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Abstract. This paper presents a computable solution to Partee’s tem-
perature puzzle which uses one of the standard tools of mathematics and
the exact sciences: countable approximation. Our solution improves upon
the standard Montagovian solution to the puzzle (i) by providing com-
putable natural language interpretations for this solution, (ii) by lowering
the complexity of the types in the puzzle’s interpretation, and (iii) by
acknowledging the role of linguistic and communicative context in this
interpretation. These improvements are made possible by interpreting
natural language in a model that is inspired by the Kleene-Kreisel model
of countable-continuous functionals. In this model, continuous function-
als are represented by lower-type objects, called the associates of these
functionals, which only contain countable information.
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1 Partee’s Puzzle and Montague’s Solution

Partee’s temperature puzzle [33, p. 267] is a touchstone for any formal semantics
for natural language. This puzzle regards the incompatibility of our intuitions
about the validity of the inference from (1) (i.e. invalid) with predictions about
the validity of this inference in extensional semantics (cf. [8,32]) (i.e. valid).

a. The temperature is ninety.

b. /T]pe temperature rl)se)s L (1)
/Nirety rises. 7
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Montague-style formal semantics (e.g. [13,17,29,33]) solve this puzzle by distin-
guishing two readings of the DP the temperature: a function-reading (cf. (1b)),
on which the DP is interpreted as an individual concept (i.e. as a function from
indices/world-time pairs to individuals; type' se), and a value-reading (cf. (1a)),
on which the DP is interpreted as the extension of this concept at the cur-
rent index, @ (i.e. as an individual; type e). The different readings prevent the
replacement of the occurrence of the DP the temperature from (1b) by the name
ninety (s.t. the conclusion of (1) cannot be derived from the premises) (cf. (2)).?

2 Problems with Montague’s Solution

Montague’s solution to the temperature puzzle is inspired by Carnap’s theory
of intensions (cf.[7]) and is supported by the fact that Montague semantics
already uses indices in the semantic analysis of declarative sentences, which are
interpreted as functions from indices to truth-values (cf. also [26]). Because of its
ready availability, Montague’s solution has been adopted by many contemporary
theories of formal semantics.?> However, there are a number of problems with
this solution. These include the non-computability of natural language inter-
pretations in this solution, (i) the high type-complexity of natural language
interpretations in this solution, and (iii) the disregard of relevant contextual
parameters in this solution. The latter are described below:

2.1 Problem 1: Non-Computability of NL Interpretations

Intensional (or ‘possible world’) semantics — which include Montague-style formal
semantics — fail to provide computable (or ‘effective’) interpretations of natural
language expressions. This is due to the non-computability of models of possible
world semantics and the impossibility of finitely describing the set of possible
worlds that provides the meaning of a sentence in the absence of the sentence’s
translating/intermediate formula (cf. [34]). As a result of these facts, intensional

! For brevity, we use a short notation for types, where se corresponds to the arrow type

s — e and to Montague’s type (s, e). We will hereafter indicate types in superscript.
In (2), we assume that ninety is s.t. Vi°(ninety (i) = NINETY).
These theories include hyperintensional theories (e.g. [16,39]), which do not adopt an
atomic type for indices, and relational theories (e.g.[35,48]), which only accept non-
atomic types with range Bool. To accommodate the intensionality of DPs like the
temperature in (1b), hyperintensional theories introduce an atomic type for individual
concepts. Relational theories code individual concepts as binary relations between
indices and individuals.
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semantics are unable to compute the semantic representation of a given sentence.
However, given the need to explain the human ability to form and understand
new complex expressions (cf. [9,15,37,44]), such an effective semantics is clearly
desirable.

