
From Identification to Signatures, Tightly:
A Framework and Generic Transforms

Mihir Bellare1(B), Bertram Poettering2, and Douglas Stebila3

1 Department of Computer Science and Engineering, University of California,
San Diego, USA

mihir@eng.ucsd.edu
2 Ruhr University Bochum, Bochum, Germany

bertram.poettering@rub.de
3 Department of Computing and Software, McMaster University, Hamilton, Canada

stebilad@mcmaster.ca

Abstract. This paper provides a framework to treat the problem of
building signature schemes from identification schemes in a unified and
systematic way. The outcomes are (1) Alternatives to the Fiat-Shamir
transform that, applied to trapdoor identification schemes, yield signa-
ture schemes with tight security reductions to standard assumptions (2)
An understanding and characterization of existing transforms in the lit-
erature. One of our transforms has the added advantage of producing
signatures shorter than produced by the Fiat-Shamir transform. Reduc-
tion tightness is important because it allows the implemented scheme
to use small parameters (thereby being as efficient as possible) while
retaining provable security.

1 Introduction

This paper provides a framework to treat the problem of building signature
schemes from identification schemes in a unified and systematic way. We are
able to explain and characterize existing transforms as well as give new ones
whose security proofs give tight reductions to standard assumptions. This is
important so that the implemented scheme can use small parameters, thereby
being efficient while retaining provable security. Let us begin by identifying the
different elements involved.

id-to-sig transforms. Recall that in a three-move identification scheme ID
the prover sends a commitment Y computed using private randomness y, the
verifier sends a random challenge c, the prover returns a response z computed
using y and its secret key isk, and the verifier computes a boolean decision
from the conversation transcript Y ‖c‖z and public key ivk (see Fig. 3). We are
interested in transforms Id2Sig that take ID and return a signature scheme DS.
The transform must be generic, meaning DS is proven to meet some signature
security goal Psig assuming only that ID meets some identification security

goal Pid . This proof is supported by a reduction Psig→Pid that may be tight
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part II, LNCS 10032, pp. 435–464, 2016.
DOI: 10.1007/978-3-662-53890-6 15

436 M. Bellare et al.

or loose. Boxing an item here highlights elements of interest and choice in the
id-to-sig process.

Canonical example. In the most canonical example we have, Id2Sig = FS is
the Fiat-Shamir transform [16] ; Pid = IMP-PA is security against impersonation
under passive attack [1,14] ; Psig = UF is unforgeability under chosen-message
attack [20] ; and the reduction Psig→Pid is that of AABN [1], which is loose.

We are going to revisit this to give other choices of the different elements, but
first let us recall some more details of the above. In the Fiat-Shamir transform
FS [16], a signature of a message m is a pair (Y, z) such that the transcript Y ‖c‖z
is accepting for c = H(Y ‖m), where H is a random oracle. IMP-PA requires that
an adversary given transcripts of honest protocol executions still fails to make
the honest verifier accept in an interaction where it plays the role of the prover,
itself picking Y any way it likes, receiving a random c, and then producing z.
The loss in the Psig→Pid reduction of AABN [1] is a factor of the number q of
adversary queries to the random oracle H: If εid, εsig denote, respectively, the
advantages in breaking the IMP-PA security of ID and the UF security of DS,
then εsig ≈ q εid.

Algebraic assumption to id. Suppose a cryptographer wants to build a
signature scheme meeting the definition Psig. The cryptographer would like to
base security on some algebraic (or other computational) assumption Palg .
This could be factoring, RSA inversion, bilinear Diffie-Hellman, some lattice
assumption, or many others. Given an id-to-sig transform as above, the task
amounts to designing an identification scheme ID achieving Pid under Palg. (Then
one can just apply the transform to ID.) This proof is supported by another
reduction Pid→Palg that again may be tight or loose. The tightness of the
overall reduction Psig→Palg thus depends on the tightness of both Psig→Pid

and Pid→Palg.

Canonical example. Continuing with the FS+AABN-based example from
above, we would need to build an identification scheme meeting Pid = IMP-
PA under Palg. The good news is that a wide swathe of such identification
schemes are available, for many choices of Palg (GQ [23] under RSA, FS [16]
under Factoring, Schnorr [36] under Discrete Log, ...). However the reduction
Pid→Palg is (very) loose.

Again, we are going to revisit this to give other choices of the different ele-
ments, but first let us recall some more details of the above. The practical iden-
tification schemes here are typically Sigma protocols (this means they satisfy
honest-verifier zero-knowledge and special soundness, the latter meaning that
from two accepting conversation transcripts with the same commitment but dif-
ferent challenges, one can extract the secret key) and Palg = KR (“key recovery”)
is the problem of computing the secret key given only the public key. To solve
this problem, we have to run a given IMP-PA adversary twice and hope for
two successes. The analysis exploits the Reset Lemma of [6]. If εalg, εid denote,
respectively, the advantages in breaking the algebraic problem and the IMP-PA

From Identification to Signatures, Tightly 437

security of ID, then it results in εid ≈ √
εalg. If εsig is the advantage in breaking

UF security of DS, combined with the above, we have εsig ≈ q
√

εalg.

Approach. We see from the above that a tight overall reduction Psig→Palg

requires that the Psig→Pid and Pid→Palg reductions both be tight. What we
observe is that we have a degree of freedom in achieving this, namely the choice
of the security goal Pid for the identification scheme. Our hope is to pick Pid

such that (1) We can give (new) transforms Id2Sig for which Psig→Pid is tight,
and simultaneously (2) We can give identification schemes such that Pid→Palg

is tight. We view these as two pillars of an edifice and are able to provide both
via our definitions of security of identification under constrained impersonation
coupled with some new id-to-sig transforms. We first pause to discuss some prior
work, but a peek at Fig. 1 gives an outline of the results we will expand on later.
Following FS, we work in the random oracle model.

Priorwork.The first proofs of security forFS-based signatures [35] reduced UF
security of the FS-derived signature scheme directly to the hardness of the alge-
braic problem Palg, assumingH is a random oracle [8]. These proofs exploit forking
lemmas [4,5,35]. Modular proofs of the form discussed above, that use identifica-
tion as an intermediate step, begin with [1,33]. The modular approach has many
advantages. One is that since the id-to-sig transforms are generic, we have only
to design and analyze identification schemes. Another is the better understand-
ing and isolation of the role of random oracles: they are used by Id2Sig but not
in the identification scheme. We have accordingly adopted this approach. Note
that both the direct (forking lemma based) and the AABN-based indirect (mod-
ular) approach result in reductions of the same looseness we discussed above. Our
(alternative but still modular) approaches will remove this loss.

Consideration of reduction tightness for signatures begins with BR [9], whose
PSS scheme has a tight reduction to the RSA problem. KW [24] give another
signature scheme with a tight reduction to RSA, and they and GJ [18] give
signature schemes with tight reductions to the Diffie-Hellman problem. GPV [17]
give a signature scheme with a tight reduction to the problem of finding short
vectors in random lattices.

The lack of tightness of the overall reduction for FS-based signatures is well
recognized as an important problem and drawback. Micali and Reyzin [30] give
a signature scheme, with a tight reduction to factoring, that is obtained from
a particular identification scheme via a method they call “swap”. ABP [2] say
that the method generalizes to other factoring-based schemes. However, “swap”
has never been stated as a general transform of an identification scheme into a
signature scheme. This lack of abstraction is perhaps due in part to a lack of
definitions, and the ones we provide allow us to fill the gap. In Sect. 6.5 we elevate
the swap method to a general Swap transform, characterize the identification
schemes to which it applies, and prove that, when it applies, it gives a tight
Psig→Pid reduction.

ABP [2] show a tight reduction of FS-derived GQ-based signatures to the Φ-
hiding assumption of [12]. In contrast, our methods will yield GQ-based signatures
with a tight reduction to the standard one-wayness of RSA. AFLT [3] use a slight

438 M. Bellare et al.

variant of the Fiat-Shamir transform to turn lossy identification schemes into sig-
nature schemes with security based tightly on key indistinguishability, resulting in
signature schemes with tight reductions to the decisional short discrete logarithm
problem, the shortest vector problem in ideal lattices, and subset sum.

Constrained impersonation. Recall our goal is to define a notion of iden-
tification security Pid such that (1) We can give transforms Id2Sig for which
Psig→Pid is tight, and (2) We can give identification schemes such that Pid→Palg

is tight. In fact our definitional goal is broader, namely to give a framework that
allows us to understand and encompass both old and new transforms, the for-
mer including FS and Swap. We do all this with a definitional framework that
we refer to as constrained impersonation. It yields four particular definitions
denoted CIMP-XY for XY ∈ {CU,UC,UU,CC}. Each, in the role of Pid, will
be the basis for an id-to-sig transform such that Psig→Pid is tight, and two will
allow Pid→Palg to be tight.

