Oblivious Transfer from Any Non-trivial Elastic
Noisy Channel via Secret Key Agreement

Ignacio Cascudo'®) | Ivan Damgéard?, Felipe Lacerda?, and Samuel Ranellucci?

! Department of Mathematics, Aalborg University, Aalborg, Denmark
ignacio@math.aau.dk
2 Department of Computer Science, Aarhus University, Aarhus, Denmark
{ivan,lacerda,samuel}@cs.au.dk

Abstract. A (v,d)-elastic channel is a binary symmetric channel
between a sender and a receiver where the error rate of an honest
receiver is § while the error rate of a dishonest receiver lies within the
interval [, d]. In this paper, we show that from any non-trivial elas-
tic channel (i.e., 0 < v < § < 1) we can implement oblivious transfer
with information-theoretic security. This was previously (Khurana et al.,
Eurocrypt 2016) only known for a subset of these parameters. Our tech-
nique relies on a new way to exploit protocols for information-theoretic
key agreement from noisy channels. We also show that information-
theoretically secure commitments where the receiver commits follow from
any non-trivial elastic channel.

Keywords: Oblivious transfer - Elastic channels - Key agreement -
Commitments

1 Introduction

In this paper we consider oblivious transfer (OT), a well known two-party crypto-
graphic primitive. In oblivious transfer, a sender has two messages and a receiver
chooses to learn one of them. The receiver gains no information about the other
message, while the sender does not know which of the messages the receiver has
learned. Oblivious transfer is an important primitive because it is sufficient for
information-theoretic secure computation [Kil88].

However, information-theoretic secure computation and therefore oblivious
transfer are well known to be impossible if sender and receiver communicate
in the plain model, without additional resources. Therefore, several alternative
models have been studied where information-theoretically secure oblivious trans-
fer is possible because we assume additional resources.

One such assumption is the existence of a noisy channel between the sender
and the receiver. It was shown in [CK88] that binary symmetric channels are
in fact enough to realize oblivious transfer. A binary symmetric channel is one
where each bit sent is flipped with a certain probability, known as the error
rate of the channel. More efficient constructions, and different variants of noisy
© International Association for Cryptologic Research 2016

M. Hirt and A. Smith (Eds.): TCC 2016-B, Part I, LNCS 9985, pp. 204-234, 2016.
DOI: 10.1007/978-3-662-53641-4_9

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 205

channels, were provided in subsequent papers, such as [BCS96,Cré97, DKS99,
DFMS04,CMWO05,CS06, PDMN11,IKO+11].

In particular, it was realized that it is problematic to assume that we are
given a noisy channel with known and fixed parameters, such that the OT pro-
tocol we construct is allowed to depend on the parameter values. One reason
for this is that it can be very hard to reliably estimate the parameters of a
real channel. Another, more serious problem is that by fixing the parameters we
are implicitly assuming that the adversary cannot change them. This is clearly
unrealistic, and was the main motivation for introducing unfair noisy channels
(UNC) in [DKS99]. In this model, the channel is a binary symmetric channel
where, however, an adversary who corrupts one of the two parties can also choose
the error rate to be within some range [, é]. For 6 > 2y(1—+), the channel is eas-
ily seen to be trivial (it can be simulated from noiseless communication). It was
shown in [DKS99] that information-theoretically secure oblivious transfer follows
from UNC for a certain subset of the possible non-trivial parameter choices, while
information-theoretically secure commitments follow from any non-trivial UNC.

Elastic channels (EC), a relaxation of unfair noisy channels, have been intro-
duced in [KMS16]. For an EC, the noise can only be reduced by an adversary
who corrupts the receiver. More precisely, given 0 < v < 6 < 1/2, a (v, d)-elastic
channel is one where the communication between the sender and an honest
receiver has error rate §, but a dishonest receiver may reduce this to be in the
interval [y, d]. Clearly, in this setting, 6 = 1/2 would correspond to a channel
where all information is lost for the honest receiver, while v = 0 would yield a
channel where a dishonest receiver has full information about the messages sent
by the sender. We cannot implement oblivious transfer in either case, and hence
these channels are deemed trivial.

It was shown in [KMS16] that commitments where the sender commits fol-
low from any non-trivial EC, and that oblivious transfer follow from EC for a
certain subset of parameters, which is larger than in the case of an UNC. More
specifically, they show that § < £(v) where £(y) = (1+ (4v(1 — 7))_1/2)71 is
sufficient.

It is of course interesting that going from UNC to EC allows a larger range
of parameters from which we can get OT. However, for both channels, we are
still left with a “grey area” of parameter values where we do not know if OT
is possible. One might say that we still do not know if an EC is fundamentally
and qualitatively different from a UNC as far as OT is concerned. Moreover, for
commitments, we know that we can have the sender commit, but since an EC
is asymmetric w.r.t what corrupted senders and receivers can do, it is not clear
that we can get commitments where the receiver commits for any non-trivial

EC.

Our Contribution. In this paper, we make progress on the above questions. First,
we close the gap left open in [KMS16] and show that information theoretically
secure oblivious transfer follows from any non-trivial EC. Along the way, we also
construct commitments where the receiver commits, from any non-trivial EC.

