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Abstract. The concrete security bounds for some blockcipher-based
constructions sometimes become worrisome or even vacuous; for exam-
ple, when a light-weight blockcipher is used, when large amounts of data
are processed, or when a large number of connections need to be kept
secure. Rotating keys helps, but introduces a “hybrid factor” m equal to
the number of keys used. In such instances, analysis in the ideal-cipher
model (ICM) can give a sharper picture of security, but this heuristic
is called into question when cryptanalysis of the real-world blockcipher
reveals weak keys, related-key attacks, etc.

To address both concerns, we introduce a new analysis model, the
ideal-cipher model under key-oblivious access (ICM-KOA). Like the
ICM, the ICM-KOA can give sharp security bounds when standard-
model bounds do not. Unlike the ICM, results in the ICM-KOA are
less brittle to current and future cryptanalytic results on the blockci-
pher used to instantiate the ideal cipher. Also, results in the ICM-KOA
immediately imply results in the ICM and the standard model, giving
multiple viewpoints on a construction with a single effort. The ICM-
KOA provides a conceptual bridge between ideal ciphers and tweakable
blockciphers (TBC): blockcipher-based constructions secure in the ICM-
KOA have TBC-based analogs that are secure under standard-model
TBC security assumptions. Finally, the ICM-KOA provides a natural
framework for analyzing blockcipher key-update strategies that use the
blockcipher to derive the new key. This is done, for example, in the NIST
CTR-DRBG and in the hardware RNG that ships on Intel chips.

1 Introduction

When a secret-key cryptographic primitive E is based upon a blockcipher E,
a security proof for E will typically appeal to the pseudorandom-permutation
(PRP) assumption—namely, that no efficient adversary can distinguish between
the input-output behavior of the secretly (and randomly) keyed blockcipher EK ,
and that of a truly random permutation π with the same domain. When the proof
states that the PRP-security of E is a tight upperbound for the security of E ,
one can derive from it useful messages for practice; e.g., how many calls to the
blockcipher should be allowed before changing its key. When the upperbound
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is not tight, the usefulness of any such messages can be unclear. In particular,
when there is no known attack on the security of E whose success probabil-
ity approaches the upperbound evidenced in the security proof. Such gaps are
common when the security proof uses a “hybrid argument”.

As an example, consider the following self-rekeying version of counter-mode
encryption. (This is similar to the NIST CTR-DRBG [9] that underlies Intel’s
hardware RNG [11,19].) Let CTR[E]NK(·) denote counter-mode encryption (over
n-bit blockcipher E) under key K and IV N . The scheme is initialized with a
key K1 that is random. To encrypt the i-th plaintext Xi, the scheme computes
ciphertext Ci ← CTR[E]0Ki

(Xi) using key Ki, and then computes a key Ki+1 for
the next encryption call via Ki+1 ← CTR[E]�|Xi|/n�+1

Ki
(0k). The standard proof

would show that the security of this construction is (roughly) upperbounded
by m times the probability violating the PRP-security of E, where m is the
number of strings Xi that are encrypted before the key is reinitialized to a
fresh random, secret value. Such a bound can quickly become vacuous when the
underlying blockcipher is lightweight and cannot be assumed to provide PRP-
security comparable to blockciphers like AES, or in settings where frequent re-
initialization (i.e., resetting to a fresh, random K1) is difficult.

If this construction is analyzed instead in the ideal cipher model (ICM),
the upperbound is considerably tighter, and nearly matched by an attack. This
suggests that the multiplicative factor of m in the standard-model result isn’t
“real”, but rather an artifact of the proof technique. On the other hand ICM
analysis provides only a security heuristic, and seems particularly inappropriate
when the underlying blockcipher is known to have obvious non-ideal behavior
for certain “weak” keys, or to suffer from related-key attacks.

Yet for constructions like this one, the presence of weak blockcipher keys is
unlikely to be a real issue for the security of the construction: intuitively, if the
initial key K is random, then so should be the derived keys that follow it. Analy-
sis in the ICM naturally captures this intuition, as the key Ki is (essentially)
independent of keys K1,K2, . . . ,Ki−1, and of the ciphertexts C1, C2, . . . , Ci that
the construction outputs.

Moreover, observe that the construction doesn’t actually need to know the
value of any of the keys. It could carry out its duties if its access to E was via an
API that restricted it to refer to keys by handles, e.g., ask (i, x, “return”) and
receive EKi

(x) in return, or (i, x, “key”) and cause the value Ki+1 = EKi
(x) to

be stored, receiving nothing in return. We refer to such an API as enforcing key-
oblivious access (KOA) to E, and under this access model it is clear that the
construction leaks nothing about the keys beyond what the blockcipher does.
Said another way, the access model supports the intuition that if the initial
key K1 is secret, it and its successors remain so.

The ICM under key-oblivious access. We formalize all of this in a new model,
the ICM under key-oblivious access (ICM-KOA). The construction has black-
box access to the blockcipher via, roughly, the API just described. On the other
hand, the adversary may query the ideal cipher freely, as in the traditional
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ICM, capturing a real-world attacker’s ability to compute (offline) blockcipher
input-output pairs under any key it likes. Before we give more details about our
formalism, let us explain what benefits it provides.

First, the ICM-KOA retains the power of ICM to give sharper bounds
than those found under the standard-model PRP assumption. It can also
expose important quantitative security distinctions among variants of a given
blockcipher-based construction, where these would be hidden by a standard-
model analysis. This may help to guide implementation decisions in practice.
We also surface in our model the distinction between precomputation queries
to the blockcipher, offline queries made to the blockcipher while attacking the
construction, and online queries made to the construction under its secret keys.

Second, security results in the ICM-KOA imply comparable security results
in the traditional ICM and results in the standard-model. The latter is possible
precisely because the model guarantees that the blockcipher is called on ran-
dom and secret keys. Thus a single effort yields multiple viewpoints on a given
construction.

Third, while security proofs in this model are still heuristics, their value is
more resilient to the discovery of weak keys and related-key attacks on the real
blockcipher that is idealized. In fact, the formalism provides a clear path to
analyzing the security of constructions when the blockcipher is modeled with
explicit non-ideal behaviors. We leave this as interesting future work.

Finally, the ICM-KOA provides a conceptual bridge between ideal ciphers
and tweakable blockciphers (TBC). This is pleasing because, intuitively, the
strong-tweakable-PRP assumption suggests that a secure, secretly keyed TBC
is computationally indistinguishable from an ideal cipher—both provide a set
of random permutations (one permutation for each tweak or key, respectively).
We show that blockcipher-based constructions that are secure in the ICM-KOA
have TBC-based analogs that are secure in the standard model.

Decomposing constructions into modes and schedulers. We want our model to
facilitate results for blockcipher-based constructions that may use many keys.
So the ICM-KOA requires that constructions can be decomposed into two prim-
itives, a mode M and a potentially stateful key-scheduler S. Intuitively, the role
of the mode is to affect the transformation of construction-inputs (e.g., plain-
texts) into construction-outputs (e.g., ciphertexts), and the role of the sched-
uler is to determine what keys the mode must use during its execution. Many
symmetric-key cryptographic primitives can be decomposed in this way, includ-
ing encryption schemes and blockcipher-based PRFs, PRNGs, KDFs and MACs,
whether or not rekeying strategies are applied to them.

