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Abstract. This paper focuses on building a tweakable blockcipher from
a classical blockcipher whose input and output wires all have a size of
n bits. The main goal is to achieve full 2n security. Such a tweakable
blockcipher was proposed by Mennink at FSE’15, and it is also the only
tweakable blockcipher so far that claimed full 2n security to our best
knowledge. However, we find a key-recovery attack on Mennink’s pro-
posal (in the proceeding version) with a complexity of about 2n/2 adver-
sarial queries. The attack well demonstrates that Mennink’s proposal
has at most 2n/2 security, and therefore invalidates its security claim. In
this paper, we study a construction of tweakable blockciphers denoted as
˜E[s] that is built on s invocations of a blockcipher and additional simple
XOR operations. As proven in previous work, at least two invocations
of blockcipher with linear mixing are necessary to possibly bypass the
birthday-bound barrier of 2n/2 security, we carry out an investigation on
the instances of ˜E[s] with s ≥ 2, and find 32 highly efficient tweakable

blockciphers ˜E1, ˜E2, . . ., ˜E32 that achieve 2n provable security. Each of
these tweakable blockciphers uses two invocations of a blockcipher, one
of which uses a tweak-dependent key generated by XORing the tweak to
the key (or to a secret subkey derived from the key). We point out the
provable security of these tweakable blockciphers is obtained in the ideal
blockcipher model due to the usage of the tweak-dependent key.

Keywords: Tweakable blockcipher · Full security · Ideal blockcipher ·
Tweak-dependent key

1 Introduction

Tweakable blockcipher, formalized by Liskov et al. [34,35], introduces an addi-
tional parameter called tweak to the classical blockcipher. More formally,
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a classical blockcipher E : K × M → M is a family of permutations on M
indexed by a secret key k ∈ K. A tweakable blockcipher ˜E : K ×T ×M → M is
a family of permutations on M, indexed by two functionally distinct parameters:
a key k ∈ K that is secret and used to provide the security, and a tweak t ∈ T
that is public and used to provide the variability. The tweak is assumed to be
known or even controlled by the adversary. ˜E is considered secure if it with a
secret key k uniformly chosen from the key space K is indistinguishable from an
ideal tweakable blockcipher ˜P : T ×M → M that is a family of random permu-
tations on M indexed by a public tweak t ∈ T . As a more natural primitive for
building modes of operation, tweakable blockcipher has found wide applications.
Examples include encryption schemes [7,16,23,43,49,53], authenticated encryp-
tion [1,34,47,48], and disk encryption [24,25]. Moreover, many candidates of the
ongoing cryptographic competition CAESAR [5] on authenticated encryption
are based on tweakable blockciphers, e.g., Deoxys [29], Joltik [30], Scream [22],
SHELL [51], etc.

There are mainly three approaches to design a tweakable blockcipher. The
first one is from the scratch, including Hasty Pudding Cipher [50], Mercy [12]
and Threefish (used in the hash function SKEIN [19]). Such designs usually have
a drawback of lacking a security proof.

The second approach is to introduce the additional parameter tweak to
generic constructions of blockcipher, including tweaking Luby-Rackoff cipher or
Feistel cipher [20], tweaking Generalized Feistel cipher [44] and tweaking key-
alternating cipher or (iterated) Even-Mansour [9–11,18,21,28,39]. These tweak-
able blockciphers except TWEAKEY framework in [28] are provably secure. In
details, the designs in [11,18,20,39,44] have a provable security up to 2n/2 adver-
sarial queries, often referred to as the birthday-bound security with respect to
the n-bit block size of the underlying blockcipher (that is, the message space
M = {0, 1}n). To bypass the birthday-bound barrier and to achieve a higher
security bound, Jean et al. proposed TWEAKEY framework [28] to construct
ad-hoc tweakable blockciphers from key-alternating ciphers, and specified several
TWEAKEY instances which are conjectured fully 2n secure but lack formal secu-
rity proofs. After that, Cogliati et al. designed several tweakable blockciphers1

by tweaking Even-Mansour ciphers in [9,10], and these proposals are provably
secure up to 22n/3 adversarial queries.

The last and the most common approach is to start from a classical block-
cipher and to use it as a black box to build a tweakable blockcipher, including
LRW1 [34], LRW2 [34], variants and extensions of LRW2 such as XEX and
CLRW2 [6,31,32,40,46,47], Minematsu’s design [41] and Mennink’s design [36].
Early proposals LRW1, LRW2, XEX and their variants [6,34,40,47] are lim-
ited to the birthday-bound security. After that, cryptographers considered the
cascade of LRW2 in order to design tweakable blockciphers achieving beyond-
birthday-bound security. One evaluation of LRW2 contains one invocation of a
blockcipher, one invocation of a universal hash function, and each evaluation

1 These tweakable blockciphers can be regarded as instances of TWEAKEY frame-
work.
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of LRW2 in the cascade construction requires an independent secret key. Lan-
decker et al. proposed CLRW2 [32] that makes two evaluations of LRW2 (that
is, two calls to a blockcipher, two invocations of a universal hash function, and
two secret keys), and is proven secure up to 22n/3 adversarial queries.2 Lampe
and Seurin analyzed the general case of the cascade of LRW2 [31]. For such
a tweakable blockcipher making s evaluations of LRW2 (that is, s invocations
of the underlying blockcipher and universal hash function, and s secret keys),
they proved that it has a security up to 2sn/(s+2) queries (against adaptive
chosen-ciphertext adversaries), and also conjectured that its security bound can
be improved to 2sn/(s+1) queries. Therefore by increasing the integer s, these
tweakable blockciphers asymptotically approach full 2n security, but meanwhile
the efficiency gets worse as the necessary number of blockcipher invocations,
universal hash function invocations, and the necessary key size linearly increase
with s. Another direction to design a tweakable blockcipher achieving beyond-
birthday-bound security is to use so-called tweak-dependent key. Roughly speak-
ing, a tweak-dependent key is a key of an invocation of blockcipher in a tweakable
blockcipher that is generated depending on the tweak. Liskov et al. suggested
in [34] that changing the tweak should be less costly than changing the key from
the efficiency concerns. Following it, early proposals of tweakable blockcipher
avoided the usage of the tweak-dependent key. However, recently Jean et al. [28]
pointed out that this suggestion is somewhat counter-intuitive from the security
concern, because the adversary has full control on the tweak, but has very limited
control on the key. They suggested that the tweak and the key should be treated
comparably. In fact even before Jean et al.’s work, Minematsu [41] proposed
a tweakable blockcipher built on two invocations of blockcipher, one of which
uses a tweak-dependent key. His design is proven secure up to max{2n/2, 2n−|t|}
adversarial queries, where |t| is the bit size of the tweak (that is, the tweak space
T = {0, 1}|t|). Hence Minematsu’s design is beyond-birthday-bound secure as
long as the tweak is shorter than n/2 bits. A scheme XTX has been proposed
to extend the tweak-length of any black-box tweakable blockcipher by using
a universal hash function [42]. Recently Mennink [36] proposed two tweakable
blockciphers ˜F [1] and ˜F [2] with the usage of the tweak-dependent key. ˜F [1] con-
sists of one invocation of blockcipher and one finite-field multiplication, and is
proven secure up to 22n/3 adversarial queries. ˜F [2] makes two calls to blockcipher,
and is surprisingly proven secure up to 2n adversarial queries, that is achieving
full security with very high efficiency. On the other hand, the security proof
of Mennink’s designs [36] are in the ideal blockcipher (information-theoretic)
model, while other proposals [6,31,32,34,40,41,47] have security proofs in the
standard (complexity-theoretic) model of assuming the underlying blockcipher
as a pseudorandom permutation.

Our Contributions. In this paper, we focus on constructing tweakable block-
ciphers that achieve full 2n security. This is mainly motivated by the scenarios
where the blockciphers only have 32-, 48- or 64-bit block size, e.g., Simon and
2 A flaw in the original proof was found and fixed by Procter [46].



