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Abstract. In conventional authenticated-encryption (AE) schemes, the
ciphertext expansion, a.k.a. stretch or tag length, is a constant or a para-
meter of the scheme that must be fixed per key. However, using variable-
length tags per key can be desirable in practice or may occur as a result
of a misuse. The RAE definition by Hoang, Krovetz, and Rogaway (Euro-
crypt 2015), aiming at the best-possible AE security, supports variable
stretch among other strong features, but achieving the RAE goal incurs
a particular inefficiency: neither encryption nor decryption can be online.
The problem of enhancing the well-established nonce-based AE (nAE)
model and the standard schemes thereof to support variable tag lengths
per key, without sacrificing any desirable functional and efficiency prop-
erties such as online encryption, has recently regained interest as evi-
denced by extensive discussion threads on the CFRG forum and the
CAESAR competition. Yet there is a lack of formal definition for this
goal. First, we show that several recently proposed heuristic measures
trying to augment the known schemes by inserting the tag length into
the nonce and/or associated data fail to deliver any meaningful security
in this setting. Second, we provide a formal definition for the notion of
nonce-based variable-stretch AE (nvAE) as a natural extension to the
traditional nAE model. Then, we proceed by showing a second modu-
lar approach to formalizing the goal by combining the nAE notion and
a new property we call key-equivalent separation by stretch (kess). It is
proved that (after a mild adjustment to the syntax) any nAE scheme
which additionally fulfills the kess property will achieve the nvAE goal.
Finally, we show that the nvAE goal is efficiently and provably achiev-
able; for instance, by simple tweaks to off-the-shelf schemes such as OCB.

Keywords: Authenticated encryption · Variable-length tags ·
Robustness · Security definitions · CAESAR competition

1 Introduction

Authenticated encryption (AE) algorithms have recently faced an immense
increase in popularity as appropriate cryptographic tools for providing data con-
fidentiality (privacy) and integrity (together with authenticity) services simul-
taneously. The notion of AE, as a cryptographic scheme in its own right, was
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originally put forward in several (partially) independent papers [3,4,20] and
further evolved to notions of nonce-based AE (nAE) by Rogaway et al. [35],
nonce-based AE with associated data (AEAD) by Rogaway [32,34], determin-
istic AE (DAE) and misuse-resistant AE (MRAE) by Rogaway and Shrimp-
ton [36], online nonce-misuse resistant AE by Fleischmann et al. [14], AE under
the release of unverified plaintext (AE-RUP) by Andreeva et al. [1], robust AE
(RAE) by Hoang et al. [16], and online AE (OAE2) by Hoang et al. [17].

Providing authenticity requires any AE scheme to incur a non-zero ciphertext
expansion or stretch, τ = |C| − |M |, where |M | and |C| are the lengths of the
plaintext and ciphertext in bits, respectively. Most standard AE schemes adopt
a syntax in which the ciphertex is explicitly partitioned as C = Ccore||Tag with
Ccore as the ciphertext core (decryptable to a putative plaintext) and Tag as the
authentication tag (used for verifying the decrypted message). In this paper, we
will use the terms ciphertext expansion, stretch and tag length interchangeably
unless the syntax of an AE scheme (e.g. an RAE scheme) does not allow par-
titioning of the ciphertext to a core and a tag part, in which case we use the
general term stretch.

The problem. This paper investigates the problem of using an AE scheme
with variable-length tags (variable stretch) under the same key. All the known
security notions for AE schemes [1,14,17,32,34,36] and constructions thereof,
with the exception of RAE [16], assume that the stretch τ is a constant or a
scheme parameter which must be fixed per key, and security is proved under this
assumption. A correct usage of such a scheme shall ensure that two instances of
the same scheme with different stretches τ1 and τ2 always use two independently
chosen keys K1 and K2. However, this rigid correct-use mandate may be violated
in practice for different reasons.

First, AE schemes may be used with variable-length tags per key due to
misuse and poorly engineered security systems. With the increasing scale of
deployment of cryptography, various types of misuse of cryptographic tools (i.e.
their improper use that leads to compromised security) occur routinely in prac-
tice [9,12,18,22,23,41]. Identifying potential ways of misuse and mitigating their
impact by sound design is therefore of great importance, while waving such a
potential misuse off because there have been no cases of occurrence is a dangerous
practice. Prior “Disasters” [6] have shown that it’s a question of when, not if, a
misuse will eventually happen in applications of (symmetric-key) cryptographic
schemes in practice.

The ongoing CAESAR competition [5] has explicitly listed a set of conven-
tional confidentiality and integrity goals for AE, but has left “any additional
security goals and robustness goals that the submitters wish to point out” as an
option. Among the potential additional goals, robustness features, in particular,
different flavours of misuse-resistance to nonce reuse [14,36] have attracted a lot
of attention. While the recent focus has been mainly on nonce misuse, proper
characterization and formalization of other potential misuse dimensions seems
yet a challenge to be further investigated. The current literature lacks a system-
atic approach to formalizing an appropriate notion of AE with misuse-resistance
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to tag-length variation under the same key, without sacrificing interesting func-
tional and efficiency features such as online encryption.

Second, there are use cases such as resource-constrained communication
devices, where the support for variable-length tags is desired, but changing the
key per tag length and renegotiating the system parameters is a costly process
due to bandwidth and energy constraints. In those cases, supporting variable
stretch per key while still being able to provide a “sliding scale” authenticity
is deemed to be a useful functional and efficiency feature as pointed out by
Struik [39]. For instance, de Meulenaer et al. demonstrate that in case of wire-
less sensor networks, communication-related energy consumption is substantially
higher than the consumption caused by computation [10]. Sliding scale authentic-
ity could significantly extend the lifetime of such sensors, especially if processed
plaintexts are very short, while only a handful of them requires a very high level
of authenticity.

The problem has appeared to be highly interesting from both theoretical and
practical perspectives as evidenced by the relatively long CFRG forum thread
on issues arising from variable-length tags in OCB [24], followed by ongoing
discussions in the CAESAR competition mailing list [19], which in turn has
motivated several second-round CAESAR candidates to be tweaked [19,25,28]
with the aim of providing some heuristic measures for addressing the problem.

Issues arising from variable stretch per key. Lack of support for
variable-length tags per key in conventional AE models, in particular in the
widely-used nAE security model, is not just a theoretical and definitional com-
plaint, rather all known standard AE schemes such as the widely-deployed CCM,
GCM, and OCB schemes do misbehave in one way or another if misused in this
way [24,31,38]. Depending on the application scenario, the consequences of such
a misbehavior may range from a degraded security level to a complete loss of
security.

A CFRG forum discussion thread initiated by Manger [24], has raised the
following concerns with an “Attacker changing tag length in OCB”:

– OCB with different tag lengths are defined. Under the same key, shorter tags
are simply truncation of longer tags. The tag length is not mixed into the
ciphertext as it never affects any input to the underlying blockcipher. Conse-
quently, given a valid output from e.g. the OCB algorithm with 128-bit tag
it is trivial to produce a valid output for the OCB algorithm with 64-bit tag
under the same key, by just dropping the last 8 bytes.

– An attacker wanting to change the associated data while keeping the same
plaintext and the same tag length as applied by the originator (e.g. 128 bits)
only has to defeat the shortest accepted tag length (e.g. 64 bits) and the
differences between accepted tag lengths up to the targeted stretch. This is
not fulfilled by OCB.

– Would OCB be better if the algorithms with different tag lengths could not
affect each other? Perhaps restricting the nonce to <126 bits (instead of <128
bits) and encoding the tag length in 2 bits.
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The CFRG discussions concluded by adopting Manger’s suggested heuristic
measure by designers of OCB: “just drop the tag length into the nonce” [31].
One may call this method nonce stealing for tag length akin to “nonce stealing”
for associated data (AD), proposed by Rogaway [32] to convert an AE scheme
to an AEAD scheme. The problem of variable-length tags per key has regained
interest in recent CAESAR competition discussions. Nandi [27] has raised the
question whether including the tag length in the associated data can resolve the
problem. A natural extension would be combining both measures, i.e., including
the tag length as part of both the nonce and the associated data.

But in the absence of a definitional and provable-security treatment of the
problem of robustness to tag-length variation per key, the proposed heuristic
measures and claims for added security in the tweaked schemes are informal,
and only limited to showing lack of some specific type of misbehavior by the
schemes.