2.2 Problem 2: High-Rank Typing

The interpretation of DPs as individual concepts increases the complexity of the
types of natural language interpretations. On Montague’s interpretation, proper
names and common nouns are expressions of rank 1 (i.e. se) resp. 2 ((se)t),
rather than of rank 0 (e) resp. 1 (et), as in extensional semantics. Montague
semantics even interprets transitive verbs — which have rank 3 (i.e. ((et)t)(et))
in extensional semantics — in rank 4 (i.e. (((se)t)t)((se)t)). But this complicates
the type of the interpretations of linguistic expressions analogously to the (much-
criticized) treatment of referential DPs as generalized quantifiers (cf. [19,27,38]).
Further, while formal semanticists and theoretical computer scientists are used to
working with rank-4 (or higher-rank) objects, such objects are highly uncommon
in the natural sciences and even in most parts of mathematics.

2.3 Problem 3: Context-Invariance

Montague’s solution further neglects the salient role of context in the interpre-
tation of the verb rise (cf.[10]): Intuitively, for different DPs, rise will assert the
DP referent’s rising over different-length intervals. Thus, in (1b), rise will be
interpreted with respect to a shorter interval (e.g. minutes, or hours) than in the
CP The oil price rises (e.g. weeks, or months). Even when applied to the same
DP, rise is often interpreted with respect to different-length intervals. For exam-
ple, in the context of global climate development, (1b) will be taken to make a
claim about a longer interval than in the context of the local weather forecast.
Since Montague semantics analyzes intensional intransitive verbs as characteris-
tic functions of sets of individual concepts (which send all occurrences of a DP
to the same truth-value), it does not capture this context-sensitivity.

3 Solving the Problems

We solve the above problems by interpreting natural language in a model*
that is inspired by the Kleene-Kreisel model of countable-continuous functionals
[21,25] (cf. [30, Ch.2.3.1]). In this model, continuous functionals are represented
by lower-type objects called associates.

Following Kleene [21] and Kreisel [25], we hereafter use finite types over the
natural numbers. The latter are the smallest set of strings that contains the type
for natural numbers, 0, and the types for function spaces over natural numbers,

* To enable a compositional interpretation of the sentences from (1) (cf. Sect. 4), this
model extends the Kleene-Kreisel model (which only contains natural numbers and
functions over natural numbers) to objects of higher type.
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(p — 7) (with p,7 finite types) (cf.[36]). To ease notation, we abbreviate the
type for functions over natural numbers, (0 — 0), as ‘1’, abbreviate the type
for functionals over sequences of natural numbers, ((0 — 0) — 0) (= (1 — 0)),
as ‘2’, and abbreviate (n — 0) as ‘n + 1’. Our considerations will make special
use of coded finite sequences of natural numbers (type 0). To distinguish natural
numbers which do from natural numbers which do not code such sequences, we
denote the former by ‘0*’.

Our solution to the temperature puzzle briefly works as follows: By represent-
ing the DP the temperature from (1b) as (a code for) a finite sequence of natural
numbers (type 0*) and by approximating the continuous functional denoted by
rise by an associate of type 1 = (0* — 0), we ‘lower’ the types of many expres-
sions from (1) (cf. Problem 2). In particular, our solution interprets the DP’s
occurrence from (1la) as a natural number (type 0) and the DP’s occurrence from
(1b) as a (coded) sequence of natural numbers (type 0*). Since distinguishing
between types 0 and 0* is decitdable, we obtain a computable solution to the tem-
perature puzzle (cf. Problem 1). Because associates are introduced through the
use of a context-dependent variable, the domain of application of the verb rise is
restricted to a specific, contextually salient, temporal interval (cf. Problem 3).
As to the computability of our solution, it suffices for now to point out that the
Kleene-Kreisel model can be defined inside Martin-Lof type theory and has been
implemented in the associated programming language Agda [14,45-47].

Note the integrative nature of our solution to the above problems: Since
associates are computable, lower-type representations of continuous functionals
that approximate these functionals with regard to a contextually determined
parameter, our solution(s) to the above problems are all sides of the same
(three-sided) coin. This contrasts with other solutions to the temperature puz-
zle (e.g.[3,20,27,41]) which still assume more complex types, are not effective,
and/or rely on the use of other methods to render the interpretation of the
sentences from (1) context-sensitive.