458 L. Wang et al.

Speck family of blockciphers [3] (refer to Sect. 4.2 for more discussions). As sum-
marized above, so far there is only one tweakable blockcipher ˜F [2] designed by
Mennink [36] that claims full security. As a first contribution, we present a key-
recovery attack on ˜F [2] with a complexity of around 2n/2 adversarial queries,
which invalidates the designer’s security claim in [36]. Our attack has been veri-
fied by the designer [38]. Accordingly Mennink proposed a patch [37] to ˜F [2] of
the proceeding version, which can resist our key-recovery attack.

This paper designs tweakable blockciphers from classical blockciphers in the
black-box way, that is following the above third design approach. We focus on a
construction of tweakable blockcipher (see Fig. 2 as an example) denoted as ˜E[s] :
K×T ×M → M, which consists of s invocations of a blockcipher E : K×M →
M and extra simple XOR operations. As a second and main contribution, we
carry out a heuristic search to investigate the instances of ˜E[s], and successfully
find 32 highly efficient tweakable blockciphers ˜E1, ˜E2, . . ., and ˜E32 that achieve
full 2n security. Each of these tweakable blockcipher (see Figs. 6 and 7) makes
two calls to the blockcipher E. In details, the first blockcipher call is to derive a
secret subkey y from the key k such that y = E(k, k), y = E(k, 0) or y = E(0, k).
The second blockcipher call encrypts a plaintext p (or decrypts a ciphertext c)
with a tweak-dependent key, which is generated by XORing the tweak t to the
key k, the subkey y, or k ⊕ y. In particular, we stress that by pre-computing
and storing the subkey y, our tweakable blockciphers just need to make one
blockcipher call for encrypting (t, p) or decrypting (t, c).

A comparison with previous tweakable blockciphers is detailed in Table 1. The
main advantage of our designs is optimal 2n provable security and high efficiency.
From the security view, previous tweakable blockciphers except LRW2[s](with
s → ∞) and the patched ˜F [2] (in ePrint version) have (at most) 22n/3 provable
security. From the efficiency view, LRW2[s] requires s blockcipher calls, and
s universal hash function invocations, and hence the efficiency is significantly
worse. Our designs also have an efficiency advantage compared with the patched
˜F [2], as our designs require just one blockcipher call for encrypting a plaintext
or decrypting a ciphertext when the subkey is pre-computed and stored.

Organization. The rest of the paper is organized as follows. Section 2 gives
notations and definitions. Section 3 describes a key-recovery attack on Mennink’s
proposal. Section 4 presents the target construction, design goal and search strat-
egy. We then write the search procedure and the found constructions in Sect. 5,
and provide security proofs in Sect. 6. Finally we conclude the paper in Sect. 7.

2 Preliminaries

2.1 Notations

{0, 1}n denotes the set of all n-bit strings. For a, b ∈ {0, 1}n, a ⊕ b denotes
their bitwise exclusive-OR (XOR). For a ∈ {0, 1} and b ∈ {0, 1}b, a · b denotes
the multiplication of a and b, that is equal to b if a = 1, and equal to 0 if
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Table 1. Comparison of our designs with previous tweakable blockciphers: if we pre-
compute and store the subkey, ˜E1, . . . , ˜E32 require just one blockcipher call for encrypt-
ing a plaintext or decrypting a ciphertext.

tweakable key security cost tdk reference

blockciphers size (log2) E ⊗/h

LRW1 n n/2 1 0 N [34]

LRW2 2n n/2 1 2 N [34]

XEX n n/2 1 0 N [47]

LRW2[2] 4n 2n/3 2 2 N [32]

LRW2[s] 2sn sn/(s + 2) s s N [31]

Min n max{n/2, n − |t|} 2 0 Y [41]
˜F [1] n 2n/3 1 1 Y [36]
˜F [2] n n/2 2 0 Y [36]

patched ˜F [2] n n 2 0 Y [37]

˜E1, . . . , ˜E32 n n 2 (1) 0 Y Sect. 5

– ⊗/h stands for multiplications or universal hashes;
– tdk stands for the tweak-dependent key. ‘N’ refers to not using

tdk, and ‘Y’ refers to using tdk;
– |t| stands for the bit length of the tweak;

a = 0. For a finite set X , x
$← X denotes that an element x is selected from X

uniformly at random. |X | denotes the number of the elements in X . Blockcipher
is commonly denoted as E : K × M → M, and tweakable blockcipher as ˜E :
K × T × M → M, where K is the key space, T is the tweak space, and M
is the message space. Throughout this paper, we fix K = T = M = {0, 1}n.
Let E(k, ·) and E−1(k, ·) be the encryption and the decryption of blockcipher E
with a key k ∈ K respectively. Let E±(k, ·) consist of both E(k, ·) and E−1(k, ·).
Sometimes we denote E(k, ·), E−1(k, ·) and E±(k, ·) as Ek(·), E−1

k (·) and E±
k (·)

respectively. Similarly we define notations ˜E(k, ·, ·), ˜E−1(k, ·, ·), and ˜E±(k, ·, ·)
for tweakable blockcipher ˜E, which can also be denoted as ˜Ek(·, ·), ˜E−1

k (·, ·)
and ˜E±

k (·, ·), respectively. An input-output tuple of E is commonly denoted as
(l, u, w) such that w = E(l, u). An input-output tuple of ˜Ek with k

$← K is
denoted as (t, p, c) such that ˜Ek(t, p) = c. Let Bloc be the set of all blockciphers
with key space K and message space M. A blockcipher E is said to be an ideal
blockcipher if it is selected from Bloc uniformly at random, that is E

$← Bloc.
Let P̃erm be the set of all functions ˜P : T × M → M such that for each t ∈ T ,
˜P (t, ·) is a permutation on M. A function ˜P is said to be an ideal tweakable
blockcipher if it is selected from P̃erm at random, that is ˜P

$← P̃erm. Similarly
we define notations ˜P (·, ·), ˜P−1(·, ·) and ˜P±(·, ·).



460 L. Wang et al.

2.2 Tweakable Blockcipher and Security Definition

A distinguisher D is an algorithm that is given query access to one (or more)
oracle of being either O or Q, and outputs one bit. Its advantage in distinguishing
these two primitives O and Q is defined as

Adv(D) =
∣

∣Pr
[

DO ⇒ 1
]

− Pr
[

DQ ⇒ 1
]∣

∣

A tweakable blockcipher with key space K, tweak space T and message space
M is a mapping ˜E : K × T × M → M such that for any key k ∈ K and any
tweak t ∈ T , ˜E(k, t, ·) is a permutation over M. The security of a tweakable
blockcipher is defined via upper bounding the advantage of distinguisher D in
the following game. D is given query access to oracles (O1, E

±): O1 is either
˜E±
k (·, ·) with k

$← K or an ideal tweakable blockcipher ˜P (·, ·) $← P̃erm; E± is an
ideal blockcipher (that is E

$← Bloc) which is used as the underlying blockcipher
of ˜E. The advantage of D in distinguishing ˜E and ˜P is defined as

Advs̃prp
˜E

(D) =
∣

∣

∣Pr
[

D ˜E
±
k (·,·),E±(·,·) ⇒ 1

]

− Pr
[

D ˜P±(·,·),E±(·,·) ⇒ 1
]∣

∣

∣ ,

where the probabilities are taken over the choices of k
$← K, E

$← Bloc, ˜P
$←

P̃erm, and D’s coin (if any).
Throughout the paper, we consider information-theoretic distinguisher D

such that D is computationally unbounded, but sorely limited by the number of
queries to its oracles. We write

Advs̃prp
˜E

(q) = maxD{Advs̃prp
˜E

(D)},

where the maximum is taken over all distinguisher D that makes at most q
queries to its oracles.

A tweak-dependent key of a tweakable blockcipher is a key of an invocation of
blockcipher which is generated depending on the tweak. In other words, changing
the value of tweak leads to re-keying that blockcipher call. Liskov et al. suggested
in [34] that changing the tweak should be less costly than changing the key.
However, Jean et al. [28] pointed out that this suggestion is counter-intuitive,
because the adversary has full control on the tweak, but has very limited control
on the key. Indeed the tweak and the key should be treated comparably.

