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Abstract. In this paper, we provide a security analysis of ELmD: a
block cipher based Encrypt-Linear-mix-Decrypt authentication mode.
As being one of the second-round CAESAR candidate, it is claimed
to provide misuse resistant against forgeries and security against block-
wise adaptive adversaries as well as 128-bit security against key recovery
attacks. We scrutinize ElmD in such a way that we provide universal
forgery attacks as well as key recovery attacks. First, based on the colli-
sion attacks on similar structures such as Marble, AEZ, and COPA, we
present universal forgery attacks. Second, by exploiting the structure of
ELmD, we acquire ability to query to the block cipher used in ELmD.
Finally, for one of the proposed versions of ELmD, we mount key recovery
attacks reducing the effective key strength by more than 60 bits.

Keywords: Authenticated encryption · CAESAR · ELmD · Forgery
attack · Key recovery

1 Introduction

CAESAR competition [1] (Competition for Authenticated Encryption: Secu-
rity, Applicability, and Robustness) has been announced in January 2013 aim-
ing at fulfilling the needs of secure, efficient and robust authenticated encryption
schemes. In total, 57 candidates are submitted to the competition. These schemes
are released to crypto community for their security analysis and around 20 of
them were eliminated in the first round of the competition in July 2015. Since
then, around 30 candidates compete in the second round, and are being analyzed
in terms of their security and efficiency.

ELmD is amongst the second-round CAESAR candidates designed by Datta
and Nandi [5]. It is an Encrypt-Linear-mix-Decrypt block cipher authentica-
tion mode accepting associated data, and its structure is similar to some other
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authenticated encryption schemes such as AES-COPA [2], Marble [10], and
SHELL [12]. ELmD is fully parallelizable and online, that is, ith block of cipher-
text only depends on the first i blocks of plaintext. As an optional property,
it provides intermediate tag verification in order to fasten verification process
and to be secure against block-wise adaptive adversaries. Designers of ELmD
claim that the scheme provides nonce misuse resistance against forgery attacks.
According to authors’ assertion, ELmD provides 62.8-bit security for integrity
(forgery attacks) and for privacy (distinguishing attacks). Indeed, they claim
that ELmD provides 128-bit security against key recovery attacks that we dis-
prove by applying partial-sum [7] and Demirci-Selçuk meet-in-the-middle attacks
[6] on ELmD(6,6) where 6-round AES is used as the block cipher.

Previous Results. As far as we know, ELmD has been analyzed only by Zhang
and Wu [13] in terms of both integrity and privacy. Very similar to our internal
state recovery, they first find internal state parameter of ELmD by birthday
attack and then they provide an almost universal forgery attack with a few
queries. For breaking privacy, they propose a truncated differential analysis of
reduced version of ELmD (ELmD(4, 4)) with 2123 time and memory complexities.
In [13], the authors consider the internal parameter L generated by only the
encryption of zero with 4-round AES, i.e., L = AES4(0). However, both the
usage of 4 rounds of encryption/decryption and the generation of the internal
parameter L with four AES rounds in ELmD are not acceptable in the proposal.
Actually, after obtaining an input and output pair of 4-round AES (i.e., L =
AES4(0)), it is feasible to make a meet-in-the-middle analysis to recover the
secret key. Previously, similar efforts are made to other CAESAR candidates
COPA [11], Marble and AEZ in [8] to find state collisions beyond the birthday
bound. Indeed, for AEZ and Marble [8], this attack is used for realizing a key
recovery attack.

Our Contribution: In this paper, after obtaining the internal state parameter
of ELmD, we make universal forgeries with a few queries to the oracle. Further-
more, by exploiting the structure of ELmD, we are able to query decryption
oracle of the block cipher in ELmD. Finally, we mount key recovery attacks on
ELmD(6,6) reducing effective key strength more than 60 bits.

Outline of the rest of the paper: In Sect. 2, a brief description of ELmD is
given. Then in Sect. 3, we show how to recover internal state parameter L, and
present universal forgery attacks on ELmD with a few queries to the oracle. In
Sect. 4, we introduce novel methods to generate special plaintext pairs having
relation between their ciphertexts and to query to the decryption oracle of the
block cipher. By using chosen ciphertexts, in Sect. 5, key recovery attacks on
ELmD(6,6) are presented. Section 6 concludes the paper.