RAE solves the problem, do we need another definition? RAE aims to
capture the “best-possible” AE security [16]. Similar to the MRAE and Pseudo-
random Injection (PRI) notions [36] it targets robustness to nonce-misuse, but
it also improves upon the prior notions by supporting variable stretch and hence
sliding scale authenticity for any arbitrary stretch. However, the cost to pay
for achieving such a strong goal is that any RAE scheme incurs a particular
inefficiency: neither encryption nor decryption can be online. We also note that
designing an efficient RAE scheme, e.g. AEZ [16], essentially entails designing
an efficient tweakable block cipher with variable-length messages and tweaks at
the first place followed by employing it in the encode-then-encipher paradigm,
a task that has turned out to be non-trivial as evidenced by several non-ideal
properties determined by recent attacks against the core cipher of prior AEZ
versions by Fuhr et al. [15].

While RAE aims to facilitate the use of any stretch, even a small one, and
promises to provide the best-possible security for any stretch even under nonce-
reuse, our main aim in this paper is to provide an enhancement to the conven-
tional AE models, in particular the popular nAE model, that just adds robust-
ness to tag-length variation under the same key without sacrificing the highly
desired online-ness feature. Unlike the RAE notion our aim is neither to facil-
itate/encourage using arbitrarily short tags nor to add nonce-misuse resistance
to a scheme which does not already possess such a property. The core goal is to
minimize/cut the interferences between instances of an AE scheme (e.g. OCB)
using different tag lengths under the same key and to meaningfully achieve the
best-possible authenticity in this setting without affecting/damaging the privacy
property.

Intuitively, one aims to have an AE scheme that can guarantee τc-bit authen-
ticity to the recipient whenever a received ciphertext has a τc-bit tag (τc-bit
stretch) irrespective of adversarial access to other instances of the same algo-
rithm under the same key but different (shorter or longer) τ -bit tags.
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Heuristic Measures Fail. We show in Sect. 3 that in general, several recently
proposed heuristic measures, such as inserting the tag length into the nonce
[31], into the associated data [27] or both methods combined, fail to capture
the aforementioned intuition of a meaningful security in the variable-length tag
setting. This is done by showing generic forgery attacks against these measures
in a large class of nAE schemes (including e.g. GCM and OCB) that follow
the “ciphertext translation” design paradigm of Rogaway [32]. The attacks have
a much lower verification query complexity for τ bits of stretch than 2τ . For
example, an adversary having access to the instances of the same algorithm
with 32-bit, 64-bit, 96-bit and 128-bit tags under the same key will only need a
query complexity O(232) to forge a message with a 128-bit tag. The attacks are
rather straightforward generalization of the tag-length misusing attack presented
by the Ascon team on OMD version 1 [13].

Our Results. We formalize a security notion for nonce-based variable-stretch
AE (nvAE). First we provide an all-in-one security definition to formulate the
notion. Then we take an alternative modular approach for defining the notion by
introducing a property, named key-equivalent separation by stretch (kess), that
together with the conventional nAE security implies the nvAE security notion.
While the former approach provides an easy-to-understand, stand-alone defini-
tion by directly capturing the whole aim of nvAE, the latter modular approach
is easier to work with, at least for proving schemes nvAE-secure, in particu-
lar, when one tweaks an existing nAE-secure scheme and wants to establish the
nvAE-security of the modified scheme by just proving its kess property rather
than having to prove everything from scratch. We show that the nvAE goal
is efficiently and provably achievable by application of simple tweaks to off-
the-shelf popular schemes such as OBC, Minematsu’s OTR [25] or OMD with-
out sacrificing their desirable functional and efficiency features such as online
encryption. Furthermore, we establish the relations (implications and separa-
tions) between different security notions in the conventional fixed-stretch AE
setting and variable-stretch AE setting. A summary of the relations is depicted
in Fig. 1.

Fig. 1. Relations among notions for nonce-based AE with and without variable stretch.
Previous works: a [36], b [3]. This paper: c (Remark 3, attacks in Sect. 3), d (Remark 3,
Corollary 1), e (Theorem 1, Remark 2), f (Proposition 1), g (Theorem 2), h, i (Remark 4
together with [16]).
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Organization of the paper. In Sect. 2 we overview some of the prior AE
definitions. Section 3 describes generic forgery attacks showing ineffectiveness of
the heuristic measures of including the tag length in the nonce and/or associated
data of a given nAE scheme to support variable-length tags per key. In Sect. 4
we provide formal definitions for the goal of AE with variable stretch per key,
and Sect. 7 provides some discussions and remarks on the interpretation of the
results of this work. In Sect. 6 we show how to efficiently achieve nvAE.

2 Preliminaries and Prior AE Definitions

Notations. For a set S (either finite, or endowed with a natural definition of
uniform distribution) we denote by a ←$ S sampling an element of S uniformly
at random and storing it in the variable a. All strings are binary strings. We let
|X| denote the length of a string X, and X‖Y the concatenation of two strings
X and Y . We let ε denote the empty string of length 0. We let {0, 1}∗ denote the
set of all strings of arbitrary finite lengths (s.t. ε ∈ {0, 1}∗) and we let {0, 1}n

denote the set of all strings of length n for a positive integer n. We let N denote
the set of all (positive) natural numbers and N0 = N ∪ {0}.

Resource-parameterized adversarial advantage. The insecurity of a
scheme Π in regard to a security property xxx is measured using the resource
parameterized function Advxxx

Π (r) = maxA {Advxxx
Π (A )}, where the maxi-

mum is taken over all adversaries A which use resources bounded by r.

Blockciphers and Tweakable Blockciphers. Let Perm(n) be the set of all
permutations over n-bit strings. Let PermT (n) ⊆ {π̃ : T × {0, 1}n → {0, 1}n} be
the set of all functions, s.t. for every π̃ ∈ PermT (n), π̃(t, ·) is a permutation for
every t ∈ T where T is a set of tweaks. We use π̃t(·) and π̃(t, ·) interchangeably.
Let E : K × {0, 1}n → {0, 1}n be a blockcipher and let ˜E : K × T × {0, 1}n →
{0, 1}n be a tweakable blockcipher with a non-empty, finite K ⊆ {0, 1}∗. Let D

and ˜D denote the inverses of E and ˜E respectively. Let EK(·) = E(K, ·) and
˜Et

K(·) = ˜E(K, t, ·). Let A be an adversary. Then:

Adv±prp
E (A ) = Pr

[
K ←$ K : A EK ,DK ⇒ 1

]
− Pr

[
π ←$ Perm(n) : A π,π−1

⇒ 1
]

Adv±p̃rp
˜E

(A ) = Pr
[
K ←$ K : A

˜EK , ˜DK ⇒ 1
]

− Pr
[
π̃ ←$ PermT (n) : A π̃,π̃−1

⇒ 1
]

The resource parameterized advantage functions are defined accordingly, con-
sidering that the adversarial resources of interest here are the time complexity
(t) of the adversary and the total number of queries (q) asked by the adversary.

In the following we recall the security notions for nonce-based AE (nAE)
schemes with associated data (a.k.a. “AEAD” schemes) [32] and RAE schemes.
We will simply use nAE to refer to any (nonce-based) AEAD scheme as all nAE
schemes must now support associated data processing.
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Syntax. We augment the syntax of original nAE schemes [32] to include a
stretch variable. A scheme for authenticated encryption is a triplet Π = (K, E ,D)
where K ⊆ {0, 1}∗ is the set of keys endowed with a (uniform) distribution and
E : K × N × A × IT × M → C and D : K × N × A × N × C → M ∪ {⊥} are
the encryption and decryption algorithm respectively, both deterministic and
stateless. We call N nonce space, A AD space, M plaintext space, C ciphertext
space, and IT stretch space (i.e. the set of ciphertext expansion values that can
be applied upon encryption) of Π, and we have that N ⊆ {0, 1}∗, M ⊆ {0, 1}∗,
A ⊆ {0, 1}∗, C ⊆ {0, 1}∗ and IT ⊆ N.