2.3 The H-Coefficient Technique

Our proof adopts the H-coefficient Technique [8,45], which is briefly introduced
as follows. This paper considers information-theoretic distinguisher D that is
computationally unbounded. Hence without loss of generality, we always assume
D is deterministic. Suppose D interacts with O and Q, and its advantage is
defined in Sect. 2.2. A view v is the query-response tuples that D receives when
interacting with O or Q. Let X be the probability distribution of the view when
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D interacts with O, and Y be the probability distribution of the view when
D interacts with Q. V is defined as the set of all attainable views v while D
interacting with Q, that is V = {v | Pr[Y = v] > 0}.

The H-coefficient technique evaluates the upper bound of Adv(D) as follows.
Firstly, partition V to two disjoint subsets Vgood and Vbad such that V = Vgood ∪
Vbad. Secondly, estimate a real value εvgood with 0 ≤ εvgood ≤ 1 such that for
each view v ∈ Vgood, it has that

Pr [X = v]
Pr [Y = v]

≥ 1 − εvgood .

Moreover, compute the probability of D receiving a view from Vbad when inter-
acting with Q, that is Pr [Y ∈ Vbad]. Finally, conclude that the advantage of D
is upper bounded as

Adv(D) ≤ εvgood + Pr [Y ∈ Vbad] .

3 Key-Recovery Attack on Mennink’s Design [36]

This section presents a key-recovery attack on Mennink’s design in [36], which
is depicted in Fig. 1. Let ˜Ek : T × M → M to denote Mennink’s tweakable
blockcipher with a secret key k ∈ K and E : K × M → M to denote its
underlying blockcipher. The key-recovery attacker has query access to ˜E±

k (·, ·)
and E±(·, ·). The attack procedure is detailed below.

At first step, the attacker recovers the value of E(k, 0) by sending one query
(0, 0) to ˜E−1

k (·, ·) to receive a plaintext p such that E(k, 0) = p holds. This is
based on an observation for the case of tweak t = 0 and ciphertext c = 0.

• tweak t = 0 implies that the two blockcipher calls in ˜Ek shares the same key
value, and hence are identical permutation.

• ciphertext c = 0 implies that the outputs of two blockcipher calls in ˜Ek are
equal from c = y1 ⊕ y2 = 0, that is y1 = y2.

When querying (t = 0, c = 0) to ˜E−1
k (·, ·), it has that x2 = t = 0, and in turn the

received plaintext p = y1⊕x2 = y1, where y1 is computed as y1 = E(k, 0). Hence
the attacker gets the value of E(k, 0) by sending one query (0, 0) to ˜E−1

k (·, ·).

Fig. 1. Tweakable blockcipher in [36]
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At second step, the attacker collects and stores a set of E(k⊕ t, const), where
const is a fixed constant, for 2n/2 distinct tweak values t by making 2n/2+1

queries to ˜Ek(·, ·). In details, for each tweak t, the attacker starts with recovering
the value of E(k, t) by sending one query (0, E(k, 0) ⊕ t) to ˜Ek(·, ·) to receive
ciphertext c and computing E(k, t) = c ⊕ E(k, 0). The reason is as follows. Note
y1 = E(k, 0). It has x2 = (E(k, 0) ⊕ t) ⊕ y1 = t, which implies y2 = E(k, t).
Also from c = y1 ⊕ y2, it has that y2 = c ⊕ y1 = c ⊕ E(k, 0). Hence E(k, t) is
equal to c ⊕ E(k, 0). Next and with a similar reason, the attacker recovers the
value of E(k ⊕ t, const) by sending one query (t, E(k, t) ⊕ const) to ˜Ek(·, ·), and
computing E(k ⊕ t, const) = c ⊕ E(k, t). Overall, the attacker is able to recover
the value of E(k ⊕ t, const) for any tweak t, by sending two queries to ˜Ek(·, ·).

At third and the last step, the attacker selects 2n/2 distinct values l,
queries (l, const) to E(·, ·) to receive E(l, const), and matches it to the set
{E(k⊕t, const)} stored at second step. If a match is found that is E(k⊕t, const) =
E(l, const), the attacker recovers the secret key k as k = l ⊕ t.

Now we evaluate the complexity and the success probability. The first step
requires one query, the second step requires 2n/2+1 queries and the last step
requires 2n/2 queries. Summing up, the total complexity is less than 2n/2+2

queries. Since there are 2n/2 distinct tweak values t and 2n/2 distinct values l,
the probability of existing a value of t and a value of l such that t ⊕ l = k
is trivially computed as 1 − (1 − 2−n)2

n ≈ 1 − 1/e ≈ 0.63. Hence the success
probability of recovering the key is about 0.63. Overall, the tweakable blockcipher
designed by Mennink in [36] has at most around 2n/2 security, in other words,
birthday-bound security, which is exponentially far lower than the designer’s
claim of full 2n security.

On proof flaw in [36]. In the proof, under the condition that the attacker cannot
guess the key correctly (that is, (12a) defined in [36] is not set), it claimed that
the distribution of output variable of the first blockcipher call, y1 = E(k, t), is
independent from the second blockcipher call y2 = E(k ⊕ t, x2). This is a wrong
claim. When tweak t = 0, both the two blockcipher calls share the same key,
and therefore the distribution of their outputs are highly related.

4 Target Construction, Design Goal and Search Strategy

4.1 Tweakable Blockcipher ˜E[s]

In this paper, we study a construction of tweakable blockcipher consisting of
blockcipher calls and linear transformations. Furthermore, we restrict linear
transformations to be just simple XOR operations for efficiency benefits. For
a more generic construction of tweakable blockcipher from a classical blockci-
pher, we refer interested readers to [36].

We denote the target tweakable blockcipher as ˜E[s], which is built on s block-
cipher calls. Let E denote its underlying blockcipher with n-bit block size and
n-bit key size. Let k, t, p and c denote its key, tweak, plaintext and ciphertext,
respectively, which are all n-bit long. Let ai,j and bi,j for 1 ≤ i ≤ s + 1 and
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Fig. 2. Graphical view of ˜E[2] with key k, tweak t, plaintext p, ciphertext c, ai,j ∈ {0, 1}
and bi,j ∈ {0, 1}

Algorithm 1. Encryption of ˜E[s](·, ·, ·): ‘+’ stands for addition operation in
GF(2n), that is XOR operation.
Input: key k, plaintext p, tweak t, blockcipher E(·, ·), one-bit variables ai,j ’s and bi,j ’s

Output: ciphertext c

1. x1 = b1,1 · k + b1,2 · t + b1,3 · p
2. z1 = a1,1 · k + a1,2 · t
3. for i = 1 to s − 1, do
4. yi = E(zi, xi)

5. xi+1 = bi+1,1 · k + bi+1,2 · t + bi+1,3 · p +
i+3
∑

j=4

bi+1,j · yj−3

6. zi+1 = ai+1,1 · k + ai+1,2 · t +
i+2
∑

j=3

ai+1,j · yj−2

7.
8. endfor
9. ys = E(zs, xs)

10. c = bs+1,1 · k + bs+1,2 · t + bs+1,3 · p +
s+3
∑

j=4

bs+1,j · yj−3

11. return ciphertext c

1 ≤ j ≤ i + 2 be one-bit variables of being 0 or 1. The encryption procedure of
˜E[s] is provided in Algorithm 1. Each concrete instantiation of ˜E[s] is to deter-
mine the values of ai,j ’s and bi,j ’s. Moreover, a graphical view of ˜E[2] is depicted
in Fig. 2 as an example, which is also useful for next sections. Throughout this
paper, we always assume that all the s blockcipher calls are indeed involved in
the computation of the ciphertext c from the key k, the tweak t and the plaintext
p for ˜E[s].

A tweakable blockcipher must be invertible, namely plaintext p should be
efficiently decrypted from key k, tweak t and ciphertext c. Such a requirement
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sets a few constraints on the above construction ˜E[s]. Firstly, plaintext p should
be involved in exactly one linear transformation.