Returning to our self-rekeying version of counter-mode encryption, we might
decompose this into a mode M that, on input a key Ki and a string X, computes
C ← CTR[E]0Ki

(X); and a scheduler S that (effectively) computes Ki+1 ←
CTR[E]�|X|/n�+1

Ki
(0k). Each will be forced to be oblivious of the actual key values

by our model.
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Applying the ICM-KOA to constructions. Given a blockcipher-based construc-
tion that admits decomposition, we define what it means for the construction to
produce outputs that are indistinguishable from some reference-behavior-oracle
in the ICM-KOA. To be clear, we do not claim that this is, on its own, an
intuitive security goal. It is a new tool that provides a means to obtain strong
bounds in the ICM that are backed by a guarantee that keys are kept random
and secret. And because of this guarantee, we gain simultaneous results in the
standard model. We illuminate the usefulness of the ICM-KOA via two case
studies.

First we consider the NIST-CTR-DRBG. As the name suggests, it is a deter-
ministic random-bit generator based on running a blockcipher in CTR mode. A
result by Shrimpton and Terashima [19] shows that the standard-model security
is around q2/2k, where q is the number of calls the construction. For k = 128, this
bound exceeds 2−40 when q = 244. This may seem safe; after all, this amounts to
many terabytes of random bits. But the RNG has extremely high throughput—
Intel reports 800 MB/s, which equates to 50 million queries per second—meaning
the q = 244 limit in a little more than four days.

We analyze this in the ICM-KOA. For very little work, we recover the secu-
rity bound from [19], and also get a much stronger bound in the ICM. The
latter reveals the lack of a matching attack and shows that, barring cryptanaly-
sis of AES under random and secret keys, we can permit on the order of 270

queries before surpassing our 2−40 limit (assuming the adversary has resources
for 280 precomputation and 280 offline queries). This translates to 750,000 years
of runtime, and so is unlikely to be the limiting factor.

Next we consider three rekeying variants of CTR-mode, distinguished by how
they choose IVs following a key change: (1) The IV is set to 0n; (2) the upper bits
of the IV are unique for each key; (3) The IV is chosen randomly. In each case,
we use the same key scheduler that sets Ki ← EK1(i) (for i > 1). In the standard
model, these three schemes all have the same security bound. Our analysis in the
ICM-KOA uncovers significant quantitative differences their security bounds; in
particular, we show how (1) succumbs to precomputation for shorter key lengths
while (2) and (3) resist such attacks.

Addressing hybrid-loss directly in the standard model. Another, arguably more
natural approach to avoiding a factor of m hybrid-loss when analyzing a
blockcipher-based construction that uses m keys is to generalize the PRP notion
to an m-PRP notion [18]. Here the adversary must distinguish between the col-
lection of oracles EK1(·), EK2(·), . . . , EKm

(·) for random keys K1, . . . ,Km, and
the collection π1(·), π2(·), . . . , πm(·) of random permutations. If a construction
uses no more than m blockcipher keys during the time that it is being attacked,
reducing the construction’s security to the blockcipher’s m-PRP security can be
done without a hybrid proof, and therefore does not incur a factor of m loss.

But this may simply sweep problems under the rug: (1) it begs the question
of how the m-PRP security of a given blockcipher relates to its PRP security
(although we note that Hoang and Tessaro [12], building on the work of [18],
have largely answered this question for key-alternating ciphers with independent
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round keys) (2) it doesn’t directly model interesting scenarios where the keys
are themselves derived from the E using prior keys, particularly when, as with
the NIST-RNG, the mode of operation is intertwined with key generation.

We explore this further in the full version of the paper. As one expects, the
simplest result states that the m-PRP security of E falls somewhere between its
PRP-security and m times that value. We go on to show that, under the assump-
tion that a PRP-secure blockcipher E exists: (1) there is a related blockcipher
for which these upper- and lowerbounds on its m-PRP security are tight; and
(2) there is a related blockcipher that is PRP-secure but not m-PRP-secure, for
sufficiently large values of m. (Of course, these distinctions are not binary, but
the quantitative results are reasonable for modest m). These results are mainly
of theoretical importance, as no real blockcipher will resemble the ones used to
prove them.

But we also give a result that sheds some light on how much of a gap exists
between any particular blockcipher’s PRP security and m-PRP security. Given a
PRP-adversary A for blockcipher E, the best m-PRP adversary B[A] (that makes
use of A in a black-box fashion) will have an advantage between Advprp

E (A) and
mAdvprp

E (A); moreover, its location on this continuum can be computed from
Advprp

E (A) and, interestingly, A’s false-positive rate when distinguishing a keyed
instance of E from a random permutation. When A’s false-positive and false-
negative rates are similar, then B[A]’s advantage scales with

√
m, rather than m.

Again, see the full version of this paper for details.

Related Work. Abdalla and Bellare [1] were the first to rigorously study the secu-
rity of rekeyed symmetric-encryption schemes, under various rekeying strategies.
Concretely, they show that CBC-mode over an n-bit blockcipher, consistently
rekeyed after 2n/3 blocks, can have meaningful security bounds up to about
22n/3 total message blocks. (Specifically, they show that 22n/3 one-block mes-
sages can be encrypted.) Our KOA modeling captures their rekeyed encryp-
tion schemes. As one example, they consider a rekeying strategy that computes
(Ki+1, Li+1) = (E(Li, 0), E(Li, 1)); we would say the scheduler S computes this
(Ki+1, Li+1), where Li (resp. Li+1) is the current (resp. next) scheduler state.

There are a number of works that analyaze secretly keyed constructions in
the ICM. Kilian and Rogaway [14] proved that the DESX construction is a secure
SPRP in the ICM. Dai et al. [10] leverage the ICM to prove the security of mul-
tiple encryption. Lee [17] uses the ICM to consider key-length extension offered
by cascade encryption (aka multiple encryption) and xor-cascade encryption (of
which DESX is a simple example). Recently there have been a line of nice papers
on the security of key-alternating ciphers (aka xor-cascade encryption), includ-
ing [2,7,8,15,16], that perform their analysis in the public-random-permutation
model, which is derivative of the ICM. The randomized message-authentication
code RMAC was analyzed in the ICM [13].

The classic “Luby-Rackoff Backwards” paper by Bellare, Krovetz and Rog-
away [4] addresses the construction of beyond birthday-bound secure PRFs from
PRPs, but they are unable to do so in the standard model because of hybrid
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terms. Thus, their positive security results, which do show beyond-birthday-
bound security of their constructions, are developed in the ICM, despite the
presence of secret keys. It would be interesting to revisit their construction using
the ICM-KOA.

Bellare, Boldyreva and Micali [3] consider multi-key security notions for
public-key encryption, and show that, for left-or-right IND-CPA, the hybrid
loss incurred by reducing from a multi-key instance to a single-key instance
is inherent. Our discussion of the relationship between the PRP and m-PRP
notions takes inspiration from that work, especially the construction of a cipher
for which the bound is tight.

Bellare, Ristenpart and Tessaro [5] consider multi-instance (or multi-key)
security notions, in which the attacker wins only if it breaks all of the instances.
Their notions differ from ours, as it would suffice to break a single instance in
our m-PRP notion.

Recent papers by Mouha and Luykx [18] and Hoang and Tessaro [12] consider
the mutli-key security of key-alternating ciphers, demonstrating (in the random
permutation model) that they do not suffer hybrid-like security losses. This work
complements are own, which provides bounds for modes of operation that employ
blockciphers with idealized behavior under random, secret keys.

