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Abstract. In this paper, we analyze the security of round-reduced ver-
sions of the Keccak hash function family. Based on the work pioneered
by Aumasson and Meier, and Dinur et al., we formalize and develop a
technique named linear structure, which allows linearization of the under-
lying permutation of Keccak for up to 3 rounds with large number of
variable spaces. As a direct application, it extends the best zero-sum
distinguishers by 2 rounds without increasing the complexities. We also
apply linear structures to preimage attacks against Keccak. By care-
fully studying the properties of the underlying Sbox, we show bilinear
structures and find ways to convert the information on the output bits to
linear functions on input bits. These findings, combined with linear struc-
tures, lead us to preimage attacks against up to 4-round Keccak with
reduced complexities. An interesting feature of such preimage attacks is
low complexities for small variants. As extreme examples, we can now
find preimages of 3-round SHAKE128 with complexity 1, as well as the first
practical solutions to two 3-round instances of Keccak challenge. Both
zero-sum distinguishers and preimage attacks are verified by implemen-
tations. It is noted that the attacks here are still far from threatening
the security of the full 24-round Keccak.

Keywords: Cryptanalysis · SHA-3 · Keccak · Preimage attacks ·
Zero-sum distinguishers

1 Introduction

The Keccak sponge function family [6] was designed by Bertoni et al. as one of
the 64 proposals submitted to the SHA-3 competition [24] in October 2008. It won
in October 2012 after intense competition, and was subsequently standardized
by the U.S. National Institute of Standards and Technology (NIST) as Secure
Hash Algorithm-3 [25] (SHA-3) in August 2015. As such, Keccak has received
intensive security analysis, since the design was made public in 2008, against
the traditional security notions such as collision, preimage, and second-preimage
c© International Association for Cryptologic Research 2016
J.H. Cheon and T. Takagi (Eds.): ASIACRYPT 2016, Part I, LNCS 10031, pp. 249–274, 2016.
DOI: 10.1007/978-3-662-53887-6 9



250 J. Guo et al.

resistance, as well as distinguishers of the underlying permutations and securi-
ties under some message authentication code, stream cipher, and authenticated
cipher modes.

Up to date, the best collision attacks are reduced up to 4 out of 24 rounds
of Keccak-224/256 with practical complexities [12,14], and up to 5 rounds of
Keccak-256 with theoretical complexities [13], by differential attacks. Practical
preimage attacks are up to 2 rounds, by the approaches of meet-in-the-middle [23]
and SAT solvers [21]. Theoretical preimage attacks work up to 7/8/9 rounds
for Keccak-224/256/512 respectively with small time complexity gains over
bruteforce [3,11,20]. There were mainly two types of distinguishers against the
underlying permutation of Keccak (named Keccak-f ), i.e., zero-sum distin-
guishers [2,9] and those involving high probability differentials [17,19]. These
distinguishers work for 9 rounds in [2], 8 rounds in [19] with practical com-
plexities, and up to 15 rounds with theoretical complexities bounded by 2800

(birthday bound) for the 1600-bit Keccak-f permutation. Besides these, there
are also attacks in other security settings, we are not listing them all as they are
less relevant with our work here.

To promote security analysis with practical complexities, the Keccak team
has been organizing the “Keccak Crunchy Crypto Collision and Preimage Con-
test” [4] (we will call it Keccak Challenge for short) and offering cash prizes
for the winners. To make it feasible, the instances are set to be round-reduced
variants of Keccak with capacity c = 160 and the output truncated to 160 bits
for collisions and 80 bits for preimages, so the theoretical complexities for both
are 280, which is relatively small but yet beyond PC’s capability. Instances have
been solved for up to 4 and 2 rounds for collisions and preimages, respectively.

Our Contributions. In this paper, we focus on security analysis of Keccak
with respective to two security notions, i.e., distinguisher of round-reduced ver-
sions of the underlying permutation Keccak-f , and preimage of round-reduced
variants of the Keccak hash function family. Firstly, we review the zero-sum
distinguisher by Aumasson and Meier [2]. Zero-sum distinguishers finds a set of
input to the permutation, whose sum is zero and the set of corresponding output
sums to zero at the same time. This distinguisher makes use of the property of low
algebraic degrees 2 and 3 of the Sbox and its inverse used in Keccak-f , which is
the only non-linear step of the round function. The attack starts from the mid-
dle of the permutation, and extends freely towards both forward and backward
directions of the permutations. By setting up initial values of the middle starting
point, one can bypass one round without increasing the algebraic degrees. Sim-
ilar idea was extended to bypass one round by Dinur et al. [15] for key recovery
attacks in keyed settings. In this paper, we formalize this idea as linear struc-
tures and extend the free starting rounds to 3 by combining properties of the
linear layers and Sbox of the Keccak-f round function, and generally increase
the attacked rounds of the zero-sum distinguishers by Aumasson and Meier by 2
without increasing the complexities. Notably, we extend the practically attacked
rounds from 9 to 11. Furthermore, the 12-round Keccak-f permutations can



Linear Structures: Applications to Cryptanalysis of Round-Reduced Keccak 251

be distinguished with complexity 265 or 282. This is of special interests since the
12-round Keccak-f permutation variants are used in the CAESAR candidates
Keyak [8] and Ketje [7]. Nevertheless, we stress here that this distinguisher
does not affect the security of Keyak or Ketje. A summary of the comparisons
of our results with the previous ones is shown in Table 1. Our results are verified
by an implementation of the 11-round distinguisher with time and data complex-
ity 233, with all the 1600 bits of the output summing to zero with certainty. Note
that Table 1 does not include the distinguishers with complexities ≥ 2800, such
as [9,16]. In the Keccak reference [6, Page 61], the designers mentioned that
“Only structural distinguishers on f that have non-zero advantage below 2800

queries can possibly qualify as a threat for the security of a sponge function that
uses it.” This is a birthday bound with regard to the size of the permutation.

Table 1. Summary of distinguishers on the 1600-bit Keccak-f permutation, with
complexities bounded by 2800

#Rounds inv+forw Best Known inv + forw Improved inv+ forw Further

7 3 + 4 213 [19] 3 + 4 210 2+5 29

8 3 + 5 218 [2,19] 3 + 5 217 3+5 210

9 4 + 5 230a [2] 4 + 5 228 3+6 217

10 4 + 6 260b [2] 4 + 6 233 4+6 228

11 5 + 6 260c [2] 4+7 265 4+7 233

12 5 + 7 2129 [2] 5 + 7 282 4+8 265

13 6 + 7 2244 [2] 5+8 2129 5+8 282

14 6 + 8 2257 [2] 6 + 8 2244 5+9 2129

15 6 + 9 2513 [2] 6 + 9 2257 - -
a Corrected: 233. Note that the complexity 230 estimated in [2] is based on
the experiments made over a 25-dimensional space by the designers in [6],
which shows the maximum degree over 25 variables of 4 rounds to be 15. We
expect the maximum degree over 30 variables of 4 rounds to be 16, and thus
we estimate the time complexity for 5 rounds to be 233.
b Corrected: 265.
c Corrected: 282.