In constrained impersonation we continue, as with IMP-PA, to allow a passive
attack in which the adversary A against the identification scheme ID can obtain
transcripts Y1‖c1‖z1, Y2‖c2‖z2, . . . of interactions between the honest prover and
verifier. Then A tries to impersonate, meaning get the honest verifier to accept.
If X = C then the commitment in this impersonation interaction is adversary-
chosen, while if X = U (unchosen) it must be pegged to a commitment from one
of the (honest) transcripts. If Y = C, the challenge is adversary-chosen, while
if Y= U it is as usual picked at random by the verifier. In all cases, multiple
impersonation attempts are allowed. The formal definitions are in Sect. 3. CIMP-
CU is a multi-impersonation version of IMP-PA, but the rest are novel.

What do any of these notions have to do with identification if one understands
the latter as the practical goal of proving one’s identity to a verifier? Beyond
CIMP-CU, very little. In practice it is unclear how one can constrain a prover
to only use, in impersonation, a commitment from a prior transcript. It is even
more bizarre to allow a prover to pick the challenge. Our definitions however are
not trying to capture any practical usage of identification. They view the latter
as an analytic tool, an intermediate land allowing a smooth transition from an
algebraic problem to signatures. The constrained impersonation notions work
well in this regard, as we will see, both to explain and understand existing work
and to obtain new signature schemes with tight reductions.

Relations between the four notions of constrained impersonation are depicted
in Fig. 1. An arrow A → B is an implication: Every identification scheme that
is A-secure is also B-secure. A barred arrow A �→ B is a separation: There exists
an identification scheme that is A-secure but not B-secure. (For now ignore the
boxes around notions.) In particular we see that CIMP-UU is weaker than, and
CIMP-UC incomparable to, the more standard CIMP-CU. See Proposition 1 for
more precise renditions of the implications.

Auxiliary definitions and tools. Before we see how to leverage the con-
strained impersonation framework, we need a few auxiliary definitions and results
that, although simple, are, we believe, of independent interest and utility.

From Identification to Signatures, Tightly 439

CIMP-CC

CIMP-UC CIMP-CU

CIMP-UU

Pid
Id2Sig

Trapdoor? Psig-secure Signature
Reductions

Transform Psig→Pid/Pid→Palg

CIMP-CU FS No (Y, z) : c = H(Y ‖m) Tight/Loose

CIMP-UC MdCmt Yes (c, z) : Y = H(m) ; c ←$ {0, 1}ID.cl Tight/Tight

CIMP-UU MdCmtCh Yes
(s, z) : s ←$ {0, 1} ; Y = H1(m)

Tight/Tight
c = H2(m‖s)

CIMP-CC MdCh No
(Y, s, z) : s ←$ {0, 1}sl

Tight/Unknown
c = H(m‖s)

CIMP-UC Swap Yes
(c, z) : c ←$ {0, 1}ID.cl

Tight/Tight
Y = H(m‖c)

Fig. 1. Top: Relations between notions Pid of security for an identification scheme
ID under constrained impersonation. Solid arrows denote implications, barred arrows
denote separations. A solid box around a notion means a tight Pid→Palg reduction
for Sigma protocols; dotted means a loose one; no box means no known reduction.
Bottom: Transforms of identification schemes into UUF (row 2, 3) or UF (rows 1,
4, 5) signature schemes. The first column is the assumption Pid on the identification
scheme. The third column indicates whether or not the identification scheme is assumed
to be trapdoor. ID.cl is the challenge length and sl is a seed length. In rows 1, 4 the
commitment Y is chosen at random. The third transform has the shortest signatures,
consisting of a response plus a single bit.

We define a signature scheme to be UUF (Unique Unforgeable) if it is UF
with the restriction that a message can be signed at most once. (The adversary
is not allowed to twice ask the signing oracle to sign a particular m.) It turns out
that some of our id-to-sig transforms naturally achieve UUF, not UF. However
there are simple, generic transforms of UUF signature schemes into UF ones —
succinctly, UF→UUF— that do not introduce much overhead and have tight
reductions. One is to remove randomness, and the other is to add it. In more
detail, a well-known method to derandomize a signature scheme is to specify the
coins by hashing the secret key along with the message. This has been proved to
work in some instances [26,32] but not in general. We observe that this method
has the additional benefit of turning a UUF scheme into a UF one. We call
the transform DR. Theorem 3 shows that it works. (In particular it shows UF-
security of the derandomized scheme in a more general setting than was known

440 M. Bellare et al.

before.) The second transform, AR, appends a random salt to the message before
signing and includes the salt in the signature. Theorem4 shows that it works.
The first transform is attractive because it does not increase signature size. The
second does, but is standard-model. We stress that the reductions are tight in
both cases, so this step does not impact overall tightness. Now we can take (the
somewhat easier to achieve) UUF as our goal.

Recall that in an identification scheme, the prover uses private randomness y
to generate its commitment Y . We call the scheme trapdoor if the prover can
pick the commitment Y directly at random from the space of commitments and
then compute the associated private randomness y using its secret key via a
prescribed algorithm. The concept is implicit in [30] but does not seem to have
been formalized before, so we give a formal definition in Sect. 3. Many existing
identification schemes will meet our definition of being trapdoor modulo possibly
some changes to the key structure. Thus the GQ scheme of [23] is trapdoor if
we add the decryption exponent d to the secret key. With similar changes to
the keys, the Fiat-Shamir [16] and Ong-Schnorr [34] identification schemes are
trapdoor. The factoring-based identification scheme of [30] is also trapdoor. But
not all identification schemes are trapdoor. One that is not is Schnorr’s (discrete-
log based) scheme [36].

Summary of results. For each notion Pid ∈ {CIMP-CU,CIMP-UC,
CIMP-UU,CIMP-CC} we give an id-to-sig transform that turns any given Pid-
secure identification scheme ID into a Psig = UUF signature scheme DS; the
transform from CIMP-CC security achieves even a UF signature scheme. The
reduction Psig→Pid is tight in all four cases. (To further make the signature
schemes UF secure, we can apply the above-mentioned UF→UUF transforms
while preserving tightness.) The table in Fig. 1 summarizes the results and the
transforms. They are discussed in more detail below and then fully in Sect. 6.

This is one pillar of the edifice, and not useful by itself. The other pillar is the
Pid→Palg reduction. In the picture at the top of Fig. 1, a solid-line box around
Pid means that the reduction Pid→Palg is tight, a dotted-line box indicates a
reduction is possible but is not tight, and no box means no known reduction.
These results assume the identification scheme is a Sigma protocol, as most are,
and are discussed in Sect. 4. We see that two points of our framework can be
tightly obtained from the algebraic problem, so that in these cases the overall
Psig→Palg reduction is tight, which was the ultimate goal.

More details on results. The id-to-sig transform from CIMP-CU is the clas-
sical FS one. The reduction is now tight, even though it was not from IMP-PA [1],
simply because CIMP-CU is IMP-PA extended to allow multiple impersonation
attempts. The result, which we state as Theorem 8, is implicit in [1], but we give
a proof to illustrate how simple the proof now is. In this case our framework
serves to better understand, articulate and simplify something implicit in the
literature, rather than deliver anything particularly new.

For CIMP-UC, we give a transform called MdCmt, for “Message-Derived
Commitment”, where, to sign m, the signer computes the commitment Y as a
hash of the message, picks a challenge at random, uses the identification trapdoor

From Identification to Signatures, Tightly 441

to compute the coins y corresponding to Y , uses y and the secret key to compute a
response z, and returns the challenge and response as the signature. See Sect. 6.1.

For CIMP-UU, the weakest of the four notions, our transform MdCmtCh,
for “Message-Derived Commitment and Challenge”, has the signer compute the
commitment Y as a hash of the message. It then picks a single random bit s
and computes the challenge as a hash of the message and seed s, returning as
signature the seed and response, the latter computed as before. Beyond a tight
reduction, this transform has the added feature of short signatures, the signature
being a response plus a single bit. (In all other transforms, whether prior or ours,
the signature is at least a response plus a challenge, often more.) See Sect. 6.2.

Since CIMP-CC implies CIMP-UC and CIMP-UU (Fig. 1, top), for the for-
mer the MdCmt and MdCmtCh transforms would both work. However, these
require the identification scheme to be trapdoor and achieve UUF rather than
UF. (The above-mentioned UF→UUF transforms would have to be applied on
top to get UF.) We give an alternative transform called MdCh (“Message-
Derived Challenge”) from CIMP-CC that directly achieves UF and works (gives
a tight reduction) even if the identification scheme is not trapdoor. It has the
signer pick a random commitment, produce the challenge as in MdCmtCh,
namely as a randomized hash of the message, compute the response, and return
the conversation transcript as signature. See Sect. 6.3.