Roadmap. Section 2 introduces the ICM with key-oblivious access. The central
theorems are summarized up-front —that constructions (with certain properties)
that are secure in the ICM-KOA are secure in both the ICM and standard
models— and the bulk of the section is concerned with technical matters that
support the formal theorem statements. The section ends by using the ICM-KOA
framework to relate ideal ciphers and tweakable ciphers. Section 3 applies the
results of Sect. 2 to various blockcipher-based constructions, including the NIST
CTR-DRBG. Full proofs of all results are provided. Results on the relationship
between the PRP and m-PRP standard-model notions will appear in the full
version.

2 The ICM with Key-Oblivious Access

In this section, we formalize the notion of decomposing a construction into a
mode (which carries out the cryptographic functionality) and a scheduler (which
creates keys for the mode, as needed). We then define properties of modes and
schedulers sufficient to imply results in both the standard model and the ICM.
Roughly speaking:

– A mode and a scheduler constitute a decomposition of a construction if they
preserve its black-box behavior.

– A mode is compatible with a scheduler if they query the underlying blockcipher
on different points (and thus maintain an independence between keys and, e.g.,
ciphertexts).
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– A decomposition has dispersed inputs if there are limits to how many block-
cipher inputs an adversary can predict in advance.

– We quantify the computational resources consumed by the mode and scheduler
using mode efficiency.

The first item and last items are straightforward, and the need for the second (in
proofs) is intuitive after a moment’s thought. Having dispersed inputs will help
to make clear the impact of precomputation on security bounds. The coarser
granularity of the standard model prevents it from benefiting from dispersed
inputs, and we will demonstrate how this obscures the impact of precomputation.

The central theorems of this section, Theorems 1 and 2, have somewhat
complicated statements. But, informally, they say the following:

Theorems 1 and 2, informally. If a decomposition (1) has these properties
and (2) is difficult to distinguish from an appropriate reference oracle (e.g., an
encryption oracle that returns random bits) when the underlying blockcipher is
replaced by a random function that is inaccessible to the adversary, then the
original construction is likewise hard to distinguish from the reference oracle in
both the standard model and in the ICM.
We note that the “if” portion specifies indistinguishability when the blockcipher
is treated as a random function that is inaccessible to the adversary. This isn’t
sweeping things under the rug: ICM-based proofs typically have to “decouple”
the actual blockcipher used by the construction from the blockcipher available to
the adversary using ad-hoc methods. Our informal theorem statement is merely
surfacing this proof trick, and our model will allow us to enforce it cleanly.

The final significant contribution of this section is a result that uses the
ICM-KOA framework to formalize a relationship between the ICM and TBCs.

2.1 Preliminaries

When X,Y are strings, X ‖ Y is the concatenation of those strings, and X ⊕ Y

is their bitwise exclusive-or. When X is a set, X
$← X means to sample uni-

formly from X and assign the result to X. When A is a randomized algorithm,
then X

$← AO1,O2,...(σ) means to provide A with oracle (black-box) access to
O1,O2, . . . and input σ, and to assign the result of its execution to X. An adver-
sary is a randomized algorithm. The notation AO1,O2,... ⇒ b refers to the event
that an algorithm A, when provided the indicated oracles (if any), ends its exe-
cution with output b.

Fix integers k, n > 0. A function family E : {0, 1}k × {0, 1}n → {0, 1}n is a
blockcipher if, for all K ∈ {0, 1}k, the mapping EK(·) = E(K, ·) is a permutation
over {0, 1}n. We write E−1

K (·) for the inverse of EK(·). The set Perm (n) is the
set of all permutations π : {0, 1}n → {0, 1}n, and the set BC(k, n) is the set of
all blockciphers E : {0, 1}k × {0, 1}n → {0, 1}n.

If G is some game (in the sense of the game-playing framework of Bellare and
Rogaway [6], where an adversary interacts with oracles) and E is some event, the
notation Pr [ G; C ] denotes the probability that the condition C will hold after
G terminates.
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Fig. 1. A key-access manager exposes the query and register interfaces shown here.
The oracle M[S, E](KM,KS), to which attackers will have oracle access in security exper-
iments, uses these interfaces and a to implement the mode M of a given decomposition
Ê = (M, S, K). Here, c is initially 1.

2.2 Decompositions and Their Associated Notions

Let E : KE ×D → R be some scheme (e.g., CTR mode) that makes black-box use
of a blockcipher E : {0, 1}k×{0, 1}n → {0, 1}n. We write EE

K for the construction
being keyed by K ∈ KE , with E as a superscript to emphasize black-box access.

Our goal is to break E into a mode of operation and a key scheduler. A
decomposition is a tuple Ê = (M,S,K) of algorithms: a mode M : KM×D → R,
a stateful but deterministic scheduler S : KS → N×{0, 1}n, and a key-generation
algorithm K that outputs values in KM ×KS . The mode M expects two oracles
having the signatures of query and register, which are exposed as part of a key-
access manager in Fig. 1. (Look ahead to World 1 of Fig. 3 for an illustration).
The scheduler S expects oracle access to query, and is invoked by register.

A natural first attempt at defining key-oblivious access to an ideal cipher E
would be to choose set of keys K1,K2, . . . ,Km up front, and then give the mode
M (e.g., CTR mode) being analyzed black-box access to some oracle O(i,X) :=
E(Ki,X) for i ∈ [1..m]. There would be no explicit scheduler, and the keys
themselves would be independent of the blockcipher E. But we want to capture
schemes that do use E to derive the keys. For example, the Intel RNG [11] and
the Abdalla and Bellare [1] constructions mentioned in the introduction. Hence
we surface a key scheduler S as an explicit component of the decomposition, and
must provide it with some kind of access to E. We cannot provide S unfettered
access to E, however. If we did, then we would not be able to argue that E
is queried only under random (and secret) keys. Concretely, suppose S sets
Ki = E(C,E(C,K ⊕ i)), where C is some constant and K is some “master
key”; this may be secure in the ICM, but if we instantiate E with DES and C
is a one of the weak keys for DES, then we would have Ki = K ⊕ i. The keys
used by the mode of operation would be closely related, a scenario we wish to



Salvaging Weak Security Bounds for Blockcipher-Based Constructions 437

Table 1. Symbols used in ICM-KOA security definitions.

Symbol Upperbound for number of. . .

q Adversary queries

m Blockcipher keys used

σ n-bit blocks per adversary query

μ Key aliases used to encipher any given block

ν Blocks enciphered using any given key alias

preclude. Thus we restrict the scheduler’s access to E. Similar abuse from M
must also be prevented.

The oracles in our key-access manager force both S and M to query the
blockcipher via handles, values that are independent of the particular values of
the keys. Moreover, when preparing to have a value assigned to the mth key Km,
the scheduler S can only request outputs of E under keys K1 through K(m−1).
Note that S is not allowed to “know” the resulting value of Km: instead, S
outputs a pair (i,X) and Km is assigned E(Ki,X). We also force M to query
E using handles for keys.

We note that the syntax for both the mode M and the scheduler S provides
them with what appear to be “master” keys KM and KS. This is to capture initial
values (keys, IVs, etc.) provided to the blockcipher-based construction. We will
not assume or demand that KM and KS are independent of each other, but
allowing them to be distinct permits us to capture more general constructions.

Definition 1 (Decompositions of schemes). Let E : KE × D → R and
Ê = (M,S,K) be defined as above. For K ∈ KM × KS , let M[S, E]K : D → R
be the procedure defined in Fig. 1; this procedure combines the mode of operation
M with the key scheduler S and blockcipher E in the natural way. We say Ê is
a faithful decomposition of E if, for any adversary A and any E ∈ BC(k, n),
k = n, Pr

[
AEE

K′ ,E,E−1 ⇒ 1
]

= Pr
[

AM[S,E]K ,E,E−1 ⇒ 1
]
. The probabilities are

over the choice of K ′ $← KE , K
$← K and the coins of A, M, and E.