The second contributions of this paper are improved preimage attacks. In
contrast to the meet-in-the-middle and SAT solver techniques used previously,
we adopt the techniques of linear structures and find preimages by linearizing the
Keccak round functions and converting the preimage finding problems to that
of solving systems of linear equations. This technique leads to attacks on up to
4-round Keccak with reduced complexities. The complexities of 3-round preim-
ages are so significantly reduced that enables us to find preimages of SHAKE128
(a variant of Keccak [r = 1344, c = 256] adapted by SHA-3) practically, and
to solve two of 3-round preimage instances and a near-preimage with only two
bits difference of 4-round preimage instance of the Keccak Challenge. The
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summary of our preimage attacks together with the previous best ones is shown
in Table 2. Note that Table 2 does not include small optimizations of exhaustive
search, such as [3,11]. In this table, by variant 128 we mean SHAKE128(M, 128).
Different with the attacks of [20] which outperform exhaustive search by a larger
factor as the hash size becomes larger, our attacks outperform exhaustive search
by a larger factor as the hash size (or the capacity) becomes smaller.

Table 2. Summary of preimage attacks on Keccak reduced up to 4 rounds.

#Rounds Variant Time Reference

2 128/224/256 233 [23]

2 128/224/256 1 Sect. 6.1

2 384 2129 Sect. 6.1

2 512 2384 Sect. 6.1

3 128 226.6 Sect. 6.2

3 128 1 Sect. 6.4

3 224 297 Sect. 6.2

3 256 2192 Sect. 6.2

3 384 2322 Sect. 6.3

3 512 2482 Sect. 6.3

3 512 2506 [20]

4 128 2106 Sect. 6.4

4 224 2213 Sect. 6.3

4 256 2251 Sect. 6.3

4 224/256 2221/2252 [20]

4 384/512 2378/2506 [20]

Both improved zero-sum distinguishers and preimage attacks are possible
thanks to the technique linear structures. By exploiting the properties of the
Sbox used in Keccak, we find ways to linearize both the Sbox itself and its
inverse. Combining with properties of the linear layer of the Keccak round
function, we are able to find linear subspaces with large dimension by setting
proper initial values. A nice property of these linear structures is that the alge-
braic degrees can be kept the same for up to 3 rounds, i.e., output bits of 3-round
Keccak-f can be expressed as linear combinations of input bits. As a special
feature of the linear structure, complexities of our attacks reduce significantly
when the targets are Keccak instances with small capacities. In such cases, the
number of required constraints derived from pre-set constants is small and the
degree of freedom left is relatively large, and hence leads to faster attacks. As
extreme examples, we can find preimages of 3-round SHAKE128(M, 128) and solve
the 3-round Keccak[r = 1440, c = 160, � = 80] instance of Keccak Challenge
with complexity 1.
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Organization. The rest of the paper is organized as follows. Section 2 gives the
details of the Keccak hash function family, followed by the properties of the
Sbox in Sect. 3. The linear structure is introduced in Sect. 4. Its applications of
zero-sum distinguishers and preimages attacks are presented in Sects. 5 and 6,
respectively. Section 7 concludes the paper.

2 Definition of Keccak

2.1 The Sponge Function

The Keccak hash function follows the sponge construction, as depicted in Fig. 1.
The message M is padded and split into blocks of r bits each. Beginning with
an initial value (IV), the first r bits of b-bit state is XORed with the message
block, followed by the application of the permutation f . This step is repeated
until all message blocks are processed. Then the first r bits are outputted, r
more bits can be obtained after an additional application of f , and this process
is repeated until all required digest bits are obtained. The number of iterations
is determined by the requested number of digest bits �. Finally the output is
truncated to its first � bits.

Fig. 1. The sponge function [5]

2.2 The Keccak Hash Functions

To define the Keccak hash function family, the designers give the details of
the underlying permutation f , as well as parameters set of (r, c, �). The IV is
set to be all “0”s. The underlying permutation of the Keccak hash function is
chosen in a set of seven Keccak-f permutations, denoted Keccak-f [b], where
b ∈ {25, 50, 100, 200, 400, 800, 1600} is the width of the permutation. The default
version of Keccak-f is of size b = 1600 bits, which can be represented as 5 × 5
64-bit lanes as depicted in Fig. 2, denoted as A[x, y] with x for the index of col-
umn and y for the index of row. In what follows, indexes of x and y are from the
set {0, 1, 2, 3, 4} and they are working in modulo 5 without other specification.
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Fig. 2. The Keccak state [6]

The underlying permutation Keccak-f [1600] consists of 24 identical round func-
tions up to a difference of constant addition. The round function R consists of
five operations (θ goes first):

R = ι ◦ χ ◦ π ◦ ρ ◦ θ.

θ : A[x, y] = A[x, y]⊕⊕4
j=0(A[x−1, j]⊕(A[x+1, j] ≪ 1)), for x, y = 0, . . . , 4.

ρ : A[x, y] = A[x, y] ≪ r[x, y], for x, y = 0, . . . , 4.
π : A[y, 2x + 3y] = A[x, y], for x, y = 0, . . . , 4.
χ : A[x, y] = A[x, y] ⊕ ((∼ A[x + 1, y])&A[x + 2, y]), for x, y = 0, . . . , 4.
ι : A[0, 0] = A[0, 0] ⊕ RC.

Here “⊕” denotes for bit-wise XOR, “≪” for bit rotation towards MSB of the
64-bit word, “∼” for bit negation of 64-bit word, “&” for bit-wise logic AND,
“r[x, y]” for lane dependent rotation constants presented in Table 3, and “RC”
for round-dependent round constants. We ignore the details of RC since it does
not affect our attacks to be presented.

Without other specifications, Keccak-f hereinafter refers to Keccak-f
[1600].

Table 3. Rotation constants r[x, y] in Keccak ρ operation.

x=0 x = 1 x = 2 x = 3 x = 4

y = 0 0 1 62 28 27

y = 1 36 44 6 55 20

y = 2 3 10 43 25 39

y = 3 41 45 15 21 8

y = 4 18 2 61 56 14

2.3 Instances of Keccak and SHA-3

The hash function Keccak[r, c, �] refers to the instance of the Keccak sponge
function family with parameters capacity c, bitrate r and output length �.
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The official versions of Keccak have r = 1600 − c and c = 2�, where
� ∈ {224, 256, 384, 512}, called Keccak-224, Keccak-256, Keccak-384, and
Keccak-512. The padding rule of Keccak is of the form M10∗1, i.e., it pads
a single bit “1” followed by a smallest non-negative number of “0”, then a bit
“1”, such that the bit length of the padded message becomes multiple of r.