The salient fact is that the reductions underlying all four transforms are
tight. To leverage the results we now have to consider achieving CIMP-XY. We
do this in Sect. 4. We give reductions Pid→Palg of the Pid = CIMP-XY security
of identification schemes that are Sigma protocols to their key-recovery (KR)
security, the latter being the problem of recovering the secret key given only
the public key, which is typically the algebraic problem Palg whose hardness
is assumed. For CIMP-UC and CIMP-UU the Pid→Palg reduction is tight, as
per Theorem 1, making these the most attractive starting points. For CIMP-CU
we must use the Reset Lemma [6] so the reduction (cf. Theorem2) is loose.
CIMP-CC is a very strong notion and, as we discuss at the end of Sect. 4, not
achieved by Sigma protocols but achievable by other means.

Swap. As indicated above, our framework allows us to generalize the swap
method of [30] into an id-to-sig transform Swap and understand and characterize
what it does. In Sect. 6.5 we present Swap as a generic transform of a trapdoor
identification scheme ID to a signature scheme that is just like MdCmt (cf. row
2 of the table of Fig. 1) except that the challenge c is included in the input to
the hash function (cf. row 5 of the table of Fig. 1). Recall that MdCmt turns
a CIMP-UC identification scheme into a UUF signature scheme. We can thence
get a UF signature scheme by applying the AR transform of Sect. 5.2. Swap is a
shortcut, or optimization, of this two step process: it directly turns a CIMP-UC
identification scheme into a UF signature scheme by effectively re-using the ran-
domness of MdCmt in AR. We note that the composition of our DR with our
MdCmtCh yields a UF signature scheme with shorter signatures than Swap
while also having a tight reduction to the weaker CIMP-UU assumption, and

442 M. Bellare et al.

would thus be superior. However we think Swap is of historical interest and
accordingly present it. See Sect. 6.5 for details.

Instantiation. As a simple and canonical example, in [7] we apply our frame-
work and transforms to the GQ identification scheme to get signature schemes
with tight reductions to RSA. It is also possible to give instantiations based
on claw-free permutations [20] and factoring. An intriguing application area to
explore for our transforms is in lattice-based cryptography. Here signatures have
been obtained via the FS transform [28,29]. The underlying lattice-based iden-
tification schemes do not appear to be trapdoor, so our transforms would not
apply. However, via the techniques of MP [31], one can build lattice-based trap-
door identification schemes to which our transforms apply. Whether there is a
performance benefit will depend on the trade-off between the added cost from
having the trapdoor and the smaller parameters permitted by the improved
security reduction.

Discussion. We measure reduction tightness stringently, in a model where run-
ning time, queries and success probability are separate parameters. The picture
changes if one considers the expected success ratio, namely the ratio of running
time to success probability. Reduction tightness under this metric is considered
in PS [35] and the concurrent and independent work of KMP [25].

We establish the classical notion of standard unforgeability (UF) [20]. Our
transforms also establish strong unforgeability if the identification scheme has
the extra property of unique responses. (For any public key, commitment, and
challenge, there exists at most one response that the verifier accepts.)

A reviewer commented that “The signature scheme with the tightest security
in this paper is derived from the Swap transform, which makes the result less
surprising since the Swap method, first used in [30], has already been found to
be generic to some extent by ABP [2].” In response, first, the tightness of the
reductions is about the same for Swap, DR ◦ MdCmt and DR ◦ MdCmtCh
(cf. Fig. 14), but the third has shorter signatures, an advantage over Swap.
Second, while, as indicated above, prior work including ABP [2] did discuss Swap
in a broader context than the original MR [30], the discussion was informal and
left open to exactly what identification schemes Swap might apply. We have
formalized prior intuition using the concept of trapdoor identification, and thus
been able to provide a general transform and result for Swap. We view this
as a contribution towards understanding the area, making intuition rigorous
and providing a result that future work can apply in a blackbox way. Also, as
noted above, our framework helps understand Swap, seeing it as an optimized de-
randomization of the simpler MdCmt. We understand, as per what the reviewer
says, that our results for Swap may not be surprising, but we don’t think surprise
is the only measure of contribution. Clarifying and formalizing existing intuition,
as we have done in this way with Swap, puts the area on firmer ground and
helps future work.

GK [22] give an example of a 3-move ID protocol where FS yields a secure
signature scheme in the ROM, but the RO is not instantiable. Their protocol
however is not a Sigma protocol, as is assumed for the ones we start with and

From Identification to Signatures, Tightly 443

is true for practical identification schemes. Currently, secure instantiation of the
RO, both for FS and our transforms, is not ruled out for such identification
schemes.

2 Notation and Basic Definitions

Notation. We let ε denote the empty string. If X is a finite set, we let x ←$ X
denote picking an element of X uniformly at random and assigning it to x. We use
a1‖a2‖ · · · ‖an as shorthand for (a1, a2, . . . , an). By a1‖a2‖ · · · ‖an ← x we mean
that x is parsed into its constituents. We use bracket notation for associative
arrays, e.g., T [x] = y means that key x is mapped to value y. Algorithms may
be randomized unless otherwise indicated. Running time is worst case. If A is
an algorithm, we let y ← A(x1, . . . ; r) denote running A with random coins r on
inputs x1, . . . and assigning the output to y. We let y ←$ A(x1, . . .) be the result
of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote
the set of all possible outputs of (randomized) A when invoked with inputs
x1, We use the code based game playing framework of [10]. (See Fig. 2 for an
example.) By Pr[G] we denote the event that the execution of game G results in
the game returning true. Boolean flags (like bad) in games are assumed initialized
to false, and associative arrays empty. We adopt the convention that the running
time of an adversary refers to the worst case execution time of the game with
the adversary. This means that the time taken for oracles to compute replies to
queries is included.

Our treatment of random oracles is more general than usual. In our construc-
tions, we will need random oracles with different ranges. For example we may
want one random oracle returning points in a group Z

∗
N and another returning

strings of some length l. To provide a single unified definition, we have the pro-
cedure H in the games take not just the input x but a description Rng of the
set from which outputs are to be drawn at random. Thus y ←$ H(x,Z∗

N) will
return a random element of Z∗

N , while c ←$ H(x, {0, 1}l) will return a random
l-bit string, and so on. Sometimes if the range set is understood, it is dropped
as an argument.

Signatures. In a signature scheme DS, the signer generates signing key sk and
verifying key vk via (vk, sk) ←$ DS.KgH where H is the random oracle, the latter
with syntax as discussed above. Now it can compute a signature σ ←$ DS.SigH

(vk, sk,m) on any message m ∈ {0, 1}∗. A verifier can deterministically com-
pute a boolean v ← DS.VfH(vk,m, σ) indicating whether or not σ is a valid
signature of m relative to vk. Correctness as usual requires that DS.VfH(vk,m,
DS.SigH(vk, sk,m)) = true with probability one. Game Guf

DS(A) associated to
DS and adversary A as per Fig. 2 captures the classical unforgeability notion
of [20] lifted to the ROM as per [8], and we let Advuf

DS(A) = Pr[Guf
DS(A)] be

the UF-advantage of A. The same figure also defines game Guuf
DS (A) to capture

unique unforgeability. The difference is the inclusion of the boxed code, which
disallows A from getting more than one signature on the same message. We let
Advuuf

DS (A) = Pr[Guuf
DS (A)] be the UUF-advantage of A.

444 M. Bellare et al.

Game Guf
DS(A) / Guuf

DS (A)

M ← ∅ ; (vk, sk) ←$ DS.KgH

(m, σ) ←$ ASign,H(vk)
If m ∈ M : Return false
Return DS.VfH(vk, m, σ)

H(x, Rng)

If not HT[x, Rng]: HT[x, Rng] ←$ Rng
Return HT[x, Rng]

Sign(m)

If m ∈ M : Return ⊥
σ ←$ DS.SigH(vk, sk, m)
M ← M ∪ {m}
Return σ

Fig. 2. Games defining unforgeability and unique unforgeability of signature
scheme DS. Game Guuf

DS (A) includes the boxed code and game Guf
DS(A) does not.

Of course, UF implies UUF, meaning any signature scheme that is UF secure
is also UUF secure. The converse is not true, meaning there exist UUF signature
schemes that are not UF secure (we will see natural examples in this paper). In
Sect. 5 we give simple, generic and tight ways to turn any given UUF signature
scheme into a UF one.

We note that unique unforgeability (UUF) should not be confused with
unique signatures as defined in [21,27]. In a unique signature scheme, there is,
for any message, at most one signature the verifier will accept. If a unique sig-
nature scheme is UUF then it is also UF. But there are UUF (and UF) schemes
that are not unique.

3 Constrained Impersonation Framework

We introduce a framework of definitions of identification schemes secure against
constrained impersonation.