2 Brief Description of ELmD

Notation: ‘⊕’: bitwise addition in modulo 2 (exclusive OR), ‘·’: field multipli-
cation modulo the polynomial p(x) = x128 + x7 + x2 + x + 1 in GF (2128). Also,
0a denotes a-bit string of 0.
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Algorithm 1. Processing associated data: IV generation
1: Input: D, d, L
2: Output: IV
3: for i = 0 to d − 1 do
4: DDi = Di ⊕ 3 · 2i · L
5: Zi = EK(DDi)
6: (Yi, W

′
i+1) = ρ(Zi, W

′
i )

7: end for
8: if |D∗

d| = 128 then DDd = Dd ⊕ 3 · 2d · L
9: else DDd = Dd ⊕ 7 · 3 · 2d−1 · L

10: end if
11: Zd = EK(DDd)
12: (Yd, W ′

d+1) = ρ(Zd, W ′
d)

13: IV = W ′
d+1

Algorithm 2. Encryption and tag generation without producing intermediate
tag (t = 0)
1: Input: �, IV , M1, . . . , M�, L, |M∗

� |
2: Output: C1, . . . , C�, C�+1

3: W0 = IV
4: M�+1 = M�

5: for i = 1 to � − 1 do
6: MMi = Mi ⊕ 2i−1 · L
7: Xi = EK(MMi)
8: (Yi, Wi) = ρ(Xi, Wi−1)
9: CCi = E−1

K (Yi)
10: Ci = CCi ⊕ 32 · 2i−1 · L
11: end for
12: if |M∗

� | = 128 then MM� = M� ⊕ 2�−1 · L and MM�+1 = M�+1 ⊕ 2� · L
13: else MM� = M� ⊕ 7 · 2�−2 · L and MM�+1 = M�+1 ⊕ 7 · 2�−1 · L
14: end if
15: for i = � to � + 1 do
16: Xi = EK(MMi)
17: (Yi, Wi) = ρ(Xi, Wi)
18: end for
19: CC� = E−1

K (Y�)
20: C� = CC� ⊕ 32 · 2�−1 · L
21: CC∗

�+1 = E−1
K (Y�+1 ⊕ 1)

22: C∗
�+1 = CC∗

�+1 ⊕ 32 · 2� · L
23: if |M∗

� | �= 128 then C�+1 = trunc(C∗
�+1)|M∗

�
|

24: else C�+1 = C∗
�+1

25: end if
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ELmD is a block cipher based Encrypt-Linear-mix-Decrypt authentication
mode proposed by Datta and Nandi [5] for CAESAR competition. In the pro-
posal of ELmD, AES-128 [4] is used as the block cipher where the number of
rounds can be either 10 or 6. Note that 6-round AES used in ELmD includes
whitening-key layer and MixColumns operation at the last round. Hence from
now on, AESrd denotes AES with rd rounds. For simplicity, EK is also used for
AES-128 in the rest of the paper. In addition, L is a key-depending mask which
is generated in two ways; L = AES6(AES6(0)) when rd = 6 and L = AES10(0)
when rd = 10.

The linear mixing function ρ takes two inputs t, x ∈ {0, 1}128 and produces
two outputs t′, y ∈ {0, 1}128 as follows

ρ(x, t) = (y, t′) : y = x ⊕ 3 · t and t′ = x ⊕ 2 · t.

Associated data is used to generate IV (see Algorithm 1) which is an input to
both encryption/decryption function of ELmD. Let pub and param be a public
message number and the parameter set, respectively, which are both 64 bits,
and D = (D1, . . . , D

∗
d) be an associated data. By construction, the designers of

ELmD assign D0 = pub‖param and W ′
0 = 0. The last block of associated data is

padded as Dd = D∗
d‖10∗ if |D∗

d| �= 128, otherwise Dd = D∗
d.