That is, the black-box behavior of EE
K′ must be identical to the black-box behav-

ior of M[S, E]K (given the above distribution of keys) for any blockcipher E
and computationally unbounded adversaries.

Note that by using blockcipher outputs as keys, this definition assumes for
the sake of simplicity that the key size k is equal to the blocksize n (each key
is the output of the blockcipher at some point). We note that our model could
easily be extended to the case where k 	= n by truncating or concatenating the
keys produced, as required, at the expense of complicating notation. However,
we will use both k and n in our definitions and security bounds in order to
suggest how taking k 	= n would impact our model and results.

Compatible modes. Our key-access manager formalism does not itself prevent
a scheduler S from “cheating” by choosing non-random keys. For example, S
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Fig. 2. Procedures and oracles for Experiment COMPATΠ
Ê (A), where Ê = (M, S, K).

A mode M is m-compatible with a scheduler S if neither one queries the blockcipher
on a point used to generate one of the first m keys.

could use its query oracle to search for a point (i,X) such that E(Ki,X) ends
in a zero, then output that point.

Informally, a scheduler S is compatible with a mode M if no adversary can
cause either S or M to invoke query at a point (i,X) used to generate a key
Kj = E(Ki,X). This ensures that both the S and M are oblivious to the actual
values of each key.

We’ll show that as long as each key alias i is used significantly fewer than
2n/2 times, it follows that in both the ICM and the standard model there will
be enough (computational) randomness in E(Ki,X) for use as a cryptographic
key. (This restriction results from the birthday paradox: since E is being used to
generate keys, we need it to behave like a random function, rather than random
permutation.)

Definition 2 (Compatible modes). Let Ê = (M,S,K) be a decomposition
over an (k, n)-bit blockcipher, k = n, and set K

$← K. Let m be a positive integer.
Then S is m-compatible with M (with respect to K) if for any keyed function Π :
{0, 1}k ×{0, 1}n → {0, 1}n, and any adversary A, Pr

[
COMPATΠ

Ê (A) ⇒ true
]

=
1, where Experiment COMPAT is defined in Fig. 2.

Note that Π need not be a blockcipher. This generality is required to make some
of our later reductions work, and does not appear to exclude interesting modes.

Some other, arguably more natural definitions fail to capture our goal of
preventing cheating schedulers. For example, suppose we instead query SKS to
obtain keys (K1,K2, . . . ,Km) and require that no adversary with access to E and
E−1 be able to distinguish these keys from truly random values. This definition
proves too strict, as it excludes schedulers that deterministically derive Ki+1

from Ki.
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It may then be tempting to instead allow schedulers to output keys directly
(rather than (i,X) pairs), and task an adversary A to distinguish M[S, E](KM,KS)

from M[$, E]KM,KS, where $ is a special oracle that samples and returns fresh
random strings from {0, 1}k on each invocation. This hides the keys from being
directly observed by A, allowing Ki+1 to depend on Ki deterministically. Such
a definition, however, is too weak—it doesn’t really depart from the familiar
ICM. For example, if SKS sets Ki = KS ⊕ i then the keys are not independent,
yet A is unlikely to be able to exploit this (in the ICM). One of our goals is
that our security definition should imply security in the standard model, so this
candidate also isn’t acceptable.

Dispersed inputs. The next two definitions are used to measure some important
combinatorial properties of decompositions. We will require several symbols to
define the relevant parameters, and so provide Table 1 for reference.

Definition 3 (Dispersed inputs). Let k, n, μ and σ be non-negative inte-
gers, and let ε be positive. Let F be a uniformly random function mapping
{0, 1}k × {0, 1}n to {0, 1}n. A decomposition Ê over an (n, n)-bit blockcipher
has (q, σ, μ, ε)-dispersed inputs if for any adversary A making q queries, each no
longer than σn bits,

Pr
[
COMPATF

Ê (A) ; max
X

|{i | (i,X) ∈ Q}| > μ
]

< ε,

where Experiment COMPAT is defined in Fig. 2, and Q refers to the final value
of the set so named constructed during this experiment (i.e., the set of points
submitted to the query oracle).

The condition states that no single input is evaluated under more than μ key
aliases except with probability ε. Small values of μ and ε limit the effectiveness of
brute-force attacks by putting a cap on how many of the m keys can be attacked
in parallel with a single blockcipher invocation.

Mode efficiency. A final definition is used to bound the computational work
done by M and S given restrictions on an adversary.

Definition 4 (Mode efficiency). Let Ê be a decomposition over an (k, n)-bit
blockcipher E, with k = n. Let COMPAT be the experiment defined in Fig. 2, and
let A be any adversary making q queries, each of length at most σn bits. We say
Ê is (q, σ,m, ν)-efficient if after an execution of COMPATE

Ê (A), c < m and for
each i, |{X | (i,X) ∈ P ∪ Q}| ≤ ν. Here, c, P , and Q refer to the final values of
the random variables constructed in the experiment’s definition.

That is, given such an adversary, the mode and scheduler will query the key
manager using at most m key aliases, and will use each alias to encipher at most
ν blocks.
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Fig. 3. Here, F is an ideal cipher and E is some cryptographic scheme based on a
(concrete) blockcipher E that should be indistinguishable from some reference oracle
I. For example, E maybe an encryption scheme and I an oracle that returns a random
string. From A’s perspective, World 0 = World 1 if Ê = (M, S, K) is a decomposition of
E ; World 1 ≈ World 2 if Ê has dispersed inputs and E is a PRP; World 2 ≈ World 3 if the
scheduler S is compatible with the mode M; World 3 ≈ World 4 if Ê is indistinguishable
from I in the ICM-KOA.

2.3 Generic Results About IND-KOA-ICM

We can now define what it means for a construction E to be indistinguishable
from a reference oracle I in the ICM-KOA, the ICM, and the standard model.
In general, we’re interested in I that provide the desired idealized behavior of
E . For example, if E is an encryption algorithm, then we may want I to be the
oracle that accepts a plaintext and outputs random bits.

We then show that ICM-KOA indistinguishability implies insecurity in both
the ICM and the standard model, with a loss that is determined by the para-
meters of E ’s decomposition as surfaced by the efficiency and input-dispersion
definitions. Figure 3 provides a graphical overview of how our key-access manager
formalism will be used to argue indistinguishability of E and I.

We emphasize that unlike most security definitions of this form, we do not
claim that ICM-KOA indistinguishability offers an intuitive, compelling security
goal on its own. Instead, it is a means to obtaining strong bounds in the ICM that
are backed by a guarantee that keys are kept random and secret. And because
of this guarantee, we gain simultaneous results in the standard model.

Definition 5 (ICM-KOA indistinguishability). Let Ê = (M,S,K) be a
decomposition over an (k, n)-bit blockcipher, k = n, with M[S, E]K : D → R.
Let I : D → R be some reference scheme. Then the ICM-KOA-I advantage of
an adversary A is

Advkoa-ind-I
Ê (A) = Pr

[
AM[F ]K ,E,E−1 ⇒ 1

]
− Pr

[
AI,E,E−1 ⇒ 1

]
.
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Here, F
$← Func(k + n, n) and M[F ]K behaves identically to M[S, F ]K (as

defined in Fig. 1), except register assigns Kc
$← {0, 1}k instead of Kc ← EKi

(X).