We insist that if M ∈ M then {0, 1}|M | ⊆ M (any reasonable AE scheme
would certainly have this property). We additionally limit ourselves to correct
and tidy (defined by Namprempre et al. [26]) schemes with variable stretch.
Namely, the correctness means that for every (K,N,A, τ,M) ∈ K × N × A ×
IT ×M, if E(K,N,A, τ,M) = C then D(K,N,A, τ, C) = M , and tidiness means
that for every (K,N,A, τ, C) ∈ K×N ×A×IT ×C, if D(K,N,A, τ, C) = M 	= ⊥
then E(K,N,A, τ,M) = C. In both cases |C| = |M | + τ where τ denotes the
stretch.

Variations in Syntax. In the case of conventional nAE schemes, the expansion
of ciphertexts is fixed to some constant value τ ; this is equivalent to setting IT =
{τ}. For such schemes, we omit stretch from the list of input arguments of both
the encryption and the decryption algorithm. We sometimes create an ordinary
nonce-based AE scheme Π ′ from a nonce-based AE scheme with variable stretch
Π by fixing the expansion value for all queries to some value τ ∈ IT . We will
denote this as Π ′ = Π[τ ].

Two-requirement security definition. The nAE notion was originally for-
malized by a two-requirement (privacy and authenticity) definition [4,32]. The
privacy of a scheme Π is captured by its indistinguishability from a random
strings-oracle in a chosen plaintext attack with non-repeating nonces, while its
authenticity is defined as adversary’s inability to forge a new ciphertext, i.e. issue
a decryption query returning M 	= ⊥. The priv advantage of an adversary A
against Π is defined as Advpriv

Π (A ) = Pr[A priv-RΠ ⇒ 1] − Pr[A priv-IΠ ⇒ 1]
and the auth advantage of A as Advauth

Π (A ) = Pr[A authΠ forges] where the
corresponding security games are defined in Fig. 2. In the following x ←$ S will
denote sampling an element x from a set S with uniform distribution.

All-in-one security definition. Rogaway and Shrimpton introduced an
alternative, all-in-one approach for defining the nAE security, and proved it
to be equivalent to the two-requirement definition [36]. The all-in-one nae
notion captures AE security as indistinguishability of the real encryption and
decryption algorithms from a random strings oracle and an always-reject ora-
cle in a nonce-respecting, chosen ciphertext attack. The nae advantage of an
adversary A against a scheme Π is defined as Advnae

Π (A ) = Pr[A nae-RΠ ⇒
1] − Pr[A nae-IΠ ⇒ 1] where the corresponding security games are defined in
Fig. 3.
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Fig. 2. Two-requirement definition of nAE security for a scheme Π = (K, E , D)
with ciphertext expansion τ .

Robust AE. As mentioned in Sect. 1, the notion of robust AE (RAE) [16],
aims to capture a very strong security goal. The RAE security is captured as
indistinguishability of a scheme from a particular idealized primitive in an unre-
stricted chosen ciphertext attack. The rae advantage of an adversary A against
a scheme Π is defined as Advrae

Π (A ) = Pr[A rae-RΠ ⇒ 1] − Pr[A rae-IΠ ⇒ 1]
where the corresponding security games are defined in Fig. 4.

It is known that the strong RAE security of a scheme implies its nAE security.
This can be easily verified by showing that Advpriv

Π (B) ≤ Advrae
Π (A ) and

Advauth
Π (C ) ≤ Advrae

Π (A ) + qd

2τ for some adversaries B and C with the same
resources as A , qd the number of decryption queries and τ the amount of stretch
in all queries. However, the robustness of RAE comes at the expense of efficiency;
an RAE-secure AE scheme must be inherently “offline”, i.e. it cannot encrypt a
plaintext with constant memory while outputting ciphertext bits with constant
latency, as every bit of the ciphertext must depend on every bit of plaintext.

Stretch (in)dependent advantage. For some of the security notions we
discuss, the adversarial advantage is trivially dependent on the value of stretch.
The advantage for notions that capture integrity of ciphertexts will necessarily
be high whenever stretch τ is low, as there is always a trivial attack that queries
a random ciphertext with probability 2−τ of being successfully decrypted. This
concerns the notions auth and nae. The notions that do not directly capture
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Fig. 3. All-in-one definition of nAE security for a scheme Π = (K, E , D) with cipher-
text expansion τ .

Fig. 4. RAE security. Defining security for a robust AE scheme Π = (K, E , D) with
nonce space N . Inj(τ) denotes the set of all injective, τ -expanding functions from
{0, 1}∗ to {0, 1}≥τ .

integrity of ciphertexts are not inherently impacted by the value of τ . In par-
ticular, no trivial attack with advantage 2−τ exists for the notions priv or rae.
Note that rae captures the integrity property indirectly; the idealized reference
of RAE security itself will still yield to the trivial attack mentioned above.

3 Failure of Inserting Stretch into Nonce And/or AD

Using a generic forgery attack, we show that the recently proposed heuristic mea-
sures, namely, inclusion of the tag length in the nonce [31], in the AD [27] or in
both nonce and AD fail when applied to a large class of nAE schemes (including
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Fig. 5. Ciphertext translation. The message-only nAE encryption E produces an
intermediate ciphertext CM with τ bits of stretch. The leftmost τ bits of the output
of a keyed hash HK(A) are xored to the rightmost τ bits of CM , forming the final
ciphertext C.

Fig. 6. Ciphertext forgery for a ciphertext translation-based AEAD scheme with
associated data A and message M in presence of variable stretch. Here τ0 = 0.

e.g. GCM and OCB) that follow the “ciphertext translation” design paradigm
of Rogaway [32] which is depicted in Fig. 5. The attack is not completely new,
it is a rather straightforward generalization of the tag-length misusing attack
originally proposed by the Ascon team on a specific algorithm, namely OMD
version 1 [13] which also follows the ciphertext translation method.
The attack. We target a ciphertext translation-based AEAD scheme Π that
supports any amount of stretch from a set IT = {τ1, . . . , τr} with τ1 < τ2 < . . . <
τr. We assume oracle access to encryption and decryption algorithms, such that
the amount of stretch can be chosen for every query independently. The goal is
to forge a ciphertext for A,M expanded by τg ∈ IT bits, with g > 1. The attack
proceeds as in Fig. 6. We let lefti(X) and rightj(X) denote i leftmost bits and j
rightmost bits of a string X respectively.

The hash function HK(·) used to process AD must fulfil some mild conditions
for the attack to work against the described heuristic countermeasures [27,31],
namely:

– In case that the tag length is only injected into the nonce, the attack works
with arbitrary HK(·).

– For inclusion of the tag length in the AD or a combination of this method
and nonce stealing, the attack works if HK(A) = H1K

(A1) ⊕ H2K
(A2) ⊕

· · · ⊕ HmK
(Am), for arbitrary functions HiK

, 1 ≤ i ≤ m, where A =
A1||A2|| · · · ||Am for Aj ∈ {0, 1}n for some positive integer n (this is the case
for both GCM and OCB). In this case, we must ensure that the block of AD
that contains the amount of stretch τ is unchanged between A and A∗.
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Under these conditions, the attack will always succeed: whenever we encrypt a
message M with two different associated data A,A∗, first with τi and then with
τj > τi bits of stretch, then Ci ⊕C∗

i will be a prefix of Cj ⊕C∗
j , as the xor cancels

out the core ciphertext as well as the block of AD that is impacted by τ (if any).
The complexity of the attack in terms of verification queries will be O(2μ)

with μ = max{τ1, τ2 − τ1, . . . , τg − τg−1}. For example, an adversary having
access to the instances of the algorithm with 32-bit, 64-bit, 96-bit and 128-bit
tags under the same key will only need a query complexity O(232) to forge a
message with a 128-bit tag, which is in stark contrast with the expected O(2128)
query complexity.

4 Formalizing Nonce-Based AE with Variable Stretch

Defining a meaningful security notion for AE schemes with variable stretch under
the same key has turned out to be a non-trivial task [24,31,38]. Allowing the
adversary to choose the amount of stretch freely from a set IT = {τmin, . . . , τmax}
will inevitably enable it to produce forgeries with a high probability 2−τmin by
targeting the shortest allowed stretch; a forgery is sure to be found with at most
2τmin verification queries. This is inherent to any AE scheme.