206 I. Cascudo et al.

Our main technical contribution is a new way to exploit a certain type of key
agreement protocol towards implementing OT. More specifically, we consider a
key agreement protocol between two parties (Alice and Bob) in the following
model: Alice can send messages to Bob through a binary symmetric channel
C with error rate d, and the adversary Eve will receive what Alice sends via
an independent binary symmetric channel with error rate 7' € [y,4]. On top
of this, Alice and Bob may also communicate via a public error-free channel.
Several key agreement protocols exist in this model [Mau93]. The main idea is
to use the public channel to identify transmissions where Alice and Bob are more
likely to agree on what was sent on the noisy channel. Because Eve’s channel is
independent, this may create a situation where Eve has a disadvantage compared
to Bob, even if her noise rate is initially smaller.

In this work, we consider key agreement protocols that are secure in the
usual sense: Alice and Bob agree on the output, and Eve gets essentially no
information on the key. But in addition, we require an extra property we call
emulatability: We can replace Bob by a “fake” Bob’, who gets no information
on what Alice sends on the noisy channel (but Eve gets information with error
rate 7/ as usual). Still, Bob’ can complete the conversation on the public channel
such that neither Alice nor Eve can distinguish Bob’ from Bob. As we explain
later, we can modify the key agreement protocol presented in [Mau93, Sect. 5] so
that it is emulatable. We show that an oblivious transfer protocol secure against
semi-honest adversaries can be constructed from any emulatable key agreement
protocol. Furthermore, by using information-theoretic commitments where the
committing party is the receiver (which can be constructed from any non-trivial
EC, as we will show) we can upgrade our protocol to achieve security against
a malicious receiver too. Finally, we show how to achieve security against a
malicious sender in the case where our emulatable key agreement protocol is the
one mentioned above.

Technical Overview. To give an intuition of how our protocol works, consider
first the case of semi-honest security where a semi-honest receiver reduces the
error rate to the minimal value 7 (which is without loss of generality).

We turn an emulatable key agreement (KKA) protocol as described above into
an OT protocol as follows. The sender and the receiver engage in two independent
instances (indexed respectively by 0 and 1) of the key agreement protocol above.
In both cases, the sender from the OT protocol takes the role of Alice in the
KA protocol, while the receiver does the following: in the instance of the KA
protocol corresponding to his selection bit b, he acts as Bob would, while in the
other instance, he acts as Bob’ (so in particular his actions are independent of
what he receives from the sender on the EC). Finally Alice sends her messages
mg, m1 one-time padded respectively with kg and k1, each of these keys obtained
in the corresponding key agreement protocol.

Now, an honest receiver will learn my as he should, which follows from cor-
rectness of the KA protocol. Second, a corrupt sender cannot learn the choice bit
b. This follows from the emulatability property of the KA protocol: the sender
cannot distinguish in which of the two instances she is interacting with the real

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 207

Bob. Finally, a corrupt receiver cannot learn mj_;. This follows from the fact
that, in the instance of the KA corresponding to 1 — b, the view of the receiver
is the same as the view of Eve, namely he sees everything Alice sends with error
rate 7, and he sees the public discussion (the fact that he generates that dis-
cussion himself by running Bob’ makes no difference). One can then show that
emulatability implies that this view is distributed identically to the case where
Eve watches Alice interact with Bob, and the usual definition of key agreement
security guarantees that this is independent from the exchanged key ki_p.

Security in the malicious case is more involved. First, we need to ensure that
the malicious receiver follows the protocol. It turns out to be sufficient that the
receiver proves that for one of the KA instances, the messages he sends on the
public channel are generated by Bob’, of course without revealing which one. To
this end we can use the fact that commitments where the committing party is
the receiver also follow from any EC (see below) and, via a known reduction,
zero-knowledge proofs on committed values follow as well. Thus, we are doing
something very similar to the GMW compiler. As a result we get a protocol that
is secure against a semi-honest sender and a malicious receiver.

To further protect against a malicious sender, we execute many instances of
the OT. The receiver checks the statistics of what he receives on the EC and
discards instances that are too far from what he expects to see from an honest
sender. This creates a protocol where the sender will (at least sometimes) have
non-trivial uncertainty about the choice bit. We can now use standard techniques
to clean this up to get a secure OT.

As for our construction on receiver commitments from any non-trivial EC,
we observe that the commitment protocol from [DKS99] (that was designed for
a UNC) can be modified to work for an EC. All we essentially have to do is
to choose the parameters correctly. On the one hand, handling an EC is harder
because § and ~ are much further apart than for a UNC, however, on the other
hand an EC is easier because one party has to live with the large noise rate even
if he is corrupt. Intuitively, the observation is that these two issues balance each
out so that (almost) the same protocol still works.