Identification. An identification (ID) scheme ID operates as depicted in Fig. 3.
First, via (ivk, isk, itk) ←$ ID.Kg, the prover generates a public verification key
ivk, private identification key isk, and trapdoor itk. Via (Y, y) ←$ ID.Ct(ivk) it
generates commitment Y ∈ ID.CS(ivk) and corresponding private state y. We
refer to ID.CS(ivk) as the commitment space associated to ivk. The verifier sends
a random challenge of length ID.cl. The prover’s response z and the verifier’s
boolean decision v are deterministically computed per z ← ID.Rp(ivk, isk, c, y)
and v ← ID.Vf(ivk, Y ‖c‖z), respectively. We assume throughout that identifi-
cation schemes have perfect correctness. We also assume uniformly-distributed
commitments. More precisely, the outputs of the following two processes must
be identically distributed: the first processes generates (ivk, isk, itk) ←$ ID.Kg,
then lets (Y, y) ←$ ID.Ct(ivk) and returns (ivk, Y); the second processes gener-
ates (ivk, isk, itk) ←$ ID.Kg, then lets Y ←$ ID.CS(ivk) and returns (ivk, Y). An
example ID scheme is GQ [23]; see [7] for a description in our notation. For basic
ID schemes, the trapdoor plays no role; its use arises in trapdoor identification,
as discussed next.

From Identification to Signatures, Tightly 445

Fig. 3. Functioning of an identification scheme ID.

Fig. 4. Games defining security of identification scheme ID against constrained imper-
sonation under passive attack.

Trapdoor identification. We now define what it means for an ID scheme
to be trapdoor. Namely there is an algorithm ID.Ct−1 that produces y from Y
with the aid of the trapdoor itk. Formally, the outputs of the following two
processes must be identically distributed. Both processes generate (ivk, isk, itk)
←$ ID.Kg. The first process then lets (Y, y) ←$ ID.Ct(ivk). The second process
picks Y ←$ ID.CS(ivk) and lets y ←$ ID.Ct−1(ivk, itk, Y). (Here ID.CS(ivk) is the
space of commitments associated to ID and ivk.) Both processes return (ivk, isk,
itk, Y, y).

Security against impersonation. Classically, the security goal for an identi-
fication scheme ID has been impersonation [1,15]. The framework has two stages.
First, the adversary, given ivk but not isk, attacks the honest, isk-using prover.
Second, using the information it gathers in the first stage, it engages in an inter-
action with the verifier, attempting to impersonate the real prover by success-
fully identifying itself. In the second stage, the adversary, in the role of malicious

446 M. Bellare et al.

prover, submits a commitment Y of its choice, receives an honest verifier chal-
lenge c, submits a response z of its choice, and wins if ID.Vf(ivk, Y ‖c‖z) = true.
A hierarchy of possible first-phase attacks is defined in [6]. In the context of con-
version to signatures, the relevant one is the weakest, namely passive attacks,
where the adversary is just an eavesdropper and gets honestly-generated protocol
transcripts. This is the IMP-PA notion. (Active and even concurrent attacks are
relevant in other contexts [6].) We note that in the second stage, the adversary
is allowed only one interaction with the honest verifier.

Security against constrained impersonation. We introduce a new frame-
work of goals for identification that we call constrained impersonation. There are
two dimensions, the commitment dimension X and the challenge dimension Y,
for each of which there are two choices, X ∈ {C,U} and Y ∈ {C,U}, where C
stands for chosen and U for unchosen. This results in four notions, CIMP-UU,
CIMP-UC, CIMP-CU, CIMP-CC. It works as follows. The adversary is allowed
a passive attack, namely the ability to obtain transcripts of interactions between
the honest prover and the verifier. The choices pertain to the impersonation,
when the adversary interacts with the honest verifier in an attempt to make it
accept. When X = C, the adversary can send the verifier a commitment of its
choice, as in classical impersonation. But when X = U, it cannot. Rather, it is
required (constrained) to use a commitment that is from one of the transcripts
it obtained in the first phase and thus in particular honestly generated. Next
comes the challenge. If Y = U, this is chosen freshly at random, as in the classi-
cal setting, but if Y = C, the adversary actually gets to pick its own challenge.
Regardless of choices made in these four configurations, to win the adversary
must finally supply a correct response. And, also regardless of these choices, the
adversary can mount multiple attempts to convince the verifier, contrasting with
the strict two-phase adversary in classical definitions of impersonation security.

For choices xy ∈ {uu,uc, cu, cc} of parameters, the formalization considers
game Gcimp-xy

ID (P) of Fig. 4 associated to identification scheme ID and adversary
P. We let

Advcimp-xy
ID (P) = Pr[Gcimp-xy

ID (P)].

The transcript oracle Tr returns upon each invocation a transcript of an
interaction between the honest prover and verifier, allowing P to mount its
passive attack, and is the same for all four games. The impersonation attempts
are mounted through calls to the challenge oracle Ch, which creates a partial
transcript CT[j] consisting of a commitment and a challenge, where j is a session
id, and it returns the challenge. Multiple impersonation attempts are captured
by the adversary being allowed to call Ch as often as it wants. Eventually the
adversary outputs a session id k and a response z for session k, and wins if the
corresponding transcript is accepting. In the UU case, P would give Ch only an
index l of an existing transcript already returned by Tr, and CT[j] consists of
the commitment from the l-th transcript together with a fresh random challenge.
In the UC case, Ch takes in addition a challenge c chosen by the adversary. The
game requires that it be different from cl (the challenge in the l-th transcript),

From Identification to Signatures, Tightly 447

and CT[j] then consists of the commitment from the l-th transcript together
with this challenge. In CU, the adversary can specify the commitment but the
challenge is honestly chosen. In CC, it can specify both, as long as the pair did
not occur in a transcript. The adversary can call the oracles as often as it wants
and in whatever order it wants.

CIMP-CU is a multi-impersonation extension of the classical IMP-PA notion.
The other notions are new, and all will be the basis of transforms of identification
to signatures admitting tight security reductions. CIMP-CU captures a practical
identification security goal. As discussed in Sect. 1, the other notions have no such
practical interpretation. However we are not aiming to capture some practical
form of identification. We wish to use identification only as an analytic tool in
the design of signature schemes. For this purpose, as we will see, our framework
and notions are indeed useful, allowing us to characterize past transforms and
build new ones.

Implications. Figure 1 shows the relations between the four CIMP-XY notions.
The implications are captured by Proposition 1. (The separations will be dis-
cussed below.) The bounds in these claims imply some conditions or assumptions
for the implications which we did not emphasize before because they hold for typ-
ical identification schemes. Namely, CIMP-UC → CIMP-UU assumes the iden-
tification scheme has large challenge length. CIMP-CC → CIMP-UC assumes it
has a large commitment space. CIMP-CC → CIMP-CU again assumes it has a
large challenge length. We remark that in all but one case, the adversary con-
structed in the proof makes only one Ch query, regardless of how many the
starting adversary made. The proof of the following is in [7].

Proposition 1. Let ID be an identification scheme. Let

ID.CSS = min{ |ID.CS(ivk)| : (ivk, isk, itk) ∈ [ID.Kg] }.

Then:

1. [CIMP-UC → CIMP-UU] Given Puu making qc queries to Ch, we construct
Puc, making one Ch query, such that Advcimp-uu

ID (Puu) ≤ Advcimp-uc
ID (Puc)+

qc · 2−ID.cl.
2. [CIMP-CU → CIMP-UU] Given Puu, we construct Pcu making as many Ch

queries as Puu, such that Advcimp-uu
ID (Puu) ≤ Advcimp-cu

ID (Pcu).
3. [CIMP-CC → CIMP-UC] Given Puc making qt queries to Tr, we construct

Pcc, making one Ch query, such that Advcimp-uc
ID (Puc) ≤ Advcimp-cc

ID (Pcc) +
qt(qt − 1)/2ID.CSS.

4. [CIMP-CC → CIMP-CU] Given Pcu making qt queries to Tr and qc queries
to Ch, we construct Pcc, making one Ch query, such that Advcimp-cu

ID (Pcu)
≤ Advcimp-cc

ID (Pcc) + qtqc · 2−ID.cl.

In all cases, the constructed adversary makes the same number of Tr queries as
the starting adversary and has about the same running time.

448 M. Bellare et al.

Fig. 5. Games defining the extractability, HVZK and key-recovery security of an iden-
tification scheme ID.

Separations. We now discuss the separations, beginning with CIMP-CU �=⇒
CIMP-UC. Start with any CIMP-CU scheme. We will modify it so that it remains
CIMP-CU-secure but is not CIMP-UC-secure. Distinguish a single challenge
c∗ ∈ {0, 1}ID.cl, e.g., c∗ = 0ID.cl. Revise the verifier’s algorithm so that it will
accept any transcript with challenge c∗. This is still CIMP-CU-secure (as long
as ID.cl is large) since, in the CIMP-CU game, challenges are picked uniformly
at random for the adversary, so existence of the magic challenge is unlikely to
be useful. This is manifestly not CIMP-UC-secure since there the adversary can
use any challenge of its choice. CIMP-UU �=⇒ CIMP-UC for the same reason.