The SHA-3 standard takes mainly the four default instances of Keccak with
digest sizes 224, 256, 384, 512. The only difference is the padding rule. These four
SHA-3 instances pad the message with two bits “01” before applying the Keccak
padding rule, so the padded message becomes M0110∗1, i.e., it pads M by three
bits “011”, followed by a smallest non-negative number of “0”s, then a bit “1”,
such that the padded message is of multiple of r bits. Generally, all our analysis
results in this paper on Keccak applies to SHA-3, under the same parameters
(r, c, �), possibly with an increment of the complexities by at most 22 due to the
two extra padding bits.

The SHA-3 family also includes two extendable-output functions (XOFs),
called SHAKE128 and SHAKE256. More exactly, these instances SHAKE128(M, �)
and SHAKE256(M, �) are defined from Keccak[r = 1344, c = 256] and Keccak
[r = 1088, c = 512] by appending a four-bit suffix “1111” to the message, for any
output length �. Our preimage attacks on Keccak-256 also applies to SHAKE256
(M, 256). We will only consider preimage attacks on SHAKE128(M, 128).

3 Properties of the Sbox χ

In this section, we discuss the properties of the Sbox χ, which will be used
to construct distinguishers on Keccak-f permutation in Sect. 5, and to mount
preimage attacks on Keccak in Sect. 6.

3.1 Setting up Linear Equations from the Output of χ

Bilinear Structure. We show in this section that given t consecutive bits out
of the 5 output bits of χ, one can set up at least t − 1 linear equations on the 5
input bits due to the bilinear structure of the χ. Hereinafter, we may also refer
to the χ operation by Sbox.

The algebraic normal form of χ mapping 5-bit a = a0a1a2a3a4 into 5-bit
b = b0b1b2b3b4 can be written as bi = ai ⊕ (ai+1 ⊕ 1) · ai+2, i.e.,

b0 = a0 ⊕ (a1 ⊕ 1) · a2, (1)
b1 = a1 ⊕ (a2 ⊕ 1) · a3, (2)
b2 = a2 ⊕ (a3 ⊕ 1) · a4, (3)
b3 = a3 ⊕ (a4 ⊕ 1) · a0, (4)
b4 = a4 ⊕ (a0 ⊕ 1) · a1. (5)

Then, we show that given two consecutive bits of the output of χ, one linear
equation can be set up on the input bits. Without loss of generality, assume that
b0 and b1 are known. By (2), we have
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b1 · a2 = (a1 ⊕ (a2 ⊕ 1) · a3) · a2 = a1 · a2

and thus according to (1) we obtain

b0 = a0 ⊕ (b1 ⊕ 1) · a2. (6)

Given three consecutive bits of the output of χ, to say b0, b1 and b2, an additional
linear equation can be similarly set up:

b1 = a1 ⊕ (b2 ⊕ 1) · a3. (7)

Generally, the input a and output b of χ satisfy F (a, b) = 0 with F (a, b) =
aSb + Ta + Qb, for some 5 × 5 binary matrices S, T,Q.

Given four output bits of χ, any bit of the input can be represented as a
linear function on the unknown bit of the output, and one can naturally set up
four linear equations on the input bits by eliminating the unknown output bit. It
is clear that given all the five output bits of χ, the input bits are all determined.
We summarize in Table 4 the number of linear equations on the input bits that
can set up for given t consecutive bits of the output of χ.

Table 4. Number of linear equations obtained from the output of χ

#Known consecutive output bits 2 3 4 5

#Linear equations 1 2 4 5

3.2 Setting up More Linear Equations

As explained above, given t bits of the output of χ, for t = 4 or 5, one can set
up t linear equations on the input of χ, and for t < 4, one can set up t− 1 linear
equations. Here we present two more methods for setting up one or more extra
linear equations on input bits when less than 4 bits of the output are known.

The first method is to guess the value of an input bit. We obtain two extra
linear equations at cost of doubling the operations needed. For example, if a
single bit b0 of the output is known, no linear equation could be set with previous
methods. However, here we can guess the input bit a1 so that the equation
b0 = a0 ⊕ (a1 ⊕ 1) · a2 becomes linear. Together with the guess of a1 itself, we
obtain in total two more linear equations. The cost is that there are 2 choices
of the guess, so we obtained the two extra linear equations with the cost of an
increase of time complexity by a factor of 2. This is generally true when the
number of known output bits is less than 4, as summarized in Setting 1.

Setting 1. When the number of known output bits is in the range [1, 3], a guess
of an input bit leads to two extra linear equations on the input bits, by the cost
of doubling the time complexity.
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The second method is to make use of the probabilistic equation bi = ai which
holds with probability 0.75, due to the fact that bi = ai ⊕ (ai+1 ⊕ 1) · ai+2 and
(ai+1 ⊕ 1) · ai+2 is 0 with probability 0.75 assuming uniformly distributed ai+1

and ai+2, as summarized in Setting 2. This method will result in time complexity
increase by a factor 0.75−1 = 20.415.

Setting 2. bi = ai of the χ holds with probability 0.75 when input bit aj’s are
uniformly distributed, for all i ∈ {0, . . . , 4}.

3.3 Linearizing the Inverse of χ

The inverse χ−1 : b �→ a has algebraic degree 3, and its algebraic normal form
can be written as

ai = bi ⊕ bi+2 ⊕ bi+4 ⊕ bi+1 · bi+2 ⊕ bi+1 · bi+4 ⊕ bi+3 · bi+4 ⊕ bi+1 · bi+3 · bi+4

= bi ⊕ (bi+1 ⊕ 1) · (bi+2 ⊕ (bi+3 ⊕ 1) · bi+4) (8)

where 0 ≤ i ≤ 4 and the indexes are operated on modulo 5, that is,

a0 = b0 ⊕ (b1 ⊕ 1) · (b2 ⊕ (b3 ⊕ 1) · b4), (9)
a1 = b1 ⊕ (b2 ⊕ 1) · (b3 ⊕ (b4 ⊕ 1) · b0), (10)
a2 = b2 ⊕ (b3 ⊕ 1) · (b4 ⊕ (b0 ⊕ 1) · b1), (11)
a3 = b3 ⊕ (b4 ⊕ 1) · (b0 ⊕ (b1 ⊕ 1) · b2), (12)
a4 = b4 ⊕ (b0 ⊕ 1) · (b1 ⊕ (b2 ⊕ 1) · b3). (13)

It is obvious to note

Setting 3. If there is a single unknown output bit bj of χ and all other output
bits are constants, then all input bits ai can be expressed as linear combination
of bj.

If we impose b3 = 0 and b4 = 1, then we have

a0 = b0 ⊕ (b1 ⊕ 1) · (b2 ⊕ 1),
a1 = b1,

a2 = 1 ⊕ b2 ⊕ (b0 ⊕ 1) · b1,

a3 = 0,

a4 = 1 ⊕ (b0 ⊕ 1) · b1,

and thus all ai’s are linear on b0 and b2. That’s, for b3 = 0, b4 = 1 and any fixed
b1, the algebraic degree of χ−1 becomes 1.