Note that in this definition, the mode M does not interact with E, and so,
without loss of generality, neither does A. ICM-KOA indistinguishability is only
a useful notion for compatible decompositions with dispersed inputs, as these
properties will allow us to “decouple” the ideal cipher used by the mode from
the ideal cipher directly accessible by an adversary when proving results in the
ICM.

Definition 6 (ICM indistinguishability). Let Ê = (M,S,K) be a decom-
position over an (k, n)-bit blockcipher, k = n, where M[S, E]K : D → R. Let
I : D → R be some reference scheme (for example, an encryption algorithm with
D = R = {0, 1}∗). Then the ICM-IND-I advantage of an adversary A is

Advicm-ind-I
Ê (A) = Pr

[
AM[S,E]K ,E,E−1 ⇒ 1

]
− Pr

[
AI,E,E−1 ⇒ 1

]
,

where K
$← K, and E

$← BC(k, n) is an ideal cipher.

Precomputation, offline and online queries. One benefit of the ICM-KOA model
is that it can quantify the effectiveness of precomputation against specific modes.
The following definition is general, but in it we have in mind f2 = E, f3 =
E−1 for some blockcipher E, while f1 is an oracle for some blockcipher-based
construction.

Definition 7 (Precomputation, offline, and online queries). Let Af1,f2,f3

be an adversary. We say A makes qP precomputation queries, qE offline queries,
and q online queries if

– A makes qP combined queries to f2 and f3 before making its first query to f1,
– and afterwards makes a combined qE queries to f2 and f3,
– while interleaving q queries to f1.

Relating the ICM-KOA and the ICM. We now give the first of our two main
model-implication results. Namely, that security in the ICM-KOA implies secu-
rity in the ICM.

Theorem 1 (ICM-KOA indistinguishability implies ICM indistin-
guishability). Let Ê = (M,S,K) be a decomposition over an (k, n)-bit block-
cipher with k = n, and let I be some reference scheme. Fix a positive integer
c. Let A be an adversary making qP precomputation queries, qE offline queries,
and q online queries, the latter of at most σn bits each. Suppose

1. M is compatible with S,
2. Ê is (q, σ,m, ν)-efficient,
3. Ê has (q, σ, μ, ε)-dispersed inputs, and
4. For any adversary B making q queries, Advkoa-ind-I

Ê (B) ≤ δ.
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Further suppose1 that qE + qP < 2n. Then

Advicm-ind-I
Ê (A) ≤ δ +

2qEcν

2k(2n − qE − qP )
+

(qE + qP )mν

2k+n
+

cmν2

2n

+
qE(2μ + c) + (qP + m)μ

2k
+

mc+1(1 + νc+1)
2nc(c + 1)!

+ 3ε.

Although this general bound is complex, it simplifies substantially for various
modes of operation. We will see this when we apply the general result to real
constructions in Sect. 3. We note that the constant c can be chosen more-or-
less arbitrarily to minimize the bound. This permits the possibility of “beyond
birthday-bound security” when c > 1. (The cmν2/2n term gives a birthday
bound with respect to the amount of data ν processed with a single key, but
mν blocks are enciphered in total.) Before proving this theorem, we give the
following useful lemma.

Lemma 1. (c-wise birthday bound). Let c, q, and n be positive inte-
gers, with c ≤ q. Let X1, . . . , Xq be iid uniformly random n-bit strings. Then
Pr [ ∃S ⊆ {1, . . . , q} s.t. |S| = c,Xj = Xi for all i, j ∈ S ] ≤ qc

2n(c−1)c!
.

Proof. Fix some x ∈ {0, 1}n and some c-sized index set S ⊆ {1, 2, . . . , q}. Then
Pr [ ∀i ∈ S : x = Xi ] = 2−cn. Since there are 2n choices for x and

(
q
c

)
< qc/c!

choices for S, a union bound provides us with the desired upper bound. ��

Proof (Theorem 1). Let F
$← Func(k + n, n). Then Pr

[
AM[F ]K ⇒ 1

]
−

Pr
[
AI ⇒ 1

]
≤ δ, where K

$← K and M[F ]K is defined as Definition 5.
Game G1(A) (Fig. 4), which excludes the boxed statements, faithfully sim-

ulates AM[S,F ]K . In this figure, and for the remainder of the proof, F , E, and
E−1 (without subscripts) refer to oracles, while FK and EK (with subscripts)
refer to the lazily-defined functions the game builds to help implement these
oracles. We’ve moved the calls to register to the start of the game, without loss
of generality.

In G1(A), the behavior of F is independent of the behavior of E and E−1.
Consequently, the value of each key Ki is information theoretically hidden from
the adversary; the adversary can at best learn information about whether two
key aliases correspond to the same key.

Recall that the difference between M[F ]K and M[S, F ]K is that the for-
mer’s register procedure always assigns keys a uniformly random value that is
independent of the other coins in the experiment. Hence, the oracle M[F ]K
behaves identically to M[S, F ]K until there is some query input (i,X) and some
S output (j,X) with Ki = Kj .

Let us bound the probability of this happening during an execution of
AM[F ]K . (The Fundamental Lemma of Game Playing implies that this prob-
ability is equal in both games; we are free to choose whichever best expedites
1 The proof permits us to omit this final restriction by changing the first term in the

bound to 2/2k.
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the proof.) Fix one of the m − 1 pairs (j,X) output by S. As M and S are
compatible, query never receives an input (j,X). Except with probability ε,
there are at most μ aliases i such that query receives an input (i,X). For each
such alias i, Pr [ Ki = Kj ] = 1/2k; hence, some such alias exists with probabil-
ity at most μ/2k. Taking a union bound over the m − 1 pairs (j,X) gives us
Pr

[
AM[F ]K ⇒ 1

]
− Pr

[
AM[S,F ]K ⇒ 1

]
≤ mμ

2k
+ ε.

In Game G1, the E and E−1 oracles behave independently of the others.
However, in Game G2, which includes the boxed statements, the F and E oracles
have been coupled together (turning F into a blockcipher). So Pr [ G2(A) ⇒ 1 ] =
Pr

[
AM[S,E]K ,E,E−1 ⇒ 1

]
.

We therefore wish to bound Pr [ G1(A) ⇒ 1 ] − Pr [ G2(A) ⇒ 1 ]. The Funda-
mental Lemma of Game Playing allows us to do so by bounding the probability
that one of the boolean “bad flags” of Fig. 4 is set during an execution of G1(A).

Let Cc be the event that for some key K, |{i : Ki = K}| > c. By Lemma 1,
Pr [ G1(A) ; Cc ] ≤ mc+1

2nc(c+1)! .
Now, in Game G1(A), bad1 is set on a particular query (K,X) to E only if

the initial value for Y is in Rng (FK):

Pr [ Y ∈ FK | ¬Cc ] =
∑
Ki

Pr [ K = Ki | ¬Cc ] Pr [ Y ∈ FK | K = K ′,¬Cc ]

≤
∑
K′

1
2k

|Dom (FK′)|
2n − qE − qP

≤ cν

2k(2n − qE − qP )
.

Hence Pr [ G1(A) ; bad1 | ¬Cc ] ≤ qEcν
2k(2n−qE−qP )

. A symmetric argument shows
the same bound applies to Pr [ G1(A) ; bad3 | ¬Cc ].

