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Abstract. In this paper we discuss the use of interactive theorem
provers (also called proof assistants) in the study of natural language
semantics. It is shown that these provide useful platforms for NL seman-
tics and reasoning on the one hand, and allow experiments to be per-
formed on various frameworks and new theories, on the other. In par-
ticular, we show how to use Coq, a prominent type theory based proof
assistant, to encode type theoretical semantics of various NL phenom-
ena. In this respect, we can encode the NL semantics based on type
theory for quantifiers, adjectives, common nouns, and tense, among oth-
ers, and it is shown that Coq is a powerful engine for checking the for-
mal validity of these accounts as well as a powerful reasoner about the
implemented semantics. We further show some toy semantic grammars
for formal semantic systems, like the Montagovian Generative Lexicon,
Type Theory with Records and neo-Davidsonian semantics. It is also
explained that experiments on new theories can be done as well, test-
ing their validity and usefulness. Our aim is to show the importance of
using proof assistants as useful tools in natural language reasoning and
verification and argue for their wider application in the field.

Keywords: Type theory · Proof assistants · Reasoning · Formal
semantics · Coq

1 Introduction

Interactive theorem provers (also called proof assistants) have come a long way
since they were first introduced in the late 60’s as tools to formalise mathematics
(cf., the AUTOMATH project [3]). Today, a number of state-of-the-art proof
assistants exist and their uses have been proven fruitful both in formalisation
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of mathematics and software verification, among other things; see, for example,
[13] for the proof of the four colour theorem in the proof assistant Coq1. The
importance and usefulness of proof assistants have also been further proven by
some recent research projects, including the very attractive research on Univalent
Foundations [28] that aims to develop alternative foundations of mathematics,
where the proof assistants Coq and Agda [1] play a crucial role to the whole
endeavour (see [34] for an example of formalization of part of the project in
Coq).

The use of constructive type theories for the study of NL semantics has also
seen a revival in the last decade.2 A number of approaches that directly employ
constructive type theories or are inspired by them have been put forth by various
researchers in the recent years and have provided interesting accounts on classic
problems of formal semantics (see [2,9,16,23,26,30,33] for examples, although
this is not a complete list). In this context, it is worth noting the following:

– Some of the proof assistants, like Coq and Agda, implement constructive type
theories;

– The proof assistants are extremely powerful reasoning engines; and
– Constructive type theories have been shown to be a nice alternative to the

simple type theory usually in formal semantics.

It seems that the time is right to look at the combination of these three in
order to use proof assistants as natural language reasoners and as checkers of
the formal validity of formal semantics accounts. Indeed, we have taken the first
step in this direction and have used Coq as a natural language reasoner [5,6]. In
this paper, we extend this work and create a number of small Coq libraries to
show that proof assistant like Coq can provide useful platforms for:

– Formalising NL semantics and, based on it, formally describe various NL phe-
nomena, including co-predication, individuation, common nouns, adjectives
and tense, among others. (These libraries are based on earlier theoretical
work using Luo’s Type Theory with Coercive Subtyping (TTCS for short)
[20,21,23].)

– Experimenting with various semantic frameworks: we show how to use Coq to
formalise them by implementing some small examples in Rétore’s Montagovian
Generative Lexicon [30], Cooper’s Type Theory with Records (TTR) [9], and
neo-Davidsonian event semantics [27].

– Experimenting with new theories: we formalise in Coq a newly developed the-
ory [8] of predicational forms to give semantics to negative sentences and con-
ditionals in constructive type theory. We also look at the issue of individuation
and its interaction with copredication from the same perspective.

1 The proof assistant Coq implements a constructive type theory in the tradition of
Martin-Löf. The type theory is an impredicative type theory called the Calculus of
Inductive Constructions (pCIC) [11], which is similar to the type theory UTT (or
TTCS as called in this paper) [18].