If we further impose b1 = 1, then we have

a0 = b0, a1 = 1, a2 = b0 ⊕ b2, a3 = 0, a4 = b0,

so all inputs bits ai’s become linear combinations of bi’s. Similar property holds
when b1 = 0. This is summarized as:

Setting 4. When bj+3 = 0, bj+4 = 1, and bj+1 is known (either 0 or 1), then
all inputs bits ai’s can be written as linear combinations of bi’s, for all j ∈
{0, . . . , 4}.
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4 The Linear Structures

In this section, we review the previous work, and formalize the idea of linear
structure. We show linearization of Keccak-f permutation for up to 3 rounds.
Our distinguisher and preimage attacks using linear structures depend directly
on the space size of the variables of these linear structures, i.e., more variable
bits result in lower attack complexities. We show in details how the largest space
size possible could be obtained in each scenario.

4.1 Techniques for Keeping 2 Rounds Being Linear

In [15], Dinur et al. exploited a method for keeping the first round of Keccak-f
being linear and used it to analyze the security of keyed variants of Keccak.
Here we restate and formalize their technique. Let A[1, i], i = 0, 1, 2, 3, be vari-
ables and A[1, 4] =

⊕3
i=0 A[1, i] ⊕ α with any constant α so that variables in

each column sum to a constant. Then, as shown in Fig. 3, we can see how the
variables affect the internal state under the transformation of Keccak-f round
function R = ι ◦ χ ◦ π ◦ ρ ◦ θ. In Fig. 3 and hereinafter, the 2-tuple number “x, y”
denotes the position of a lane at the initial state, and we track its position under
the π function, where 0 ≤ x, y ≤ 4. All bits of the lanes with orange slashes have
algebraic degree 1, those of the lanes in orange have algebraic degree at most
1, and the other lanes are all constants. Note the algebraic degrees will not be
affected by the linear operations θ, ρ, π, and ι. The only non-linear operation
is the χ, and its degree is 2 or 3 in forward or backward directions, respec-
tively. As shown in the third state in Fig. 3, each row contains a single bit of
degree 1 and the other 4 bits are constants. Since the only possibility for χ to
increase the algebraic degree is through two neighbouring bits due to the term
(ai+1 ⊕ 1) · ai+2, the algebraic degree of the state bits remains at most 1 after
χ, i.e., after one round function R. The size of free variables can be at most 4
lanes, i.e., 64 × 4 = 256 bits.

Fig. 3. Keeping the 1st forward round being linear with the degrees of freedom up to
256, with orange bits of degree at most 1, and white bits being constants.

Noting that the only nonlinear part of R is χ which operates on each 5-bit
row. Since there is at most 1 variable in each row as in the first state in Fig. 3,
the inverse function χ−1 is linear on these variables due to Setting 3. Thus, the
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first inverse round R−1 is linear on these variables. This property was first used
to construct zero-sum distinguishers on Keccak-f in [2].

Increasing the Degrees of Freedom up to 512 for 2 Rounds. Let A[i, j]
for i = 0, 2 and j = 0, 1, 2, 3 be variables and A[i, 4] =

⊕3
j=0 A[i, j] ⊕ αi with

constants αi for i = 0, 2. Figure 4 shows how the variables propagate in one round
R for α0 = 0 and α2 = 0xff· · ·f. The bits of the lanes in gray (resp. lightgray) are
set to all 1’s (resp. 0’s), and the bits of white lanes are set to arbitrary constants.
The lanes with orange slashes or orange have algebraic degree at most 1 as above.
Since there are at most two variables in each row input to χ and the variables
are not adjacent, the outputs of χ are all linear on these variables. Therefore,
the algebraic degree of the state bits in these variables remains 1 after the first
round of Keccak-f permutation, and the size of free variables can achieve at
most 64 × 4 × 2 = 512. This is also true for other constants αi.

Fig. 4. Keeping the 1st forward round being linear with the degrees of freedom up to
512, with orange bits of degree at most 1, and gray, lightgray and white bits being
values 1, 0, and arbitrary constants, respectively. (Color figure online)

To keep the algebraic degrees to be at most one when χ−1 is applied (inverting
one round) to the 512 variables in the first state of Fig. 4, according to Setting 4,
we restrict the bits of gray lanes to be all ones and the bits of lightgray lanes to
be all zeros, where the bits in gray and lightgray lanes respectively correspond
to bi+4’s and bi+3’s in Setting 4. Note that the step ι only adds a constant to the
first lane and thus it does not affect the gray and lightgray lanes. In this case,
the first inverse round R−1 is linear on these 512 variables.

4.2 How to Keep 3 Rounds Being Linear

Based on the technique above, in this section we describe a technique for keeping
an additional forward round of Keccak-f being linear.

Let A[i, j] with i = 0, 2 and j = 0, 1, 2 be variables. In what follows, we show
how to impose some conditions on the input bits such that all the output bits
after two rounds forward are linear. To make sure that the variables do not affect
the values of the other bits after step θ of the first round, i.e., keeping the sum
of all columns to be zero constants, we impose the following 2 × 64 equations:

A[i, 0] ⊕ A[i, 1] ⊕ A[i, 2] = 0, i = 0, 2.
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The values of white lanes are set in such a way that the value of the gray and
lightgray lanes remained unchanged after step θ of the first round, as shown in
Fig. 5. The steps ρ and π are respectively shifts of the bits in the same lanes and
permutations of the positions of the lanes. After the steps χ and ι, the lane at
column 0 and row 0 equals A[0, 0]⊕A[2, 2]≪43, the other lanes in orange remain
unchanged up to constants, and the white lanes are all constants. To make sure
that the variables do not propagate after step θ of the second round, we impose
3 × 64 more equations:

A[2, 0]≪62 = A[0, 0] ⊕ A[2, 2]≪43,

A[2, 1]≪6 = A[0, 1]≪36,

A[2, 2]≪43 = A[0, 2]≪3.

Note that this result is still valid when constants are XORed to the above three
equations. Since this linear system has in total 5 × 64 = 320 equations and
6 × 64 = 384 variables, there remains 64 degrees of freedom. As shown in Fig. 5,
we can see that after the second round all the output bits are linear since no
adjacent bits contain variables before step χ of the second round.

Fig. 5. Keeping the 2nd forward round being linear with degree of freedom up to 64

To ensure that the inverse function χ−1 is linear, we restrict the bits of lanes
A[4, j] with j = 0, 1, 2 to be all ones and the bits of lanes A[3, j] with j = 0, 1, 2
to be all zeros as in Setting 4.

Increasing the Degrees of Freedom to up to 128. Similarly, we can increase
the degrees of freedom from 64 to 128 by setting A[i, j] with i = 0, 2 and j =
0, 1, 2, 3 be variables and imposing some conditions on the input bits as shown
in Fig. 6. We build a linear system of 6 × 64 = 384 equations on 8 × 64 = 512
variables which has 128 degrees of freedom and satisfies that the output bits
after the second round are all linear. To ensure that the inverse function χ−1 is
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Fig. 6. Keeping the 2nd forward round being linear with the degree of freedom up to 128

linear, we restrict the bits of lanes A[4, j] with j = 0, 1, 2, 3 to be all ones and
the bits of lanes A[3, j] with j = 0, 1, 2, 3 to be all zeros.