Similarly, bad2 is set on a particular query (K,X) to E only if X ∈ Dom (FK).
Except with probability ε, There are at most μ key aliases i such that X ∈
Dom (FKi

). Hence, Pr [ G1(A) ; bad2 ] ≤ qEμ
2k

+ ε.
Note that bad4 is only set if the adversary makes a query (K,Y ) to E−1 for

some Y ∈ Rng (FK). Over the course of the game, the probability that there will
exist some Y ′ ∈ {0, 1}n with |{(K,X) : FK(X) = Y ′}| > c is at most (mν)c

2n(c−1) ;
i.e., except with this probability, |{K ′ : Y ∈ Rng (FK′)}| ≤ c. (This follows
from the fact that points in the range of each FK are uniform and mutually
independent; see Lemma 1). Thus Pr [ G1(A) ; bad4 ] ≤ qEc

2k
+ (mν)c

2n(c−1) .
To bound Pr [ G1(A) ; bad5 ], consider a query (i,X) to F . We sample a

uniformly random Y
$← {0, 1}n and set bad5 if Y ∈ Rng (EKi

) or Y ∈ Rng (FKi
).

Using an argument similar to that for our bound for bad1, Pr [ Y ∈ Rng (EKi
) ] ≤

qE+qP
2k+n . Again fix a positive integer c. So as long as no key corresponds to more

than c aliases, Y ∈ Rng (FKi
) with probability at most cν/2n. Taking a union

bound over each of mν queries gives Pr [ G1(A) ; bad5 | ¬ Cc ] ≤ (qE+qP )mν
2k+n +

cmν2

2n .
Finally, we need to bound Pr [ G1(A) ; bad6 ]. This flag is set only if some E or

E−1 query defines the point EK(X) = Y such that K = Ki and X = X ′, where
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Fig. 4. In Game G2, A, M, and S access the same blockcipher (directly, through
queryE , and through queryF , respectively). In Game G1, the behavior of queryF is
decoupled from E and queryE , in effect giving the scheduler S it’s own blockcipher.

(i,X ′) is some (future) F -query. Let us first consider a precomputation query
that defines EK(X) = Y . Then bad6 will be triggered by this precomputation
query only if K is one of the at most μ keys under which X is queried. Hence,
the probability that some precomputation query will define a point on E that
triggers bad6 is at most qP μ/2k.

Now let us consider an offline query that defines EK(X) = Y . Except with
probability ε, there are at most μ key aliases i that will be used to encipher
X; the probability that one of these μ keys will be K is at most μ

2k
. Hence,

the probability that some offline query will define a point on E that triggers
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bad6 is at most qEμ/2k. Therefore Pr [ G1(A) ; bad6 ] ≤ μ(qE + qP )/2k + ε. The
Fundamental Lemma of Game-Playing gives us:

Pr [ G1(A) ⇒ 1 ] − Pr [ G2(A) ⇒ 1 ]
≤ Pr [ bad1 ∨ bad3 ∨ bad5 | ¬Cc ] + Pr [ Cc ]

+ Pr [ bad2 ∨ bad4 ∨ bad6 ]

≤ 2qEcν

2k(2n − qE − qP )
+

(qE + qP )mν

2k+n
+

cmν2

2n
+

mc+1

2ncc + 1!

+
2qEμ

2k
+

qEc

2k
+

(mν)c

2n(c−1)c!
+

qP με

2k
+ 3ε

=
2qEcν

2k(2n − qE − qP )
+

(qE + qP )mν

2k+n
+

cmν2

2n

+
qE(2μ + c) + qP μ

2k
+

mc+1(1 + νc+1)
2nc(c + 1)!

+ 3ε.

Collecting our results completes the proof. ��

Relating the ICM-KOA to the standard model. We now move on to a standard-
model analogue. The indistinguishability advantage definition is the same, except
now A has an implicit description of E rather than oracle access:

Definition 8 (Standard model indistinguishability). Let E : K × D → R
be a scheme over an (n, n)-bit blockcipher and let I : D → R be some oracle.
Let E be an (n, n)-bit blockcipher. We define standard model indistinguishabil-
ity advantage of an adversary A (with respect to E and I) as: Advind-I

E;E (A) =

Pr
[
AM[S,E]K ⇒ 1

]
− Pr

[
AI ⇒ 1

]
, where K

$← K is a random key and E is
an (n, n)-bit blockcipher.

We now give the second of our two main model-implication results. Namely,
that security in the ICM-KOA implies security in the standard model.

Theorem 2 (ICM-KOA indistinguishability implies standard model
indistinguishability). Let E be an (k, n)-bit blockcipher-based scheme, and let
Ê = (M,S,K) be a decomposition of E. Suppose

1. M is compatible with S,
2. Ê is (q, σ,m, ν)-efficient,
3. For any adversary B′ making q queries, Advkoa-ind-I

Ê (B′) ≤ δ.

Then for any adversary A running in time t and making q queries, each at most
σn bits in length, there exists some adversary B running in time t′ ≈ t and
making ν queries such that Advind-I

E;E (A) ≤ mAdvprf
E (B) + m2

2k
+ δ.

This theorem relates ICM-KOA security to the PRF security of the underlying
blockcipher. This implies a relationship between ICM-KOA security and PRP
security via the PRP-PRF switching lemma, at the expense of an additional
mσ2/2n+1 term. This term beats the birthday bound by a factor of m.
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Fig. 5. Replacing E with a random function R

Proof (Theorem 2). We will use a game-playing proof. First A’s oracle will tran-
sition from M[S, E]K into G, where references to EKi

(X) are replaced with
R(i,X) for some random function R (see Fig. 5).

This transition will itself involve a sequence of games. Define the oracle G�

to be identical M[S;E]K for K
$← K, except that query and register compute

R(i,X) in place of E(Ki,X) when i < �. This gives us

Pr
[

AM[S,E]K ⇒ 1
]

− Pr
[
AG ⇒ 1

]

≤
m−1∑
j=0

(
Pr

[
AGj+1 ⇒ 1

]
− Pr

[
AGj ⇒ 1

])
.

Now in Gj+1, we have Kj+1 = R(i,X) for some i ≤ j, where the compatibility
condition ensures that this is the only time R is evaluated at the point (i,X).
Consequently, Kj+1 is uniformly distributed and independent of the other coins
of the experiment. It can therefore be freely discarded and replaced with some
other value draw from this distribution without affecting the black-box behavior
of Gj+1. Therefore from A we can construct a PRF adversary Bj with the
property Advprf

E (Bj) = Pr
[
AGj+1 ⇒ 1

]
− Pr

[
AGj ⇒ 1

]
. This is accomplished

by having Bf
j simulate Gj for A, but using its own oracle to set query(j +1, ·) =

f(·). So Bf
j in behaves identically to either Gj (when f is EK) or Gj+1 (when f

is a random function). We note that Bj makes at most ν queries and has roughly
the same running time as A.