We turn to CIMP-UC �=⇒ CIMP-CU. Start with any CIMP-UC scheme.
Again we will modify it so that it remains CIMP-UC-secure but is not CIMP-CU-
secure. This time, distinguish a single commitment Y ∗: one way of doing this
is for ID.Kg to sample Y ∗ ←$ ID.CS(ivk) and include Y ∗ in the public key ivk;
another is to agree for example that (Y ∗, y∗) ← ID.Ct(ivk; 0l) where l is the
number of random bits required by ID.Ct. Revise the verifier’s algorithm so that
it will accept any transcript with commitment Y ∗. This is still CIMP-UC-secure
(assuming |ID.CS(ivk)| is large) since, in the CIMP-UC game, commitments are
generated randomly for the adversary, so existence of a magic commitment is
unlikely to be useful. This is manifestly not CIMP-CU-secure since there the
adversary can use any commitment of its choice. CIMP-UU �=⇒ CIMP-CU for
the same reason.

Finally, CIMP-UC �=⇒ CIMP-CC and CIMP-CU �=⇒ CIMP-CC since oth-
erwise, by transitivity in Fig. 1, we would contradict the separation between
CIMP-UC and CIMP-CU.

4 Achieving CIMP-XY Security

Here we show how to obtain identification schemes satisfying our CIMP-XY
notions of security. We base CIMP-XY security on the problem of recovering the

From Identification to Signatures, Tightly 449

secret key of the identification scheme given nothing but the public key, which
plays the role of the algebraic problem Palg in typical identification schemes and
corresponds to a standard assumption. (For example for GQ it is one-wayness of
RSA.) For CIMP-UC and CIMP-UU, the reductions are tight. For CIMP-CU,
the reduction is not tight. CIMP-CC cannot be obtained via these paths, and
instead we establish it from signatures. First we need to recall a few standard
definitions.

HVZK and extractability. We say that an identification scheme ID is honest
verifier zero-knowledge (HVZK) if there exists an algorithm ID.Sim (called the
simulator) that given the verification key, generates transcripts which have the
same distribution as honest ones, even given the verification key. Formally, if A
is an adversary, let Advzk

ID(A) = 2Pr[Gzk
ID(A)] − 1 where the game is shown in

Fig. 5. Then ID is HVZK if Advzk
ID(A) = 0 for all adversaries A (regardless of the

running time of A). We say that an identification scheme ID is extractable if there
exists an algorithm ID.Ex (called the extractor) which from any two verifying
transcripts that have the same commitment but different challenges can recover
the secret key. Formally, if A is an adversary, let Advex

ID(A) = Pr[Gex
ID(A)] where

the game is shown in Fig. 5. Then ID is extractable if Advex
ID(A) = 0 for all

adversaries A (regardless of the running time of A). We say that an identification
scheme is a Sigma protocol [13] if it is both HVZK and extractable.

Security against key recovery. An identification scheme ID is resilient to
key recovery if it is hard to recover the secret identification key given nothing but
the verification key. This was defined by OO [33]. Formally, if I is an adversary,
let Advkr

ID(I) = Pr[Gkr
ID(I)] where the game is shown in Fig. 5. Security against

key recovery is precisely the (standard) assumption Palg underlying most identi-
fication schemes (e.g., the one-wayness of RSA for the GQ identification scheme,
and the factoring assumption for factoring-based schemes).

Obtaining CIMP-UU and CIMP-UC. Here we show that for Sigma protocols,
CIMP-UU and CIMP-UC security reduce tightly to security under key recovery.
The proof of the following is in [7].

Theorem 1. Let ID be an identification scheme that is honest verifier zero-
knowledge and extractable. Then for any adversary P against CIMP-UC we
construct a key recovery adversary I such that

Advcimp-uc
ID (P) ≤ Advkr

ID(I). (1)

Also for any adversary P against CIMP-UU that makes qc queries to its Ch

oracle we construct a key recovery adversary I such that

Advcimp-uu
ID (P) ≤ Advkr

ID(I) + qc · 2−ID.cl. (2)

In both cases, the running time of I is about that of P plus the time for one
execution of ID.Ex and the time for a number of executions of ID.Sim equal to
the number of Tr queries of P.

450 M. Bellare et al.

Obtaining CIMP-CU. CIMP-CU security of Sigma protocols can also be estab-
lished under their key recovery security, but the reduction is not tight.

Theorem 2. Let ID be an identification scheme that is honest verifier zero-
knowledge and extractable. For any adversary P against CIMP-CU making q
queries to its Ch oracle, we construct a key recovery adversary I such that

Advcimp-cu
ID (P) ≤ q

(√
Advkr

ID(I) +
1

2ID.cl

)
. (3)

The running time of I is about twice that of P.

To establish Theorem 2, our route will be via standard techniques and known
results, and the proof can be found for completeness in [7].

Obtaining CIMP-CC. This is our strongest notion, and is quite different from
the rest. Sigma protocols will fail to achieve CIMP-CC because an HVZK identi-
fication scheme cannot be CIMP-CC-secure. The attack (adversary) P showing
this is as follows. Assuming ID is HVZK, our adversary P, given the verification
key ivk, runs the simulator to get a transcript Y ‖c‖z ←$ ID.Sim(ivk). It makes
no Tr queries, so the set S in the game is empty. It then makes query Ch(Y, c)
and returns (1, z) to achieve Advcimp-cc

ID (P) = 1.
This doesn’t mean CIMP-CC is unachievable. We show in [7] how to achieve

it from any UF digital signature scheme.
While this shows CIMP-CC is achievable, and even under standard assump-

tions, it is not of help for us, since we want to obtain signature schemes from iden-
tification schemes and if the latter are themselves built from a signature scheme
then nothing has been gained. We consider CIMP-CC nonetheless because our
framework naturally gives rise to it and we wish to see the full picture, and also
because there may be other ways to achieve CIMP-CC.

5 From UUF to UF

Some of our transforms of identification schemes into signature schemes naturally
achieve UUF security rather than UF security. To achieve the latter, one can take
our UUF schemes and apply the transforms in this section. The reductions are
tight and the costs are low. First we observe that standard derandomization
(removing randomness) has the additional benefit (apparently not noted before)
of turning UUF into UF. Second, we show that message randomization (adding
randomness) is also a natural solution.

5.1 From UUF to UF by Removing Randomness

It is standard to derandomize a signing algorithm by obtaining the coins from
a secretly keyed hash function applied to the message. This has been shown
to preserve UF security —meaning, if the starting scheme is UF-secure, so is
the derandomized scheme— in some cases. One secure instantiation is to use

From Identification to Signatures, Tightly 451

Fig. 6. Left: Our construction of deterministic signature scheme DS∗ = DR[DS] from
a signature scheme DS. By H(·) we denote H(·, {0, 1}DS.rl), which has range {0, 1}DS.rl.
Right: Our construction of added-randomness signature scheme DS∗ = AR[DS, sl]
from a signature scheme DS and a seed length sl ∈ N.

a PRF as the hash function with the PRF key added to the signing secret
key [19], however this changes the signing key and can be undesirable in practice.
Instead one can hash the signing key with the message using a hash function
that one models as a random oracle. This has been proven to work for certain
particular choices of the starting signature scheme, namely when this scheme
is ECDSA [26]. Such de-randomization is also used in the Ed25519 signature
scheme [11]. However, it has not been proven in the general case. This will
follow from our results.

The purpose of the method, above, was exactly to derandomize, namely
to ensure that the signing process is deterministic, and the starting signature
scheme was assumed UF secure. We observe here that the method has an addi-
tional benefit which does not seem to have been noted before, namely that it
works even if the starting scheme is only UUF secure, meaning it upgrades UUF
security to UF security. It is an attractive way to do this because it preserves sig-
nature size and verification time, while adding to the signing time only the cost
of one hash. We specify a derandomization transform and prove that it turns
UUF schemes into UF ones in general, meaning assuming nothing more than
UUF security of the starting scheme. In particular, we justify derandomization
in a broader context than previous work.

The construction. For a signature scheme DS, let DS.rl denote the length
of the randomness (number of coins) used by the signing algorithm DS.Sig. We
write σ ← DS.Sig(vk, sk,m; r) for the execution of DS.Sig on inputs vk, sk,m
and coins r ∈ {0, 1}DS.rl. Let signature scheme DS∗ = DR[DS] be obtained from
DS as in Fig. 6. Here, the function H(·) used to compute r in algorithm DS∗.Sig
is H(·, {0, 1}DS.rl), meaning the range is set to {0, 1}DS.rl.

While algorithms of the starting scheme DS may invoke the random oracle
(and, in the schemes we construct in Sect. 6, they do), it is assumed they do

452 M. Bellare et al.

not invoke H(·, {0, 1}DS.rl). This can be ensured in a particular case by domain
separation. Given this, other calls of the algorithms of the starting scheme to
the random oracle can be simulated directly in the proof via the random oracle
available to the constructed adversaries. Accordingly in the scheme description
of Fig. 6, and proof below, for simplicity, we do not give the algorithms of the
starting signature scheme access to the random oracle. That is, think of the
starting scheme as being a standard-model one.