Constraint 1. For ˜E[s] to be invertible, there should exist an integer i ∈
{1, 2, . . . , s + 1} such that bi,3 = 1 and bj,3 = 0 for all j ∈ {1, 2, . . . , s + 1}
and j �= i.

Secondly, suppose plaintext p is involved in the linear transformation that out-
puts xi, then the values of both xi and yi depend on plaintext p in the encryption
process. We will call such xi and yi plaintext-dependent variables. Moreover, if
yi is used to compute some variable xj (j > i), then both xj and yj are also
called plaintext-dependent variables. Iteratively, we have the definition below.

Definition 1. For our target construction ˜E[s], internal variables xi and yi are
said to be plaintext-dependent, if xi is computed depending on plaintext p or a
plaintext-dependent variable yj in the encryption process. Also we include plain-
text p as a plaintext-dependent variable.

A plaintext-dependent variable cannot be used to produce any key value zj .3

Otherwise, the construction is not (efficiently) invertible, since one cannot com-
pute zj without the knowledge of plaintext p.

Constraint 2. For ˜E[s] to be invertible, if an internal state yi with 1 ≤ i ≤ s is
a plaintext-dependent variable, the values of aj,i+2’s for all j ∈ {i+1, i+2, . . . , s}
must be 0.

Moreover, the linear transformation to produce any internal state xi with 1 ≤
i ≤ s should have at most one input plaintext-dependent variable. Otherwise,
one cannot efficiently inverse such a linear transformation in the decryption,
because there are more than one unknown input variable.

Constraint 3. For ˜E[s] to be invertible, the linear transformations to produce
internal states xi’s for all i ∈ {1, 2, . . . , s + 1} must have at most one input
variable that is plaintext-dependent.

Summarizing up, an instantiation of ˜E[s] is efficiently invertible and therefore
a valid tweakable blockcipher, as long as it satisfies the above three constraints.
Nevertheless, additional conditions might be necessary from the concerns of secu-
rity and efficiency. For example, it is important that all s blockcipher invocations
of ˜E[s] are indeed involved for computing ciphertext c from the key k, the tweak
t and plaintext p. Here we omit such discussions for the general case, but leave
them in next sections for specific case, e.g., the instances of ˜E[2].

3 Recall that all blockcipher calls are indeed involved in the computation of ciphertext
c from the key k, the tweak t and plaintext p.
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Remarks. It is interesting to note that many tweakable blockciphers proposed
previously are instances of our target construction ˜E[2] in Fig. 2. For example,
LRW1 construction designed by Liskov et al. in [34] is the instance with b1,3 =
a1,1 = b2,4 = b2,2 = a2,1 = b3,5 = 1 and 0 for the other ai,j ’s and bi,j ’s.
Minematsu’s construction in [41] is the instance with b1,2 = a1,1 = b2,3 = a2,3 =
b3,5 = 1 and 0 for the other ai,j ’s and bi,j ’s. Mennink’s construction in [36] is
the instance with b1,2 = a1,1 = b2,4 = b2,3 = a2,1 = a2,2 = b3,5 = b3,4 = 1 and 0
for the other ai,j ’s and bi,j ’s.

4.2 Design Goal

Our first and top-priority goal is full 2n provable security, which has both theoret-
ical and practical interests. A typical blockcipher nowadays such as AES [14] and
SIMON [3] has a block size of 128 bits or 64 bits. In some constrained environ-
ment, the block size of lightweight blockciphers can be even shorter, e.g., SIMON-
48 [3]. Hence tweakable blockcipher constructions with merely a birthday-bound
security may not be suited for various applications. Consequently other con-
structions providing higher security is definitely necessary. Particularly, design-
ing tweakable blockciphers with optimal 2n provable security is indeed a very
interesting research topic.

Our second goal is the minimum number of blockcipher calls, which obviously
comes from the efficiency concern. For our target construction, a blockcipher
call is much more time-consuming than linear transformations which are merely
XOR operations. Therefore the number of blockcipher calls dominates the overall
efficiency of tweakable blockcipher. Besides, we also aim to optimize the efficiency
of linear transformations under the condition of no security sacrifice, i.e., erasing
unnecessary input variables. In fact this is also the reason that we have limited
the linear transformations to simple XORing variables when choosing the target
construction ˜E[s].

Our third goal is (comparably) high efficiency of changing a tweak, which in
particular should be more efficient than changing a key. It is motivated by the fact
that tweak is changed more frequently than the key in applications. For instance,
in most modes of operation such as OCB [48], tweak is changed for every plain-
text block, while the secret key can be kept the same for up to birthday-bound
number of plaintext blocks. Such a criteria of designing tweakable blockcipher
has been suggested by Liskov et al. [35] and followed by several constructions
in [6,31,32,40,46,47]. However, differently from those constructions, we allow to
use tweak-dependent keys, in other words, changing a tweak leads to re-keying
blockcipher. This is due to the above goals of security and efficiency. Indeed as
shown in [31], without using tweak-dependent keys, an (almost) optimal secure
tweakable blockcipher requires an unrestrained increase of blockcipher calls and
the number of keys.
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4.3 Search Strategy

In order to achieve the design goals listed in Sect. 4.2, we adopt a heuristic
approach to search among the instances of ˜E[s].

• For the goal of full 2n security, we should investigate the instances of ˜E[s]
with s ≥ 2. The reason is that Mennink in [36] proved any instance of ˜E[1]
(that is with linear mixing) has at most 2n/2 security. It implies that at least 2
blockcipher calls are necessary to possibly bypass birthday-bound barrier and
to reach full 2n security.

• For the goal of minimum number of blockcipher calls, we start with analyzing
the instances of ˜E[2]. Moreover, we will not move to investigate the instances
of ˜E[s+1], unless we have examined all the instances of ˜E[s] and none of them
can achieve 2n security. Once some instance of ˜E[s] is found with 2n security,
it is not needed to investigate the instances of ˜E[s′] where s′ > s.

• For the goal of high efficiency of changing a tweak, we should use the minimum
number of tweak-dependent keys. Let i denote the number of tweak-dependent
keys. While searching among the instances of ˜E[s], we start with those with one
tweak-dependent key. Moreover, we will not move to investigate the instances
with i + 1 tweak-dependent keys, unless we have examined all the instances
with i tweak-dependent keys and none of them can achieve 2n security. Once
some instance of ˜E[s] with i tweak-dependent keys is found with 2n security,
it is not needed to investigate the instances of ˜E[s] with i′ tweak-dependent
keys, where i′ > i.

Following the above search strategy, we start with investigating the instances of
˜E[2] with one tweak-dependent key, and find 32 such instances achieving full 2n

provable security. The search process is detailed in next section.

5 Search Among Instances of ˜E[2] with One
Tweak-Dependent Key

To start with, we provide an observation that is used during the search: XORing
tweak t to plaintext p and ciphertext c does not have any impact to the security
of tweakable blockcipher.

Observation 1. For a tweakable blockcipher ˜E : K × T × M → M, define a
set of tweakable blockcipher ˜E[bp, bc] : K × T × M → M with bp, bc ∈ {0, 1} as

˜E[bp, bc](k, t, p) := ˜E(k, t, p ⊕ (bp · t)) ⊕ (bc · t),

for all k ∈ K, t ∈ T and p ∈ M. Each tweakable blockcipher ˜E[bp, bc] provides
the same security level as ˜E, that is Advs̃prp

˜E[bp,bc]
(q) = Advs̃prp

˜E
(q). Thus, we do

not use XORing tweak t to plaintext p and ciphertext c for (slight) efficiency
benefit.
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Fig. 3. Type I Constructions of ˜E[2]

The proof of this observation is rather straightforward, and provided in full
version of this paper [52].

Next, according to Constraint 1, we divide the instances of ˜E[2] into three
types with respect to the place where the plaintext p is injected.