ELmD has two versions, namely v1.0 and v2.0. ELmD v1.0 was modified
by the generation of last message block in such a way that the XOR of pre-
vious messages added to this block. Also, rd is modified to ELmD(6,6) and
ELmD(10,10).

Tagged ciphertext is generated as follows. Let M = M1‖M2‖ · · · ‖M∗
� be the

message to be encrypted. Padding is performed as M� = (⊕�−1
i=1Mi) ⊕ (M∗

� ‖10∗)
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Fig. 1. Processing associated data and the generation of tagged ciphertext in ELmD
when |Dd| = |M�| = n
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if |M∗
� | < 128, otherwise M� = (⊕�−1

i=1Mi) ⊕ M∗
� . ELmD has an intermediate tag

option if it is needed, however for the simplicity we mention only tagged cipher-
text generation without producing intermediate tags (t = 0) in Algorithm 2.
ELmD encryption including processing associated data is depicted in Fig. 1.

ELmD decrypts and verifies a given tagged ciphertext pair in three steps.
First of all, IV is produced by using pub, param, and D as in Algorithm 1.
Afterwards, the tagged ciphertext is decrypted as an inversion of Algorithm 2,
and then tag is verified when M�+1 = M�. Once the tag is verified, plaintext is
released otherwise ⊥ is returned.

3 Universal Forgery Attack on ELmD

In this section, we present universal forgery attacks on ELmD. First, we recover
ELmD state L by collision search of ciphertexts. Using L, we can make universal
forgery attack on ELmD. Before going into details, we briefly describe the two
main forgery models:

– Existential Forgery is the generation of a valid ciphertext and tag pair for
an unspecified message which is not previously queried to an oracle.

– Universal Forgery is the generation of ciphertext and tag pair for a given
message which is not previously queried to an oracle.

3.1 Recovering Internal State Parameter L

Similar to state recovery attacks of COPA and Marble [8,11], we recover ELmD
state L by collision search of ciphertexts which has approximate complexity 265

due to birthday attack as follows.
For a fixed D0, let (D,M) = (D1,M1) = (α,M) and (D′,M ′) = (D′

1,M
′
1) =

(β,M) be two set of message pairs including associated data where α and β take
all possible values from the set

{
0, 1, . . . , 264 − 1

}
and α is an incomplete block

and β is complete, i.e., |α| = 64 and |β| = 128. Here, we aim to exploit different
parameter mask additions to the last blocks of associated data when the block
is incomplete. Also, we pick α and β such that (α‖1063) ⊕ β scans all values in
F2128 .

After message pairs are queried, we search a collision in the first ciphertexts
C1 and C ′

1, i.e., C1 = C ′
1. According to the birthday attack, around 2·264 message

pairs is enough to construct a collision. This collision implies that messages’
corresponding IV values are equal, i.e., IV = IV ′. As we use the same D0 for
two messages implying the same internal chaining value (W ′

1 = W ′′
1 ), we obtain

DD1 = DD′
1 (see Fig. 2). We recover L by solving

D′
1 ⊕ 3 · 7 · L = D1 ⊕ 3 · 2 · L, (1)

since L is the only unknown in the equation, where D1 = α‖1063 and D′
1 = β.
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Fig. 2. Recovering L by finding a collision in (t = 0)

3.2 Forgery

Once we recover L, we can make universal forgery attacks on ELmD by making
a few queries to the oracle.

A Universal Forgery Attack. Let (D,M) = (D1, . . . , Dd−1,Dd,M1, . . . ,
M�−1,M�) be targeted associated data and message pair with assigned D0 =
pub‖param, where |Dd| = 128. Compute D′

d such that D′
d‖10∗ = Dd ⊕ 2d · 3L ⊕

7·2d−1 ·3L and |D′
d| < 128. Note that because of the padding rule, we can always

obtain D′
d with |D′

d| < 128.
Query (D′,M) = (D1, . . . , Dd−1,D

′
d,M1, . . . ,M�−1,M�) with the same D0

and obtain the corresponding ciphertext and tag pair as (C̃, T̃ ). Due to the choice
of associated data, D and D′ produce the same IV. Hence, the corresponding
ciphertext and tag pair (C, T ) of (D,M) is equal to that of (D′,M), i.e., (C, T ) =
(C̃, T̃ ). Note that the same attack also works for |Dd| < 128 case. In a similar
manner, a |D′

d| = 128 block can be chosen where D′
d = Dd‖10∗ ⊕ 2d · 3L ⊕ 7 ·

2d−1 · 3L, and the rest of the attack is the same. Therefore, this forgery attack
works for any associated data and message pair.