Unforgeability. The following says that the constructed scheme DS∗ is UF
secure assuming the starting scheme DS was UUF secure, with a tight reduction.
The reason a deterministic scheme that is UUF is also UF is clear, namely there
is nothing to gain by calling the signing oracle more than once on a particular
message, because one just gets back the same thing each time. What the proof
needs to ensure is that the method of making the scheme deterministic does not
create any weaknesses. The danger is that including the secret key as an input
to the hash increases the exposure of the key. The proof says that it might a
little, but the advantage does not go up by more than a factor of two. The proof
is in [7].

Theorem 3. Let signature scheme DS∗ = DR[DS] be obtained from signature
scheme DS as in Fig. 6. Let A be a UF-adversary against DS∗ that makes qh
queries to H and qs queries to Sign. Then from A we can construct UUF-
adversary A such that

Advuf
DS∗(A) ≤ 2 · Advuuf

DS (A). (4)

Adversary A makes qs queries to Sign. It has running time about that of A plus
the time for qh invocations of DS.Sig and DS.Vf.

We remark that adversary A0 actually violates key recovery security of DS,
not just its UUF security.

5.2 From UUF to UF by Adding Randomness

A complementary and natural method for constructing UF signatures from UUF
ones is by adding randomness: before being signed, the message is concatenated
with a random seed s of some length sl, so even for the same message, the inputs
to the UUF signing algorithm are (with high probability) distinct. Compared to
derandomization, the drawback of this method is that the signature size increases
because the seed must be included in the signature. The potential advantage is
that the transform is standard model, not using a random oracle, while preserv-
ing the secret key. (Derandomization can be done in the standard model via a
PRF, but this requires augmenting the signing key with the PRF key.)

The construction. Let signature scheme DS∗ = AR[DS, sl] be obtained from
DS as in Fig. 6. As above, DS is for simplicity assumed to be a standard-model
scheme, so that its algorithms do not have access to H. The transform itself does
not use H.

From Identification to Signatures, Tightly 453

Fig. 7. The construction of signature scheme DS = MdCmt[ID] from trapdoor iden-
tification scheme ID. By H(·) we denote H(·, ID.CS(ivk)).

Unforgeability. The following says that the constructed scheme DS∗ is UF
secure assuming the starting scheme DS was UUF secure, with a tight reduction.
The reason is quite simple, namely that unless seeds collide, the messages being
signed are distinct. The proof of the following is in [7].

Theorem 4. Let signature scheme DS∗ = AR[DS, sl] be obtained from signature
scheme DS and seed length sl ∈ N as in Fig. 6. Let A be a UF-adversary against
DS∗ making qs queries to its Sign oracle. Then from A we construct a UUF
adversary A such that

Advuf
DS∗(A) ≤ Advuuf

DS (A) +
q2s

2sl+1
.

Adversary A makes qs queries to its Sign oracle and has about the same running
time as A.

6 Signatures from Identification

We specify our three new transforms of identification schemes to signature
schemes, namely the ones of rows 2, 3, 4 of the table of Fig. 1. In each case, we give
a security proof based on the assumption Pid listed in the 1st column of the corre-
sponding row of the table, so that we give transforms from CIMP-UC,CIMP-UU
and CIMP-CC. It turns out that these transforms naturally achieve UUF rather
than UF, and this is what we prove, with tight reductions of course. The trans-
formation UF→UUF can be done at the level of signatures, not referring to
identification, in generic and simple ways, and also with tight reductions, as
detailed in Sect. 5. We thus get UF-secure signatures with tight reductions to
each of CIMP-UC,CIMP-UU and CIMP-CC. In this section we further study
the FS transform from [16] and our transform Swap which is inspired by the
work of MR [30].

454 M. Bellare et al.

6.1 From CIMP-UC Identification to UUF Signatures: MdCmt

MdCmt transforms a CIMP-UC trapdoor identification scheme to a UUF sig-
nature scheme using message-dependent commitments.

The construction. Let ID be a trapdoor identification scheme and ID.cl its
challenge length. Our MdCmt (message-dependent commitment) transform
associates to ID the signature scheme DS = MdCmt[ID]. The algorithms of
DS are defined in Fig. 7. By H(·) we denote H(·, ID.CS(ivk)), meaning the range
is set to commitment space ID.CS(ivk). Signatures are effectively identification
transcripts, but the commitments are chosen in a particular way. Recall that
with trapdoor ID schemes it is the same whether one executes (Y, y) ←$ ID.Ct
directly, or samples Y ←$ ID.CS followed by computing y ←$ ID.Ct−1(Y). Our
construction exploits this: To each message m it assigns an individual commit-
ment Y ← H(m). The signing algorithm, using the trapdoor, completes this
commitment to a transcript (Y, c, z) and outputs the pair c, z as the signature.
Verification then consists of recomputing Y from m and invoking the verification
algorithm of the ID scheme.

Unforgeability. The following theorem establishes that the (unique) unforge-
ability of a signature scheme constructed with MdCmt tightly reduces to the
CIMP-UC security of the underlying ID scheme, in the random oracle model.
The proof of the following is in [7].

Theorem 5. Let signature scheme DS = MdCmt[ID] be obtained from trapdoor
identification scheme ID as in Fig. 7. Let A be a UUF-adversary against DS.
Suppose the number of queries that A makes to its H and Sign oracles are qh
and qs, respectively. Then from A we construct a CIMP-UC adversary P such
that

Advuuf
DS (A) ≤ Advcimp-uc

ID (P)
1 − 2−ID.cl

. (5)

Adversary P makes qh + qs + 1 queries to Tr and one query to Ch. Its running
time is about that of A.

The bound of Eq. (5) may be a bit hard to estimate. The following simpler
bound is also true and may be easier to use:

Advuuf
DS (A) ≤ Advcimp-uc

ID (P) +
1

2ID.cl
. (6)

The justification for Eq. (6) is in [7].

6.2 From CIMP-UU Identification to UUF Signatures: MdCmtCh

MdCmtCh transforms a CIMP-UU trapdoor identification scheme to a UUF
signature scheme using message-dependent commitments and challenges.

The construction. Our MdCmtCh (message-dependent commitment and
challenge) transform associates to trapdoor identification scheme ID the sig-
nature scheme DS = MdCmtCh[ID] whose algorithms are defined in Fig. 8.

From Identification to Signatures, Tightly 455

Fig. 8. Our construction of signature scheme DS = MdCmtCh[ID] from a trapdoor
identification scheme ID. By H1(·) we denote random oracle H(·, ID.CS(ivk)) with range
ID.CS(ivk) and by H2(·) we denote random oracle H(·, {0, 1}ID.cl) with range {0, 1}ID.cl.

We specify the commitment Y as a hash of the message and use the trapdoor
property to allow the signer to obtain y ←$ ID.Ct−1(ivk, itk, Y). We then specify
the challenge as a randomized hash of the message. (Unlike in the FS transform,
the commitment is not hashed along with the message.) The randomization is
captured by a one-bit seed s. The construction, and proof below, both use the
technique of KW [24].

By H1(·) we denote random oracle H(·, ID.CS(ivk)) with range ID.CS(ivk)
and by H2(·) we denote random oracle H(·, {0, 1}ID.cl) with range {0, 1}ID.cl. We
assume ID.CS(ivk) �= {0, 1}ID.cl so that these random oracles are independent.
In case ID.CS(ivk) = {0, 1}ID.cl, the scheme should be modified to use domain
separation, for example prefix a 1 to any query to H1 and a 0 to any query to H2.

Notice that the signature consists of a response plus a bit. It is thus shorter
than for MdCmt (where it is a response plus a challenge) or for FS (where it
is a response plus a commitment or, in the more compact form, a response plus
a challenge). These shorter signatures are a nice feature of MdCmtCh.

Unforgeability of our construction. The following shows that unique
unforgeability of our signature tightly reduces to the CIMP-UU security of the
underlying ID scheme. Standard unforgeability follows immediately (and tightly)
by applying one of the UUF-to-UF transforms in Sect. 5.

Theorem 6. Let signature scheme DS = MdCmtCh[ID] be obtained from trap-
door identification scheme ID as in Fig. 8. Let A be a UUF adversary against
DS. Suppose the number of queries that A makes to its H1 and H2 oracles is qh,
and the number to its Sign oracle is qs. Then from A we construct CIMP-UU
adversary P such that

Advuuf
DS (A) ≤ 2 · Advcimp-uu

ID (P) . (7)

Adversary P makes qh + qs + 1 queries to Tr and qh + qs queries to Ch. It has
running time about that of A.

456 M. Bellare et al.

Fig. 9. Adversary for proof of Theorem 6.