We describe our solution in some detail below. To this end, we first show
how the Montagovian interpretation of the verb rise corresponds to a continuous
functional (in Sect.3.1). Following the informal introduction of associates (in
Sect. 3.2), we then outline our associates-approach to the temperature puzzle (in
Sect. 3.3). This approach receives a compositional implementation in Sect. 4. The
empirical domain of our associates-approach and the computational properties
of associates are discussed in Sects.5 and 3.4.

3.1 Continuity and the Temperature Puzzle

Our solution to the temperature puzzle starts from the observation that the
interpretation of RISE from (2) corresponds to a continuous functional, ¢yige,
in the space N¥ — N. The correspondence between RISE and (i is based
on the possibility of representing individual concepts as sequences over natural
numbers (assuming a fixed starting index/world-time pair (w,t) and a discrete
unit of time measurement; cf. [27]). The latter enables the representation of the
individual concept ‘the temperature’ from (3) as the sequence from (4), and the
representation of sets of individual concepts as sets of such sequences.
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(w, to) — 89, (w, t1) — 90, (w,t2) — 91,...,(w,t,) — 89 +n (3)
89.90,91...,89 +n (4)

With this representation in mind, the temperature as given by v* = (Tp, Ty,...)
(where Ty, T3, etc. are the values of some temperature measurement) rises,
i.e. RISE(7), iff ¢rise(y) = 1. The temperature as given by v does not rise iff
@rise(V) = 0.

The continuity of the functional @y is suggested by (i) the ‘finite relevance’
of input sequences for @,ise and (ii) the equivalence of sequences which are iden-
tical up to some point in time.

Ad (i): Intuitively, after having observed a rise in the values of some tem-
perature measurement for a certain finite period of time, even the most ardent
skeptic will agree that the values are, in fact, rising. Thus, if the temperature
as given by v = (Ty,T1,...) is rising, i.e. if @ise(y) = 1, we will agree to this
fact after having observed the temperature up to some point in time n, i.e. by
considering (Tp, ..., Ty).

Ad (ii): If the temperature as given by the values of some other measure-
ment 3 = (T}, Ty,...) is further exactly v up to the point in time n, we will
agree that ¢pise(8) = 1, i.e. that the temperature as given by (3 is also rising.
The functional @,ise is thus continuous in the usual mathematical sense (cf. [30,
Ch.2.3.1)).

Continuity is defined below:

Definition 1 (Continuity of type-2 functionals). A type-2 functional ¢ is
continuous (on the Baire® space) if

V' I VB (7 = Bn — (7)) = 0(8)), (5)

where yn = (To, Ty, ..., Ty) and Bn = (T3, T},...,T") (both type 0%) are the
initial segments (up to n) of v and (.

Above, the point n (for ¢ise: & point in time at which everyone agrees that the
temperature is rising) is called a point of continuity of ¢ (at v). Obviously, this
point may be different for different sequences. We will use this fact in Sect. 3.2 to
explain the dependence of interpretations on the expressions’ linguistic context.

The correspondence of the interpretation of RISE to the continuous functional
©rise gives rise to the following ‘continuous functional’-version of (2):

Iy (VB [temp?(B) « v = B] A now?(v) = ninety®)
S (VB [temp(8) < 7 = B A (1) = 1) ©)
TTTTTT Ghminety) =1 777777

5 The Baire space is usually defined as the set of all infinite sequences of natural
numbers with a certain topology. This space has many alternative characterisations
(up to isomorphism) as explored in, e.g., [31, Ch.I].
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In (6), ninety denotes the sequence which is constant ninety (s.t. ninety
serves the function of ninety®® from (2)). The constant now denotes a func-
tional that takes as input non-coded sequences of natural numbers (type 1) and
produces as output the value-at-@ in these sequences. The introduction of this
constant is made necessary by the absence of indices in (the variant of) our
preferred model of countable-continuous functionals (cf. Sect.4) in which we
interpret Partee’s temperature puzzle.