Increasing the Degrees of Freedom to up to 194. We further extend the
degrees of freedom to 194 by setting A[i, j] with i = 0, 2 and j = 0, 1, · · · , 4 be
variables and imposing some conditions on the input bits as shown in Fig. 7. We
build a linear system of 7×64 = 448 equations on 10×64 = 640 variables which
has 194 degrees of freedom and satisfies that the output bits after the second
round are all linear. Note that there are two linear equations linearly dependent
on the other equations, so the degree of freedom is 194 instead of 192. To ensure
that the inverse function χ−1 is linear, we restrict the bits of lanes A[4, j] with
j = 0, 1, · · · , 4 to be all ones and the bits of lanes A[3, j] with j = 0, 1, · · · , 4 to
be all zeros.

In summary, we found linear structures of Keccak-f permutation reduced to
2 rounds with degree of freedom up to 512, and 3 rounds with degree of freedom
up to 194.

5 Zero-Sum Distinguishers

A zero-sum distinguisher for a function is a method to find a set of values
summing to zero such that their respective images also sum to zero. That is,
it is a method to find a set S such that

∑
x∈S x = 0 and

∑
x∈S f(x) = 0 for

the function f . It is well known that the d-th order derivative of a polynomial
with degree at most d is a constant. For a Boolean function of algebraic degree
at most d, its d-th order derivative is also a constant. Thus the outputs of a
Boolean function of degree at most d sum to zero when the inputs take over a
linear space of dimension at least d + 1.
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Fig. 7. Keeping the 2nd forward round being linear with the degree of freedom up to 194

The Keccak-f permutation is the core function of Keccak and SHA-3. The
known method for constructing zero-sum distinguishers on Keccak-f permuta-
tion, exploits the fact that adding a round in Keccak-f only doubles the degree
of the algebraic expression of the output bits in terms of the input bits, and only
triples the degree of the algebraic expression of the input bits in terms of the
output bits. This is due to that the algebraic degree of one Keccak-f round
is 2 and the algebraic degree of one inverse round is 3. The real zero-sum dis-
tinguisher starts from some middle round of the Keccak-f permutation, and
extends n rounds forward and m rounds backward. So the algebraic degree of
n forward rounds Rn is bounded by 2n, and m backward rounds R−m by 3m.
With a linear space SM from the middle round of size at least 21+max(2n,3m), one
can be ensured that both input and output sum to zero, i.e.,

∑
x∈SM

Rn(x) = 0
and

∑
x∈SM

R−m(x) = 0. The desired input space S of the (m + n)-round dis-
tinguisher can be obtained by S = {R−m(x) | x ∈ SM}.

The attack has been extended in two different directions, finding better
bounds of the algebraic degrees of Rn and R−m [9,16], and inserting rounds
in the starting point in the middle [2]. Our improved zero-sum distinguisher is
in line with the second approach. Aumasson and Meier showed in [2] that one
round could be inserted for free. This is achieved by carefully choosing the set
SM so that the algebraic degree keeps to be 1 after one round. It becomes obvi-
ous to note the linear structures presented in Sect. 4 could be used here to extend
the number of free rounds to three, i.e., with linear structures as SM (similar to
the way how initial structures are used in MITM preimage attacks [1,18]), the
algebraic degrees of one backward round R−1 and two forward rounds R2 are
kept to be 1.

| m+1←−−−−−−−
backward

| 2+n−−−−−−→
forward

|.
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As such, with the same complexity 21+max(2n,3m), our improved distinguisher
works for (m + n + 3) rounds, i.e., (m + 1) rounds backward and (n + 2) rounds
forward. In Table 1, we summarize our results with the best combinations of m
and n. Note the number of attacked rounds is limited by the size of SM , a.k.a.,
the size of the linear structures. For instance, the largest space we found for
3-round linear structure is 2194, so the distinguisher works for all combinations
of m and n such that 21+max(2n,3m) ≤ 2194. When m = 4 (5 rounds backward)
and n = 7 (9 rounds forward), as stated in the last entry of the third column of
Table 1, the attack applies to m + n + 3 = 14 rounds with time/data complexity
21+max(2n,3m) = 21+max(27,34) = 2129 ≤ 2194.

As a trade-off, the size of linear structure could be larger for less rounds, e.g.,
up to 2512 for 2 rounds. So the distinguisher works as below

| m+1←−−−−−−−
backward

| 1+n−−−−−−→
forward

|.

While there is one free round less, we can afford larger complexities, e.g., with
m = 5 and n = 8, we can distinguish m + n + 2 = 15 rounds with complexity
21+max(2n,3m) = 2257. Results of other choices of (m,n) are listed in the second
column of Table 1.

As a direct application to the 12-round Keccak-f permutation used in the
CAESAR candidate Keyak [8], the 3-round linear structure is large enough and
the choice of (m = 3, n = 6) results in attack complexity 265. Ketje [7] uses
a 12-round Keccak-f permutation reduced to 400 bits (denoted as Keccak-
p[400, nr = 12]), by reducing the length of lanes from 64 to 16 bits. When we
project the zero-sum distinguisher to this small variant, the maximum sizes of
linear structures are reduced to 512/4 = 128 and 192/4 = 48 bits respectively for
2 and 3 rounds. While the size for the 3-round linear structure is insufficient for
distinguishing 12 rounds, the 128-bit 2-round linear structure makes it eligible
with complexity 282. We note that though our distinguishers work for 12-round
Keccak-f , they do not result in attacks in settings of authenticated cipher
against Keyak or Ketje.

In summary our improved zero-sum distinguishers work for up to 15 rounds,
and for up to 11 rounds with practical complexities.

Experiments. We have made an experiment for verifying our distinguishers on
Keccak-f permutation reduced to 7 rounds in the forward direction. We use
the structure with degrees of freedom up to 64 as shown in Sect. 4.2. Note that
all the bits of the 7-round output have algebraic degree at most 27−2 = 32 for
this structure. It is sufficient to use a 33 dimensional space. In our experiment,
31 out of those 64 variables are first randomly valued and fixed, then the outputs
are summed over all the possible values of the rest input variables. It turns out
that all the 1600 bits of this sum are zeros.
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6 Preimage Attacks

In this section, we exploit algebraic techniques to mount preimage attacks on
several variants of Keccak based on the properties of the Sbox χ and the linear
structures of Keccak-f permutation. The preimage attacks on SHA-3 are the
same except that the time complexity may be at most 22 larger in some cases
due to the two extra padding bits. In general, here we find preimages of message
with length ≤ r − 2 bits by setting the (r − 1)-th bit of the input state to
be 1 so that the padded message is one block, unless the degree of freedom is
insufficient. We choose the message in such a way that the internal states of the
first few rounds follow linear structures as presented in Sect. 4 and the χ of the
last round is inverted by the methods presented in Sect. 3. To achieve smallest
possible time complexities, we will use different linear structures, and different
methods inverting the χ for each instance of Keccak. Note, the first r − 1 bits
of the input to Keccak-f can be chosen freely by choosing the proper message
bit values. However, the last c = b − r bits could not be chosen since there is no
addition of message bits, so we can only choose “variables” of linear structures
from the first r−1 bits, and this is why we must use different linear structures for
different instances. In what follows, we present the preimage attacks by showing
the choice of linear structures, ways to invert the Sbox, followed by a complexity
analysis of each instance attacked. The basic idea of our attacks is to set up and
solve linear equations. The complexity in this section is measured by the number
of times for solving the linear system of equations.