2 The use of constructive type theories has been initiated by the pioneering work of
Aarne Ranta [29].
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The current paper is structured as follows: in Sect. 2, we provide an intro-
duction to TTCS and the implementation of some of the ideas casted in TTCS
with respect to NL semantics in the Coq proof assistant, especially its use in
formalising NL semantics in TTCS. In Sect. 3, we present several small libraries:
first the one based on our work in type theory, introducing the relevant formal
features of TTCS when needed, then several small libraries for other semantic
frameworks and, finally, the library for the theory of predicational forms and
individuation criteria. In the conclusion, some future work is discussed.

2 Type Theoretical Semantics for NL in Coq

In this section, we shall first introduce formal semantics in a constructive type
theory and then how we will discuss the use of Coq to implement the semantics
for various features in natural language.

2.1 Formal Semantics in Type Theory with Coercive Subtyping

Type Theory with Coercive Subtyping (TTCS) is a constructive type theory
based on Luo’s UTT [18] with the addition of an effective subtyping mechanism,
that of coercive subtyping [19,26]. TTCS has been effectively used in the study
of NL semantics for a range of phenomena including common nouns, adjectives,
adverbs and belief intensionality among other things [5,7,20,21,23]. TTCS is
a dependent type theory with rich type structures which are exploited for the
study of NL semantics. We will refer to this type of semantics in this paper as
Modern Type Theoretical (MTT) semantics.3 In MTT-semantics, some of the
major linguistic categories and their interpretation are shown below:

1. A common noun (CN) can be interpreted as a type.
2. A verb (IV) can be interpreted as a predicate over the type D that interprets

the domain of the verb (i.e., a function of type D → Prop, where Prop is the
type of logical propositions

3. An adjective (ADJ) can be interpreted as a predicate over the type that
interprets the domain of the adjective (i.e., a function of type D → Prop).

4. Modified common nouns (MCNs) can be interpreted by means of Σ-types,
types of (dependent) pairs.

5. A sentence (S) is interpreted as a proposition of type Prop.

See Fig. 1 for a summary with examples.

3 The formal semantics based on Modern Type Theories such as Martin-Löf’s type
theory or TTCS is usually called MTT-semantics. In the current paper, we shall still
talk about MTT-semantics although, if taken seriously, it means formal semantics
in TTCS because the Coq implementation of the NL semantics is based on TTCS.
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Example Montague semantics Semantics in TTCS

CN man, human [[man]], [[human]] : e → t [[man]], [[human]] : Type

IV talk [[talk]] : e → t [[talk]] : [[human]] → Prop

ADJ handsome [[handsome]] : (e → t) → (e → t) [[handsome]] : [[man]] → Prop

MCN handsome man [[handsome]]([[man]]) Σm : [[man]] . [[handsome]](m) : Type

S A man talks ∃m : e. [[man]](m)& [[talk]](m) ∃m : [[man]] . [[talk]](m) : Prop

Fig. 1. Examples in formal semantics.

2.2 NL Semantics in Coq

Coq [11] implements pCIC, a type theory whose major part is essentially4 TTCS
(UTT with coercive subtyping), based on which the formal semantics briefly
described in the previous subsection has been implemented. The encoding of NL
semantics based on TTCS is quite straightforward in most of the cases. Let us
see some basics of how this can be done.

Starting with the type of logical propositions, nothing needs to be encoded,
since Coq already involves a universe of logical propositions, Prop. The next
step, is to see what the universe of entities would be taken to be. In MG, a
coarse-grained type of entities exists, i.e. the type e of all entities. In MTT-
semantics, the common nouns constitute a universe, denoted as cn; the type
cn contains the (interpretations of) CNs, each of which is further interpreted
as a type that contains entities belonging to them. CNs are interpreted as types
rather than predicates. However, since universe construction (i.e., defining new
universes) is not an option in Coq, we equate cn with Coq’s predefined universe
Set.