Outline. In Sect.2 we define the basic functionalities we will deal with for the
remainder of the paper, namely oblivious transfer and the elastic channel. In
Sect. 3, we introduce the notion of emulatable key agreement, as well as a proto-
col that implements it. Emulatable key agreement is used in Sect. 4 to implement
an OT protocol that is secure against semi-honest adversaries. This protocol is
then used in Sect. 5 in the construction of a protocol secure against a malicious
receiver. Finally, in Sect.6 we present a construction that builds upon the one
of Sect. 5 to obtain security against malicious adversaries.

2 Preliminaries

2.1 Security Model

We prove our protocols secure in the Universal Composability framework intro-
duced in [Can01]. This model is explained in Appendix A.

208 I. Cascudo et al.

2.2 Oblivious Transfer

Oblivious transfer is a two-party primitive where one party (the sender) inputs
two messages and the other party (the receiver) chooses to receive one—and
only one—of them. Crucially, the sender does not learn the receiver’s choice,
and the receiver does not learn the message it did not choose. This primitive is
formalized in the figure below. Note that the description includes an adversary
A, which can corrupt parties.

Functionality For (Oblivious transfer)

For runs with two parties: a sender and a receiver.

Send: Upon receiving (send,sid,mp,m;) from the sender: store
(sid, mg, m1) and send (sent,sid) to A.

Receipt: Upon receiving (choice,sid,b) from the receiver: if a message
of the form (sid,mg,m1) has been stored, send (receipt,m;) to the
receiver.

2.3 Elastic Channel

A (v, §)-elastic channel, as introduced in [KMS16], is a binary symmetric channel
with crossover probability § where a receiver that has been corrupted by the
adversary can choose to reduce the crossover probability to a level v with v < v <
0. In the functionality below, we define a more general version where the channel
is composed by ¢ binary symmetric channels (all with crossover probability v).

Functionality Fgc(7y,d) (Elastic channel)
Fec runs with parties Py, P, and eavesdropper A as follows:
Initialization: v <« §

Noise: Upon receiving (noise,7) from A, if the receiver is corrupt and
v <0 <§ then set v + D.

Send: On (send, sid, m) from the sender, where m € {0, 1}, produce m by
flipping each bit of m independently with probability v. Then send the
message (sent,sid) to .4 and the message (sent,sid,m) to the receiver.

3 Emulatable Key Agreement

Key agreement is the problem where two parties, Alice and Bob, want to estab-
lish a common key (a random element from {0, 1}¥) so that an eavesdropper Eve

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 209

has no information about this key. In other words, the goal is to implement the
following functionality F,.!

Functionality Fx, (Key agreement)

Fxa runs with security parameter u, parties P, P> and eavesdropper A as
follows:

Establish: Upon receiving (establish,sid, P;, Ps_;) from P; (where i €
{1,2}), store (sid, P;, P3_;) and send (sid, P;, P3_;) to A. If the tuple
(sid, Ps_;, P;) had also been stored, choose k < {0,1}", send (sent, 1%)
to A and send (key,sid, k) to P, Ps.

In this section, we consider the scenario in which Alice can communicate
to Bob via a wiretap channel F¢ where each bit is flipped (independently) with
probability §. Eve can obtain another noisy version of this communication, where
each bit is flipped with probability « and this noise is independent from Bob’s.
Furthermore, there is a feedback public channel Fpy, through which Alice and
Bob can communicate.

Functionality F; (Wiretap channel)

Fc runs with parameters 7,0 € (0,1/2), message size ¢, parties P;, P, and
eavesdropper A as follows:

Send: Upon receiving (send, sid, P;, P>, m) where m € {0, 1}*:
1. Produce m by flipping each bit of m independently with probability
¢. Furthermore, produce m by flipping each bit of m independently
with probability ~.

2. Send (sent,sid) to P;, (receipt,sid,m) to P» and (receipt,sid, m)
to A.

Functionality Fpy, (Public channel)

Fpup Tuns with message size £, parties P;, P, and eavesdropper A as follows:

Send: Upon receiving (send,sid, P;, P;,m) where m € {0,1}¢, send
(sent,sid) to P; and (receipt,sid,m) to P; and A.

In this setting, we are interested in key agreement protocols with an addi-
tional property that we call emulatability. A key agreement protocol 7 is emulat-
able if, in addition to implementing the key agreement functionality as it should,

! In the remainder of this section, we interchangeably call the parties Alice, Bob, Eve
or respectively Py, Pa, A.

210 I. Cascudo et al.

the role of Bob can be simulated by some entity £, the emulator, that learns
no information about the messages transmitted through F¢, other than their
lengths, and neither Alice nor Eve can distinguish whether Alice is interacting
with Bob or with £.

We formalize this below. We first define a functionality Fpc that models
a dummy channel whose task is to erase every information sent through the
channel F; except for the length of the messages.

Functionality Fpc (Dummy channel)
Fpc runs with message size £ and parties P;, P> as follows:
Send: Upon receiving (send, sid, m) from P; where m € {0, 1}%: If no such

command has already been sent, send (sent,sid,|1|*) to P,. Otherwise,
ignore the command.

Definition 1. A key agreement protocol m between Alice and Bob using a wire-
tap channel Fe and a public channel Fpy, is emulatable if:

1. It realizes the functionality Fxu. That is, there exists a simulator S such that
for all eavesdroppers A,

7T<>./Tc<>fpub =4 fKAOS.