Another Universal Forgery Attack. Here we present another forgery for
the same (D0,D,M) triple using only completed blocks. First, query M1 =
D0⊕3L⊕L without D, and obtain C1. Then, query (D′,M) such that D′

0 = D0,
D′

1 = C1 ⊕ 32L ⊕ 2 · 3L, D′
i+2 = Di ⊕ 2i · 3L ⊕ 2i+2 · 3L for i = 0, 1, . . . , d and

obtain ciphertext C and tag T . It can be seen that this (C, T ) pair is also valid
for (D,M).
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Note that this forgery attack introduces an important ability of generating
a pair of plaintexts such that one of the corresponding ciphertext is half of the
other one. These related plaintext pairs are explained in Sect. 4, and used for
key recovery in Sect. 5.

Forgery of Intermediate tags (when t �= 0). In the proposal of ELmD, the
authors state that “When intermediate tags are used i.e. t �= 0, if the forger
can compute a valid intermediate tag such that the ciphertext up to that is not
identical to any of previous ciphertexts then the forger succeeds”. Once L is
known, we can make a universal forgery attack for the version of ELmD with
intermediate tags. Without any further details, it can be seen that the previously
given forgery attacks also applies when t �= 0. Because both attacks only uses
the associated data.

4 Exploiting the Structure of ELmD

In this section, we explore the block cipher used in ELmD by exploiting the
general structure of the authenticated encryption algorithm where the bottom
function is the decryption mode of the upper one. First, using the recovered L
value, we can obtain two types of plaintext pairs:

1. For any P1 and μ, (P1, P2) pair such that μ · E(P1) = E(P2).
2. For any Δ, (Q1, Q2) pair such that E(Q1) = E(Q2) ⊕ Δ.

Using these special plaintext pairs, we can obtain plaintext and corresponding
ciphertext pairs of the encryption block cipher EK(·) or AESrd. Especially, we
can query any ciphertext to the decryption mode of the cipher.

Following attacks are mostly explained for the maskless version of ELmD.
Since we know the L value, we can easily switch from (D,M,C) triple to
(DD,MM,CC) triple and vice versa, where Di = DDi ⊕ 2i−1 · 3L, Mi =
MMi⊕2i−1L and Ci = CCi⊕2i−1·32L. In other words, we can query (DD,MM)
and obtain CC values. For the simplicity, we usually use (DD,MM,CC) triples.
It is important to note that the last message block cannot be controlled since
MM�+1 = MM� ⊕ 2�−1L ⊕ 2�L.

4.1 2-Multiplicative Pairs: (R1, R2) with 2 · E(R1) = E(R2)

Initially, for any given/fixed D0 = pub‖param, we make a query for one block
message MM1

1 = DD0 without an additional associated data and obtain the cor-
responding ciphertext and tag pair (C1, T 1). As seen in Fig. 3, IV 1 = EK(DD0).
Because of our message choice, X1

1 is also equal to IV 1 and therefore Y 1
1 = 2·IV 1.

Even without knowing IV 1 value, we obtain CC1
1 such that EK(CC1

1 ) = 2·IV 1 =
2 · EK(DD0). Here, it is important to note that D0 has a special structure
and cannot take any 128-bit value. For any R1, using the same D0, query
DD2

1 = CC1
1 ,MM2

1 = MM2
2 = R1 and obtain the corresponding ciphertext
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and tag pair (C2, T 2). It can be seen that IV 2 = ρ(IV 1, 2 · IV 1) = 0 and there-
fore X2

1 = W 2
1 = EK(MM2

1 ). W 2
1 = EK(MM2

1 ) = X2
2 implies Y 2

2 = 2 · X2
2 and

EK(CC2
2 ) = 2 · EK(MM2

1 ). As can be seen in Fig. 3, by setting R2 = CC2
2 , we

obtain (R1, R2) pair such that 2 · E(R1) = E(R2). The complexity to obtain N
such 2-multiplicative pairs is only N + 1 queries if the same D0 = pub‖param
is used. Therefore, the complexity of getting a 2-multiplicative pair is approxi-
mately one block query.

