1 as
follows:
– A gets as a challenge obfuscation C̃f which is an obfuscation G∗

f,x or
G∗

f,x+1.
– A gives this obfuscation to B which invokes D from the point of the

transcript τ and gives this obfuscation to D.
– When D asks for a cipher-text, if the queries are such that B can generate

it using αi∀i ∈ t then answer the cipher-text query. Otherwise, it outputs
0.

– If EKi is asked by D for any i ∈ t∪Z, it is generated as in Hx,3 and given
out. If any other encryption key is queried, it outputs 0.

– If set of indices for which αi’s used to generate response to the queries (in
the transcript τ and the queries asked by D when run by B) equals t it
outputs whatever D outputs otherwise, B outputs 0.

7. If t is correctly guessed as t∗, it is easy to check that | Pr[B(G∗
f,x,

G∗
f,x+1,O(G∗

f,x),aux) = 1] − Pr[B(G∗
f,x, G∗

f,x+1,O(G∗
f,x+1), aux) = 1] |>

εQ=1/2n+1. (Here aux is the information with A required to run B includ-
ing αi∀i ∈ t, P (αi), PK0

i , PK1
i , SK0

i , SK1
i ,K ′

i∀i ∈ [n] and transcript τ till
point 4). This is because,

| Pr[B(G∗
f,x, G∗

f,x+1, O(G∗
f,x), aux) = 1] − Pr[B(G∗

f,x, G∗
f,x+1, O(G∗

f,x+1), aux) = 1] |=

| Pr[D(Hx,3) = 1 ∩ T = t/Q = 1, τ] − Pr[D(Hx,4) = 1 ∩ T = t/Q = 1, τ] | > εQ=1/2n+1

8. We finally run the extractor E of the weak extractability obfuscator using
B to extract a point (x0

1, x
1
1, α1, .., x

0
n, x1

n, αn). (This extraction can be run
as long as εQ=1/2n+1 > 2−3nl implying εQ=1 > 2−2nl−k as otherwise there
is nothing to prove and claim trivially goes through). This extractor runs in
time O(tD.22n/ε2Q=1). Probability of success of this extraction is

Pr[Q = 1] ·Pr[τ is good] ·Pr[t is guessed correctly] > Pr[Q = 1] ·εQ=1/2n+1

Let μ be the input length for injective one way function. We note the following
cases:

Case 0: If Pr[Q = 1]εQ=1 < O(2−2nl−k), in this case the claim goes through.

Case 1: If Pr[Q = 1]εQ=1/2n+1 < O(2−μcowp2), in this case the claim goes
through if μ is set to be greater than (3nl + k)1/cowp2 .

Case 2: If case 1 does not occur, then we must have that 22n/ε2Q=1 > 2μcowp1 ,
implying that if μ is greater than (5nl + 2k)1/cowp1 the claim holds (due to the
security of injective one way function P).

554 V. Goyal et al.

Hence, if μ > max{(3nl + k)1/cowp2 , (5nl + 2k)1/cowp1}, Pr[Q = 1]εQ=1 <
2−2nl−k and the claim holds.

Claim. For any PPT distinguisher D, | Pr[D(Hx,4) = 1] − Pr[D(Hx,5) = 1] |<
O(n · 2−2nl−k).

Proof. This claim follows from the security of the puncturable PRF’s. This is
similar to the proof of the Claim 4.2.

Claim. For any PPT distinguisher D, | Pr[D(Hx,5) = 1] − Pr[D(Hx,6) = 1] |<
O(p(k) · 2−2nl−k). Here p(·) is a some polynomial.

Proof. This claim follows from the indistinguishability obfuscation security of the
weak extractability obfuscator. This proof is similar the proof of the Claim 4.2.

Claim. For any PPT distinguisher D, | Pr[D(Hx,6) = 1] − Pr[D(Hx,7) = 1] |<
O(n · 2−2nl−k).

Proof. This claim follows from the indistinguishability obfuscation security of the
weak extractability obfuscator O. This proof is similar the proof of the Claim 4.2.

Combining all the claims above, we prove the lemma.

Lemma 10. For any PPT distinguisher D and x ∈ [22ln], | Pr[D(H22ln+4+x) =
1] − Pr[D(H22ln+5+x) = 1] |< O(v(k) · 2−2nl−k) for some polynomial v(k).

Proof. Proof of this lemma is similar to the proof of Lemma9.
Combining all these lemmas above, we get that for any PPT D,

| Pr[D(H0) = 1]−Pr[D(H2.22ln+6) = 1] | < negl(k)+2.22nlO(v(k) ·2−2nl−k) < negl(k).

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfus-
cation and applications. IACR Cryptology ePrint Archive 2013, p. 689 (2013).
http://eprint.iacr.org/2013/689

2. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: The trojan method in
functional encryption: From selective to adaptive security, generically. IACR Cryp-
tology ePrint Archive 2014, p. 917 (2014). http://eprint.iacr.org/2014/917

3. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal obfuscation and
witness encryption: Boosting correctness and combining security. IACR Cryptology
ePrint Archive 2016, p. 281 (2016). http://eprint.iacr.org/2016/281

4. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 15

5. Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional encryp-
tion for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 2

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2014/917
http://eprint.iacr.org/2016/281
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/978-3-662-48797-6_2
http://dx.doi.org/10.1007/978-3-662-48797-6_2

Multi-input Functional Encryption with Unbounded-Message Security 555

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO2001. LNCS, vol. 2139, pp. 1–18. Springer,Heidelberg (2001). doi:10.1007/
3-540-44647-8 1

7. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. IACR Cryptology
ePrint Archive 2014, p. 960 (2014). http://eprint.iacr.org/2014/960

8. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of find-
ing a nash equilibrium. In: Electronic Colloquium on Computational Complexity
(ECCC) vol. 22, p. 1 (2015). http://eccc.hpi-web.de/report/2015/001

9. Bitansky, N., Vaikunthanathan, V.: Indistinguishability obfuscation from func-
tional encryption. IACR Cryptology ePrint Archive 2013 (2015). http://eprint.
iacr.org/2015/163

10. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

11. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. IACR Cryptology ePrint Archive 2013, p. 352 (2013). http://eprint.iacr.
org/2013/352

12. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 3

13. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. IACR Cryptology ePrint Archive 2013, p. 401 (2013). http://eprint.iacr.org/
2013/401

14. Brakerski, Z., Komargodski, I., Segev, G.: From single-input to multi-input func-
tional encryption in the private-key setting. IACR Cryptology ePrint Archive 2015,
p. 158 (2015). http://eprint.iacr.org/2015/158

15. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 468–497. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 19

16. Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40084-1 29

17. Chandran, N., Goyal, V., Jain, A., Sahai, A.: Functional encryption: decentralised
and delegatable. IACR Cryptology ePrint Archive (2015)

18. Dodis, Y., Nielsen, J.B. (eds.): TCC 2015. LNCS, vol. 9015. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46497-7

19. Fischlin, M., Herzberg, A., Noon, H.B., Shulman, H.: Obfuscation combiners. IACR
Cryptology ePrint Archive 2016, p. 289 (2016). http://eprint.iacr.org/2016/289

20. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

21. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013), 26–
29 , Berkeley, CA, USA. pp. 40–49. IEEE Computer Society (2013). http://dx.doi.
org/10.1109/FOCS.2013.13

http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://eprint.iacr.org/2014/960
http://eccc.hpi-web.de/report/2015/001
http://eprint.iacr.org/2015/163
http://eprint.iacr.org/2015/163
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://eprint.iacr.org/2013/352
http://eprint.iacr.org/2013/352
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://eprint.iacr.org/2013/401
http://eprint.iacr.org/2013/401
http://eprint.iacr.org/2015/158
http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/978-3-642-40084-1_29
http://dx.doi.org/10.1007/978-3-662-46497-7
http://eprint.iacr.org/2016/289
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1109/FOCS.2013.13
http://dx.doi.org/10.1109/FOCS.2013.13

556 V. Goyal et al.

22. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 29

23. Garg, S., Mukherjee, P., Srinivasan, A.: Obfuscation without the vulnerabilities of
multilinear maps. IACR Cryptology ePrint Archive 2016, p. 390 (2016). http://
eprint.iacr.org/2016/390

24. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of
generic cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005).
http://dx.doi.org/10.1137/S0097539704443276

25. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 32

26. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing Conference
(STOC 2013), Palo Alto, CA, USA, June 1–4, pp. 555–564. ACM (2013). http://
doi.acm.org/10.1145/2488608.2488678

27. Holenstein, T.: Pseudorandom generators from one-way functions: a simple con-
struction for any hardness. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol.
3876, pp. 443–461. Springer, Heidelberg (2006). doi:10.1007/11681878 23

28. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
668–697. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 26

29. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Sadeghi, A., Gligor, V.D., Yung, M.
(eds.) 2013 ACM SIGSAC Conference on Computer and Communications Security
(CCS 2013), Berlin, Germany, November 4–8, pp. 669–684. ACM (2013). http://
doi.acm.org/10.1145/2508859.2516668

30. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing (STOC 2015), Portland, OR, USA,
June 14–17, pp. 419–428 (2015). http://doi.acm.org/10.1145/2746539.2746614

31. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53008-5 22

32. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

33. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. IACR Cryptology ePrint Archive 2014, p. 588 (2014). http://eprint.
iacr.org/2014/588

34. Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) Pro-
ceedings of the 37th Annual ACM Symposium on Theory of Computing, Balti-
more, MD, USA, May 22–24, pp. 523–532. ACM (2005). http://doi.acm.org/10.
1145/1060590.1060669

35. Wee, H.: One-way permutations, interactive hashing and statistically hiding com-
mitments. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 419–433.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 23

http://dx.doi.org/10.1007/978-3-662-44371-2_29
http://eprint.iacr.org/2016/390
http://eprint.iacr.org/2016/390
http://dx.doi.org/10.1137/S0097539704443276
http://dx.doi.org/10.1007/978-3-642-55220-5_32
http://doi.acm.org/10.1145/2488608.2488678
http://doi.acm.org/10.1145/2488608.2488678
http://dx.doi.org/10.1007/11681878_23
http://dx.doi.org/10.1007/978-3-662-46497-7_26
http://doi.acm.org/10.1145/2508859.2516668
http://doi.acm.org/10.1145/2508859.2516668
http://doi.acm.org/10.1145/2746539.2746614
http://dx.doi.org/10.1007/978-3-662-53008-5_22
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://eprint.iacr.org/2014/588
http://eprint.iacr.org/2014/588
http://doi.acm.org/10.1145/1060590.1060669
http://doi.acm.org/10.1145/1060590.1060669
http://dx.doi.org/10.1007/978-3-540-70936-7_23

	Multi-input Functional Encryption with Unbounded-Message Security
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Related Work, Open Problems
	1.4 Organisation

	2 Preliminaries
	2.1 Indistinguisability Obfuscation
	2.2 Puncturable Psuedorandom Functions
	2.3 Injective One-Way Function
	2.4 (d,)-Weak Extractability Obfuscators

	3 Multi-input Functional Encryption
	4 Our MIFE Construction
	4.1 Proof Overview
	4.2 Proof of Security

	References