2. There exists an emulator € such that the following happens: suppose that we
consider the protocol ™' where we replace Bob by Fpc ¢ &, i.e., £ is linked to
Fe via the dummy channel Fpe, and Alice acts as in protocol w, while in both
cases the eavesdropper A receives information from F¢ and Fpy,. Then from
the point of view of Alice and all eavesdroppers A, the protocol executions of
m and 7' are indistinguishable.

That is, we have
7 0 Fe © Foup =Alice,d T © Fe © Fpup-
We will need the following property later on.

Proposition 1. Suppose that a key agreement protocol w is emulatable. Then
for any eavesdropper A, if Alice is executing the protocol " with the emulator €
as in the definition, A obtains no information about Alice’s output.

This is because, if A could obtain any information about Alice’s output in
the execution of 7', then either she would be able to obtain information about
Alice’s output in the execution of 7 (contradicting property 1 of emulatability)
or she would be able to distinguish m and 7’ (contradicting property 2).

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 211

3.1 The Emulatable Key Agreement Protocol

We now describe an emulatable key agreement protocol for a wiretap channel
Fe with v < §, that is, for which the channel to the eavesdropper Eve is more
reliable than the channel to Bob.

This is a small modification of a key agreement protocol from [Mau93,
Sect. 5]. For each =, 4, the protocol specifies numbers s,¢,n € N, to be deter-
mined below. In addition, £ = 2m + 1 is an odd number. The protocol consists
of three phases: advantage distillation, information reconciliation and privacy
amplification.

The goal of the advantage distillation step is to create a conceptual channel
between Alice and Bob which is more reliable than the one between Alice and
Eve. In our protocol, this step proceeds as follows. Alice samples n random bits
b; and encodes each bit b as a bitstring v in {0,1}* by selecting uniformly at
random a set J C {1,...,¢} of size m and setting the j-th coordinate of v to
bel—0bif j € J and bif j € J. Note that this means m + 1 of the bits of the
encoding equal b while the other m bits equal 1 —b. Now, if for a given sent bit b,
Bob receives a message of the form (¢, ¢, . .., ¢) for some ¢, we say Bob accepts the
bit b and c¢ is his guess about b. Now Alice creates the bitstring b;, b;, . .. b;, given
by the first s bits accepted by Bob and Bob creates the bitstring c;, ¢, ... ¢,
of his guesses. They both disregard the remaining bits. Alternatively, one can
see Alice’s encoding process as first encoding her bit with the repetition code
and then introducing errors in exactly m positions. As we discuss in Sect. 3.2,
the protocol is similar to that in [Mau93, Sect. 5], except that the global error
introduced here is of fixed weight m, rather than flipping each bit with certain
probability. In Sect. 3.2 below, we discuss why we need this to introduce this
modification. Yet, from the point of view of advantage distillation, the intuition
why this protocol works is the same as in [Mau93]: namely, even though Eve has
more information over messages sent over the wiretap channel than Bob has,
she has less information about the ones accepted by Bob; in other words, the
probability that Bob decodes those bits correctly is higher than that of Eve’s.
We formalize this later.

The information reconciliation step is carried out over the public channel.
After this step, Alice and Bob will share a common bitstring with overwhelming
probability, and Eve is still guaranteed to have some uncertainty about it. In
the description below, we use the information reconciliation protocol in [BS94],
where Alice sends the evaluation on her bitstring of a hash function chosen
from a 2-universal family with an appropriate range size. Then Bob corrects
his bitstring by finding the closest bitstring to it which is consistent with this
evaluation.

Alice and Bob can then apply privacy amplification to obtain a random string
about which Eve has no information. This can also be done by having only Alice
send information over the public channel. The fact that both the information rec-
onciliation and privacy amplification steps involve only Alice sending information
over the public channel is important to guarantee the emulatability property.

212

I. Cascudo et al.

We note that the information reconciliation step may in general not be com-
putationally efficient for Bob; however, in fact any information reconciliation
protocol can be used, as long as it is non-interactive. One efficient option is to
employ a fuzzy extractor, as in [DORS08, Sect.8.1], in order to execute both
steps.

This description is formalized below. (For simplicity, we omit the description
of the “establish” step introduced in the functionality of Sect. 3.)

Protocol mg, (Emulatable key agreement)

Parameters:

0 security parameter.

£:={(v,0): an odd natural number which only depends on v and 4.
=1

(1 —=9)™)].
O<e< % — 0: a small constant.

Let b denote the binary entropy function and H; : {0,1}* — {0,1}500+e)+o,
Ha

:{0,1}* — {0,1}" be 2-universal families of hash functions.