Setting B to be the Bj with maximal advantage (1 ≤ j ≤ m) gives us
Pr

[
AM[S,E]K ⇒ 1

]
− Pr

[
AG ⇒ 1

]
≤ mAdvprf

E (B).
We observe that the G and M[F ] differ in behavior only when Ki = Kj

for some i 	= j, which happens with probability at most m2/2k. Hence,
Pr

[
AG ⇒ 1

]
− Pr

[
AM[F ] ⇒ 1

]
< m2/2k.
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Finally, by hypothesis Pr
[
AM[F ] ⇒ 1

]
−Pr

[
AI ⇒ 1

]
≤ δ. Combining these

results provides the desired bound. ��

2.4 Connection to TBC-based Constructions

A tweakable blockcipher Ẽ is a (strong) TPRP if a keyed instance of Ẽ is compu-
tationally indistinguishable from an ideal cipher. This suggests that there ought
to be some formal relationship between TBCs and the ideal cipher model, but
the fact that TBCs are a keyed construction means the two objects cannot be
directly compared. However, the key managers we have introduced are keyed
constructions that mediate access between modes of operation and an under-
lying cipher. They thus offer a means of bridging the conceptual gap between
TBCs and ideal ciphers: specifically, the following theorem states that any mode
of operation secure in the ICM-KOA can be transformed into a TBC-based con-
struction secure in the standard model. In the following theorem statement, ε
denotes the empty string.

Theorem 3 (Decompositions imply TBC-based constructions). Let E be
a scheme over a (k, n)-bit blockcipher, and fix a decomposition Ê = (M,S,K).
Let be Ẽ : {0, 1}k ×T ×{0, 1}n → {0, 1}n be an n-bit TBC. Sample K

$← {0, 1}k

and (KM,KS) $← K.
Define an oracle F〈ẼK〉KM as follows: On input M , the output of F〈ẼK〉KM

is the value returned by the oracle M[S,E](KM,ε)(M) in Fig. 1 when (1) the
register procedure is replaced by a procedure register-nop that does nothing, and
(2) the query procedure is modified so that, on input (i,X), it returns ẼK(i,X).2

(This assumes that the maximum number of key aliases permitted by the mode is
at most |T |.) For any adversary A running in time t and making q queries, each
of length at most σn bits, there exists some adversary B making mν queries and
running in time t′ ≈ t such that

Pr
[

AF〈 ˜EK〉KM ⇒ 1
]

− Pr
[
AI ⇒ 1

]
≤ Advp̃rp

˜E
(B) +

mν2

2n
+

m2

2k
+ δ

where K
$← K.

Proof. Let Π
$← BC(k, n) be an ideal cipher and F

$← Func(k + n, n) be
a random function. By a standard reduction argument, there exists some
adversary B with the stated resources such that Pr

[
AF〈 ˜EK〉KM ⇒ 1

]
−

Pr
[
AF〈Π〉KM ⇒ 1

]
≤ Advp̃rp

˜E
(B). By the m applications of the Switching

Lemma, Pr
[
AF〈Π〉KM ⇒ 1

]
− Pr

[
AF〈FK〉KM ⇒ 1

]
≤ mν2/2n. Finally, note that

F〈FK〉KM and F [F ](KM,ε) behave identically unless the m random keys gener-
ated by the latter oracle’s register procedure are not pairwise distinct, an event
that happens with probability m2/2k. Collecting results completes the proof. ��

2 With these changes, the parameter E is unused.
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3 ICM-KOA Analysis of Constructions

We now put the ICM-KOA to work, using it to analyze example blockcipher-
based constructions. We begin with the NIST-CTR-DRBG, as used in Intel’s
recent hardware random-number generator [11], whose standard-model security
bounds [19] can become quite weak when an adversary is co-located on the same
physical machine, due to the rate at which such an adversary can make queries.
The weakness of these bounds is do to a hybrid-factor loss. Our ICM-KOA
analysis yields considerably better bounds, and suggests that the multiplicative
loss in the standard-model isn’t “real”.

Next, we give an example of when the standard-model fails to surface quan-
titative differences between the security of closely related schemes. In partic-
ular, we consider various rekeying and nonce-choice strategies for CTR mode.
Although these schemes yield similar bounds in the standard model, we show
that the best-possible black-box attacks tell quite a different story. These results
are of particular importance when CTR is built over a lightweight blockciphers,
where the standard-model security bounds for all of the strategies suggest that
problems may arise quickly. Our ICM-KOA analysis (and the implied ICM
results) offers a different viewpoint on these concerns, and identifies the best
strategies from among the choices.

3.1 Analysis of NIST CTR-DRBG Generation Algorithm

As the name suggests, CTR-DRBG is a deterministic random-bit generator
based on running a blockcipher in CTR mode. Here, we analyze its generation
algorithm3, specializing for the sake of simplicity to the case where AES-128 is
used (so n = k = 128), and where 128 bits are requested on each invocation.
This case is of special interest because these parameters are used inside of Intel’s
hardware random number generator.

Concretely, we consider the scheme ISK-RNG : {0, 1}2n × {0, 1}0 → {0, 1}n

over an (n, n)-bit blockcipher defined in Fig. 6. The system maintains an ini-
tially random internal state (K, IV), and on each query computes (R,K, IV) ←
(EK(IV), EK(IV + 1), EK(IV + 2)), updating the state, and returns R. In order
to decompose this into a model, we need the mode and scheduler to share the IV
portion of the state. This is accomplished by using the initial IV as part of both
the mode and scheduler key (these keys are not required to be independent).

We define Rand : {0, 1}0 → {0, 1}n to be the oracle that on each query
samples R

$← {0, 1}n and then returns R.

Stronger than standard-model results desirable. A result by Shrimpton and
Terashima [19] shows, as one might expect, that the standard-model security
bound for q queries includes an O(qAdvprp

E (B)) term, where B is an adversary
making three queries. However, B also has time t to run, where t is sufficient
time to evaluate E on 3q inputs. Hence even if B conducts a näıve brute-force
3 The specification also includes algorithms for, e.g., reseeding.
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Fig. 6. The NIST CTR-DRBG decomposes into the mode and scheduler described
above. The key-generation algorithm K ensures KM = KS.

attack, Advprp
E (B) ≈ 3q/2k. So the security bound becomes roughly q2/2k. For

k = 128, this bound exceeds 2−40 when q = 244.
This may seem safe; after all, this amounts to many terabytes of random bits.

But the RNG has extremely high throughput—Intel reports 800 MB/s, which
equates to 50 million queries per second. This means an attacker who shares a
physical machine with his target can reach the q = 244 limit in a little more than
four days.

The following lemma provides a security bound for the ISK-RNG in the ICM-
KOA. For very little work, we recover the security bound of Shrimpton and
Terashima [19], and immediately also get a much stronger bound in the ICM.
The ICM bound reveals the lack of a matching attack, and shows that barring
cryptanalysis of AES under random and secret keys, we can permit on the order
of 270 queries before surpassing our 2−40 limit (assuming the adversary has
resources for 280 precomputation and 280 offline queries). This translates to
750,000 years of ISK-RNG runtime, and so is unlikely to be the limiting factor.

Lemma 2. For any positive integers μ and any adversary A making at most
q online queries, ISK-RNG is (q, 0, q, 3)-efficient, has (q, 0, c, ε)-dispersed inputs,
and Advkoa-ind-Rand

ISK-RNG (A) ≤ δ, where δ = 5q2

22n and ε = δ + (3q)3

22n3! .

Proof. If A makes q queries (0 bits each), the RNG will make three queries using
each of q distinct key aliases. Hence Ê is (q, 0, q, 3)-efficient.

Let R : {0, 1}k × {0, 1}n → {0, 1}n be an oracle that samples and returns
a fresh random string on each query (so R may return different outputs on
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the same input). Consider Experiment COMPATR
Ê (A). Let (Ki, IVi)

q
i=1 be the

sequence of keys and IVs generated during this experiment. Then the probability
that there exists some string x ∈ {0, 1}n that is enciphered under more than c

key aliases is less than (3q)c+1

2nc(c+1)! .