Despite this limit to its global security guarantees, there is a meaningful secu-
rity property which can be expected from an nvAE scheme by a user: the scheme
must guarantee τ bits of security for ciphertexts with τ bits of stretch, regard-
less of adversarial access to other instances with the same key but other (shorter
and/or longer) amount of stretch than τ . For example, forging a ciphertext with
τ -bit stretch should require ≈ 2τ verification queries with τ -bit stretch, regardless
of the number of queries made under other different amounts of stretch.

This non-interference between different instances that use the same key but
different stretch (tag length) is the intuition behind a formal definition for the
notion of nonce-based, variable-stretch AE.

Security Definition. We define a security notion parameterized by the chal-
lenge stretch value τc ∈ IT as a natural extension to the notion of nAE. This is
done in the compact all-in-one definition style of [36].

Let Π = (K, E ,D) be a nvAE scheme whose syntax is defined in Sect. 2.
An nvae(τc) adversary A gets to interact with games nvae(τc)-RΠ (left) and
nvae(τc)-IΠ (right) in Fig. 7, defining respectively the real and ideal behavior of
such a scheme. The adversary has access to two oracles Enc and Dec determined
by these games and its goal is to distinguish the two games.

The adversary must respect a relaxed nonce-requirement ; it must use a unique
pair of nonce and stretch for encryption queries. Compared to the standard
nonce-respecting requirement in nAE schemes, here nonce may be reused pro-
vided that the stretch does not repeat simultaneously.

In the ideal game nvae(τc)IΠ , the encryption and decryption queries with τc-
bit stretch are answered in the same idealized way as in the “ideal” game of nae
notion (Fig. 3 right). However, the queries with stretch other than τc are treated
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with the real encryption/decryption algorithm. This lets the adversary to issue
arbitrary queries (e.g. repeated forgeries) for any stretch τ 	= τc and leverage the
information thus gathered to attack the challenge expansion. At the same time,
only queries with τc bits of stretch can help the adversary to actually distinguish
the two games, capturing the exact level of security for queries with τc bits of
stretch in presence of variable stretch.

We measure the advantage of A in breaking the nvae(τc) security of Π as
Advnvae(τc)

Π (A ) = Pr[A nvae(τc)-RΠ ⇒ 1] − Pr[A nvae(τc)-IΠ ⇒ 1].

Adversarial resources. The adversarial resources of interest for the nvae(τc)
notion are (t,qe,qd,σ), where t denotes the running time of the adversary,
qe = (qτ

e |τ ∈ IT ) denotes the vector that holds the number of encryption queries
qτ
e made with stretch τ for every stretch τ ∈ IT , and qd = (qτ

d |τ ∈ IT ) denotes
the same for the decryption queries and σ = (στ |τ ∈ IT ) denotes the vector
that holds the total amount of data στ processed in all queries with stretch τ
for every τ ∈ IT .

Despite being focused on queries stretched by τc bits, we watch adversarial
resources for every stretch τ ∈ IT in a detailed, vector-based fashion. This
approach appears to be most flexible w.r.t. the security analysis. However, in a
typical case we will be interested in the resources related to τc (i.e. qτc

e , qτc

d , στc)
and cumulative resources of the adversary qe, qd, σ with qe =

∑

τ∈IT
qτ
e , qd =

∑

τ∈IT
qτ
d and σ =

∑

τ∈IT
στ .

Remark 1 (Relation to nAE). The notion of nvae(τc) is indeed an extension of
the classical all-in-one security notion for nonce-based AE schemes. If the scheme
Π is secure with some stretch-space IT , then it will be secure for any stretch-
space I ′

T ⊆ IT , in particular for I ′
T = {τc}. If a scheme has a stretch-space

IT = {τc}, then nvae(τc) becomes the classical nae notion. It easily follows,
that nvae(τc) security of a scheme Π tightly implies nae security of Π[τc].

Similar to the nae notion, the nvae(τc) adversarial advantage will be trivially
high if τc is low (due to successful forgeries). Yet, if the nvae(τc) advantage of
a scheme behaves “reasonably”, we will call the scheme secure. We discuss the
interpretation of the nvae(τc) bounds in Appendix 7.

Parameterized CCA security. An nae-secure AE scheme is also ind − cca-
secure. This follows from the equivalence of the all-in-one and dual nAE notions
and a well-known implication priv ∧ auth ⇒ ind − cca established by Bel-
lare and Namprempre [3]. It is natural to ask: Does the nvae(τc)-security also
provide a privacy guarantee against chosen ciphertext attacks? We define a τc-
parameterized extension of the ind − cca security notion and answer this ques-
tion positively.

The parameterized ind − cca(τc) notion captures the exact privacy level
guaranteed by an nvAE scheme for encryption queries stretched by τc bits, in
presence of arbitrary queries with expansions τ 	= τc and reasonable decryption
queries stretched by τc bits. The notion is building on the intuition that privacy
level of τc-expanded queries should not be affected by the adversarial queries
with other amounts of stretch.
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Fig. 7. AE security with variable stretch. Security games for defining AE security
of a nonce-based AE scheme Π = (K, E , D) with variable-stretch.

Security definition. Let Π = (K, E ,D) be an nvAE with syntax defined
in Sect. 2. We let an adversary A interact with the games ind − cca(τc)-RΠ

and ind − cca(τc)-IΠ defined in Fig. 8 and its goal is to distinguish them.
In the “ideal” game ind − cca(τc)-IΠ , the τc-stretched encryption queries are
answered with random strings while the decryption queries are processed with
the real decryption algorithm. A must respect the relaxed nonce-requirement
and is prevented to win the game trivially (i.e. by re-encrypting output of
decryption query with τc bits of stretch and vice-versa). We measure A ’s
advantage in breaking ind − cca(τc) security of Π as Advind−cca(τc)

Π (A ) =
Pr

[

A ind−cca(τc)-R ⇒ 1
]

− Pr
[

A ind−cca(τc)-I ⇒ 1
]

.
The adversarial resources of interest for the ind − cca(τc) notion are the same
as for the nvae(τc) notion, i.e. (t,qe,qd,σ).

Remark 2 (Relations to ind-cca and nvAE). Similarly as in the case of
nvae(τc) and nae, ind − cca(τc) security with some stretch space IT implies
ind − cca(τc) security with any stretch space I ′

T ⊆ IT , e.g. IT = {τc}. It fol-
lows that ind − cca(τc) security of a scheme Π implies the classical ind − cca
security of Π[τc].

The notions of ind − cca(τc) and nvae(τc) differ mainly in the way the
“ideal” games treat the decryption queries expanded by τc bits. The impact of
this difference is substantial; the ind − cca(τc) notion does not capture integrity
of ciphertexts. E.g. a scheme that concatenates output of a length-preserving,
nonce-based, ind-cca-secure encryption scheme (using encoding of the nonce and
stretch as a “nonce”) and an image of the nonce and stretch under a PRF would
be secure in the sense of ind − cca(τc), but insecure in the sense of nvae(τc).
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Fig. 8. Parameterized ind-cca security. Games for defining ind − cca(τc) security
of a nonce-based AE scheme with variable-stretch Π = (K, E , D).

We examine the relation between the two notions in the other direction in The-
orem 1. We would like to stress that the result in Theorem 1 holds for any nvAE
scheme, and in particular for any stretch space IT .

Theorem 1 (nvae(τc) ⇒ ind-cca(τc). Let Π = (K, E ,D) be an arbitrary
nonce-based AE scheme with variable stretch. We have that

Advind−cca(τc)
Π (t,qe,qd,σ) ≤ 2 · Advnvae(τc)

Π (t′,qe,qd,σ),

with t′ = t + O(q) and q =
∑

τ∈IT
(qτ

e + qτ
d ).

Proof. Let A be an ind − cca adversary with indicated resources. We define
the game ind − cca(τc)-I⊥

Π as an intermediate step in the proof; it is exactly
the same as ind − cca(τc)-IΠ , except that the decryption queries with τc bits
of stretch are always answered with ⊥. We have that
Advind−cca(τc)

Π (A ) = Pr[A ind−cca(τc)-RΠ ⇒ 1] − Pr[A ind−cca(τc)-I
⊥
Π ⇒ 1]

+ Pr[A ind−cca(τc)-I
⊥
Π ⇒ 1] − Pr[A ind−cca(τc)-IΠ ⇒ 1].