Σ-types (types of dependent pairs), which are used to give semantics to some
modified common nouns among other things, are encoded using Coq’s depen-
dent record type mechanism5 and adjectives and verbs are defined as predicates
(objects of type A → Prop). Subsective adjectives like large are encoded as
polymorphic predicates (see [4]), extending over the universe cn.6 Subtyping
is encoded using Coq’s coercion mechanism and the proper names are given
suitable domain types: e.g., John is assumed to be of type Man.

The Coq codes for this basic set up are as follows.

Definition CN := Set.
Parameters Man Woman Human Animal Object : CN.
Axiom mh : Man->Human. Coercion mh : Man >-> Human.
Axiom wh : Woman->Human. Coercion wh : Woman >-> Human.
Axiom ha : Human-> Animal. Coercion ha : Human>->Animal.
Axiom ao : Animal->Object. Coercion ao : Animal>->Object.
Parameter Black : Object->Prop.

4 Coq has co-inductive types which are not present in TTCS.
5 Coq’s record types are just Σ-types with global names associated with them.
6 This is encoded using Π-types as follows: [[Adjsubs]] : ΠA : cn. A → Prop. The ‘forall’

part in the code corresponds to Π.



Proof Assistants for Natural Language Semantics 89

Parameter Large : forall A:CN, A->Prop.
Parameter walked: Human->Prop.
Parameter John : Man.

Quantifiers can be given polymorphic types as well: a quantifier takes a CN
argument A : cn and returns a function of type (A → Prop) → Prop. Thus, if
A is Man the type for the quantified NP will be (Man → Prop) → Prop and,
if A is Object, it is of type (Object → Prop) → Prop, and so on. As examples,
we define the quantifiers some, all, no as follows:

Definition some := fun A:CN => fun P:A->Prop => exists x:A, P(x).

Definition all := fun A:CN => fun P:A->Prop => forall x:A, P(x).

Definition no := fun A:CN => fun P:A->Prop => forall x:A, not(P(x)).

Note that the typing is the one we have been describing, taking an A : cn
argument, an A → Prop argument and returning a proposition.

Now, let us see how one can exploit Coq in order to reason with NL sentences
based on the implemented semantics. First of all, if one wants to check typing,
the command Check followed by the element we want to check can be used.
Note that Coq is a strongly typed language, so by definition ill-typed constructs
cannot be defined, since they will be blocked by Coq. Let us see an NL reasoning
example, the one shown below:

(1) John walked ⇒ Some man walked

Formalizing this example in Coq, we consider the following ‘theorem’ whose
name is JOHN (to be proved):

Theorem JOHN : walked John -> (some Man) walked.

This will put Coq into proof-mode. We unfold the definition for some using cbv
and use the tactic intro, which will introduce the antecedent as a hypothesis:7

JOHN < cbv. intro. subgoal
H : walked John
============================
exists x : Man, walked x

What we need to do is substitute John for x and using the tactic assumption,
which matches a goal in case there is an identical premise in the context of the
proof, the proof is completed and we can save the proof using Qed. The whole
proof then consists of the steps:

1. cbv (unfolding definitions (in our case the one for some))8

2. intro (moving the antecedent as a hypothesis)
7 The tactic cbv performs all possible reductions.
8 In general the tactic cbv performs all possible reductions. For more information, see

[11].
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3. exists John (substituting x for John)
4. assumption (matching the goal with a hypothesis)