6.1 Preimage Attacks on 2-Round Keccak

First we discuss the preimage attacks on Keccak reduced to 2 rounds. They fol-
low 1-round linear structures, plus 1-round inversion of the Sbox. These attacks
adopt some similar ideas of meet-in-the-middle [23], while they exploit the lin-
ear structures of Keccak. For 2-round Keccak-512, we execute the attack as
follows (depicted in Fig. 8):

1. Invert the first 320 bits of a given hash value h through χ−1 ◦ ι−1. Note these
bits form the full output of the 64 Sboxes in the first row, so the corresponding
input bits can be fully determined.

2. Randomly guess the values of the lanes in white of the state input to the first
round, as shown in Fig. 8, where the 1024 bits of the lanes in lightgray are
set to all zeros and the last bit of A[3, 1] is set to 1 such that the state input
to the first round satisfies the padding rule;

3. For each guess, we set A[0, 1] = A[0, 0] + α0 and A[2, 1] = A[2, 0] + α2 with
random constants α0, α2, build a linear system between A[0, 0], A[2, 0] and
the recovered 320 input bits of the χ in the second round, then solve this
system and check whether the resulted hash value is correct.

Since A[0, 0] and A[2, 0] have 128 bits, so we have a complexity gain over brute-
force of 2128, i.e., 2512−128 = 2384 for 2-round Keccak-512 preimage attack.
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Fig. 8. Preimage attack on 2-round Keccak-512

Note the degree of freedom in our setting is sufficient to find a preimage even-
tually. There are 128 bits from A[0, 0] and A[2, 0], 319 bits from white lanes,
and 128 bits from α0 and α2, which sums to 575 bits, larger than the required
512 bits.

For the 2-round Keccak-384, the attack is similar to that for Keccak-512,
except that we can construct linear structure from r = 1600 − 2 × 384 − 1 = 831
bits instead of 575 bits for Keccak-512. We can obtain a linear structure of
256-bit variables from (A[0, 0], A[0, 1], A[2, 0], A[2, 1]) with A[0, 2] = A[0, 0] ⊕
A[0, 1] ⊕ α0 and A[2, 2] = A[2, 0] ⊕ A[2, 1] ⊕ α2, hence a linear system of 256-bit
equations, as shown in Fig. 9. For generating a message satisfying the padding
rule, we just need a solution with the last bit of A[2, 2] being 1. Therefore, the
time complexity of this attack is 2384−256+1 = 2129.

Fig. 9. Preimage attack on 2-round Keccak-384
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Noting that we can obtain 4 linear equations on the input bits given 4 output
bits of the 5-bit Sbox χ. We can also apply the above preimage attack to 2-round
Keccak-256, by solving the system of linear equations just once, i.e., with time
complexity 1. As a feature of sponge functions, all other variants with digest
size less than 256 bits could be attacked in exactly the same way by randomly
presetting the extra digest bits not outputted.

6.2 Preimage Attacks on 3-Round Keccak

Next, we show preimage attacks on several instances of Keccak reduced to 3
rounds.

Preimage attacks on 3-round SHAKE128. SHAKE128(M , �) is an instance of
SHA-3 standard defined from Keccak[r = 1344, c = 256], with unlimited output
length �. We focus on the preimage attack on SHAKE128(M , 128), denoted by
SHAKE128 hereinafter for simplicity.

Fig. 10. Preimage attack on 3-round SHAKE128

Similar to that in Sect. 4.2, we set A[i, j] with i = 0, 2 and j = 0, 1, 2, 3 being
variables, and impose some conditions on the input bits such that all the output
bits after two rounds are linear, as shown in Fig. 10. A[0, 4] is set to any constant
such that M is a legal message. The lanes in gray and lightgray are set to all
ones and all zeros. To make sure that all the output bits after two rounds are
linear, we require:

A[0, 0] ⊕ A[0, 1] ⊕ A[0, 2] ⊕ A[0, 3] = A[0, 4] ⊕ 0xff· · · f,
A[2, 0] ⊕ A[2, 1] ⊕ A[2, 2] ⊕ A[2, 3] = 0xff· · · f,
A[2, 0]≪62 = A[0, 0] ⊕ A[2, 2]≪43,

A[2, 1]≪6 = A[0, 1]≪36 ⊕ A[2, 3]≪15,

A[2, 2]≪43 = A[0, 2]≪3,

A[2, 3]≪15 = A[0, 3]≪41 ⊕ A[2, 0]≪62.
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All these 6 × 64 linear equations are linearly independent and thus have 2128

solutions. We expect that there is one solution matching the given 128-bit hash
value. Since π ◦ ρ ◦ θ is linear, the bits input to χ of the last round are all linear
on the variables. For SHAKE128, the first two output bits of each 5 bits of the
64 Sboxes χ in the first row of the last round are known. According to the
properties of χ as shown in Table 4, we can set up 1 linear equation for each
Sbox, hence 64 linear equations in total between the input bits to the Sboxes
of the last round and hash value. There are two methods to obtain extra 64
linear equations, as shown in Sect. 3.1, including guess-and-determine technique
in Setting 1 and probabilistic linearization in Setting 2. For the former, we guess
32 bits input to χ of the last round and obtain 64 more linear equations, which
will find the correct solution in 232. For the latter, we exploit the probabilistic
equations bi = ai’s each of which holds with probability 0.75. Since we have 64
probabilistic equations, the total probability of this system is 0.7564 = 2−26.6.
We can expect a correct solution from 226.6 such systems which can be obtained
by changing the values of A[0, 4]. Thus the complexity of this attack is 226.6.

Preimage attacks on 3-round Keccak[r = 1440, c = 160, � = 80]. Similar
techniques as presented previously allow us to find solutions for the 3-round
preimage challenge with width 1600 in the Keccak Challenge [4]. As shown in
Fig. 11, we set the lanes with orange slashes of the first state to be variables. The
31st bit of A[2, 4] is set to 1 for ensuring that the state input to the first round
complies with the padding. Finally, we get 161 degrees of freedom such that the
bits input to χ of the last round are all linear. The sketch of the processing is
shown in Fig. 11. According to the properties of χ as presented in Sect. 3.1, we
can set up 16 linear equations between the bits input to the last χ and hash
value. We can obtain extra 2 × 64 linear equations by guessing 64 bits input
to the last χ. Now, we build a linear system of 16 + 2 × 64 = 144 equations
on 161 variables. Therefore, we immediately get correct solutions for any given
hash value by solving this system. A solution for the 3-round preimage challenge
with width 1600 is listed as below, where the message has length 1438 and each
64-bit word is expressed in hexadecimal.