We close this section with a remark on the ‘coding’ of finite sequences as is
done in mathematics and computer science (cf. e.g. [6, p. 92]):

Remark 1 (Coding). Finite sequences of natural numbers can be represented
(or ‘coded’) by a single natural number using pairing functions. The most widely
known of these functions, due to Cantor, is defined as follows:

m(n,m):=2(n+m)(n+m+1)+m

Notably, not all natural numbers necessarily code finite sequences (given a cer-
tain fixed pairing function).

The coding and the associated decoding of finite sequences has been imple-
mented in most of the common programming languages. In particular, there is
a computable function IsCodeForSeq(n) of comparatively low complexity which
outputs ‘1’ if it is indeed the case that the input n codes some finite sequence
(To, Th, ..., ), and ‘0’ otherwise.

As is common in mathematics and computer science, we assume below that
a particular coding and decoding function has been fixed (e.g. Godel numbers
as in [6, p. 92]). This assumption allows us to treat finite sequences (type 1) as
natural numbers (type 0). We further assume that ninety from (6) is a number
which does not® code a finite sequence. We will see below that this property of
pairing functions is essential in our solution to Partee’s temperature puzzle (in
Sect. 3.3).

This completes our discussion of the interpretation of the verb rise as a con-
tinuous functional. We next introduce the notion of associate and discuss its role
in our solution to the temperature puzzle.

3.2 Associates and the Temperature Puzzle

Intuitively, associates of continuous functionals are countable approximations
(or representations) of these functionals which uniquely determine the value of
these functionals for every (represented) argument. The Kleene-Kreisel model of
countable-continuous functionals is defined in terms of associates (cf. [30, §8.2.1]).
Associates are formally defined as follows:

Definition 2 (Associates [21,25]). An associate, a.,, of a continuous type-2
functional  is a sequence of natural numbers (i.e. type 1 = (0* — 0)) such that

V' In® YN > nla,(FN) = o(v) + 1 A (Vi < n) ay,(5i) = 0]. (7)

5 For the coding from [6, p. 92], there exist numbers which do not code finite sequences.
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The associate a,, thus enumerates” the values of ¢ at all 7n, where n is a point
of continuity for «. In particular, the first conjunct of (7) identifies the value
of the associate of ¢ for any initial segment of v up to at least n (here: the
value of a,(7¥N)) with the value+1 of ¢ for v. As a result of the identification
of a,(FN) and () + 1, a continuous functional and its associate contain the
same information: Beyond the point of continuity n, ¢ remains constant, i.e. no
new information can be learned.

The ‘+1’ in the first conjunct of (7) expresses a kind of partiality: If the
input sequence, 7k, of «, is ‘too short’ (i.e. if k is less than the least point of
continuity, n, for ), a,(7k) cannot provide any information about ¢(7). The
second conjunct from (7) captures this possibility by returning the value 0, which
is not a possible value for p(v) + 1.

The above yields the following intuitive picture for an associate, ayise, Of Prise-
Below, v denotes a temperature-representing sequence (type-1, as in Sect. 3.1);
m is a natural number:

0 if m is too short to judge if the temperature is rising;
Qrise(YM) = ¢ 1 if @rise(7) = 0 by (7), i.e. the temperature is not rising;
2 if prise(7) = 1 by (7), i.e. the temperature is rising.

We close this section with an observation about associates and context-
dependence:

The variation of the point n in (7) with different input sequences reflects
the role of linguistic context in the interpretation of verbs like rise and fall:
While some occurrences of these verbs only consider comparatively short initial
segments of sequences in order to judge whether the sequence rises or falls, others
consider longer (or even countably infinite) initial segments of these sequences.
Consider the application of the associates-interpretation of fall to the type-0*
interpretations of the DPs the water drop and the pitch drop: To confirm that
the water drop is, in fact, falling, it suffices to observe its behavior for a short
period of time (i.e. for a few (milli-)seconds). In contrast, to confirm that the
pitch drop is falling, we need to observe its behavior for a rather long period of
time (i.e. for several years).

The (possible) existence of multiple points of continuity for the same
sequence — and the attendant need to choose a particular point up to which
we consider this sequence — further reflects the dependence of the above verbs
on the salient communicative context. For example, for the sentence The tem-
perature rises (cf. (1b)), we will choose a larger n in the context of global climate
development than in the context of the local weather forecast.