Remark 1. The MTT-semantics has proved to be a viable alternative to Mon-
tague Grammar, with several notable advantages. Here, we think it is worth
mentioning one of them: that is, MTT-semantics is both model-theoretic and
proof-theoretic, as argued in [24]. It is model-theoretic because, in an MTT-
semantics, an MTT is employed as a representational language and it can do
so because of its rich representational structures as well as its internal logic.
Therefore, it has a wide coverage of linguistic features and can be compared to
Montague semantics in this respect. It is also proof-theoretic, in the sense of
[14], because MTTs are specified proof-theoretically and the meanings of MTT-
judgements, that are used to give semantics to NL sentences, can be understood
by means of their inferential roles. Therefore, reasoning with NL can be directly
performed in proof assistants like Coq that implement MTTs. This is unique
for MTTs and MTT-semantics: such a possibility of having a semantics which is
both model-theoretic and proof-theoretic is not available to us until we have the
MTT-semantics (for example, if one considers the traditional model-theoretic
semantics in set theory, we simple would not have a proof-theoretic representa-
tional language: set theory is not proof-theoretic.)

3 Libraries for NL Semantics

We have created a number of small libraries in Coq, encoding NL semantics.
They may be classified as follows:

– MTT-semantics and reasoning : We have studied various NL phenomena using
MTT-semantics and formalised them in Coq.

– Platform for other semantic frameworks: We have looked at several seman-
tic frameworks and provided some examples including, for example, Rétore’s
Montagovian Generative Lexicon [30], Cooper’s Type Theory with Records
(TTR) [9], and a toy semantic grammar for neo-Davidsonian event semantics
[27].

– Experiments on new semantic theories: We have done interesting experiments
in Coq about some new semantic theories, including that about predicational
forms in MTT-semantics [8], as reported here.

The libraries can be found at https://github.com/StergiosCha/CoqLACL.

3.1 MTT Semantics for NL in Coq

The main file for MTT-semantics is MainCoq.v. This includes the Coq imple-
mentation of a number of ideas in MTT-semantics. The universe CN includes
a number of types (e.g., Man,Human,Delegate,Woman,Animal,Object) and
subtyping relations between them. Synonym relations are encoded via the let-
command in Coq. Adjectives are defined in the way specified in the previous

https://github.com/StergiosCha/CoqLACL
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section and sometimes some added lexical semantics are inserted. For example,
small is defined as the opposite of large, and both are polymorphically defined
as follows:

Parameter Large Normalsized: forall A:CN, A->Prop.
Definition Small :=

fun A:CN => fun a:A => not (Large A a) /\ not (Normalsized A a).

Basically the idea here is that small is defined as being not large but furthermore
not of normal size. This reflects the idea that something which is not large is not
necessarily small.9 This is needed in order to get the relevant inferences right
(see [5]).

In MTT-semantics, there is also a widespread use of Σ-types for factive verbs,
adverbs and comparatives. We have not the space here to go in full detail but
the idea can be briefly described as follows, taking the case of veridical sentence
adverbs as an example. What we need to capture is that the proposition without
the adverb is implied by the proposition including the adverb. In order to do
this, we first define an auxiliary object:

Parameter ADVS : forall (v:Prop), sigT (fun p:Prop => p->v).

This basically takes a proposition v and returns a pair whose first component is
a proposition p and whose second component is the proposition that p implies v.
Then, veridical sentence adverbs (we use fortunately as an example) are defined
as the first projection of this auxiliary pair:

Definition fortunately := fun v:Prop => projT1 (ADVS v).

Similar uses of Σ-types can be found for VP adverbs, comparatives as well as
factive verbs in the library (see [5] for more details.)

For comparatives, we introduce indexed types for common nouns; for exam-
ple, humans of type Human may be indexed by a height parameter. Then, a
comparative adjective takes two Humani arguments with i : : Height.

Inductive HUMAN : nat->Type := HUMAN1:forall n:nat,HUMAN n.

A simple model of tense is defined and an attempt to deal with some aspects
of tense exists. There is a type Time and a date is defined as triple, taking year,
month and day arguments and returning a result in Time. A default date is
defined which consists of the defaults for year, month and day. Then, verbs are
defined with an extra time argument. Present, past and future are then defined
using the precedes relation with respect to the default time. For example, an
adverb like currently is defined as identifying the time argument with the default
time:

Definition currently := fun P : Time -> Prop => P default_t.