Fig. 11. Preimage attack on 3-round Keccak[r = 1440, c = 160, � = 80]
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Challenge:

e7cfc02846a32506 756c

Preimage:

01e0bc766796d36f ffffffffffffffff bd25fc21a299814e 0000000000000000 0000000000000000

cc85265f6f0e696a ffffffffffffffff 3a6f339c0eb075b9 0000000000000000 0000000000000000

d22ac7903b459dc2 ffffffffffffffff 903a19e9986a2ac7 0000000000000000 0000000000000000

539674b5f5e23187 ffffffffffffffff 1770d654e35ec89e 0000000000000000 0000000000000000

b326d6f339c0e9bf ffffffffffffffff d71d16ae

Preimage attacks on 3-round Keccak [r = 640, c = 160, � = 80]. Similar
techniques also allow us to find solutions for the 3-round preimage challenge
with width 800. The sketch of the attack is shown in Fig. 12. To keep two rounds
being linear, the six lanes with orange slashes of input state are expressed by
64 variables for any fixed values of auxiliary variables, and the two lanes with
red grid, A[3, 0] and A[4, 3], are represented by 32 auxiliary variables. We set
up 64 linear equations on 64 variables for a given 80-bit hash value by guessing
8 bits of the variables, and expect a correct preimage for 216 tries. The time
complexity of this attack is 224. As a matter of fact, the time complexity can be
further cut down to 27 by applying a similar attack as described in Sect. 6.4. A
solution for the 3-round preimage challenge with width 800 is listed as below,
where the message has length 638.

Fig. 12. Preimage attack on 3-round Keccak[r = 640, c = 160]

Challenge:

0e668099c5b57b00 9302

Preimage:

ffffffff1097e68a 069e5c9097c2a342 9128124400000000 3bc3a3a300000000 0000000000000000

0000000056ace9cb 00000000cb56ace9 2ba3ccb200000000 990fc4d300000000 ff2c346d00000000

Preimage Attacks on 3-Round Keccak-224 and Keccak-256. Since
the rates r of Keccak-224 and Keccak-256 are much smaller than that of
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SHAKE128, there are less choices of constant part when keeping two rounds being
linear with as many degrees of freedom as possible. For Keccak-256, we use
384 variables A[i, j], i = 0, 2, j = 0, 1, 2, out of which there will be 64 indepen-
dent variables after forcing the sum of variables in column 0, 2 of the input to
θ in the first round, and in column 0, 1, 2 of the input to the θ in the second
round to be constants as depicted in Fig. 13, i.e., the size of this linear structure
is 264. However, it is insufficient to match a 256-bit hash value by 64-bit vari-
ables. To get enough choices for the state input to the first round, we set the
constant part by using 128 auxiliary variables A[3, 0] and A[4, 2] such that the
linear structure remains linear after two rounds for any fixed values of auxiliary
variables. As depicted in Fig. 13, we required that the gray and lightgray lanes
of the state after step θ of the first round are respectively ones and zeros. To
achieve this, we first fix the values of A[0, 3] and A[3, 0], and then set up 192
linear equations,

⊕4
j=0(A[i − 1, j] ⊕ (A[i + 1, j] ≪ 1)) = 0xff· · · f, i = 1, 4 and

⊕4
j=0(A[i − 1, j] ⊕ (A[i + 1, j] ≪ 1)) = 0, i = 3, which implies that A[4, 2] is

determined by A[3, 0]. To make sure that the variables do not affect the other
bits after step θ of the second round, we impose 192 more equations according to
the value of A[1, 2]. Finally, the six lanes with orange slashes of input state can
be expressed by 64 variables for any fixed values of auxiliary variables, and the
two lanes with red grid can be represented by 64 auxiliary variables. As usual,
we can set up 64 linear equations on these 64 variables for a given 256-bit hash
value. Since there are 264 choices for variable lanes, 264 choices for auxiliary vari-
able lanes, and 2128 choices for constant lanes, we have 2256 choices for the state
input to the first round, and we expect a correct solution. The time complexity
of this attack is 2192.

The preimage attack on Keccak-224 is similar, as shown in Fig. 14. To keep
two rounds being linear, the eight lanes with orange slashes of input state are
expressed by 128 variables for any fixed values of auxiliary variables, and the
four lanes with red grid are represented by 64 auxiliary variables. We set up 128
linear equations on 128 variables for a given 224-bit hash value (half solutions
correspond to legal messages), and expect a correct preimage for 297 tries. The
time complexity of this attack is 297.

Fig. 13. Preimage attack on 3-round Keccak-256
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Fig. 14. Preimage attack on 3-round Keccak-224

6.3 Preimage Attacks on 3-Round Keccak-384/512 and 4-round
Keccak-224/256

For 3-round Keccak-512, on one hand, we have 128 variables such that the bits
input to step χ of the second round are all linear, as depicted in Fig. 8; on the
other hand, we can directly inverse 320 bits through χ−1 ◦ ι−1 from a given hash
value, each bit of which is a sum of 11 bits of the output of the second round.
Since π ◦ ρ just permutate the positions of the bits and ι just add a constant
to the first lane, they do not increase the nonlinear terms, and thus we neglect
these steps in the last one and a half rounds.

M
π◦ρ◦θ◦R−−−−−−−→

1.5 rounds
A

ι◦χ−−−→ B
θ−−→ C

π◦ρ−−−→ | χ−1◦ι−1

←−−−−−− h.

The expressions of θ and χ are given as follows,

χ : B[x][y][z] = A[x][y][z] ⊕ (A[x + 1][y][z] ⊕ 1) · A[x + 2][y][z],

θ : C[x][y][z] = B[x][y][z] ⊕
4⊕

y′=0

B[x − 1][y′][z] ⊕
4⊕

y′=0

B[x + 1][y′][z − 1].
(14)

Since the bits input to step χ of the second round are all linear, each output
bit of the second round is quadratic and the quadratic part is a product of two
linear combinations. Note that the quadratic parts of B[x][y][z] and B[x−1][y][z]
share a common factor A[x+1][y][z] according to (14). We linearize C[x][y][z] by
guessing 10 bits input to step χ. That is, we obtain 11 = 1 + 10 linear equations
and match 1 bit of the hash value. As such, we can match 
 128

11 � = 11 bits of the
hash value since we have 128 variables. The time complexity of this preimage
attack is 2501.

For 3-round Keccak-384, we set the last bit of A[2, 2] to be 1 and have 255
variables such that the bits input to step χ of the second round are all linear,
as depicted in Fig. 9, and thus the time complexity of the preimage attack is
2384−� 255

11 � = 2361.
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For Keccak-224/256, we cannot inverse the hash value through χ−1 as
Keccak-384/512, but we can set up the equations such as a0 = b0 for b1 = 1
according to (6). Since we have 127 and 64 variables such that the bits input to
step χ of the third round are all linear, as depicted in Figs. 14 and 13, the time
complexities for 4-round Keccak-224/256 are respectively 2213 and 2251.