Type I: p is XORed to compute x1, which sets b1,3 = 1, b2,3 = 0 and b3,3 = 0;
Type II: p is XORed to compute x2, which sets b1,3 = 0, b2,3 = 1 and b3,3 = 0;
Type III: p is XORed to compute x3, which sets b1,3 = 0, b2,3 = 0 and b3,3 = 1.

We search the instances of these types independently.

5.1 On the Instances of Type I

Constraint 2 sets a2,3 = 0, since y1 is plaintext-dependent. Observation 1 sets
b1,2 = 0 and b3,2 = 0. We set b3,5 = 1 such that the second blockcipher call is
involved in ˜E[2].4 Moreover, we set b2,4 = 1 in order to avoid overlap between
the instances of Type I and of Type II, because if b2,4 = 0, the two blockcipher
calls are parallel and indeed those instances are included in Type II. In turn,
it implies that x2 and y2 are plaintext-dependent variables. Then Constraint 3
sets b3,4 = 0, because y2 as a plaintext-dependent variable is already used to
compute c. Putting all these together, the (simplified) construction of Type I is
depicted in Fig. 3.

We investigate all the instances of Type I with one tweak-dependent key,
which are divided into two cases depending on the position of the tweak-
dependent key. More precisely, it depends on the values of a1,2 and a2,2.

Case (1): a1,2 = 1 and a2,2 = 0. z1 is the tweak-dependent key. For these
instances, the computation from internal variable x2 to ciphertext c is that

c = E(a2,1 · k, x2) ⊕ b3,1 · k.

4 Otherwise, only one blockcipher call is actually involved, and such instances have at
most 2n/2 security [36].
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Hence, for any plaintext-ciphertext pair (t, p, c) and (t′, p′, c′) with (t, p) �= (t′, p′),
it has that

c = c′ =⇒ x2 = x′
2.

Exploiting this property, the attacker mainly focuses on the first blockcipher call
and peels off the second blockcipher call, by using pairs of (t, p, c) and (t′, p′, c′)
with c = c′. Note that such a plaintext-ciphertext pair can be easily obtained
by sending a query (t, p) to ˜E[2]k(·, ·) to receive c, and then sending a query
(t′, c) to ˜E[2]−1

k (·, ·) to receive p′.5 Thanks to such plaintext-ciphertext pairs,
the attacker gets to know and even control the internal difference Δy1 = b2,2 ·
(t ⊕ t′). As a result, he can succeed to recover the key k or to distinguish ˜E[2]
from a random tweakable blockcipher ˜P with a complexity of at most O(2n/2)
adversarial queries. The attack procedure is slightly different depending on the
values of a1,1 and b1,1. Therefore, we further divide this case into four subcases,
and describe the procedure for each subcase separately.

Subcase (1.1): a1,1 = 0 and b1,1 = 0. The key k is not used in the first blockcipher
y1 = E(t, p). Hence the attacker can get the value of y1 by querying (t, p) to
E(·, ·). A distinguisher D is launched as follows. Firstly, D obtain a plaintext-
ciphertext pair (t, p, c) and (t′, p′, c′) with c = c′, and computes Δy1 = b2,2·(t⊕t′).
Secondly, D queries (t, p) and (t′, p′) to E(·, ·) to receive w and w′ respectively,
and computes Δw = w ⊕ w′. Finally, D outputs 1 if Δy1 = Δw, and outputs
0 otherwise. The probability of D outputting 1 is 1 when interacting ˜E[2], and
is 2−n when interacting with ˜P . Thus, the advantage of D is 1 − 2−n. The
complexity of D is 4 queries.

Subcase (1.2): a1,1 = 0 and b1,1 = 1. The first blockcipher call is y1 = E(t, p⊕k).
Its key z1 is the tweak t, and can be controlled by the attacker. A key-recovery
attack A is launched as follows. Firstly, A fixes a tweak value t and a non-zero
value Δ. Secondly, A collects plaintext-ciphertext pairs (t, p, c) and (t′, p′, c′)
such that t′ = t ⊕ Δ and c′ = c. Each pair has that

p ⊕ p′ = x1 ⊕ x′
1 = E−1(t, y1) ⊕ E−1(t ⊕ Δ, y1 ⊕ b2,2 · Δ).

A stores {(p, p⊕ p′)} for 2n/2 distinct values of p, whose corresponding values of
y1 are also distinct. This needs 2n/2+1 queries. Thirdly, A selects 2n/2 distinct
values w. For each w, he queries (t, w) and (t ⊕ Δ,w ⊕ b2,2 · Δ) to E−1(·, ·) to
receive u and u′ respectively, which has that

u ⊕ u′ = E−1(t, w) ⊕ E−1(t ⊕ Δ,w ⊕ b2,2 · Δ).

A matches u ⊕ u′ to previously stored p ⊕ p′. If a matched is found that implies
x1 = p ⊕ k = u, the attacker computes the key k as k = u ⊕ p. The complexity

5 Of course one may directly query (t, c) and (t, c′ = c) to ˜E[2]−1
k (·, ·) to obtain such a

pair. But the above approach allows the attacker to control the plaintext p, which
is necessary in our attacks.
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of A is around 2n/2+2 adversarial queries, and its success probability can be
trivially computed as 1 − (1 − 2−n)2

n ≈ 1 − 1/e ≈ 0.63, since there are 2n/2

distinct values of y1 and 2n/2 distinct values of w.

Subcase (1.3): a1,1 = 1 and b1,1 = 0. The first blockcipher call is y1 = E(t⊕k, p).
Its input x1 is plaintext p, and can be controlled by the attacker. A key-recovery
attack A is launched as follows. Firstly, A fixes a plaintext value p and a non-
zero value Δ. Secondly, A collects plaintext-ciphertext pairs (t, p, c) and (t′, p′, c′)
such that t′ = t ⊕ Δ and c′ = c. Each pair has that

p′ = E−1(t ⊕ Δ ⊕ k,E(t ⊕ k, p) ⊕ b2,2 · Δ).

A stores {(t, p′)} for 2n/2 distinct values of t, which needs 2n/2+1 queries. Thirdly,
A selects 2n/2 distinct values l. For each l, he queries (l, p) to E(·, ·), receives w,
and then queries (l ⊕ Δ,w ⊕ b2,2 · Δ) to E−1(·, ·) to receive u′, which have that

u′ = E−1(l ⊕ Δ,E(l, p) ⊕ b2,2 · Δ)

A matches u′ to previously stored p′. If a matched is found that implies l = t⊕k,
A computes the key k as k = l ⊕ t. The complexity of A is around 2n/2+2

adversarial queries. Similarly with the above subcases, its success probability
can be computed as 0.63.

Subcase (1.4): a1,1 = 1 and b1,1 = 1. The first blockcipher call is y1 = E(t ⊕
k, p⊕k). XORing its inputs x1 and z1 is x1 ⊕z1 = p⊕ t, which can be controlled
by the attacker. A key-recovery attack A is launched as follows. Firstly, A fixes
a plaintext p and a non-zero value Δ. Secondly, A collects plaintext-ciphertext
pairs (t, p ⊕ t, c) and (t′, p′, c′) with t′ = t ⊕ Δ and c′ = c. Each pair has that

p′ ⊕ t = E−1(t ⊕ Δ ⊕ k,E(t ⊕ k, p ⊕ t ⊕ k) ⊕ b2,2 · Δ) ⊕ k ⊕ t

A stores {(t, p′ ⊕ t)} for 2n/2 distinct values of t, which needs 2n/2+1 queries.
Thirdly, A selects 2n/2 distinct values l. For each l, he queries (l, p⊕ l) to E(·, ·),
receives w, and then queries (l ⊕ Δ,w ⊕ b2,2 · Δ) to E−1(·, ·) to receive u′, which
have that

u′ ⊕ l = E−1(l ⊕ Δ,E(l, p ⊕ l) ⊕ b2,2 · Δ) ⊕ l

A matches u′ ⊕ l to previously stored p′ ⊕ t. f a matched is found that implies
l = t ⊕ k, A computes the key k as k = l ⊕ t. The complexity of A is around
2n/2+2 adversarial queries, and its success probability can be trivially computed
as 0.63 similarly with the above subcases.