Fig. 3. 2-multiplicative pairs
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4.2 μ-multiplicative Pairs: (P1, P2) with μ · E(P1) = E(P2)

Here, we present a method to generate (P1, P2) pair satisfying μ ·E(P1) = E(P2)
for any P1 and μ values with the help of observations in the previous part. First,
for a given P1, we obtain the plaintext R2 such that 2 · E(P1) = E(R2). Also,
we arrange associated data to make IV = 0.

Let μ′ = 3−1(μ ⊕ 1) where 3−1 represents the multiplicative inverse of 3 in
the given field. It can be seen that any μ′ ∈ F2128 can be represented as 2127 ·
m1 ⊕ 2126 · m2 ⊕ · · · ⊕ 2 · m127 ⊕ m128 where mi ∈ {1, 2}.

As shown in Fig. 4, by querying 129-block message with MMi = Rmi
for

i = 1, . . . , 128 and MM129 = P1, we can obtain the plaintext P2 = CC129

satisfying E(P2) = μ ·E(P1). The complexity to obtain any multiplicative pair of
a given Pi is about 27 block encryptions. In other words, obtaining the plaintext
of a given multiple of a given ciphertext costs 27 block ELmD encryptions which
is approximately 28 block cipher calls.

Fig. 4. μ-multiplicative pairs

Note that using μ-multiplicative pairs, we can obtain the plaintext P0 satis-
fying E(P0) = 0 · E(·) = 0.

4.3 1-Difference Pairs: (R1, R2) with E(R1) = E(R2) ⊕ 1

In this part, we show how to construct (R1, R2) pairs such that E(R1) = E(R2)⊕
01271 by using 2-multiplicative pairs (see Fig. 5). For any D0 (resp. M1), we
can obtain D1 (resp. M2) such that E(DD1) = 2 · E(DD0) (resp. E(MM2) =
2 · E(MM1)). By querying the corresponding associated data and message pair,
we can obtain R1 = MM3 and R2 = CC3 satisfying E(R1) = E(R2) ⊕ 1.
The complexity to obtain a 1-difference pair is simply a query of 1 associated
data block and 2 message blocks where associated data and message blocks are
2-multiplicative pairs.
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Fig. 5. 1-difference pairs

4.4 Δ-difference Pairs: (Q1, Q2) with E(Q1) = E(Q2) ⊕ Δ

First, we generate a 1-difference pair: {R1, R2} where E(R1) = E(R2) ⊕ 01271.
Then, for any Δ, compute δ = δ1‖δ2‖ · · · ‖δ128 such that 3 · δ = Δ over the
defined field.

We construct two messages M,M ′ each containing 129 blocks with the same
associated data D such that

MMi = R1 and MM ′
i = Rδi+1 for i = 1, 2, . . . , 129

where δ129 = 0.
As illustrated in Fig. 6, 129th ciphertext blocks of (D,M) and (D,M ′) differ

by Δ. Here, we briefly, explain the differential path of two messages (D,M)
and (D,M ′). As their associated data are equal, they will provide the same IV ,
that is IV ⊕ IV ′ = 0. After processing of the first blocks of two messages R1

and Rδ1+1 in the upper layer of encryption, we will get difference in X1’s as
ΔX1 = X1 ⊕ X ′