9 The level of fine-grainedness with respect to size, i.e. whether sizes between these
proposed three will be used, will not bother us here.
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The next file is adjectives.v, which involves some more fine-grained issues
in adjectival semantics. In particular it deals with multidimensional adjectives
and introduces a hack in order to take care of the fact that Coq does not allow
subtyping to propagate through constructors (as it is the case in TTCS).10 Mul-
tidimensional adjectives do not just involve one dimension (e.g., the dimension
of height in the case of tall), but more than one. Classical cases are the adjectives
like healthy and sick or even adjectives like big. The idea is that an adjective like
healthy quantifies over a number of dimensions, e.g., blood pressure, cholesterol
etc. [32]. Similarly, big may involve different dimensions like height, width etc.
For an adjective like healthy, we define health as an enumerated type including
all the relevant dimensions. Then, Healthy is defined as taking an argument of
type Human and assuming that this human is healthy in all dimensions. For
sick, the assumption is that the argument is not healthy w.r.t. to at least one
dimension. This follows the ideas set out in [32]:

Inductive Health:CN:=Heart|Blood|Cholesterol.
Parameter Degree:R. Parameter healthy:Health->Human->Prop.
Definition Sick:=fun y:Human=>~(forall x:Health,healthy x y).
Definition Healthy:=fun y:Human=>forall x:Health,healthy x y.

The files FracasCoq.v and test.v are meant to be used in conjunction. Actu-
ally FracasCoq loads test.v. FracasCoq.v contains a number of FraCaS test suite
examples formalized in Coq along with their proofs. The FraCaS Test Suite
[10] arose out of the FraCaS Consortium, a huge collaboration with the aim to
develop a range of resources related to computational semantics. The FraCaS
test suite is specifically designed to reflect what an adequate theory of NL infer-
ence should be able to capture. It comprises NLI examples formulated in the
form of a premise (or premises) followed by a question and an answer. Here is a
typical example from the suite:

(2) Some Irish delegates finished the survey on time.
Did any delegate finish the report on time [Yes, FraCaS 055]

The modified CN Irish delegates is defined as a Σ type. Given that π1 is
defined as a coercion, the inference will go through easily. Please see [5] for more
details and the code for the actual.

3.2 Other Semantic Frameworks

Proof assistants can be used as platforms to experiment with different semantic
frameworks. In this respect, there are three files that have some very small toy

10 Some remark on subtyping propagation in Coq is needed. If A < B, then we should
have Σ(A, C) < Σ(B, C) (which follows in TTCS). But this does not follow in Coq.
In order to remedy this we have introduced a sort of a hack by overloading the type
using unit types (see the actual code and consult [21] for the use of unit types).
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semantic grammars of other frameworks that have been used in the study of lin-
guistic semantics. Note that these implementations are shallow implementations
in the sense that no deep implementation of the underlying formal systems is
done. In other words, we are not doing a faithful implementation of a seman-
tic framework; instead, we emphasize the quick return so that examples can be
done. For instance, Retoré’s Generative Montagovian Lexicon [30] is based on
system F [12,31], but no implementation of system F is done on our part.

In MontagovianLexiconToy.v, we encode some of the ideas in presented in
Generative Montagovian Lexicon as presented in [30]. Note that the idea that,
representing the interpretation of a common noun, each type has its correspond-
ing predicate cannot be implemented since it is not clear how such correspon-
dence will be formally defined.11 We, however, encode the idea that a word like
book has a principal lambda term and then a number of coercions that take care
of its dot-type status. This is done by using type overloading via unit types.
We further formalize the polymorphic conjunction of [30] and prove that it is
equivalent to the semantics of regular conjunction. For example, the definition
of polymorphic conjunction is given as follows:

Definition PAND := fun a:e => fun b:e => fun P:a->t => fun Q:b->t =>

fun x:e => fun y:x => fun f:x->a => fun g:x->b =>

and (P(f(y))) (Q(g(y))).