Advantage distillation:

Alice:

Select by,...,b, €r {0,1}.
Forie {1,...,n}:
1. Select a set J; C {1,...,£} of size m uniformly at random.
2. Set v; to be the bitstring in {0, 1}¢ such that v;[j] = 1 —b; for j € J;
and v;[j] = b; for j ¢ J; where v;[j] denotes the j-th coordinate of
Vi

3. Send (send, Alice, Bob, sid;, v;) to Fe.

Bob:

For i € {1,...,n}, await (receipt, Alice, Bob, sid;, 7;) from F.
Construct the set Z C {1,...,n} consisting of the indices ¢ for which
v; = ¢! for some ¢; € {0,1}

Encode the set 7 as a bit string v and send (send, sid, Bob, Alice, u) to
]:Pub-

Alice:

Await (sent,sid, Bob, Alice, u) from Fpyp.

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 213

Alice «— Bob:
Alice sets X® = (b;,,bi,,...,b;,) and Bob sets Y*® = (¢, ¢y, ..., ¢i.),
where i1, ...,is are the first s indices in Z.

Information reconciliation and privacy amplification:

Alice:

Sample h; €r Hi, ha €g Ha, send (send, sid, Alice, Bob, hy, k1 (X?®), h2)
to fpub.

Output ha(X?®).
Bob:
Await (send,sid, Alice, Bob, hi, hi(X?®), ha) from Fpy,.

Find the closest (in the Hamming metric) bitstring X toY® satisfying
h1(X?) = h(X®).
Output hy(X*).

In order to prove that our protocol is indeed an emulatable key agreement
protocol, we introduce the following notation. Let X denote a variable with the
uniform distribution over {0,1}. Let Y and Z be the random variables that
describe respectively the output bit ¢ of Bob and the received bitstring of Eve
(which is an element in {0,1}*) when Alice samples a bit b according to X,
encodes it as in our protocol, sends it through the wiretap channel and Bob
accepts. An important point to make is that, since the noise of Bob and Eve are
independent, the probability distribution of Z would be the same if we removed
the conditioning on Bob accepting the bit. We have the following theorem.

Theorem 1. The protocol my, is an emulatable key agreement protocol.

We use the following lemma which intuitively means that, as ¢ grows, the
probability that Eve receives a bitstring where most bits are 0 approaches 1/2
if Alice encoded a 0 (naturally an analogous statement holds if Alice encoded a
1). The proof of the lemma can be found in Appendix B.

Lemma 1. Fori € {0,1}, let S; C {0,1}" be the set of all bitstrings where most
bits are i. Then Pr[Z € S;|X =i — 1/2 as { — .

Proof (of Theorem 1). The detailed proof is in Appendix C. Here we give a sketch.

First we argue about the correctness of the protocol. It is not difficult to
see that, for each index ¢, Bob accepts the corresponding bit with probability
Paccept = (0(1 —0))™. Furthermore, condition to Bob having accepted a bit, the
probability that he decodes it correctly is again exactly 1 — d, i.e., the advan-
tage distillation step creates another conceptual noisy channel where the noise
parameter is still §, the same as in the original noisy channel.

214 I. Cascudo et al.

Since we set n slightly larger than [s/paccept |, for large enough parameters
Bob will, with very high probability, accept at least s bits, of which roughly
d - s will be incorrect. By the results on information reconciliation in [BS94] our
choice of H; guarantees that Bob corrects to the right string in the information
reconciliation step, and hence that they output the same key at the end of the
protocol.

Next, we consider privacy. Let X and Z be as above. We can use Lemma 1
in order to establish that Ho(X|Z) — 1 as £ — oo. We can then select ¢ large
enough so that Ho.(X?®|Z%, hi, h1(X?®)) >t + 20 (see the full proof for details),
and apply the leftover hash lemma to conclude that conditioned on everything
seen by Eve during the protocol, the distribution of ho(X*) is 277-close to the
uniform distribution over {0,1}".

Finally, to show that the protocol is emulatable, we have to construct an
emulator £ that satisfies Property 2 in Definition 1. Note the only information
sent by Bob is the description of the set Z of indices for which Bob accepted
Alice’s message. Hence, this can be emulated by sampling a random index set
Z C {0,1}", where each index belongs to Z with independent probability paccept-

3.2 On the Emulatability of Other Key Agreement Protocols

Protocol mx, described above is based on the protocol given in [Mau93, Sect. 5].
As a matter of fact, several key agreement protocols for noisy channels are
described in [Mau93] and subsequent works. However, they are either not emu-
latable (or, at least, it seems difficult to show they are) or they do not work for
all non-trivial sets of parameters (v,).

First, [Mau93, Sect. 5], considers a slightly different scenario, in which there
is only a public channel available for communication but on the other hand at the
beginning of the protocol Alice, Bob and Eve have noisy versions (respectively
ra, rg and rg) of a common string r, where each bit is independently flipped
with probabilities €4, g and eg for Alice, Bob and Eve respectively. Then having
Alice mask a message (by xoring it with r4) and send it through the public
channel, induces a conceptual noisy channel where the input of Alice is m, and
the outputs of Bob and Eve are m@®r4 ®&rg and m@ra & rg respectively. In the
protocol proposed in [Mau93, Sect. 5] Alice encodes random bits with a repetition
code and sends the information over the conceptual channel. From this point,
the protocol proceeds as ours (Bob accepts the bits corresponding to codewords
and they execute information reconciliation and privacy amplification on the
resulting string). It can be shown that any parameters 0 < €4, €ep,eg < 1/2 lead
to a secure key agreement protocol.