Proof (Theorem 6). Adversary P is shown in Fig. 9. It executes A, responding
to H1, H2 and Sign queries of the latter via the shown procedures, which are
subroutines in the code of P. We assume the message m in the forgery (m,σ)
returned by A was not queried to Sign and is not in the set M , since otherwise
A would automatically lose. The “Y ← H1(m)” instructions in the code of
Sign, the code of H2 and following the execution of A ensure that H1(m) is
queried at this point. Each time a new H1(m) query is made, a transcript is
generated by P using its Tr oracle. The commitment in this transcript is the
reply to the H1(m) query. Additionally, however, steps are taken to ensure that,
if, later, a Sign(m) query is made, then a signature to return is available. This
is done by picking a random one-bit seed si and assigning H2(m‖si) the value
ci. At the time of a signing query, one can use si as the seed and use the
response of the corresponding transcript to create the signature. To be able to
win via the forgery, H2(m‖si) is assigned a challenge via Ch, where si denotes
the complement of the bit si. Now, when the forgery (m, (z, s)) is obtained from
A, the associated index j is computed, and then z is returned as a response for
that session. Adversary P will be successful as long as A is successful and s = sj .
The events being independent we have

Advcimp-uu
ID (P) ≥ 1

2
· Advuuf

DS (A).

Transposing terms yields Eq. (7).
�

From Identification to Signatures, Tightly 457

6.3 From CIMP-CC Identification to UF Signatures: MdCh

The MdCmt and MdCmtCh transforms described above rely on the trap-
door property of the underlying identification scheme and achieve UUF rather
than UF. The MdCh transform we describe here does not have these limi-
tations. (It does not require the identification scheme to be trapdoor, and it
directly achieves UF.) However, among the security notions for ID schemes that
we defined, MdCh assumes the strongest one: CIMP-CC.

The construction. Our MdCh (message-dependent challenge) transform
associates to identification scheme ID and a seed length sl ∈ N the signature
scheme DS = MdCh[ID, sl] whose algorithms are defined in Fig. 10. Signing
picks the commitment directly rather than (as in our prior transforms) specify-
ing it as the hash of the message. The challenge is derived as a randomized hash
of the message, the randomization being captured by a seed s of length sl. By
H(·) we denote random oracle H(·, {0, 1}ID.cl) with range {0, 1}ID.cl.

Unforgeability. As we prove below (with tight reduction), the MdCh con-
struction yields a UF secure signature scheme if the underlying identification
scheme offers CIMP-CC security.

Theorem 7. Let signature scheme DS = MdCh[ID, sl] be obtained from identi-
fication scheme ID and seed length sl ∈ N as in Fig. 10. Let A be a UF adversary
against DS making qh queries to its H oracle and qs queries to its Sign oracle.
Then from A we construct a CIMP-CC adversary P such that

Advuf
DS(A) ≤ Advcimp-cc

ID (P) +
qhqs
2ID.cl

+
(qh + qs)qs

2sl
. (8)

Adversary P makes qs queries to Tr and one query to Ch and has running time
about that of A.

Proof (Theorem 7). Game G0 of Fig. 11 includes the boxed code, while game G1

does not. Game G0 is precisely the UF game of Fig. 2 with the algorithms of DS

Fig. 10. The construction of signature scheme DS = MdCh[ID, sl] from identification
scheme ID and seed length sl. By H(·) we denote random oracle H(·, {0, 1}ID.cl) with
range {0, 1}ID.cl.

458 M. Bellare et al.

Fig. 11. Games and adversary for proof of Theorem 7.

plugged in. We assume the message m in the forgery (m,σ) returned by A was
not queried to Sign. Games G0,G1 are identical until bad. By the Fundamental
Lemma of Game Playing [10] we have

Advuf
DS(A) = Pr[G0] = Pr[G1] + (Pr[G0] − Pr[G1]) ≤ Pr[G1] + Pr[G1 sets bad]

≤ Pr[G1] +
(qh + qs)qs

2sl
.

Adversary P of Fig. 11 executes A, responding to Sign and H queries of the
latter via the shown procedures, which are subroutines in the code of P.

Adversary P simulates for A the environment of game G1. In the execution
of game Gcimp-cc

ID (P) of Fig. 4, let B denote the event that (Y, c) ∈ S, where Y, c
is the argument to the single Ch query made by our P. Then

Pr[G1] ≤ Advcimp-cc
ID (P) + Pr[B] .

To complete the proof, it suffices to show that

Pr[B] ≤ qhqs
2ID.cl

.

We bound Pr[B] by the probability that c is a challenge in one of the transcripts.
The message m in the forgery is assumed not one of those signed, so HT[m, s] was
not set by Sign and is thus independent of the transcript challenges. There are at
most qs transcript challenges and at most qh queries toH, so Pr[B] ≤ qhqs/2ID.cl.
�

From Identification to Signatures, Tightly 459

Fig. 12. The construction of signature scheme DS = FS[ID] from identification
scheme ID. By H(·) we denote random oracle H(·, {0, 1}ID.cl) with range {0, 1}ID.cl.

6.4 From CIMP-CU Identification to UF Signatures: FS

The first proofs of UF security of FS-based signatures used a Forking Lemma
and were quite complex [35]. More modular approaches were given in OO [33]
and AABN [1]. AABN reduce UF security of the signature scheme to IMP-PA
security of the identification scheme. (The latter is established separately via the
Reset Lemma of [6].) The reduction of AABN is not tight.

Our framework allows a tight reduction of the UF security of FS-based sig-
natures to the CIMP-CU security of the underlying identification scheme. The
reason for this is simple, namely that CIMP-CU is the multi-impersonation ver-
sion of IMP-PA. The proof is implicit in AABN [1]. We give a proof however for
completeness and to illustrate how much simpler this proof is to prior ones.

We note that this tighter reduction does not change overall tightness. That
is, in AABN, Psig→Pid was not tight, while for us, it is, but the tightness of the
overall Psig→Palg reduction remains the same in both cases.

The construction. The FS transform [16] associates to identification scheme
ID the signature scheme DS = FS[ID] whose algorithms are defined in Fig. 12.
Signing picks the commitment directly. The challenge is derived as a hash of
the commitment and message. By H(·) we denote random oracle H(·, {0, 1}ID.cl)
with range {0, 1}ID.cl.

Unforgeability. The following theorem says that the FS construction yields a
UF secure signature scheme if the underlying ID scheme offers CIMP-CU security
and the commitment (as generated by the prover) is uniformly distributed over
a large space. The latter condition is true for typical identification schemes. The
intuition of the proof is that signing queries are answered via transcripts and
hash queries are mapped to challenge queries, this failing only if commitments
collide. The proof of the following is in [7].

Theorem 8. Let signature scheme DS = FS[ID] be obtained from identifica-
tion scheme ID as in Fig. 12. Let ID.CSS = min{ |ID.CS(ivk)| : (ivk, isk, itk) ∈
[ID.Kg] }. Let A be a UF adversary against DS making qh queries to its H ora-
cle and qs queries to its Sign oracle. Then from A we construct a CIMP-CU
adversary P such that

460 M. Bellare et al.

Advuf
DS(A) ≤ Advcimp-cu

ID (P) +
qs(2qh + qs − 1)

2 · ID.CSS
. (9)

Adversary P makes qs queries to Tr and qh + 1 queries to Ch and has running
time about that of A.

6.5 From CIMP-UC Identification to UF Signatures: Swap

Micali and Reyzin [30] use the term “swap” for a specific construction of a sig-
nature scheme that they give with a tight reduction to the hardness of factoring.
Folklore, and hints in the literature [2], indicate that researchers understand
the method is more general. But exactly how general was not understood or
determined before, perhaps for lack of definitions. Our definition of trapdoor
identification and the CIMP-XY framework allows us to fill this gap and give a
characterization of the swap method and also better understand it.

In this section we define a transform of trapdoor identification schemes to sig-
nature schemes that we call Swap. We show that it yields UF secure signatures
if the identification scheme is CIMP-UC secure.

The construction. The Swap transform associates to trapdoor identification
scheme ID the signature scheme DS = Swap[ID] whose algorithms are defined
in Fig. 13.

Recall that in Sect. 6.1 we gave the MdCmt transform that constructs UUF-
secure signatures from CIMP-UC-secure identification. Further, in Sect. 5 we
proposed two generic techniques that convert UUF signatures to signatures with
full UF security. One of the latter, AR, achieves its goal by adding random-
ness to signed messages as follows: for signing m, it picks a fresh random seed
s and signs m‖s instead. The seed is included in the signature. Overall, the
combination of MdCmt with AR yields tightly secure signatures of the form
(c, ID.Rp(c, ID.Ct−1(H(m‖s))), s). Swap effectively says that it is safe to choose c
and s to be identical. Thus it can be viewed as an optimization of MdCmt+AR,
giving up on modularity to achieve more compact UF secure signatures.

We note however that our MdCmtCh transform coupled with our UUF-to-
UF transform DR yields UF signatures that seem superior in every way: they
are shorter (response plus a bit as opposed to response plus a challenge), the
(tight) reduction is to the weaker CIMP-UU notion, and the efficiency is the
same. Thus we would view Swap at this point as of mostly historical interest.