Records.v has some very simple experimentations on encoding ideas from
Cooper’s TTR [9]. For example, the record for a man owns a donkey is encoded
as:

Record amanownsadonkey : Type :=
mkamanownsadonkey{ x : Ind;

c1 : man x;
y : Ind;
c2 : donkey y;
c3 : own x y}.

From this record type in Coq, one can prove any of the individual fields. For
example, one can show that a man exists, that a donkey exists (man and donkey
are defined here as predicates), and that the man owns the donkey.

Lastly, Davidson.v contains a typed neo-Davidsonian toy semantic gram-
mar. It has some simple examples and the welcoming inferential properties of
neo-Davidsonian semantics where each modifier adds a conjunct. The grammar
presents a typed version of neo-Davidsonian semantics12. Similarly, a transitive
verb like stabs is defined as taking an event argument e and two arguments x

11 For example, one can define both a type book and a predicate book∗ but linking the
two and defining such a process for every common noun is something that we do not
know how can be done, without leading to formal difficulties such as undecidability
of type-checking [8]. There is not a formal proposal on how to do this in [30] either.

12 See [25] for a theory of dependent event types which extends Church’s simple type
theory with dependent event types. This is an initial step towards a theory of events
with dependent types.
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and y of type Ind and returning a proposition which specifies that there is a
stabbing event e1 such that stabs(x)(y)(e1), x is the agent, y is the theme and
e = e1. This toy semantic grammar can take care of inferences like the following
(proofs are in the file):

(3) Brutus stabbed Caesar with a knife in Rome ⇒ Brutus stabbed Caesar with
a knife

(4) Brutus stabbed Caesar with a knife in Rome ⇒ Brutus stabbed Caesar
(5) Brutus stabbed Caesar with a knife in Rome ⇒ the agent of the stabbing

was Brutus

Remark 2. As we have already mentioned, the above implementations are shal-
low implementations of fragments of other semantic theories.13 Coq implements
an MTT, which in itself is a very powerful language to represent NL semantics.
In a sense, one way of using Coq would be to use this very powerful language
in order to embed different semantic theories as kind of modules within Coq’s
MTT. For example, one might want to define a Natural Logic component (as for
example [17] has done), or a neo-Davidsonian fragment as we have very briefly
done here. We believe that this is a nice way of looking at how the systems like
Coq can be used for NL semantics. Different comparisons can then be performed
as regards the different frameworks based e.g. on the predictions they make as
regards inference.

3.3 Experiments with New Semantic Theories

Systems like Coq can play a useful role in verifying newly proposed theories in
semantics. Here, we consider two cases. The first concerns the theory of pred-
icational forms as studied in [8]. The theory is to deal with negated sentences
or conditionals in a type theory where some CNs are interpreted as types in a
multi-sorted type system (e.g., the MTT-semantics) and the file predhyp.v con-
tains the experiments done in Coq that formalizes the theory of predicational
forms and considered many relevant examples.

Consider the simplest example, where (7) is the (judgemental) interpretation
of (6):

(6) John is a man.
(7) j : Man

Note that j : Man is a judgment and not a proposition. How do we give
semantics to its negation like (8)?

(8) John is not a man.

13 See [15] for an informal explanation of shallow and deep embeddings.
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Similarly, a negated sentence like (9) needs to be given semantics, but it would
be simply negating the semantics of ‘Tables talk’ since the latter is meaningless
(i.e., ill-typed)14.

(9) Tables do not talk.

Also, some conditionals correspond to hypothetical judgements and require
a treatment as well (we omit the details here).

The theory of predicational forms [8] is a logical theory to deal with the above
issues. Based on it, suitable semantic interpretations can be given to negated
sentences and conditionals as intended.