Overall, we conclude that all the instances of Case (1) using one tweak-
dependent key have at most around 2n/2 security.

Case (2): a1,2 = 0 and a2,2 = 1. z2 is the tweak-dependent key. The analysis
is highly similar with Case (1), which is written in full version of this paper [52].
In a high level, Case (2) can be regarded as the inverse of Case (1) by analyzing
the decryption oracle ˜E−1. Here we just provide the conclusion: all the instances
of Case (2) using one tweak-dependent key have at most around 2n/2 security.
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5.2 On the Instances of Type II

Observation 1 sets b2,2 = 0 and b3,2 = 0. We set b3,5 = 1 such that the second
blockcipher call is involved in ˜E[2]. The construction of Type II is depicted in
Fig. 4. Similarly we also divide the instances of Type II into two cases depending
on the position of the tweak-dependent key. More precisely, it depends on the
values of a1,2, a2,2, and a2,3 if y1 is computed related to tweak t.

Case (1): a1,2 = 1, a2,2 = 0, a2,3 = 0. z1 is the tweak-dependent key. The
reason of setting a2,3 = 0 is that y1 is computed depending on t as

y1 = E(a1,1 · k ⊕ t, b1,1 · k ⊕ b1,2 · t).

We find the instances of this case have at most 2n/2 security based on the
following observation. The computation from internal variable y1 to ciphertext
c is that

c = E(a2,1 · k, p ⊕ b2,4 · y1 ⊕ b2,1 · k) ⊕ b3,1 · k ⊕ b3,4 · y1,

which is not related to the tweak value. Therefore, for two distinct tweaks t and
t′ colliding on y1 that is

E(a1,1 · k ⊕ t, b1,1 · k ⊕ b1,2 · t) = E(a1,1 · k ⊕ t′, b1,1 · k′ ⊕ b1,2 · t′),

it leads to the same ciphertext for any plaintext, more precisely,

˜E[2]k(t, p) = ˜E[2]k(t′, p), for ∀p ∈ M.

Such a pair of tweaks can be found after trying 2n/2 distinct tweaks. Putting
all together, a distinguisher D can be launched as follows. Firstly, D fixes a
plaintext p. Secondly, he selects 2n/2 distinct tweak values t, queries (t, p) to
˜E[2]k(·, ·) to search a collision among received ciphertexts. Let t and t′ denote
the corresponding tweaks for the colliding ciphertexts. Thirdly, D selects another
plaintext p′ with p′ �= p, and queries (t, p′) and (t′, p′) to ˜E[2]k(·, ·) and receives

Fig. 4. Type II Construction of ˜E[2]
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ciphertexts c′ and c′′ respectively. Finally, D outputs 1 if c′ �= c′′, and outputs 0
otherwise. The complexity of D is around 2n/2 queries. When interacting with
˜E[2], D outputs 1, as long as he succeeds to find the colliding ciphertexts at
second step, which has a probability of 1 − (1 − 2−n)2

n−1 ≈ 0.4. When interact-
ing with a random tweakable blockcipher, the probability of D outputting 1 is
obviously 2−n. Therefore, the advantage of D is computed as 0.4 − 2−n ≈ 0.4.

Case (2): a1,2 = 0. We need to further set the values of a2,2 and a2,3 such
that z2 is a tweak-dependent key. There are two possible setting depending on
the value of b1,2. More precisely, if b1,2 = 0, then y1 is computed unrelated to
tweak t, and therefore a2,2 must be 1. Otherwise, as long as one of a2,2 and a2,3

is not zero, z2 is a tweak-dependent key. Accordingly we divide Case (2) to two
subcases.

Subcase (2.1): b1,2 = 0, a2,2 = 1. A graphical view is provided in Fig. 5. Notably
internal variable y1 is computed as y1 = E(a1,1 ·k, b1,1 ·k), which is unrelated to
tweak t. We refer to y1 as a subkey derived from the key k for those instances
with (a1,1, b1,1) �= (0, 0). Moreover, the computation from p to x2 is x2 = p ⊕
b2,1 ·k ⊕ b2,4 ·y1, and hence Δx2 = Δp always holds. Similarly, Δy2 = Δc always
holds. In other words, for any plaintext-ciphertext pair (t, p, c) and (t′, p′, c′), the
internal variable differences Δx2 and Δy2 is known to the attacker. Due to these
properties, we find several conditions on the instances of this subcase in order
to possibly have a security beyond the birthday bound.

• (a1,1, b1,1) �= (0, 0)
If a1,1, b1,1 = (0, 0), it has that y1 = E(0, 0). Then an attacker can query (0, 0)
to E(·, ·), receive the value of y1, and then peel off the first blockcipher call.
As a result, the instances become essentially based on one blockcipher call in
the view of the attacker. As proven in [36], the attacker can distinguish such
instances from a random tweakable blockcipher with a complexity of at most
2n/2 adversarial queries.

• (a2,1, a2,3) �= (0, 0)
If (a2,1, a2,3) = (0, 0), an attacker can fix the tweak t to a constant and

Fig. 5. Subcase (2.1) of Type II of ˜E[2]
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regard b2,1 · k ⊕ b2,4 · y1 and b3,1 · k ⊕ b3,4 · y1 as the pre- and post-whitening
keys respectively. As a result, the instances become essentially one-step Even-
Mansour blockcipher [17], and several attack procedures with a complexity of
2n/2 queries have been presented in [4,13,15].

• (b2,1, b2,4) �= (0, 0) and (b3,1, b3,4) �= (0, 0)
If (b2,1, b2,4) = (0, 0), it has x2 = p. Then an attacker gets to know and control
the value of x2. A distinguisher D is launched as follows. Firstly, D fixes two
distinct plaintexts p and p′. Secondly, he selects 2n/2 distinct tweaks t. For
each t, D queries (t, p) and (t, p′) to ˜E[2]k(·, ·), receives ciphertexts c and c′

respectively, and stores (t, c⊕ c′). Thirdly, D selects 2n/2 distinct values l. For
each l, he queries (l, p) and (l, p′) to E(·, ·), receives w and w′ respectively, and
matches w ⊕ w′ to previously stored c ⊕ c′ at second step. Once a matched is
found, that is

E(a2,1 · k ⊕ t ⊕ a2,3 · y1, p) ⊕ E(a2,1 · k ⊕ t ⊕ a2,3 · y1, p
′) = E(l, p) ⊕ E(l, p′),

D recovers a2,1 ·k⊕b2,3 ·y1 = t⊕ l. Finally, for any plaintext-ciphertext pair of
(t, p, c) and (t′, p′, c′), D can compute internal variables z2 and z′

2, and query
(z2, p) and (z′

2, p
′) to E(·, ·) to recover y2 and y′

2, respectively. D outputs 1
if c ⊕ c′ = y2 ⊕ y′

2, and outputs 0 otherwise. The complexity of D is around
2n/2+2 queries. When interacting with ˜E[2], D outputs 1 as long as he recovers
a2,1 ·k⊕b2,3 ·y1, which succeeds with a probability 1−(1−2−n)2

n ≈ 1−1/e ≈
0.63. When interacting with a random tweakable blockcipher, D outputs 1 with
a probability 2−n. Therefore the advantage of D is 0.63 − 2−n ≈ 0.63.
(b3,1, b3,4) �= (0, 0) is observed after a very similar analysis. Just the attacker
gets to know and control the value of y2. Accordingly, he fixes two ciphertexts
c and c′, and queries (t, c) and (t, c′) to ˜E[2]−1

k (·, ·) for distinct tweaks t. We
omit the details.