" Note that it is impossible to enumerate the space NY. Since we can, thus, not enu-
merate the values of a discontinuous type-2 functional, our approach breaks down
for discontinuous functionals. We will identify a promising solution to this problem
in Sect. 7.
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3.3 The Associates-Solution to the Temperature Puzzle

We are now ready to present our associates-solution to the temperature puzzle.
In particular, we can reformulate (6) using the associate, Qyise, of @rise as follows:

I (VB [temp?(B) < B = 7] A now?(y) = ninety")
3y (VB! [temp* (B) < B =] AIn[a me(m}, -2]) (8)
T 7T

IO (o (ninety m) = 2)
We next show that the inference from (8) indeed does not go through:

Montague semantics solves Partee’s temperature puzzle by interpreting the
occurrences of the DP the temperature from (1a) and (1b) as an individual (cf. the
constant NINETY in (2)) resp. as an individual concept (cf. the variable ¢ in (2)).
Our solution works analogously, but — thanks to the presence of ;i — with lower
types. In our solution, the different occurrences of the DP from (1a) and (1b) are
interpreted as a natural number which does not code a finite sequence of natural
numbers (by the assumption following Remark 1) (cf. the constant ninety in (8))
and as a natural number, k, which codes the finite sequence Fn from (8). The
information whether ninety and k do or do not code a sequence of natural num-
bers is obtained by applying the function IsCodeForSeq(n) from Remark 1. The
different types of ninety and k (i.e. 0 resp. 0*) — and the subsequent impossibility
of replacing the occurrence of 7yn in the second premise of (8) by the constant
ninety — blocks the temperature puzzle.

In conclusion: the introduction of the associate, ayise, Of ¢rise allows us
to block the inference from (8) while lowering the types of many expressions
from (1).

3.4 Computability and the Temperature Puzzle

We have suggested in Sect. 2.1 that our associates-solution to the temperature
puzzle is computable. To support this claim, we now discuss the computational
properties of associates that are relevant for our solution.

An obvious conceptual question about associates is whether every continuous
functional has an associate and, if this is the case, whether this associate is
computable. We provide three partial answers to this question:

1. Kohlenbach has shown in [24, Sect.4] that the statement every continuous
functional of type (1 — 1) has an associate carries no significant logical
strength. Thus, as a special case, we may safely assume the existence of an
associate for every continuous type-2 functional.

2. In general, there is no computable functional which takes as input a continuous
type-2 functional and produces as output an associate (cf. [24,25]).

3. However, every primitive recursive functional (in the sense of Godel’s system
T) has a canonical associate which can be computed via the procedure from
[42, p.139]. Since the class of primitive recursive functionals is rather large,
it captures essentially any functional ‘occurring in practice’.
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A second question about associates regards the computability of the asso-
ciate’s point of continuity n. We here provide two partial answers:

1. There is no computable functional which returns a point of continuity on
input a continuous type-2 functional and a sequence (cf. [25]).

2. However, the fan functional returns a point of (uniform) continuity on input
a continuous type-2 functional and a sequence in a fized compact space. The
fan functional is present in the Kleene-Kreisel model and has a computable
associate (cf. [30, Sect. 8], [47]).

Since temperature measurements come with upper and lower bounds dictated by
physics (s.t. they are part of a compact space), a point of continuity of i can
always be computed for ayise and a sequence of temperature measurements .

This completes our presentation of the associates-approach to Partee’s tem-
perature puzzle. We next show that this approach can be implemented in a
compositional semantics for natural language.

4 Compositional Implementation

To obtain our associates-solution to the temperature puzzle, we compositionally
interpret natural language in a model, inspired by the Kleene-Kreisel model
of countable-continuous functionals, which contains continuous functionals and
their associates. This interpretation proceeds via the translation of the relevant
subset of the linguistic fragment from [33] into the language of the simply typed
lambda logic A%, ([8]; cf. [36, Ch. 1.1]). This is a logic with a single atomic type,
0, from which all other types are built up through the type constructor — (see
the definition of finite types from Sect.3). The language and models of A% are
specified in [2,8].