Let F
$← Func(k+n, n). Then Experiment COMPATF

Ê (A) proceeds identically
to COMPATR

Ê (A) unless an F -query is repeated; i.e., unless there exists i < j
such that Kj = Ki and IVj ∈ {IVi + � : −2 ≤ � ≤ 2}. The probability that this
happens (which is identical in both games, but easier to compute with respect
to the R oracle), is less than q2

2k

(
5
2n

)
. Therefore Ê has (q, 0, c, ε)-dispersed inputs

for ε = 5q2

2k+n + (3q)c+1

2nc(c+1)! .
Finally, we need to bound Pr

[
AM[F ]K ⇒ 1

]
− Pr

[
ARand ⇒ 1

]
. As before

Pr
[
AM[F ]K ⇒ 1

]
− Pr

[
AM[R]K ⇒ 1

]
≤ 5q2

2k+n , and Pr
[
AM[R]K ⇒ 1

]
−

Pr
[
ARand ⇒ 1

]
= 0. ��

Combining this result with Theorem 2 and immediately gives the following
results:

Corollary 1. Let A be an adversary making q queries and running in time t.
Then there exists an adversary B making 3 queries and running in time t′ ≈ t

such that Advind-Rand
ISK-RNG[E](A) ≤ qAdvprf

E (B) + q2

2n + 5q2

22n .

Note that up to a small constant factor, we’ve recovered, essentially the
security bound from [19]. But we can do better:

Corollary 2. Let A be an adversary making qP precomputation queries, qE

offline queries, and q online queries, where qE + qP < 2n−1. Then

Advicm-ind-Rand
ISK-RNG (A) ≤ 20q2 + 24qE + 3q(qE + qP ) + 19q3

22n
+

20q + 6qE + 2qP

2n

Here we have set c = 2 for the sake of notational cleanliness.
Taking qE = qP = 280 allows the upper bound to stay below 2−40 even

when q = 270, a substantial improvement over the previous q = 244 (which
only applied to attackers with qP = 244). This is a significantly stronger result
than we could obtain in the standard model, and it retains the standard model’s
strength of only relying on random, secret keys. A brute-force attack on the key
would obtain about the same success rate.

3.2 Analysis of CTR-mode Variants

We consider three variants on CTR mode, distinguished by how they choose IVs
following a key change: (1) The IV is set to 0n; (2) the upper bits of the IV are
unique for each key; (3) The IV is chosen randomly. In each case, we use the
same key scheduler that sets Ki ← EK1(i) (for i > 1). See Fig. 7. For simplicity,
we consider the case where the key changes with each message. This models a
situation where the counter state is retained between messages with the same
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key. The loss of adaptivity within the lifetime of a given key does not hamper
a chosen-plaintext adversary in this context because the nature of CTR mode
permits him to compute what a ciphertext would have been with a different
plaintext. The variants are distinguished by the choice of iv-gen : N → {0, 1}n,
which on input i outputs some IVi. Define the reference scheme R[iv-gen] to be
the stateful function that on its ith query M , computes IV ← iv-gen(i), samples
C

$← {0, 1}|M |, and returns (IV, C).

Theorem 4. Fix positive integers σ, q, and b with q < σ < 2b and b < n.
Let const(i) = 0n, let unique(i) = 〈i〉b0n−b (where 〈i〉b is a b-bit encoding of i),
and let rand(i) sample and return R

$← {0, 1}n on each invocation. Let A be an
adversary making q online queries, each at most σn bits long, qP precomputation
queries, and qE offline queries. Then:

(1) Advind-R[const]
CTR[const] (A) ≤ 4qEσ

2k(2n − qE − qP )
+

(qE + qP )qσ
2k+n

+
2qσ2

2n

+
2qE(q + 1) + qP q + 2q2

2k
+

q3(1 + σ3)/6
22n

(2) Advind-R[unique]
CTR[unique] (A) ≤ 4qEσ

2k(2n − qE − qP )
+

(qE + qP )qσ
2k+n

+
2qσ2

2n

+
6qE + 2qP + 2q

2k
+

q3(1 + σ3)/6
22n

(3) Advind-R[rand]
CTR[rand] (A) ≤ 4qEσ

2k(2n − qE − qP )
+

(qE + qP )qσ + (qσ)2

2k+n
+

2qσ2

2n

+
6qE + 2qP

2k
+

q3(1 + 4σ3)/6
22n

Proof. Each decomposition is (q, σ, q+1, σ)-efficient. Sample F
$← Func(k+n, n).

Let iv-gen ∈ {const, unique, rand}. Let bad be the event that during an exe-
cution ACTR[iv-gen][F ], CTR[iv-gen][F ] repeats a query to F . Barring this event,
the outputs of CTR[iv-gen][F ] are independent and uniformly random (with the
possible exception of the IV component). Therefore Pr

[
ACTR[iv-gen][F ] ⇒ 1

]
−

Pr
[
AR[iv-gen] ⇒ 1

]
≤ Pr [ bad ]. We want to find an upper bound δ for Pr [ bad ],

and do so for each method of generating the IV. Specifically,

– When iv-gen = const, Pr [ bad ] ≤ Pr [ ∃i 	= j : Ki = Kj ] ≤ q2/2k

– When iv-gen = unique, Pr [ bad ] = 0 because regardless of what value the keys
have, the inputs never repeat.

– When iv-gen = rand, any two queries to F collide with probability 1/2k+n

because both keys and IVs are uniform and independent. There are fewer
than (qσ)2 pairs of queries, so Pr [ bad ] < (qσ)2/2k+n.
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To apply Theorem 1 (with c = 2), we need to measure how much each variant
disperses its inputs.

– CTR[const] has (q, σ, q + 1, 0)-dispersed inputs because 0n is evaluated under
each of the q + 1 keys.

– CTR[unique] has (q, σ, 2, 0)-dispersed inputs because each input is guaranteed
to be used at most twice (including once by the scheduler).

– CTR[rand] has (q, σ, c, (qσ)c+1/2nc(c + 1)!). The argument here follows that
of Lemma 1, except each that we are interested in the probability that x ∈
{Xi,Xi + 1, . . . , Xi + (σ − 1)}, instead of x = Xi, where Xi plays the role of
IVi.

Plugging these values into Theorem 1 gives us the previously stated bounds. ��

Fig. 7. A general decomposition of CTR parameterized by the IV selection function,
iv-gen.

Interpretation. Assume qP � qE , q. Using the const IV generation function
permits σ = 2n/3, q = 2n/3 (up to constants) as long as 2k−n/3 � qP . This
allows on the order of 22n/3 n-bit blocks of data to be securely encrypted, beating
the birthday bound. However, the constraint on qP may be worrisome for, e.g.,
n = 64, k = 80, which is only secure against adversaries for which qP � 259.
Using a predictable IV amplifies the effectiveness of precomputation because
the adversary knows what precomputations will likely be helpful (in this case,
finding preimages of EK(0n)). On the other hand, unique and rand also permit
σ = q = 2n/3, but the O(qP q/2k) term is now O(qP /2k). Precomputation is no
longer nearly as much of a threat.
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This O(qP q/2k) term for const corresponds to the following attack: Precom-
pute Y = EK(0n) for qP arbitrary keys K, and store each K in a hash table
using Y as the hash table key. Encrypt the string 02n q times, and perform a
hash table lookup of the first n bits of the ciphertext. This recovers the key if it
happened to be one of the qP values used during precomputation. False positives
can be all but eliminated by verifying the second n bits of the ciphertext.
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