In our scenario, the players do not start with noisy versions of a common
string, but have a (v, §)-wiretap channel. We can reproduce the situation above
in our scenario as follows: in order to send the message m, Alice flips each
bit independently with probability €4 > 0 and sends the result through the
(7, 9)-wiretap channel. This would be an equivalent situation of the above where
ep = v and eg = §, and therefore it would lead to a secure key agreement
protocol. However, the protocol would not be emulatable: the reason is that the

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 215

probability that Bob accepts a given instance depends on the exact number of
bitflips introduced by Alice. However, because this artificial noise has been intro-
duced by Alice and not by the channel, this information is known by Alice; on
the other hand, the number of bitflips in a given instance cannot be determined
precisely by the emulator, even though it knows €4. Hence, regardless of how
we define the emulator, Alice will be able to distinguish when she is interacting
with it or with Bob.

If Alice does not introduce this artificial noise (i.e., if e4 = 0), then there
1s an emulator that can reproduce Bob’s answer in every case, but the range
of (v,0) for which this protocol is a secure key agreement protocol does not
include all possible 0 < v,§ < 1/2 and, in fact, it can be seen is exactly the
very same range of parameters (7,0) for which [KMS16] shows the existence
of an OT protocol for a (v, d)-elastic noisy channel (i.e. those pairs satisfying
5< (14 (@y(1—7)"2) 7).

In our protocol, we solve these problems by having Alice introduce artificial
noise, but making this noise be of a fixed Hamming weight m. This solves the
problem with the existence of the emulator, while still preserving the security of
the protocol.

Finally, we also need to mention that a simpler protocol for key agreement
in our wire-tap channel scenario is presented in [Mau93, Proposition 1]. The
protocol first creates a conceptual channel from Bob to Alice in which Alice
has more information about Bob’s message than Eve does. This protocol works
for all non-trivial wire-tap channel noise parameters. However, the information
reconciliation and privacy amplification steps cannot be performed in such a way
that it is only Alice who sends information (because in this case these steps are
going to correct Alice’s knowledge of Bob’s string). Then, it is unclear whether
this protocol can be made emulatable, because we would also need the emulator
to simulate the information sent by Bob in these steps, and this does not appear
to be straightforward.

4 Semi-honest Protocol

Now we present an OT protocol over the elastic channel Fge(y, 0) for semi-honest
adversaries. We show that such an oblivious transfer protocol can be constructed
from any emulatable key agreement protocol that works in the setting of Sect. 3
(where Alice, Bob and Eve are connected by a wiretap channel F¢ with the noise
parameters being ¢ for Bob and « for Eve).

The idea of the protocol is for sender and receiver to engage in two separate
subprotocols. In one, they run the emulatable key agreement protocol with the
sender acting as Alice and the receiver acting as Bob. In the other subprotocol,
the sender follows again the key agreement protocol as Alice, whereas the receiver
runs the emulator, according to Definition 1. The choice bit ¢ determines whether
the receiver will follow the protocol or act as the emulator. Here, the elastic
channel is used as a conceptual wiretap channel F¢, where an honest receiver gets

216 I. Cascudo et al.

the output of the legitimate (noisier) channel, whereas an adversarial receiver
gets the output of the less noisy channel.

To see why the protocol is secure, we note that since the key agreement
protocol is emulatable, the sender does not know whether she is interacting with
Bob (that is, whether she is engaging in the actual key agreement protocol) or
with the emulator. Hence, she does not learn any information about the choice
bit ¢. This guarantees the receiver’s privacy.

On the other hand, by definition the emulator can generate the transcript
for the key agreement protocol without knowing anything about the exchanged
key. Therefore in this case the receiver has no information about the key output
by Alice at the end of the key agreement protocol.

This proof sketch is formalized in Theorem 2, below.

Protocol mgrsy (Semi-honest oblivious transfer)

Let mgy be an emulatable key agreement protocol, as stated in Definition 1.
We denote the sender’s input as mg, m; and denote the receiver’s input as
c.

Sender — Receiver:

Sender and receiver execute two copies my, w1 of mgay, where the sender
behaves in both as Alice. In 7., the receiver acts as Bob and in m_, it
acts as the emulator £ prescribed by 7g,.

Receiver:

On completion of 7y, 7y, record the output of 7. as k.

Sender:

Await kg, k1 from g, 1.

Set m; :=m; @ k; for i =0, 1.

Send (send, sidg, mg) and (send, sidy, m1) t0 Fpyp-
Receiver:

Await (sent,sidg, mg), (sent,sidy,mq) from Fpyy.

Output m. := m. ® k.

Theorem 2. The protocol mgrsy realizes For. That is, there exists a simulator
S such that

morsu © Fec © Fpup =z For ¢S
for all semi-honest environments Z.