To identify the A -interpretation of the sentences from (1), we first specify
the particular language £2% (abbreviated ‘£’) and frame FA> (abbreviated ‘F”)
whose elements translate resp. interpret the syntactic constituents of these sen-
tences. The members of £ are specified in Table 1. Our conventions for the use
of A% variables are introduced in Table 2.

In the list of non-logical A% constants, ayise enables the translation of the
verb rise as an associate of the continuous functional denoted by rise (formerly,

Sprise) .

Table 1. £ constants. Table 2. £ variables.
CONSTANT A TYPE VARIABLE | A%, TYPE
ninety 0 m,n, N,z |0
ninety, arise 1 B,y 1
now, temp, rise/1 — 0 P,Q 1—0
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The interpretation function Zz : £L — F respects the way in which different
content words are conventionally related. Thus, this function identifies the inter-
pretation of the generalized A’ -translation, A\P.P(ninety), of the DP ninety as
a subset of the interpretation of the A%, translation, AP3y.temp(y) A P(v), of
the DP a temperature (s.t. ninety is a temperature under this interpretation). To
ensure the ‘right’ interpretation of the syntactic constituents of (1a) to (1c), we
demand that the function Z# further satisfies a number of semantic constraints.

Definition 3 (Constraints on £ constants). The function Zr satisfies the
following semantic constraints:

(C1) now(ninety) = ninety;
(C2) V' InOVB (Fn = Bn — rise(y) = rise(3));
(C3) Yy InYNO > nlavise(FN) = rise(y) + 1 A (Vi < n)owise(Vi) = 0]

The constraint (C1) demands that the interpretation of the type-0 constant
ninety be the output of the functional now on input ninety (cf. [33, rule T1.(d),
MP1]). The constraints (C2) and (C3) demand that the constant rise be inter-
preted as a continuous functional (cf. (C2)) resp. that ayise behaves as an asso-
ciate of this functional (cf. (C3)).

Admittedly, (C2) and (C3) are additional requirements on our semantic mod-
els which are not postulated for the models of Montague’s Intensional Logic
(cf.[33]). However, since these requirements reflect natural assumptions about
the domain of interpretation of the verb rise (cf. Sect.3.1) — and since contin-
uous functionals can be represented via their associates (cf. Sect. 3.2) —, these
requirements are rather innocent.

This completes our specification of the interpretation function Zx. We next
turn to the compositional translation of Partee’s temperature puzzle: To enable
this translation, we first translate the lexical elements of the sentences from (1).
In these translations, ~» is the smallest relation between syntactic trees and
A% terms which conforms to the rules from [22]:

Definition 4 (Basic A" translations). The lexical elements of (1a) to (Ic)
are translated into the following A%, terms:

ninety ~~ ninety
temperature ~~ temp
rise ~» AB3n(auise(Bn) = 2)
is ~ ABNy (now(y) = now(S))
the ~~ AQAPIY(VB[Q(B) < v = B A P(v))
As expected, Definition 4 specifies the translation of the verb rise as an associate

of the continuous functional denoted by the A°, constant rise (cf. (C2), (C3)). The
translations of the copula is, of the DP ninety, and of the definite determiner
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follow the translations of these expressions from [33, cf. rules T1.(b), (d), T2].%
In particular, our translation of is follows Montague’s translation of the copula
as the designator of a relation between the extensions of (generalized quantifiers
over) individual concepts (here: as the designator of a relation between natural
numbers, rather than between sequences of numbers).