1 = δ1. Since ΔIV = 0, ΔW1 = W1 ⊕ W ′
1 = δ1. For the second

message blocks R1 and Rδ2+1, we get ΔX2 = X2 ⊕ X ′
2 = δ2. Then, we have

ΔW2 = W2 ⊕ W ′
2 = 2δ1 + δ2. Similarly, after the encryption of 128th blocks, we

have ΔW128 = W128 ⊕ W ′
128 = 2127δ1 + 2126δ2 + · · · + δ128 = δ. Finally, as we

choose the last message blocks equal, we have ΔX129 = X129 ⊕ X ′
129 = 0. Since

no difference is coming from upper encryption layer ΔY129 = Y129 ⊕ Y ′
129 =

3 · ΔW128 = 3 · δ = Δ. Hence, we obtain plaintexts Q1 = CC129 and Q2 =
CC ′

129 having required ciphertext difference: E(Q1) = E(Q2) ⊕ Δ. Note that by
changing the last message block, we can get several message pairs having desired
ciphertext difference.
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Fig. 6. Δ-difference pairs

4.5 Querying Decryption Oracle of the Block Cipher

Here, we describe how to query inner block cipher of ELmD, AESrd. Since, we
can obtain any multiple of a given ciphertext in μ-multiplicative pairs, it is
obvious that any ciphertext can be queried, i.e., plaintext of a given ciphertext
can be obtained, if the decryption of 01271 is known.

First, using 1-difference pairs, we obtain a pair (R1, R2) with E(R1) =
E(R2) ⊕ 1. Then, using μ-multiplicative pairs, we acquire R3 such that
3−1E(R1) = E(R3). By querying associated data satisfying IV = 0 and mes-
sage with MM1 = R3, MM2 = R2, we obtain CC2 which is equal to decryption
of 1, i.e., E(CC2) = 01271. After obtaining decryption of 1, we can query any
ciphertext with the help of μ-multiplicative pairs.

This property enables us to mount a chosen ciphertext attack.

5 Key Recovery

The encryption function EK used in ElmD is either 6-round AES (AES6) or 10-
round AES (AES10) depending on the application. For both versions of ELmD,
the designers claim that ELmD provides 128 bits of security against plaintext
and key recovery attacks. In this section, we show that this claim is not valid if
the function EK is AES6.

In Sect. 4, after recovering L parameter, it is shown how to obtain corre-
sponding plaintext for any given ciphertext in a time complexity of about 28

encryption operations. As a result, we can mount attacks on 6-round AES with
chosen ciphertexts. In [7], by using partial sums an attack on 6-round AES was
given with a time and data complexities of 244 and 234.6, respectively in cho-
sen plaintext scenario. This attack can be easily adapted to chosen ciphertext
case because of the AES structure. MixColumns and AddRoundKey operations
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can be swapped with applying the inverse of MixColumns to the round key. As
known, the inverse of AES without the MixColumns operation in the last round
has the same structure with AES, the similar attack can be applied. Note that
the MixColumn operations at the end of the cipher is not important because
ciphertexts can be easily manipulated. The total time complexity of key recov-
ery is 265 + 28 × 234.6 + 244 ≈ 265 which is dominated by the cost of recovery
of L.

In addition, we propose a Demirci-Selçuk meet-in-the-middle attack [6] using
the distinguisher on 3-round AES [9]. This attack also uses chosen ciphertexts.
The time and data complexities of this attack is 266 and 233, respectively. With
this attack the time complexity of key recovery attack on ELmD is 265+28×233+
266 ≈ 266.6 encryptions. Even though the time complexity is relatively higher
than the previous attack, this attack uses relatively less data and illustrates
Demirci-Selçuk MITM in a splice-and-cut [3] perspective.

While presenting the attack we use the following notation. AES6 consists of
6 full rounds of AES with initial key whitening and supports a key size of 128
bits. One full round of AES is composed of SubBytes (SB), ShiftRows (SR),
MixColumns (MC) and AddRoundKey (AK) operations [4]. The whitening key
and i-th round key (i ∈ {1, 2, 3, 4, 5, 6}) are denoted by k0 and ki respectively. We
use xi, yi, zi and wi to represent the blocks in i-th round before the SubBytes,
ShiftRows, MixColumns and AddRoundKey operations respectively where the
input of the first round is x1 = P ⊕ k0 and P is the plaintext. In the case of
swapping MixColumns and AddRoundKey operations we denote the round key
as ui = MC−1(ki) and the state after round key addition as w̄i. Also xj

i , yj
i ,

zj
i , wj

i and w̄j
i denotes the blocks for j-th plaintext and a(m,n, ..., l) are used

for m,n, ..., l-th bytes of a block a. The orders of 128-bit blocks’ bytes in 4 × 4
matrix of bytes is as conventional, that is the first row is composed of 0, 4, 8
and 12-th bytes of 128-bit block where 0-th byte is the left-most byte.