Proof. For each activation, the environment Z chooses mg,m,c. When inter-
acting with the protocol, Z receives m., and when interacting with For, it

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 217

receives m.. We note first that since 7. is an instance of mga, which imple-
ments Fgy, we have m,, = m,. All that remains to be shown is that there exists
a simulator for Fgr that can reproduce the view of the environment.

First, assume P; is corrupted, so that Z gets access to P;’s internal state.
During the real execution, it gets access to ko, k1 (through Py), mg,m1 plus the
leakage from 7y and 7; (through the adversary A, which interacts with Fge and
Frup)- At the end of the execution, it gets P»’s output, which is given by m..

In the ideal process, the simulator & corrupts P;, so that it gets access to
mg, m1. S proceeds as follows. First, it executes two copies of Fgy ¢ S’, where
&S’ is the simulator for the key agreement protocol. By assumption, this internal
simulator replicates the leakage from 7y and w1, which is relayed to Z. Addi-
tionally, at the end of Fx,’s execution, S gets two random keys, which we denote
by k{, kY. It then computes m; = m; @ ki’ for i = 1,2 and sends both to Z.
Finally, it sends mg, m1 to Fgr, which will then send m. to P». It is easy to see
that For ¢ S provides Z with the same view as in the real protocol.

Now assume Ps is corrupted. Throughout the real execution, Z gets access
to k. (through P»), mq,m1,m. plus the leakage from my and m; (through the
eavesdropper A). In the ideal process, S gets ¢ by corrupting Ps. It proceeds as
follows. It runs one copy of Fxy ¢ S’, obtaining a random key k”, and relays ¢ to
For. After P, receives m, from For, S computes m. = m. @ k. and sends it to
Z. Clearly, m. and m. have the same distribution as in the real execution.

Finally, we look at the leakage from the execution of m;_. (executing the
instance of 7y, with the emulator £). Due to Proposition 1, 7. gives no infor-
mation on k;_. to the eavesdropper A. Therefore m;_. gives no additional infor-
mation to Z. Moreover, since the execution of £ only depends on the outputs
of the dummy channel Fpe, its view provides Z with no additional information,
even given the rest of Z’s view. The view of Z is therefore the same in both
scenarios.

5 OT Protocol Secure Against a Malicious Receiver

In this section, we make our protocol secure against a malicious receiver. Note
that in our semi-honest protocol, we rely on the fact that the players will engage
in two instances of an emulatable key agreement protocol, where the receiver will
play the role of Bob in one of them and the emulator in the other. Of course, if
the receiver is malicious, he will not necessarily adopt this behaviour. We will use
standard techniques to solve this problem. Namely, we want to use the paradigm
introduced in [GMW86]: we will make the receiver prove in zero knowledge that
he is acting as in the semi-honest protocol.

To do this, we will need that the receiver can commit to bits. Recall that
in [KMS16] it was shown that commitments where the sender commits follow
from any non-trivial EC, but since an EC is asymmetric, it is not clear that this
allows the receiver to commit. Therefore, we solve this problem first.

218 I. Cascudo et al.

5.1 Receiver Commitment from Any Non-trivial EC

The solution in a nutshell is to observe that the commitment protocol from
[DKS99] will work for receiver commitments on any non-trivial EC, if we slightly
tune some of the parameters.

First, note that we can reverse the direction of the EC, by simply having the
sender send a random bit x on the EC, the receiver chooses a bit b to send and
sends = @ b back on the public channel. This is clearly a noisy channel in the
opposite direction. In this subsection we will rename the sender and call him
the verifier V, while the receiver will be called the committer C'. What we just
constructed is a “reversed EC” where the C sends and V receives. V always
receives with noise rate §, but C' can reduce his noise rate to -y if he is corrupted
(and hence get a better idea of what V received). The goal is now to build an
unconditionally secure commitment scheme based on such a channel.

In fact, we show that, under a careful choice of parameters, the commitment
protocol from [DKS99] already works with no change. A complete description of
the protocol, as well as an intuition for why it is secure, is provided in Appen-
dix D.

5.2 From Commitment to Security Against a Malicious Receiver

Recall that the GMW compiler [GMW86] transforms a semi-honestly secure
protocol into a maliciously secure one by using the following three steps: in the
first step, each party commits to his input; in the second step, each party is forced
to commit to a random tape, where it is important that the tape is hidden from
the other party and is chosen at random. This is done by having the party that is
committing to a random tape commit to a random value. The other party then
sends a random string. The tape is then defined to be the xor of both strings.
This technique is known as coin-tossing in the well. Finally, in the third step,
each player follows the protocol with the committed inputs and their committed
tape and whenever they send a message, they also prove in zero-knowledge that
this is the correct message given their committed input, their committed random
tape and the transcript of the protocol.

In this section, we are only interested in achieving security against a mali-
cious receiver, so we apply the compiler to the receiver only. This results in the
following approach: In the first step, the receiver will commit to his choice of
input ¢; this also indicates the instance of the key agreement protocol where he
will play the role of Bob. In the second step, the receiver will be forced to com-
mit to a random tape ¢ for the emulator using coin-tossing in the well. Then the
sender and receiver will run an augmented version of the semi-honest protocol.
Each instance of the key agreement protocol will be associated to an index b.
Each time a receiver sends a message, the receiver also proves in zero-knowledge:
“Either the given instance of key agreement has index b = ¢ or the message was
produced by following the description of the emulator with random tape t”.