The above translations enable the compositional A%, translation of the sen-
tences from (1). We start with the translation of (1a):

L. [ve[cris][peninety]] ~ Ay(now (v) = now (ninety)) (9)
= My(now(y) = ninety)

2. [pp[perthe][ytemperature]] ~» AP 3y (Vﬁ [temp(B) < v = B] A P(W))

3. [s[or[perthe][stemperature]][yp[cpis][ppninety]]]

~ Fy (VB [temp(B) < v = B] A (now (v) = ninety))
Sentences (1b) and (1c) are translated as follows:

[s[op [perthe] [ytemperature]][vep [y rises]]] (10)
s )\ch/(vg [temp(ﬁ) =y = ﬂ} A P(’y)) ()\53n[arise(3n) = 2])
= dy (Vﬂ[temp(ﬁ) =y = B] A In[arise(Fn) = 2])

[s[ppninety][yrises]] ~ Im(quise (ninety m) = 2) (11)

The resulting A\°, formulas are exactly the formulas from (8).
We next discuss the empirical scope of our associates-approach and the rela-
tion of this approach to other solutions to the temperature puzzle.

5 Domain and Scope

Our previous discussion has been restricted to the example of the verb rise.
However, the associates-approach generalizes to all degree achievement verbs
and change-of-state verbs ([28]; cf. [1,5,11]) whose interpretation corresponds to
a continuous functional. The latter constitute a sizable” class of verbs with the
following members:

1. wverbs of continuous calibratable change of state (cf. [28, pp. 247-248]): decline,
drop, grow, increase, plummet, plunge, rocket, rise, soar, surge, ...

2. verbs of entity-specific continuous change of state (cf.[28, pp.246-247]):
blush, blossom, burn, ferment, molt, rust, sprout, swell, ...

3. other verbs of continuous state-change (cf.[28, pp. 240-246]): abate, advance,
age, clog, compress, condense, degrade, distend, mature; in particular:

8 We simplify Montague’s translation of the copula to a translation that takes as its
first argument the designator of a type-1 object (instead of a generalized quantifier
over type-1 objects).

9 For example, Levin [28] lists 369 members of classes 1 to 4.
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) break-/bend-verbs: crack, shatter, split, tear; crumple, fold, wrinkle, ...
) adjective-related verbs: blunt, clear, cool, dry, empty, narrow, quiet, ...
(¢) change-of-color verbs: blacken, brown, gray, redden, tan, whiten, ...
(d) -en wverbs: darken, flatten, harden, ripen, sharpen, strengthen, ...
) -ify werbs: acidify, humidify, magnify, nitrify, petrify, purify, solidify, ...
) -ize verbs: crystallize, fossilize, pressurize, pulverize, stabilize, . ..
(g) -ate verbs: accelerate, coagulate, degenerate, detonate, evaporate, .. .

4. (continuous) directed motion verbs (cf.[28, pp.263-264]): arrive, ascend,
descend, drop, enter, fall, pass, rise, ...

5. accomplishment verbs (cf.[43]): run a mile, draw a circle, build a house, eat
a sandwich, play a game of go; grow up, recover from illness, ...

The above-listed verbs all take individual concepts as their arguments (i.e. they
are co-classified with the verb rise) (cf.[10]). The intensional interpretation of
these verbs is motivated by their particular, non-instantaneous, evaluation pro-
cedure: To judge whether John is blushing (cf. class 2), it does not suffice to
observe his red face at a particular point in time.'? Instead, we need to observe
John’s facial complexion at different neighboring points in time. We can only
conclude that John is blushing if he has a normal (non-red) skin color at the
earliest observed time-point and an increasingly redder complexion at the later
time-points (cf. [27]).

Note that, in contrast to their counterparts from class 1, the ‘continuous
functional’-interpretations of the verbs from classes 2 to 5 are not restricted
to input sequences of natural numbers (see blush), may describe non-temporal
change [10,18] (see the extent reading of verbs like narrow and darken)'!, and
do not presuppose an established scale or unit of measurement (i.e. they describe
non-discrete change). For example, in contrast to rising, blushing and narrowing
are not properties of sequences of numbers, but of sequences of temporal states
of an individual (viz. of his/her face) resp. of spatial states of an object. Further,
there is no established unit of measurement of a person’s facial redness (or of a
window cracking, a storm arriving, a person recovering from illness, etc.).