The attack is given in Algorithm 3 and depicted in Fig. 7. The number of
bits guessed in the attack is 144 and the probability that a wrong guess passes
the condition in Step 10 is 2−144. Thus, with the correct guess, a wrong one can
be returned by the algorithm. In Step 3 in Algorithm 3, 280 × 19 × 10

16×6 ≈ 281

encryptions are performed by guessing 10 bytes. Note that this step can be done
offline. For a ciphertext the time complexity of getting the corresponding plain-
text is approximately 28 encryptions as mentioned in Sect. 4. Thus the number
of operations performed in Step 6 is 19 × 232 × 28 = 244.25 encryptions. In Step
9, 144-bit differences are computed performing 264 × 19 × 10

16×6 ≈ 265 encryp-
tion operations. As a result the time complexity of Algorithm 3 is 281 offline
and 265 online encryptions. To store the 144-bit difference for possible 280 values
280×144-bit memory is required. Note that in the attack 12 bytes of w̄j

6 are fixed
to a constant 0. Thus the attack needs 232 chosen ciphertexts and corresponding
plaintexts.

Notice that with this attack we obtain 4 bytes of k0 so far. With slight
modifications in the attack it can be seen easily that other 4 bytes of k0 can
be found. Remaining 64 bits of the key can be recovered by brute force. The
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Fig. 7. Demirci-Selçuk MITM attack on 6-round AES. The offline and online steps are
on the left-hand and right-hand sides, respectively.
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Algorithm 3. Demirci-Selçuk MITM Attack on 6-round AES.
1: Take 19 different values for w̄j

5(0, 1, 2, 3) and w̄j
6(1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15)

such that w̄j
5(0) = j, and the other bytes are 0 for 0 ≤ j ≤ 18.

2: for each possible values of y0
5(0), y0

4(0, 5, 10, 15), y0
3(0, 1, 2, 3) and y0

2(0) do
3: Compute the difference (w0

1(0) ⊕ w1
1(0), w0

1(0) ⊕ w2
1(0), ..., w0

1(0) ⊕ w18
1 (0)) and

store it in Table T .
4: end for
5: for each possible values of u6(0, 7, 10, 13) do
6: Compute Cj ’s
7: Find P j ’s by using the method in Sect. 4.
8: for each possible values of k0(0, 5, 10, 15) do
9: Compute the difference (w0

1(0) ⊕ w1
1(0), w0

1(0) ⊕ w2
1(0), ..., w0

1(0) ⊕ w18
1 (0))

and find the difference in Table T .
10: if a match found then
11: Return k0(0, 5, 10, 15) as the correct key
12: end if
13: end for
14: end for

total complexity of recovering 128-bit key will be 2 × 281 = 282 offline and
2 × 265 + 264 ≈ 266 online encryptions.

The memory and data complexities will be 2 × 280 × 144-bit memory and
2 × 232 = 233 data respectively. Note that the offline time complexity can be
reduced to 274 by removing the guess of y5(0) from the offline step and adding
8-bit guess for u5(0) to online step. In that case the time complexity of online
step will be 274 encryption operations.

6 Conclusion

ELmD is an a block cipher based Encrypt-Linear-mix-Decrypt authentication
mode submitted to CAESAR Competition. It is claimed to be strong against
misuse forgery attacks, block-wise adaptive adversaries and key recovery attacks
with 128-bit security. This work provides universal forgery attacks against
ELmD. Furthermore, we disprove the 128-bit security claim of ELmD by apply-
ing two key recovery attacks, namely partial-sum and Demirci Selçuk meet-in-
the-middle attacks with 265 and 266.6 time complexities, respectively.
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