• (b2,1, b2,4) �= (a2,1, a2,3) and (b3,1, b3,4) �= (a2,1, a2,3)
If (b2,1, b2,4) = (a2,1, a2,3), it has b2,1 · k ⊕ b2,4 · y1 = a2,1 · k ⊕ a2,3 · y1, which is
denoted as g. Then x2 ⊕ z2 = g ⊕ p ⊕ g ⊕ t = p ⊕ t. Hence an attacker gets to
know and control x2 ⊕ z2. A distinguisher D can be launched. Firstly, D fixes
a non-zero Δ. Secondly, he selects 2n/2 distinct tweaks t, queries (t, p = t) and
(t, p′ = t⊕Δ) to ˜E[2]k(·, ·), receives c and c′ respectively, and stores (t, c⊕ c′).
Thirdly, D selects 2n/2 distinct values l, queries (l, l) and (l, l⊕Δ) to E(·, ·) to
receive w and w′ respectively, and matches w ⊕ w′ to previously stored c ⊕ c′.
If a matched is found, that is

E(g ⊕ t, g ⊕ t) ⊕ E(g ⊕ t, g ⊕ t ⊕ Δ) = E(l, l) ⊕ E(l, l ⊕ Δ),

D recovers g as g = t ⊕ l. Therefore D is able to compute x2 and z2 for any
plaintext-ciphertext, and gets y2 by querying E(·, ·). After that, similarly with
the above analysis, D just needs to make several additional queries. Overall,
the complexity of D is around 2n/2 queries, and has an advantage of 0.63.
(b3,1, b3,4) �= (a2,1, a2,3) is observed after a very similar analysis. Here we omit
the details.
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Putting all these conditions together, there are 32 instances of this subcase
left, which are denoted as ˜E1, ˜E2, . . ., ˜E32 and have been depicted in Figs. 6
and 7. After further investigation, we find that these constructions achieve full
2n provable security. The proof is presented in Sect. 6.

Subcase (2.2): b1,2 = 1, (a2,2, a2,3) �= (0, 0). Interestingly, we notice that the
instances of Subcase (2.1) has an efficiency advantage over the instances of Sub-
case (2.2). More precisely, if one pre-computes and stores internal variable y1
as a subkey, an instance of Subcase (2.1) requires just one block-cipher call for
encrypting (t, p) or decrypting (t, c), while the instances of Subcase (2.2) always
need two blockcipher calls. Since we have found instances of Subcase (2.1) achiev-
ing full 2n security, it is unnecessary to search among instances of Subcase (2.2).
Nevertheless, we did investigate the instances of Subcase (2.2), and found 24
instances achieving full 2n provable security. Here we omit the discussion on this
subcase due to the limited space.

5.3 On the Instances of Type III

Clearly, plaintext and ciphertext are linearly related in this type of construction,
and can be trivially distinguished by making two queries to ˜E[2]k(·, ·) with a fixed
difference in plaintexts, e.g., (t, p) and (t, p ⊕ Δ), and verifying Δc = Δ.

6 Security Proof of ˜E1, . . . , ˜E32

Let ˜E be any tweakable blockcipher of ˜E1, ˜E2, . . . , ˜E32, and E denotes its under-
lying blockcipher. Let ˜P be a random tweakable blockcipher that is ˜P

$← P̃erm.
Let (O1,O2) be either ( ˜E±

k (·, ·), E±(·, ·)) with k
$← K or ( ˜P±(·, ·), E±(·, ·)). Let

D be a distinguisher interacting with (O1,O2) that makes (at most) q queries.
We denote the number of D’s queries to O1 and to O2 as q1 and q2 respectively:
q = q1 + q2. Without loss of generality, we assume that D does not make dupli-
cated queries to O1 or O2. We use views v1 = {(t1, p1, c1), . . . , (tq1 , pq1 , cq1)} and
v2 = {(l1, u1, w1), . . . , (lq2 , uq2 , wq2)} to denote the transcripts, which are lists
of query-responses, created by D interacting with O1 and O2, respectively. At
the end of the interaction with (O1,O2), the distinguisher D obtains a view
v = (v1, v2) before determining the output bit. Since D is computationally
unbounded, without loss of generality we assume that D is deterministic. There-
fore D computes its decision bit deterministically based on the view v. Accord-
ingly, the probability distribution of the decision bit of D solely depends on the
probability distribution of the view v.

Our proof adopts the H-coefficient technique [8,45], which has been intro-
duced in Sect. 2.3. We use X and Y to denote the probability distribu-
tion on views when D interacts with ( ˜E±

k (·, ·), E±(·, ·)) and interacts with
( ˜P±(·, ·), E±(·, ·)), respectively. We use V to denote the set of attainable views v

when D interacts with ( ˜P±(·, ·), E±(·, ·)), that is V = {v | Pr[Y = v] > 0}. Next,
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Fig. 6. ˜E1 to ˜E16 of the 32 efficient constructions: the internal variable y is referred
to as the subkey for these constructions.
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Fig. 7. ˜E17 to ˜E32 of the 32 efficient constructions: the internal variable y is referred
to as the subkey for these constructions.
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we partition V to disjoint subsets Vbad and Vgood such that V = Vgood

⋃

Vbad,
and evaluate upper bound of εvgood (defined in Sect. 2.3) for the views v ∈ Vgood

and upper bound of Pr[Y ∈ Vbad].

6.1 Partition of V
In our proof, we disclose the values of the secret key k and the subkey y to
D, after he finishes the interaction with (O1,O2) and before he determines the
output bit. In the case of ( ˜P±(·, ·), E±(·, ·)) as (O1,O2), we choose the value of
k at random, namely k

$← K, and get the corresponding subkey y by querying
E±. This is without loss of generality since it will only increase the advantage
of D. With the knowledge of k and y, D can easily derive the query-responses
(l, u, w)’s of invocations of E±(·, ·) for each query-response (ti, pi, ci) in view v1.
Therefore D gets all query-responses of blockcipher E during the interaction
with (O1,O2).

For each view v = (v1, v2) ∈ V, we divide the query-responses of blockcipher
E, derived from it thanks to the disclosed values of k and y, into three subsets,
and store them separately in different tables. The first subset consists of a single
query-response of E that generates the subkey y, and is stored in a table T 1 =
{(l11, u

1
1, w

1
1 = y)}. The second subset consists of the other query-responses of

E derived from v1, and is stored in a table T 2 = {(l21, u
2
1, w

2
1), (l

2
2, u

2
2, w

2
2), . . . ,

(l2q1 , u
2
q1 , w

2
q1)}. The last subset consists of all query-responses of E derived from

v2, and is stored in a table T 3 = {(l31, u
3
1, w

3
1), (l

3
2, u

3
2, w

3
2), . . . , (l

3
q2 , u

3
q2 , w

3
q2)}.

Definition of Vbad. We define that Vbad is the set of views which causes the
following bad event, and accordingly define Vgood as Vgood = V\Vbad.

• Bad event : for a view v ∈ V, if there exist (lij , u
i
j , w

i
j) in Table T i and

(li
′
j′ , ui′

j′ , wi′
j′) in Table T i′ such that (lij , u

i
j) = (li

′
j′ , ui′

j′) or (lij , w
i
j) = (li

′
j′ , wi′

j′),
where 1 ≤ i, i′ ≤ 3 and i �= i′, we say v causes a bad event.

The reasoning of the above definition of bad views is to ensure that for any
view v ∈ Vgood, every query-response of D interacting with O1 leads to one
unique query-response of blockcipher E, which is essentially helpful to evaluate
the upper bound of εvgood .

6.2 Upper Bound of εvgood

Firstly, we deal with Pr [X = v]. The random variable X is defined on the prob-
ability space of all possible secret key k and all possible underlying blockcipher
E. We denote by allX the probability space of X, and its cardinality |allX | is
2n · (2n!)2

n

, that is the number of keys times the number of blockciphers. We
write an element π in allX compatible with v if π produces exactly the same
responses for all queries in v. We denote by compX(v) all the elements in allX
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compatible with view v. Since k is chosen uniformly at random and E is an ideal
blockcipher, we have that

Pr [X = v] =
|compX(v)|

|allX | .

Similarly, Y is defined on the probability space of the key k, tweakable blockci-
pher ˜P and blockcipher E. Define compY (v) and allY accordingly, and then we
have that

Pr [Y = v] =
|compY (v)|

|allY | .

allY is 2n · (2n!)2
n · (2n!)2

n

, that is the number of keys times the number of
tweakable blockciphers times the number of blockciphers.