We start by showing that Pr[A ind−cca(τc)-RΠ ⇒ 1]−Pr[A ind−cca(τc)-I
⊥
Π ⇒ 1] ≤

Advnvae(τc)
Π (B) for an nvae(τc) adversary B with the resources (t′,qe,qd,σ).

The reduction of A to B is straightforward: B simply answers A ’s queries
with its own oracles, making sure that the trivial win-preventing restrictions of
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Fig. 9. Dual nvAE security. Security games for defining AE security of a nonce-
based AE scheme Π = (K, E , D) with variable-stretch.

ind − cca(τc) games are met. At the end of experiment, B outputs whatever A
outputs. This ensures perfect simulation of both games for A .

It remains to show that Pr[A ind−cca(τc)-I
⊥
Π ⇒ 1]−Pr[A ind−cca(τc)-IΠ ⇒ 1] ≤

Advnvae(τc)
Π (C ) for an nvae(τc) adversary C with the resources (t′,qe,qd,σ).

We reduce A to C as follows. C answers all A ’s queries directly with its own
oracles (again making sure to enforce all the restrictions of ind − cca(τc) games),
except for encryption queries expanded by τc bits. For those, C ignores its
encryption oracle and answers with |M | + τc random bits if A ’s query has a
fresh nonce-stretch pair an is not a re-encryption. At the end of experiment, C
outputs the inverse of A ’s output. If C interacts with nvae(τc)-RΠ , then it per-
fectly simulates ind − cca(τc)-IΠ for A while if C interacts with nvae(τc)-IΠ ,
then it perfectly simulates ind − cca(τc)-I⊥

Π . ��

No Two-Requirement Notion. The equivalence of the two-requirement (pri-
vacy and authenticity) approach and all-in-one approach for defining AE security
is among the best known results in AE [36]. One may wonder whether such an
equivalence also holds in the setting of variable-stretch AE schemes for natural
τc-parameterized extensions of these notions. Surprisingly, we answer this ques-
tion negatively. We consider the conventional privacy (ind-cpa$) and authenticity
(integrity of ciphertexts) notions for AE schemes [3,32] and define the notions



Authenticated Encryption with Variable Stretch 411

of τc-privacy and τc-authenticity as natural parameterized extensions of their
conventional counterparts.

Let Π = (K, E ,D) be an nvAE scheme with syntax defined in Sect. 2.
An adversary A against τc-privacy of Π interacts with games priv(τc)-RΠ

(real scheme) and priv(τc)-IΠ (ideal behaviour) defined in Fig. 9, and tries
to distinguish them. We measure A ’s advantage in breaking the τc-privacy
of Π in a chosen plaintext attack as Advpriv(τc)

Π (A ) = Pr[A priv(τc)-RΠ ⇒
1] − Pr[A priv(τc)-IΠ ⇒ 1].

An adversary A that attacks the τc-authenticity of Π is left to interact with
the game auth(τc)Π defined in Fig. 9 and its goal is to find a valid forgery
(i.e. produce a decryption query returning M 	= ⊥) with the target stretch of
τc bits. We measure the advantage of A in breaking τc-authenticity of Π in a
chosen ciphertext attack by Advauth(τc)

Π (A ) = Pr
[

A auth(τc)Π forges with τc

]

.
The adversarial resources of interest for the priv(τc) and auth(τc) notions are
(t,qe,σ) and (t,qe,qd,σ) respectively, defined as for the notion of nvae(τc) in
the current Section.

Remark 3 (Relations with the all-in-one nvAE, priv and auth notions). As
before, if a scheme Π is priv(τc) (auth(τc)) secure with stretch-space IT , then
it will be secure for any stretch-space I ′

T ⊆ IT including I ′
T = {τc}, implying

the priv (auth) security of the scheme Π[τc].
We can easily verify that the nvae(τc) security of a scheme Π implies both

the priv(τc) security and the auth(τc) of Π, by adapting the reductions for
corresponding conventional notions [36] slightly. In Proposition 1, we show that
the converse of this implication does not hold.

Fig. 10. The encryption algorithm of the scheme Π¬cca. 〈·〉 is an efficiently computable,
injective encoding scheme.

Proposition 1. There exists a nonce-based AE scheme with variable stretch,
that is secure in the sense of both the priv(τc) notion and the auth(τc) notion
but insecure in the sense of ind − cca(τc) notion, i.e.

priv(τc) ∧ auth(τc) �ind − cca(τc),

assuming the existence of secure tweakable blockciphers and PRFs.
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Fig. 11. Encryption and decryption algorithms of the nonce-based, variable-stretch AE
scheme Π¬cca = (K¬cca, E¬cca, E¬cca). 〈·〉 is an efficiently computable, injective encoding
scheme.

To support the claim in Proposition 1, we define the nvAE scheme Π¬cca =
(K¬cca, E¬cca,D¬cca) constructed from an ind-cpa secure tweakable blockcipher
B : K1 × N × {0, 1}n → {0, 1}n and two PRFs F : K2 × {0, 1}∗ → {0, 1}n and
F ′ : K3 ×{0, 1}∗ → {0, 1}m. We define K¬cca = K1 ×K2 ×K3, M¬cca = {0, 1}n,
A¬cca = {0, 1}∗, N¬cca = N and the encryption and decryption algorithms
as in Fig. 11. We require that |IT ¬cca| ≥ 2 and that m ≥ max(IT ¬cca). The
encryption algorithm E¬cca is depicted in Fig. 10.

The scheme Π¬cca is by far no real-life AE construction (mainly due to its lim-
ited message space), its purpose is merely to act as a counter example. It can be
verified, that Advauth(τc)

Π¬cca
(t,qe,qd,σ) ≤ AdvPRF

F ′ (t, qe + qd, σ) + qτc

d /2τc ; every
forgery attempt equals to guessing τc bits of an output of F ′, evaluated on a fresh
input.1 For privacy, we have that Advpriv(τc)

Π¬cca
(t,qe,qd,σ) ≤ AdvPRF

F (t, qe, σ)+
AdvPRF

F ′ (t, qe, σ)+Advp̃rp
B (t, qe)+2q2

e/2n. Here qe =
∑

τ∈IT
qτ
e , qd =

∑

τ∈IT
qτ
d

and σ =
∑

τ∈IT
στ .

The term 2q2
e/2n is composed of q2

e/2n that comes from a RP-RF switch
for the tweakable blockcipher and another q2

e/2n that comes from extending
the tweakspace to include stretch, using F (similar to Rogaway’s XE con-
struction [33]). However, we can construct an adversary A¬cca, that achieves
ind − cca(τc) advantage close to 1. The strategy of A¬cca is as follows:

1. ask query Z1‖T1 ← Enc(N1, A1, τc,M1) with arbitrary N1, A1,M1,
2. iterate through T ∗

1 ∈ {0, 1}τmin until M∗
1 ← Dec(N1, A1, τmin, Z1‖T ∗

1 ) returns
M∗

1 	= ⊥,
3. ask query Z2‖T2 ← Enc(N2, A2, τc,M2) with arbitrary N2, A2,M2,
4. iterate through T ∗

2 ∈ {0, 1}τmin until M∗
2 ← Dec(N2, A2, τmin, Z2‖T ∗

2 ) returns
M∗

2 	= ⊥,
5. return 1 iff M1 ⊕ M∗

1 = M2 ⊕ M∗
2 (otherwise return 0),

1 Note that τc is an index rather than a power in qτc
d .
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Fig. 12. Key-equivalent separation by stretch. Games defining kess property of a
nonce-based AE scheme Π = (K, E , D) with variable stretch. Note that the independent
keying for each τ ∈ IT in game kess-IΠ can be done by lazy sampling if needed.

where τmin = min(IT \{τc}). We have that Advind−cca(τc)
Π¬cca

(A¬cca) = 1 − 2−n.
As amount of stretch τ has no effect on the encryption by B, we can verify that

M1 ⊕ F (K2, 〈τc〉) =M∗
1 ⊕ F (K2, 〈τmin〉)

M2 ⊕ F (K2, 〈τc〉) =M∗
2 ⊕ F (K2, 〈τmin〉)

The final conditional statement verified by the adversary is always true for the
real scheme. The probability of the same event in the “ideal” game is 2−n. As a
consequence of Theorem 1 and Proposition 1, we can state Corollary 1.2

Corollary 1. There exists a nonce-based AE scheme with variable stretch, that
is secure in the sense of both the priv(τc) notion and the auth(τc) notion but
insecure in the sense of nvae(τc) notion, i.e.

priv(τc) ∧ auth(τc) �nvae(τc)

Key-equivalent separation by stretch. The notion of nvae(τc) captures
the immediate intuition about the security goal one expects to achieve using
a nonce-based AE scheme with variable stretch. We now introduce a modular
approach to achieving the notion. Assume that an AE scheme is already known
to be secure in the sense of the nAE model. What additional security property
should such a scheme possess (i.e. on top of nAE-security) so that it can achieve
the full aim of being a nvae(τc)-secure scheme? We formalize such a desirable
property, naming it key-equivalent separation by stretch (kess), which captures
the intuition that for each value of stretch the scheme should behave as if keyed
with a fresh, independent secret key.