Unforgeability.The following theorem says that the Swap construction yields
a UF secure signature scheme if the underlying ID scheme offers CIMP-UC secu-
rity and has sufficiently large challenge length. The proof of the following is in [7].

Theorem 9. Let signature scheme DS = Swap[ID] be obtained from trapdoor
identification scheme ID as in Fig. 13. Let A be a UF adversary against DS.
Suppose the number of queries that A makes to its H oracle is qh and the num-
ber of queries it makes to Sign is qs. Then from A we construct a CIMP-UC
adversary P such that

From Identification to Signatures, Tightly 461

Fig. 13. The construction of signature scheme DS = Swap[ID] from a trapdoor iden-
tification scheme ID. By H(·) we denote H(·, ID.CS(ivk)).

Fig. 14. UF signature schemes obtained from identification scheme ID. We
show bounds on the uf advantage of an adversary A making qh queries to H and qs
queries to Sign. Here ε = Advkr

ID(I) is the kr advantage of an adversary I of roughly
the same running time as A. By l, k, c we denote the lengths of the challenge, response
and commitment, respectively. By C we denote the size of the commitment space. By
Pid we denote the notion of identification security used in the Psig→Pid reduction.

Advuf
DS(A) ≤ Advcimp-uc

ID (P) +
(qh + qs)qs + 1

2ID.cl
. (10)

Adversary P makes qh + qs + 1 queries to Tr and one query to Ch. Its running
time is about that of A.

6.6 From Identification to UF Signatures: Summary

Figure 14 puts things together. We consider obtaining a UF (not just UUF)
signature scheme DS from a given identification scheme ID via the various trans-
forms in this paper. In the first three rows, the identification scheme is assumed
to be trapdoor. Whenever a transform achieves (only) UUF, we apply DR on
top to get UF. We give bounds on the uf advantage Advuf

DS(A) of an adversary
A making qh queries to H and qs queries to Sign. By l = ID.cl we denote the
challenge length of ID, and by C = ID.CSS the size of the commitment space.
We show the full Psig→Palg reduction, so that the bounds are in terms of the
kr advantage ε = Advkr

ID(I) of a kr-adversary I having about the same running
time as A. The bounds are obtained by combining the various relevant theorems,
referring to the indicated equations. We show the notion Pid of identification
security used as an intermediate point, namely Psig → Pid → Palg. Signature

462 M. Bellare et al.

size is shown as a function of challenge, response and commitment lengths. In
summary, the bounds in the first three rows are tight, but the transform of the
third row has the added advantage of shorter signatures and a linear (as opposed
to quadratic) additive term in the bound. We do not show the MdCh transform
from CIMP-CC because the latter is not achieved by Sigma protocols. We note
that the bound for FS is the same as in [1]. (Our Psig→Pid reduction, unlike
theirs, is tight, but there is no change in the tightness of the full Psig→Palg

reduction.)

Acknowledgments. Bellare was supported in part by NSF grant CNS-1526801, a
gift from Microsoft corporation and ERC Project ERCC (FP7/615074). Poettering
was supported by ERC Project ERCC (FP7/615074). Stebila was supported in part
by Australian Research Council (ARC) Discovery Project grant DP130104304 and
Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery
grant RGPIN-2016-05146.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7 28

2. Abdalla, M., Ben Hamouda, F., Pointcheval, D.: Tighter reductions for forward-
secure signature schemes. In:Kurosawa,K.,Hanaoka,G. (eds.)PKC2013.LNCS,vol.
7778, pp. 292–311. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 19

3. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29011-4 34

4. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson,
P.F., Jha, S. (eds.) ACM CCS 2008, pp. 449–458. ACM Press, October 2008

5. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, R., Wright, N., Vimercati, S. (eds.) ACM CCS 2006, pp.
390–399. ACM Press, October/November 2006

6. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs of security
against impersonation under active and concurrent attacks. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002). doi:10.
1007/3-540-45708-9 11

7. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. Cryptology ePrint Archive, Report 2015/1157
(2015). http://eprint.iacr.org/2015/1157

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

9. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9 34

http://dx.doi.org/10.1007/3-540-46035-7_28
http://dx.doi.org/10.1007/978-3-642-36362-7_19
http://dx.doi.org/10.1007/978-3-642-29011-4_34
http://dx.doi.org/10.1007/3-540-45708-9_11
http://dx.doi.org/10.1007/3-540-45708-9_11
http://eprint.iacr.org/2015/1157
http://dx.doi.org/10.1007/3-540-68339-9_34

From Identification to Signatures, Tightly 463

10. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi:10.1007/11761679 25

11. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23951-9 9

12. Cachin, C., Micali, S., Stadler, M.: Computationally private information
retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT
1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). doi:10.1007/
3-540-48910-X 28

13. Cramer, R.: Modular design of secure, yet practical protocls. Ph.D. thesis, Univer-
sity of Amsterdam (1996)

14. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: Aho, A. (ed.)
19th ACM STOC, pp. 210–217. ACM Press, May 1987

15. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptology
1(2), 77–94 (1988)

16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

17. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

18. Goh, E.-J., Jarecki, S.: A signature scheme as secure as the Diffie-Hellman problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer,
Heidelberg (2003). doi:10.1007/3-540-39200-9 25

19. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.
Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 8

20. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

21. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-
knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 228–245. Springer, Heidelberg (1993). doi:10.1007/3-540-48071-4 16

22. Goldwasser, S., Tauman Kalai, Y.: On the (in)security of the Fiat-Shamir para-
digm. In: 44th FOCS, pp. 102–115. IEEE Computer Society Press, October 2003

23. Guillou, L.C., Quisquater, J.-J.: A “Paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol.
403, pp. 216–231. Springer, Heidelberg (1990). doi:10.1007/0-387-34799-2 16

24. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp.
155–164. ACM Press, October 2003

25. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from iden-
tification schemes. Cryptology ePrint Archive, Report 2016/191 (2016). http://
eprint.iacr.org/2016/191

26. Koblitz, N., Menezes, A.: The random oracle model: a twenty-year retrospective.
Cryptology ePrint Archive, Report 2015/140 (2015). http://eprint.iacr.org/2015/
140

27. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 38

http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/978-3-642-23951-9_9
http://dx.doi.org/10.1007/3-540-48910-X_28
http://dx.doi.org/10.1007/3-540-48910-X_28
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-39200-9_25
http://dx.doi.org/10.1007/3-540-47721-7_8
http://dx.doi.org/10.1007/3-540-48071-4_16
http://dx.doi.org/10.1007/0-387-34799-2_16
http://eprint.iacr.org/2016/191
http://eprint.iacr.org/2016/191
http://eprint.iacr.org/2015/140
http://eprint.iacr.org/2015/140
http://dx.doi.org/10.1007/3-540-45708-9_38

464 M. Bellare et al.

28. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 35

29. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 43

30. Micali, S., Reyzin, L.: Improving the exact security of digital signature schemes.
J. Cryptology 15(1), 1–18 (2002)

31. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 41

32. M’Räıhi, D., Naccache, D., Pointcheval, D., Vaudenay, S.: Computational alter-
natives to random number generators. In: Tavares, S., Meijer, H. (eds.) SAC
1998. LNCS, vol. 1556, pp. 72–80. Springer, Heidelberg (1999). doi:10.1007/
3-540-48892-8 6

33. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from
identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–
369. Springer, Heidelberg (1998). doi:10.1007/BFb0055741

34. Ong, H., Schnorr, C.P.: Fast signature generation with a Fiat Shamir — like
scheme. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 432–
440. Springer, Heidelberg (1991). doi:10.1007/3-540-46877-3 38

35. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

36. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

http://dx.doi.org/10.1007/978-3-642-10366-7_35
http://dx.doi.org/10.1007/978-3-642-29011-4_43
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/3-540-48892-8_6
http://dx.doi.org/10.1007/3-540-48892-8_6
http://dx.doi.org/10.1007/BFb0055741
http://dx.doi.org/10.1007/3-540-46877-3_38

	From Identification to Signatures, Tightly: A Framework and Generic Transforms
	1 Introduction
	2 Notation and Basic Definitions
	3 Constrained Impersonation Framework
	4 Achieving CIMP-XY Security
	5 From UUF to UF
	5.1 From UUF to UF by Removing Randomness
	5.2 From UUF to UF by Adding Randomness

	6 Signatures from Identification
	6.1 From CIMP-UC Identification to UUF Signatures: MdCmt
	6.2 From CIMP-UU Identification to UUF Signatures: MdCmtCh
	6.3 From CIMP-CC Identification to UF Signatures: MdCh
	6.4 From CIMP-CU Identification to UF Signatures: FS
	6.5 From CIMP-UC Identification to UF Signatures: Swap
	6.6 From Identification to UF Signatures: Summary

	References