Next is to compute |compX(v)| and |compY (v)|. Recall that the view v con-
tains the value of k, which is disclosed to D at the end of interaction, and then
a set of input-outputs of underlying blockcipher E are derived and separately
stored in tables T 1, T 2 and T 3. Let αi and βi denote the number of input-
outputs (l, u, w)’s of E with the value i as the key value (that is l = i) in T 2 and
T 3, respectively, for 0 ≤ i ≤ 2n − 1. Denote it as the tweak value that produces
i as the key value (that is z2 in Fig. 5) for the second blockcipher call in O1,
and denote γit the number of queries to O1 with tweak values as it. Since v is
a good view, there is no element collision between any two tables. Moreover, D
does not make duplicate queries. Hence all input-outputs of E in T 1, T 2 and T 3

are distinct. Therefore, it implies that γit = αi. The query-response (l11, u
1
1, w

1
1)

of E in T 1 has l11 = k or l11 = 0.6 Without loss of generality, we assume l11 = k.
Then, we get that

|compX(v)| = (2n − αk − βk − 1)! ·
k−1
∏

i=0

(2n − αi − βi)! ·
2n−1
∏

i=k+1

(2n − αi − βi)!,

and

|compY (v)| =

2n−1
∏

i=0

(2
n − γit

)! ·
⎛

⎝(2
n − βk − 1)! ·

k−1
∏

i=0

(2
n − βi)! ·

2n−1
∏

i=k+1

(2
n − βi)!

⎞

⎠

=

2n−1
∏

i=0

(2
n − αi)! ·

⎛

⎝(2
n − βk − 1)! ·

k−1
∏

i=0

(2
n − βi)! ·

2n−1
∏

i=k+1

(2
n − βi)!

⎞

⎠

= (2
n − αk)! · (2n − βk − 1)! ·

k−1
∏

i=0

(

(2
n − αi)! · (2n − βi)!

) ·
2n−1
∏

i=k+1

(

(2
n − αi)! · (2n − βi)!

)

.

From (2n − α)! · (2n − β)! ≤ (2n − α − β)! · 2n!, we have that

|compY (v)| ≤ (2n − αk − βk − 1)! · (2n!)2
n ·

k−1
∏

i=0

(2n − αi − βi)! ·
2n−1
∏

i=k+1

(2n − αi − βi)!.

6 More precisely, ˜E1, . . . , ˜E10, ˜E23, . . . , ˜E32 have l11 = k, and the other tweakable
blockciphers have l11 = 0.
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Then we compute

|compX(v)|
|compY (v)| ≥

(2n − αk − βk − 1)! ·∏k−1
i=0 (2n − αi − βi)! ·

∏2n−1
i=k+1(2

n − αi − βi)!

(2n − αk − βk − 1)! · (2n!)2
n ·∏k−1

i=0 (2n − αi − βi)! ·
∏2n−1

i=k+1(2
n − αi − βi)!

=
1

(2n!)2
n

Finally, we compute

Pr [X = v]
Pr [Y = v]

=
|compX(v)|
|compY (v)| × |allY |

|allX |

≥ 1
(2n!)2n

× 2n · (2n!)2
n · (2n!)2

n

2n · (2n!)2n
= 1

which give that εvgood = 0.

Note. We highlight that this upper bound of εvgood = 0 is indeed shared by all
these 32 constructions ˜E1, . . . , ˜E32. Moreover, as long as every view in Vgood does
not cause the above bad event defined in Sect. 6.1, it always has that εvgood = 0.
Therefore, the advantage of all distinguishers making at most q queries is upper
bounded as

Advs̃prp
˜E

(q) ≤ Pr [Y ∈ Vbad] .

Thus, the remaining work is to evaluate Pr [Y ∈ Vbad] for each construction of
˜E1, . . . , ˜E32, separately.

6.3 Upper Bound of Pr[Y ∈ Vbad]

For each construction of ˜E1 to ˜E32, we give the exact definition of Vbad according
to the specification, which also defines Vgood = V\Vbad. We must ensure that
every view v ∈ Vgood does not cause the bad event defined in Sect. 6.1, such that
the probability Pr[Y ∈ Vbad] is upper bound of Advs̃prp

˜E
(q). Due to the limited

space, in this section we use ˜E1 as an example, and write the definitions of Vbad

for the other constructions in full version of this paper [52].

Vbad of ˜E1 is defined as the set of views v = (v1, v2) such that (at least) one of
the following events occur:

(1a). ∃ (lj , uj , wj) ∈ v2 such that lj = k;
(1b). ∃ (ti = 0, pi, ci) ∈ v1 such that pi = y or ci = k;
(1c). ∃ (ti, pi, ci) ∈ v1 and (lj , uj , wj) ∈ v2 such that (lj = k ⊕ ti, uj = pi ⊕ y)

or (lj = k ⊕ ti, wj = ci ⊕ y ⊕ k).

Since both k and y are selected uniformly at random from a set of size at least
2n − q − 1, we have that
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Pr [(1a)] ≤ q/(2n − q − 1);
Pr [(1b)] ≤ 2q/(2n − q − 1);

Pr [(1c)] ≤ 2q2/(2n − q − 1)2.

Therefore, we get that

Pr [Y ∈ Vbad] ≤ Pr [(1a)] + Pr [(1b)] + Pr [(1c)]

≤ 3q

2n − q − 1
+

2q2

(2n − q − 1)2

Supposing q < 2n−1, we have that

Pr [Y ∈ Vbad] ≤ 3q

2n−1
+

2q2

(2n−1)2
≤ 5q

2n−1
.

Next, we look into the views in Vgood. A view in Vgood implies that nonce of
the three events (1a), (1b) and (1c) occur. Then we have that

• (1a) does not occur =⇒ the tuple elements in T 1 and in T 3 do not collide;
• (1b) does not occur =⇒ the tuple elements in T 1 and in T 2 do not collide;
• (1c) does not occur =⇒ the tuple elements in T 2 and in T 3 do not collide;

where the notations T 1, T 2 and T 3 are defined in Sect. 6.1. Combining them
together, we can conclude that every view in Vgood does not cause the bad event
in Sect. 6.1. Hence εvgood = 0 holds. Therefore it has that

Advs̃prp
˜E1

(q) ≤ 10q

2n

6.4 Provable Security

Putting all together, we obtain the following theorem on the provable security
of ˜E1, . . . , ˜E32.

Theorem 1. Let ˜E be any tweakable blockcipher construction from the set of
˜E1, . . . , ˜E32 depicted in Figs. 6 and 7. Let q be an integer such that q < 2n−1.
Then the following bound holds.

Advs̃prp
˜E

(q) ≤ 10q

2n
.

7 Conclusions and Discussions

This paper has proposed 32 tweakable blockcipher constructions that achieve
full provable security via a minimum number of blockcipher calls, in the ideal
blockcipher model. A direction of future work would be to investigate if such
fully secure tweakable blockciphers can be constructed in the standard pseudo-
random-permutation model with a constant number of blockcipher calls.
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On Key Check Value. As highlighted in [27], ANSI X9.24-1 [2] suggests the
use of the key check value KCV for the integrity verification of the blockcipher
key, which may cause security loss for cryptographic primitives. In details, ANSI
X9.24-1 suggests KCV = Ek(0).7 Moreover, KCV is a public value, and will be
transmitted, sent or stored in clear. In other words, an attacker has chance to
learn the value of KCV. It has a serious security impact to our constructions
˜E1, ˜E2, . . . , ˜E10, whose subkey y is computed as y = E(k, 0). As we can see,
KCV = y holds, and hence an attacker can get the value of the subkey, and
then is able to recover the key k with a complexity of 2n/2 queries. We propose
alternatives to these tweakable blockciphers when KCV is used: replace 0 by
a non-zero constant const, and derive the subkey y from the key k as y =
E(k, const). On other hand, the usage of KCV has negligible impact to the
security of the other tweakable blockcipher constructions ˜E11, . . . , ˜E32.
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