2 The same attack strategy yields also Adv
nvae(τc)
Π¬cca

(A¬cca) = 1 − 2−n.
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Fig. 13. Security game nvae(τc)-GΠ .

Let Π = (K, E ,D) be an nvAE scheme with the syntax defined in Sect. 2. We
let an adversary A that tries to break kess of Π interact with games defined
in Fig. 12. The goal of the adversary is to distinguish these two games. The
advantage of A in breaking the kess property of the scheme Π is measured by
Advkess

Π (A ) = Pr
[

A kess-RΠ ⇒ 1
]

− Pr
[

A kess-IΠ) ⇒ 1
]

.
The adversarial resources of interest for the kess notion are (t,qe,qd,σ), as

defined for the nvae(τc) notion in the current Section.
We note that kess on its own says nothing about AE security of a scheme (e.g.
identity “encryption” concatenated with τ zeroes achieves kess, but is far from
nae-secure). However, we show in Theorem 2 that when combined with nae
security, kess implies nvae(τc) security. Informally, the kess notion takes care
of interaction between queries with different values of stretch. Once this is done,
we are free to argue that the queries with τc bits of stretch are “independent” of
those with other values of stretch and will “inherit” the security level of Π[τc].

Theorem 2. (kess ∧ nae ⇒ nvae(τc)). Let Π = (K, E ,D) be a nonce-based
AE scheme with variable stretch. We have that

Advnvae(τc)
Π (t,qe,qd,σ) ≤ Advkess

Π (t′,qe,qd,σ) + Advnae
Π[τc](t

′′, qτc
e , qτc

d , στc),

with t′ = t + O(q) and t′′ = t + O(σ) where q =
∑

τ∈IT
(qτ

e + qτ
d ) and σ =

∑

τ∈IT
(στ

e + στ
d ).

Proof. Let A be an nvae(τc) adversary with the indicated resources. Consider
the security game nvae(τc)-G defined in Fig. 13. We have that
Advnvae(τc)

Π (A ) = Pr[A nvae(τc)-RΠ ⇒ 1] − Pr[A nvae(τc)-GΠ ⇒ 1]
+ Pr[A nvae(τc)-GΠ ⇒ 1] − Pr[A nvae-IΠ(τc) ⇒ 1].

We first show that Pr[A nvae(τc)-RΠ ⇒ 1]−Pr[A nvae(τc)-GΠ ⇒ 1] ≤ Advkess
Π (B)

for a kess adversary B with the resources (t′,qe,qd,σ). The nvae(τc) adver-
sary A can be straightforwardly reduced to B. Any query of A is directly
answered with B’s own oracles, except for decryption queries with expansion of
τc bits whose output is trivially known from previous encryption queries; here
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B returns ⊥ to A . At the end, B outputs whatever A outputs. If B interacts
with kess-RΠ then it perfectly simulates nvae(τc)-RΠ for A . If B interacts
with kess-IΠ then it perfectly simulates nvae(τc)-GΠ .
We next show that Pr[A nvae(τc)-GΠ ⇒ 1]−Pr[A nvae-IΠ(τc) ⇒ 1] ≤ Advnae

Π[τc](C )
for an nae adversary C with resources (t′′, qτc

e , qτc

d , στc). A can be reduced to C
in the following way. When A issues a query with expansion τc, C answers it
with its own oracles. For other amounts of stretch τ 	= τc, C first checks if there
were previous queries with τ bits of stretch. If not, it samples a fresh key Kτ . C
then processes the query with the real (encryption or decryption) algorithm of
Π and the key Kτ , making sure that encryption queries comply with the nonce
requirement and are not re-encryptions. If C interacts with nae-RΠ[τc] then it
perfectly simulates nvae(τc)-GΠ for A . If C interacts with nae-IΠ[τc] then it
perfectly simulates nvae(τc)-IΠ . This yields the desired result. ��

Remark 4. An RAE secure scheme Π will always have the kess property. To
see why, note that replacing Π by a collection of random injections in both the
kess-RΠ and kess-IΠ games will not increase the advantage significantly, as
that would contradict Π’s RAE security. After the replacement, the two games
will be indistinguishable. On the other hand, kess property does not guarantee
RAE security; the scheme OCBv described in Sect. 6 can serve as a counter-
example, because it does not tolerate nonce reuse.

5 A Short Guide to NvAE

Interpretation of the nvAE security advantage. The notion of nvae(τc)
is parameterized by a constant, but arbitrary amount of stretch τc from the
stretch space IT of the AE scheme Π in question. In the nvae(τc)-IΠ security
game, only queries expanded by τc bits will be subjected to “idealization”. For
all other expansions, we give the adversary complete freedom to ask any queries
it wants (except for the nonce-requirement), but their behaviour is the same in
both security games. An nvae(τc) security bound that assumes no particular
value or constraint for τc will therefore tell us, what security guarantees can we
expect from queries stretched by τc bits specifically, for any τc ∈ IT .

Looking at the security bound itself, we are able to tell if there are any
undesirable interactions between queries with different amounts of stretch. This
is best illustrated by revisiting the problems and forgery attack from Sects. 1
and 3 in the nvae(τc) security model.

Attacks in nvAE model. With the formal framework defined, we revisit the
heuristic attacks from Sect. 3 and analyse the advantage they achieve, as well as
the resources they require. Consider the original, unmodified scheme OCB [21],
that produces the tag by truncating an n-bit (with n > τ) to τ bits. In case
of simultaneous use of two (or more) amounts of stretch τ1 < τ2 with the same
key, we can forge a ciphertext stretched by τ1 bits by τ2-bit-stretched ciphertext
truncation. This would correspond to an attack with an nvae(τ1) advantage of
1 and constant resources.
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If the same scheme is treated with the heuristic measures, i.e.nonce-stealing,
and encoding τ in AD, from Sect. 3 (let’s call it hOCB), we consider the forgery
attack from the same Section. Assume that there are four instances of hOCB,
with 32, 64, 96 and 128 bit tags. To make a forgery with 128-bit tag, we have
to find a forgery with 32 bits and then exhaustively search for three 32-bit
extensions of this forgery. This gives us an nvae(128) advantage equal to 1,
requiring 4 encryption queries, 3 ·232 verification queries with stretch other than
128 bits and 232 verification stretched by 128 bits. The effort necessary for such
a forgery is clearly smaller than we could hope for, especially in the amount of
verification queries stretched by the challenge amount of bits (i.e. 128).

“Good” bounds. After seeing examples of attacks, one may wonder: what kind
of nvae(τc) security bound should we expect from a secure nvAE scheme? For
every scheme, it must be always possible to guess a ciphertext with probability
2−τc . Thus the bound must always contain a term of the form c · (qτc

d )α/2τc for
some positive constants c and α, or something similar.

Even though the security level for τc-stretched queries should be independent
of any other queries, it is usually unavoidable to have a gradual increase of
advantage with every query made by the adversary. This increase can generally
depend on all of the adversarial resources, but should not depend on τc itself.

An example of a secure scheme’s nvae(τc) bound can be found in Theorem 4.
It consist of the fraction (qτc

d · 2n−τc)/(2n − 1) ≈ qτc

d /2τc , advantage bounds
for the used blockcipher and a birthday-type term that grows with the total
amount of data processed. We see, that queries stretched by τ 	= τc bits will not
unexpectedly increase adversary’s chances to break OCBv, and that the best
attack strategy is indeed issuing decryption queries with τc bits of stretch.