Improved Preimage Attacks on 3-Round Keccak-384 and Keccak-512.
In the above attacks, we assume that all the guessed linear combinations are
linearly independent. It is possible to cut down the time complexity if elaborately
choose linearly dependent ones, since there will be more degrees of freedom for
guessing more linear combinations to match more bits of the hash value. For
3-round Keccak-384/512, we can further improve the attacks by this method.
Since we can inverse 320 bits of through χ−1 ◦ ι−1 from a given hash value, we
can choose the bits which share a sum of one column (according to the property
of θ) or common linear parts in quadratic terms (according to the property of χ).

By (14), B[x − 1][y][z] and B[x][y][z] are linear after guessing the value of
A[x + 1][y][z] for 0 ≤ y ≤ 4. It is also true that B[x + 1][y][z − 1] and B[x +
2][y][z − 1] are linear after guessing the value of A[x + 3][y][z − 1] for 0 ≤ y ≤ 4.
This means that after guessing the above 10 bits input to step χ, we not only
linearize C[x][y][z], but also obtain an extra equation:

C[x + 1][y + 1][z] = B[x + 1][y + 1][z] ⊕
4⊕

y′=0

B[x][y′][z] ⊕
4⊕

y′=0

B[x + 2][y′][z − 1],

the quadratic part of which only appears in B[x+1][y+1][z]. Thus we can set up
2 extra linear equations and match one more bit of the hash value by guessing
one more bit. Totally we set up 13 linear equations and match two bits of the
given hash value.

Then we consider another two equations:

C[x + 2][y + 2][z − 1] = B[x + 2][y + 2][z − 1] ⊕
4⊕

y′=0

B[x + 1][y
′
][z − 1] ⊕

4⊕

y′=0

B[x + 3][y
′
][z − 2],

C[x + 3][y + 3][z − 1] = B[x + 3][y + 3][z − 1] ⊕
4⊕

y′=0

B[x + 2][y
′
][z − 1] ⊕

4⊕

y′=0

B[x + 4][y
′
][z − 2].

Again, we can set up another 8 linear equations and match two more bits of the
hash value by guessing 6 more bits.

Generally, we can match 2
 t−5
8 � bits of a given hash value if we have t

variables. For 3-round Keccak-384/512, we have 255 and 128 variables, and
thus match 62 and 30 bits respectively. Therefore, the time complexities of this
improved preimage attack are respectively 2322 and 2482 for 3-round Keccak-
384/512.

6.4 Improved Preimage Attacks on SHAKE128

The idea presented in Sect. 6.3 also applies to SHAKE128. In this section we extend
it to improve the preimage attacks on SHAKE128.
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Instead of linearizing 2 rounds forward, we linearize 2 rounds by combining
one round forward and one round backward as discussed in Sect. 4.1, and we
have 512 variables such that these two rounds are linear. To make sure that the
state input to the first round corresponds to a legal message, we set up 262 linear
equations such that the last 256 bits are all zeros and the following last 6 bits
are all ones. Then there remains 250 degrees of freedom such that the bits input
to step χ of the third round are all linear.

For 3-round SHAKE128, we set up 64 linear equations between these 250 vari-
ables and a given hash value as the same way done in Sect. 6.2, and then obtain
extra 2 × 64 linear equations by guessing 64 bits input to step χ of the third
round. Each solution of this linear system corresponds to a preimage of the given
hash value. Therefore, the time complexity of this attack is 1.

For 4-round SHAKE128, given a 128-bit hash value, we expect 32 zeros and 32
ones among its last 64 bits (b1’s), and thus we can set up a linear system, which
matches 22 bits (b0’s) of the hash value, by guessing 220 bits input to step χ of
the third round. This attack gives a correct preimage in 2106.

6.5 Preimage Attacks on 4-Round Keccak
[r = 1440, C = 160, � = 80]

A similar attack as proposed in Sect. 6.4 also applies to Keccak[r = 1440, c =
160, � = 80]. In stead, we use two rounds forward and one round backward for
linearization. As shown in Sect. 4.2, we have 194 degrees of freedom for such
3-round linear structure. To make sure that the state input to the first round
corresponds to a legal message, we set up 161 linear equations such that the
last 161 bits are fixed. Then there remains 33 degrees of freedom such that the
bits input to step χ of the fourth round are all linear. Given an 80-bit hash
value of 4-round Keccak[r = 1440, c = 160, � = 80], we can set up 16 linear
equations by (6), and set up 17 probabilistic equations using bi = ai. This
attack gives a correct two-block preimage in 247+17×0.42 ≈ 254. We estimate
that the computations of the whole attack need approximately 220 CPU core
hours. We run this attack in less than 210 CPU core hours, and find a 78-bit
matched preimage of length 2874 for the 4-round Keccak preimage challenge
with width 1600.

Message:

bc739847dd59b8f6 21e6f9016ae9292d 44c2f9f008f175fc fb1a9d7d2f5af0d9 c709f78dfa830460

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 00000000

34d781770fae25d9 4bcdf7304704b1a0 aeb1cc6a3d9a4b9f 879b5b095e744910 09096232b744ac44

63faab93d1b6a3f5 7aca93b5c0c2afa0 f1b2772194934266 41e5a573d5efc16f 34e0e077bfb4ce43

48bb5cb11aa15738 3ecb466e4aa6fec3 4e3e5449626d5e2d ccec6be24c92d63b fb652d66cc6a4621

356d6bfdd56b1afb d9da9b8c0e366cd3 034ad6fdd9caa885 236ade6960c8edaf 03d6d60e45aeb00e

b8132036d4e20f33 8e4a29bbbd2c1cb8 8549b303
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Output:

7d aa d8 07 b0 50 6c 9c 02 76

Challenge:

7d aa d8 07 f8 50 6c 9c 02 76

Difference:

-- -- -- -- 48 -- -- -- -- --

7 Conclusions

In conclusion, we have described the linear structures of Keccak-f and exploited
them to analyze the security of Keccak, including zero-sum distinguishers on
Keccak-f permutation and preimage attacks on Keccak. Our distinguishers
work on Keccak-f reduced to up to 15 rounds, and are practical for up to
11 rounds. These results improve the previously best known distinguishers by
two more rounds with the same complexities. Our preimage attacks work on all
variants of Keccak reduced to up to 4 rounds except for 4-round Keccak-
384/512, much faster than the exhaustive search. Specially, in terms of practical
preimage attacks, we could find the preimage by solving a small linear system
just once for 2-round Keccak-224/256 and 3-round SHAKE128. With these tech-
niques, we have found preimages for 3-round Keccak Challenge with widths
1600 and 800, and a 78-bit matched preimage for 4-round Keccak Challenge
with width 1600. It will be interesting to see applications of linear structures to
other Keccak-like ciphers or functions.
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