The formalisation of the theory (and examples) can be found in predhyp.v.15

For instance (just showing one example), the following sentences and inferences
have been done:

(10) It is not the case that John is not a man.
(11) It is not the case that every human is a logician
(12) Some red tables do not talk ⇒ Some tables do not talk

Another theory is to consider how to deal with inferences concerning CNs.
Individuation.v contains an account of how individuation criteria should be
decided within an MTT. The general idea is that every common noun is associ-
ated with its own identity criteria (IC) which can be inherited by other common
nouns (see [22] for the theory on this and more detailed discussions on ICs.)
For example, one can assume that Man inherits its IC from Human. Given this
assumption, common nouns are not simple types but setoids whose first compo-
nent is a type (the domain of the CN), in DomCN (which is the old cnuniverse)
and whose second component is its IC. So under this view, the common noun
Human will be represented by the following (we use capitals to denote the new
formalization and retain the first letter with uppercase notation to denote the
type in DomCN):

(13) HUMAN = Σ(Human,=H)

Several IC criteria are defined for different common nouns and dot.types like
book are given two different IC criteria depending on whether their physical or
informational aspect is individuated. Thus, we have:

14 Note that it is not given false as in MG.
15 The files FracasCoq.v and test.v are meant to be used in conjunction. Actually

FracasCoq loads test.v. FracasCoq.v contains a number of FraCaS test suite examples
formalized in Coq along with their proofs.
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(14) BOOK1 = Σ(Book,=P )
(15) BOOK2 = Σ(Book,=I)

A number of proofs then follow including, for example, a proof of the following:

(16) John picked up and mastered three books ⇒
John picked up three physical objects and mastered three informational
objects

Remark 3. One issue that is worth mentioning here, is that of automation. Coq
is an interactive theorem prover, which means that the user guides the prover
to the proof. However, Coq has a very powerful tactic language that can be
used in order to construct composite tactics that can automate part of or whole
proofs. We have defined a number of tactics that can automate proofs. The
interested reader can check for example the automated tactic AUTO in the
files Davidson.v (for example BRUTUS1 to BRUTUS4 are proven using AUTO
only) and MontagovianLexicon.v. AUTO can prove all theorems in these two
files. A more advanced automatic tactic is needed for the proofs found in the
FracasCoq.v file. Such a tactic is AUTOa (this tactic also solves all the goals in
the previous files solved by AUTO) [5,6]. All proofs can be automated with this
tactic except one that is semiautomated (see FracasCoq.v file).

4 Conclusions and Future Work

In this paper, we have argued for the use of the proof assistant technology for nat-
ural language semantics. In particular, we have argued, that the time is mature
for such an endeavor given the progress made in both the proof technology itself
as well as the use of constructive type theories for natural language semantics.
We have prepared a number of small libraries for NL semantics using the proof
assistant Coq based on Luo’s TTCS and have shown the benefits of such an
endeavor by exemplifying the use of proof assistants as natural language rea-
soners or as checkers of the formal validity of proposals in formal semantics. We
have lastly shown how experiments with semantic accounts proposed in several
semantic frameworks can also be implemented in Coq.

As future work, we are envisaging the extension of work as regards infer-
ence by endorsing a system where a tight correspondence between syntax and
semantics exists, in the same way such a correspondence is found in categorial
grammar. This builds on theoretical work of second author, where a proposal
for extending the Lambek calculus with dependent types can be found. Given
such a development one can then define a parser based on this extended Lambek
calculus with dependent types, which will automatically give us MTT-semantics
as output. These semantics will then be used by Coq to perform reasoning tasks.
The ultimate goal is to develop a wide-coverage, robust parser that will then be
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able to output semantics for larger pieces as well as open text. Similar work
using multi-modal categorial grammars or combinatory categorial grammar has
been shown to be feasible. If this is the case, this is a great chance of using
a more structured semantic framework as well as a specific purpose reasoning
device (Coq) in order to deal with NLI.
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