6 Achieving AE with Variable Stretch

We demonstrate that the security of AE schemes in the sense of nvae(τc) notion
is easily achievable by introducing a practical and secure scheme. Rather than
constructing a scheme from the scratch, we modify an existing, well-established
scheme and follow a modular approach to analyse its security in presence of
variable stretch. The modification we propose is general enough to be applica-
ble to most of the AE schemes based on a tweakable primitive (e.g. tweakable
blockcipher).

OCB mode for tweakable blockcipher. The Offset Codebook mode of
operation for a tweakable blockcipher (ΘCB) is a nonce-based AE scheme
proposed by Krovetz and Rogaway [21] (there are subtle differences from the
prior versions of OCB [33,35]). It is parameterized by a tweakable blockcipher
˜E : K×T ×{0, 1}n → {0, 1}n and a tag length 0 ≤ τ ≤ n. The tweak space of ˜E
is of the form T = N × N0 × {0, 1, 2, 3} ∪ N0 × {0, 1, 2, 3} for a finite set N . The
encryption and the decryption algorithms of ΘCB[ ˜E, τ ] are described in Fig. 14.

The security of ΘCB is captured in Lemma 1.
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Fig. 14. Definition of ΘCB[Ẽ, τ ].

Lemma 1 (Lemma 2 [21]). Let ˜E : K × T × {0, 1}n → {0, 1}n be a tweakable
blockcipher with T = N × N0 × {0, 1, 2, 3} ∪ N0 × {0, 1, 2, 3}. Let τ ∈ {0, . . . , n}.
Then we have that

Advpriv

ΘCB[ ˜E,τ ]
(t, qe, σ) ≤Adv±p̃rp

˜E
(t′, qp),

Advauth
ΘCB[ ˜E,τ ]

(t, qe, qd, σ) ≤Adv±p̃rp
˜E

(t′, qa) + qd · 2n−τ

2n − 1
,

where qp ≤ �σ/n� + 2 · qe, and qa ≤ �σ/n� + 2 · (qe + qd), and t′ = t + O(σ).

Thanks to the results of [36,37], we can state as a corollary of Lemma 1 that
Advnae

ΘCB[ ˜E,τ ]
(t, qe, qd, σ) ≤ Adv±p̃rp

˜E
(t′, (�σ/n� + 2 · (qe + qd))) + qd

2n−τ

2n−1 .

OCB mode with variable-stretch security. We introduce ΘCBv
(variable-stretch-ΘCB), a nonce-based AE scheme with variable stretch,
obtained by slightly modifying ΘCB.

The tweakable blockcipher mode of operation ΘCBv is parameterized only by
a tweakable blockcipher ˜E : K ×T ×{0, 1}n → {0, 1}n. The tweak T is different
than the one needed for ΘCB; it is of the form T = N ×IT ×N0×{0, 1, 2, 3}∪IT ×
N0 × {0, 1, 2, 3} where IT ⊆ {0, 1, . . . , n} is the desired stretch-space of ΘCBv.
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Fig. 15. Definition of ΘCBv[Ẽ]. Changes from ΘCB highlighted in red.

The encryption and decryption algorithms of ΘCBv are exactly the same as
those of ΘCB, that they now allow incorporate variable stretch and that every
call to ˜E is now tweaked by τ , in addition to the other tweak components. Both
algorithms are described in Fig. 15. An illustration of the encryption algorithm
is depicted in Fig. 16.

Thanks to Theorem 2, establishing the nvae(τc) security of ΘCBv requires
little effort. The corresponding result is stated in Theorem 3.

Theorem 3. Let ˜E : K × T × {0, 1}n → {0, 1}n be a tweakable blockcipher with
T = N × IT × N0 × {0, 1, 2, 3} ∪ IT × N0 × {0, 1, 2, 3}. Then we have that

Advnvae(τc)

ΘCBv[ ˜E]
(t,qe,qd,σ) ≤Adv±p̃rp

˜E
(t′, q) +

∑

τ∈IT

Adv±p̃rp
˜E

(t′, qτ )

+ Adv±p̃rp
˜E

(t′, qτc) + qτc

d · 2n−τc

2n − 1
.

where qτ = �στ/n�+2·(qτ
e +qτ

d ) for τ ∈ IT , and q =
∑

τ∈IT
qτ , and t′ = t+O(σ)

with σ =
∑

τ∈IT
στ .

Proof. We observe that if we fix the expansion value to τc in all queries, the
nonce-based AE scheme (ΘCBv[ ˜E])[τc] that we get will be identical with the
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Fig. 16. Illustration of the encryption process of ΘCBv (inspired by [21]) instantiated

with a tweakable blokcipher Ẽ : K × T × {0, 1}n → {0, 1}n. The top half depicts the
encryption of a message with four complete blocks (top) with Sum=

⊕4
i=1 Mi and the

encryption of a message with three complete blocks and an incomplete block (bottom)
with Sum=

⊕3
i=1 ⊕M∗‖10∗. The bottom half of the picture shows processing of asso-

ciated data of three complete blocks (left) or two complete blocks and an incomplete
block (right).

scheme ΘCB[ ˜E, τc]. The result follows from this observation and the results of
Lemmas 1 and 2 and Theorem 2. ��
Lemma 2. Let ˜E : K × T × {0, 1}n → {0, 1}n be a tweakable blockcipher with
T = N × IT × N0 × {0, 1, 2, 3} ∪ IT × N0 × {0, 1, 2, 3}. Then we have that

Advkess
ΘCBv[ ˜E]

(t,qe,qd,σ) ≤Adv±p̃rp
˜E

(t′, q) +
∑

τ∈IT

Adv±p̃rp
˜E

(t′, qτ )

where qτ = �στ/n�+2·(qτ
e +qτ

d ) for τ ∈ IT , and q =
∑

τ∈IT
qτ , and t′ = t+O(σ)

with σ =
∑

τ∈IT
στ .
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Proof. Let A be a kess adversary with indicated resources. We proceed by
replacing the tweakable blockcipher ˜E by an ideal one, i.e. we sample an inde-
pendent random tweakable permutation π̃K ←$ PermT (n) for every K ∈ K in
both the kess-R and the kess-I game. The increase of A ’s advantage due to
this replacement in the game kess-R is bounded by Adv±p̃rp

˜E
(t, q) by a standard

reduction. To bound the increase of A ’s advantage due to the replacement in
the game kess-I, we observe that the replacement can be done gradually, for
one value of stretch at a time. Thus, by a standard hybrid argument, the cumu-
lative increase of advantage will be bounded by

∑

τ∈IT
Adv±p̃rp

˜E
(t, qτ ). Once ˜E

is replaced by a collection of random tweakable permutations in both games, we
observe that in both games, the games will produce identical distributions. This
is because both in kess-R and in kess-I, any two queries with any two unequal
amounts of stretch τ1 and τ2 will be processed by two independent collections of
random permutations (thanks to the separation of queries with different amounts
of stretch by tweaks). ��

Instantiating. ˜E. In order to obtain a real-world scheme, we need to instantiate
the tweakable blockcipher ˜E. The scheme OCB uses the XEX construction [33]
that turns an ordinary blockcipher E : K × {0, 1}n → {0, 1}n into a tweakable
blockcipher ˜E = XEX[E] with ˜E : K × T × {0, 1}n → {0, 1}n. A call to ˜E =
XEX[E] is evaluated in two ways, depending on the tweak:

˜EN,i,j
K (X) = EK(X ⊕ ΔN,i,j) ⊕ ΔN,i,j , or ˜Ei,j

K (X) = EK(X ⊕ Δi,j).