The above-described absence of a numerical /measurement structure does not
compromise the applicability of our associates-approach to the verbs from clas-
ses 2 to 5. This is due to the possibility of labelling temporal stages of individuals
(or of other physical objects) by natural numbers, of identifying a contextually
salient unit and scale (here: dominant wavelength or visible change in hue) for
the measurement of the relevant property, and of selecting the value of the mea-
surement (under the selected scale and unit of measurement) of the individual’s
relevant attribute for that property. In particular, the continuous functional-
interpretation, blush, of the verb blush will return ‘1’ on input a given sequence

10 Maybe John simply suffers from high blood pressure which causes his constant facial
redness.

' E.g. in The trail narrowed at the summit [10, p. 98] and His skin darkens on his right leg
near the femoral artery [10, p.99]. We thank an anonymous reviewer for reminding
us of examples of spatial change.
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of temporal ‘John’-stages if the values of the measurement (under the contextu-
ally presupposed measurement unit) of John’s facial complexion at these stages
are increasing, and will return ‘0’ otherwise.

We next discuss the relation of our associates-approach to existing work on
the temperature puzzle.

6 Relation to Existing Work

Our associates-approach distinguishes itself from existing solutions to the tem-
perature puzzle. This is due to the proximity of our approach to Montague’s
original solution from [33] (cf. Sect. 3.3) and to its focus on improving the com-
putational properties of this solution (cf. Sect.2.2):

Firstly, in contrast to the solutions from [3,20,41], and to solutions from event
semantics, our solution is not based on an alternative interpretation of (1a) that
uses a locative interpretation of the copula (i.e. ‘is at ninety’), a measurement-
explicit interpretation of the DP ninety (i.e. ‘is ninety degrees Fahrenheit’), or
an event-based interpretation of the verb rise (s.t. ‘rise’ describes a rising event).

Secondly, in contrast to the solutions from [12,27,29,40], our solution is not
directed at a variant of the temperature puzzle (i.e. Gupta’s problem; cf.(12))
that arises from the double index-dependence of intensional nouns like tempera-
ture; viz. from the dependence of temperature-values on the index-argument of a
particular individual concept [i.e. inner index-dependence] and the dependence
of noun-interpretations on the index of evaluation'? [i.e. outer indez-dependence]
(cf.[40]). As a result of this double dependence, Montague semantics blocks the
intuitively valid inference from (12):

a. Necessarily, the temperature of the air in my refrigerator is

the same as the temperature of the air in your refrigerator. (12)
b. The temperature of the air in my refrigerator is rising.

c. The temperature of the air in your refrigerator is rising.

It should come as no surprise that the different solutions to Gupta’s problem
can be integrated into our associates-approach to Partee’s temperature puzzle.
However, our approach even provides its own solution to the puzzle, which also
involves computability considerations. We will detail this solution in a sequel to
this paper.

7 Conclusion and Outlook
We have presented a computable, low-type, context-sensitive solution to Par-
tee’s temperature puzzle which uses the countable approximation of continuous

functionals via their associates. The success of our solution is challenged by the

12° As a result of this dependence, rise may denote a different set of individual concepts
at different indices.
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restriction of associates to continuous functionals. This restriction prevents the
application of our approach to expressions that are traditionally interpreted as
discontinuous functionals (e.g. mostly above 90).

Its exclusion of discontinuous intensional verbs hampers the generality of
the presented approach. However, in natural language, discontinuous expres-
sions are rather rare: of the 369 intensional intransitive verbs listed in [28] (see
Sect. 5 for a selection), only 5 are discontinuous. Their scarcity notwithstand-
ing, discontinuous verbs can be accommodated in Bezem’s model .# of strongly
majorizable functionals (cf.[23, Ch.3,11]). The weak continuity functional
([4, Sect.5, p. 171]) in this model serves a similar role to the fan functional
in the Kleene-Kreisel model: it produces a lower-type correlate of its input func-
tional. However, whereas the associate of a continuous functional is an accurate
representation of the continuous functional (in the sense that no information is
lost), the output of the weak continuity functional only partially represents the
input functional in Bezem’s model. The detailed development of this account is
a project for future work.
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