In each call, the input (and in some cases also the output) of the blockcipher
E is masked with special Δ-values, derived from the tweak and the secret key.
An almost XOR universal hash H : K × {0, 1}<n → {0, 1}n with H(K,N) =
EK(N‖10∗) is used in the computation of the masking values.3 In what follows,
we silently represent binary strings and integers by element of GF(2n) whenever
needed and do the multiplications in this field with some fixed representation.
E.g. 22 ·(0n−2‖10) would return an n-bit string that represents the result of x2 ·x
in GF (2n). The masking Δ-values are computed as follows:

ΔN,0,0 = H(K,N),
ΔN,i+1,0 = ΔN,i,0 ⊕ L(ntz(i + 1)) for i ≥ 0,
ΔN,i,j = ΔN,i,0 ⊕ j · L∗ for j ∈ {0, 1, 2, 3},
Δ0,0 = 0n,
Δi+1,0 = Δi,0 ⊕ L(ntz(i + 1)) for i ≥ 0,
Δi,j = Δi,0 ⊕ j · L∗ for j ∈ {0, 1, 2, 3},

where L∗ = EK(0n), L(0) = 22 · L∗, L(	) = 2 · L(	 − 1) for 	 > 0 and ntz(i)
denotes the number of trailing zeros in the binary representation of the integer
i, e.g. ntz(2) = 1.

3 A different AXU is used in the latest version of OCB [21], we opted for EK(·) for
the sake of simplicity.
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Lemma 3. ([33]) Let E : K × {0, 1}n → {0, 1}n be a blockcipher and T =
N × N0 × {0, 1, 2, 3} ∪ N0 × {0, 1, 2, 3}. Let A be an adversary that runs in time
at most t, asks at most q queries, never asks queries with i-component exceeding
2n−5 and never asks decryption queries with tweaks from N0 × {0, 1, 2, 3}. Then

Adv±p̃rpT

XEX[E](A ) ≤ Adv±prp
E (B) +

9.5q2

2n

for an adversary B that makes at most 2q queries and runs in time bounded by
t + O(q).

Extending the tweaks with τ . In order to instantiate ΘCBv, we need to
extend the tweaks of ˜E with a fourth component: τ . To this end, we propose
XEX′, which is obtained by a slight modification of the XEX construction. Infor-
mally, we expand the domain of the “j-part” of tweaks and represent it as
IT × {0, 1, 2, 3}, compensating for this by decreasing the maximal value of i.

The tweakable blockcipher ˜E′ = XEX′[E] is defined as follows. We again use
the AXU H(K,N). We uniquely label each element of IT by an integer with a
bijection λ : IT → {0, 1, . . . , |IT |− 1}. We define m = �log2 |IT |�, L∗ = EK(0n),
Lτ = λ(τ) ·22 ·L∗ for τ ∈ IT , L(0) = 22+m ·L∗, and L(	) = 2 ·L(	−1) for 	 > 0.
The masking Δ-values are computed as follows:

ΔN,0,0,0 = H(K,N),
ΔN,τ,0,0 = ΔN,0,0,0 ⊕ Lτ ,
ΔN,τ,i+1,0 = ΔN,τ,i,0 ⊕ L(ntz(i + 1)) for i ≥ 0,
ΔN,τ,i,j = ΔN,τ,i,0 ⊕ j · L∗ for j ∈ {0, 1, 2, 3},
Δτ,0,0 = Lτ ,
Δτ,i+1,0 = Δτ,i,0 ⊕ L(ntz(i + 1)) for i ≥ 0,
Δτ,i,j = Δτ,i,0 ⊕ j · L∗ for j ∈ {0, 1, 2, 3}.

A call to ˜E′ is evaluated as follows:

˜E′N,τ,i,j
K (X) =EK(X ⊕ ΔN,τ,i,j) ⊕ ΔN,τ,i,j , or ˜E′τ,i,j

K (X) = EK(X ⊕ Δτ,i,j).

The security result for XEX′ construction is stated in Lemma 4.

Lemma 4. Let E : K × {0, 1}n → {0, 1}n be a blockcipher and T = N × IT ×
N0×{0, 1, 2, 3}∪IT ×N0×{0, 1, 2, 3} for some finite, non-empty IT ⊆ N0. Let A
be an adversary that runs in time at most t, asks at most q queries, never asks
queries with i-component exceeding 2n−(5+�log2 |IT |�) and never asks decryption
queries with tweaks from IT × N0 × {0, 1, 2, 3}. Then

Adv±p̃rpT

XEX′[E](A ) ≤ Adv±prp
E (B) +

9.5q2

2n

for an adversary B that makes at most 2q queries and runs in time bounded by
t + O(q).
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The treatment of τ -tweak component in XEX′ construction is equivalent to a one
where we would injectively encode τ, j into a single integer j′ = 22τ + j. Similar
approach has been taken by Reyhanitabar et al. [29,30], where it is shown that
the essential properties of the masking values necessary for the security proof
of [33] are preserved. The same arguments apply here, so we omit the proof of
Lemma 4.

OCBv: practical AE with variable stretch We define the blockcipher
mode OCBv, a nonce based AE scheme with variable stretch. OCBv is only
parameterized by a blockcipher E. It is obtained by instantiating the tweakable
blockcipher in ΘCBv by the XEX′ costruction, i.e. OCBv[E] = ΘCBv[XEX′[E]]
and its security is analysed in Theorem 4.

Theorem 4. Let ˜E : K × {0, 1}n → {0, 1}n be a blockcipher. We have that

Advnvae(τc)
OCBv[E](t,qe,qd,σ) ≤Adv±prp

E (t′, 2q) +
∑

τ∈IT

Adv±prp
E (t′, 2qτ )

+ Adv±prp
E (t′, 2qτc) +

28.5q2

2n
+ qτc

d

2n−τc

2n − 1
,

where qτ = �στ/n� + 2 · (qτ
e + qτ

d ) for τ ∈ IT , and q =
∑

τ∈IT
qτ and

t′ = t + O(σ) with σ =
∑

τ∈IT
στ .

If we further assume that the Adv±prp
E is non-decreasing w.r.t. both q and t,

then we can further simplify the bound to the form

Advnvae(τc)
OCBv[E](t,qe,qd,σ) ≤ (|IT | + 2) · Adv±prp

E (t′, 2q) +
28.5q2

2n
+ qτc

d · 2n−τc

2n − 1
.

Proof. The result in Theorem 4 follows from Theorem 3 and Lemma 4 by apply-
ing triangle inequality on the terms that arise from applying Lemma 4. ��

Performance of OCBv. The performance of OCBv can be expected to be
very similar to that of OCB, as the two schemes only differ in the way the mask-
ing Δ-values are computed. In addition to the operations necessary to compute
Δ-offsets in OCB, the computation of the Lτ -values has to be done for OCBv.
However, these can be precomputed at the initialization phase and stored, so the
cost of their computation will be amortized over all queries. The only additional
processing that remains after dealing with Lτ -s is a single xor of a precom-
puted Lτ to a Δ-value, necessary in every query. This is unlikely to impact the
performance significantly.

7 Discussion

Relation between nvAE and kess+nAE. We define the kess property as
useful, albeit strong property that facilitates modular security proofs of nvAE
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security for AE schemes whose nAE security has already been established. This
is depicted as implication g in Fig. 1 and formally proven in Theorem 2. How-
ever, determining the exact nature of the relation in the reverse direction to
implication g appears not to be straightforward, and we leave it as an open
problem.

Achieving nvAE security. In Sect. 6, we describe OCBv, a modified version
of the OCB scheme for AEAD, that is provably secure in the sense of nvAE,
and retains the desirable properties of OCB. Moreover, our transformation and
analysis are generic enough to be applied to other schemes based on tweakable
blockciphers, or other tweakable primitives (e.g. compression functions), which
represents a large subset of current nAE schemes.

A natural problem to investigate would be to see if there exists a black-box
transformation Γ(·), that would turn any nAE secure scheme Π into an nvAE
secure scheme Γ(Π). A straightforward measure to take would be to derive a
key K ′ used internally with Π from the key K of Γ(Π) as K ′ = H(τ,K) with a
hash function H, as suggested by Struik [40]. This transformation can be easily
proven secure, but only in random oracle model, and it makes the whole design
unnecessarily complex. We leave the formal treatment of this question (in the
standard model) as an open problem.

It is nevertheless possible to describe transformations that are applicable to
large subsets of nAE secure schemes. One example is given in Sect. 6. Another
such transformation is encoding τ in the nonce input of sponge-like modes. These
either process all inputs in a single chain of permutation calls (e.g. Ketje [7], and
Ascon [11]), or they use several such chains in parallel, but initialize all of them
with nonce-dependent values (e.g. Keyak [8], and NORX [2]).
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