There is, however, one difficulty: In [GMWS86], the commitments were com-
putational. It was therefore possible to prove statements about committed val-
ues directly. For a black-box information-theoretically secure commitment, it

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 219

is not directly possible to prove statements that involve the committed val-
ues. To fix this problem, we use a commitment scheme which can indeed be
used for any number of zero-knowledge proofs. This is the commitment scheme
from [CvdGT95] which was later proven UC-secure in [Est04]. As shown in
[CvdGT95], this commitment scheme can be constructed in a black-box manner
from any commitment schemes. Although this commitment scheme only allows
proofs of xor relationships directly, one can use techniques such as [BCC88] to
prove arbitrary statements involving the committed values.

Functionality Feouzx (Commitment with zero-knowledge)

Feomzx Tuns with two parties: a sender and a receiver.

Commit: On receiving (commit, cid, m) from the sender:
If such a command has already been sent, ignore the message.
Otherwise, record (cid,m) and send (committed,cid) to A and to the
receiver.

Reveal: On receiving (reveal,cid) from the sender:
If no pair (cid, m) was recorded then ignore the message. Otherwise, send
(open, cid, m) to A and to the receiver.

Proof: On receiving (prove, z,cidy, ..., cid,, R) from the sender:
Check that for each cid;, there exists a m; such that the pair (cid;,m;)
has been recorded. If this is not the case then ignore the command. Let
w = (mq,...,my,). Check that (z,w) € R. If this is not the case then
ignore the command. Otherwise, send (proven, z, cidy, .. ., cid,, R) to the
receiver and A.

Protocol momg (Oblivious transfer—malicious receiver)
We denote b as the index of the key agreement instance. We denote my, my
as the sender’s input and ¢ denotes the receiver’s input. We denote E(¢,r),
the next message function of the emulator given transcript ¢ and random
tape r. If the emulator is awaiting a message for a given transcript ¢, we let
E(t,r) = L. We define the following two relationships: Ry and Rs.

1 a=bFc
Ri(a, (b, =
(e, (b,¢)) {0 otherwise

1 ifb=c
Ro((t,m,b),(r,c)):==¢1 E(;r)=m

0 otherwise

220 I. Cascudo et al.

Receiver:
r €r {0,1}F

Send (commit,cid, ¢), (commit,ridy,r1) to Feomz

Sender:
Await (committed,cid), (committed,rid;) from Feouzx
re €r {0, 1}k

Send 75 to the receiver.

Receiver:
r < 11 ®ry (random tape)
Send (commit,rid,) to Feguzx (commit to the random tape)

Send (prove,ry,ridy,rid, R1) to Feomzx (prove that the commited value
associated to rid is indeed a commitment to the random tape)

Sender:

Await (committed,rid) and (proven,ry,ridy, rid, Ry) from Feguzk.

Sender «— Receiver:

Sender and receiver run mgrsy as defined in Section 4 where the sender
inputs mg, m, and the receiver inputs ¢ with the following modification:

Whenever a receiver would send a message m in the semi-honest protocol,
let b be the instance of the key agreement protocol they are executing,
and let ¢ be the transcript up to that point for that instance of the key
agreement protocol. The receiver sends m to the sender and also sends the
command (prove, (t,m,b),rid, cid, Ra) to Fcouzxk. Whenever the sender
receives a message m from the receiver, he awaits that Feguzx send him
(proven, (t,m,b), rid, cid, Ry) before proceeding.

Theorem 3. mon securely realizes For in the Fee-hybrid model against an envi-
ronment that can only semi-honestly corrupt the sender.

This theorem follows directly from the construction of XOR commitments
from [CvdGT95,Est04], the security of the GMW compiler [GMWS86] and the
security of the zero-knowledge protocol from [BCC88,Kil92].

6 Secure Protocol

In this section we consider our oblivious transfer protocol mgryg from Sect. 5,
which is secure against a semi-honest sender and a malicious receiver and we
show that, if momug is implemented with the key agreement protocol from Sect. 3.1,
we can transform mgm into a protocol mgr secure against an malicious sender
too.

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 221

Note that in the aforementioned key agreement protocol, the sender is sup-
posed to send through the channel several bitstrings of length ¢ and Hamming
weight either m or m+ 1, where £ = 2m + 1. From now on, we refer to bitstrings
of weights m and m + 1 as codewords, while the rest will be non-codewords. A
problem that arises when using this key agreement protocol as a basis for our
oblivious transfer protocol, is that an active sender could use non-codewords to
bias the distribution of indices and learn the receiver’s choice. For example, if
she sends the all-one bitstring, this index will be accepted by the receiver with
higher probability if he is playing the role of Bob, than it will if he is playing
the role of the emulator.

We will prevent an active sender from using non-codewords in her advantage
by combining cut-and-choose techniques, a typicality test and an OT-combiner.
The protocol works essentially as follows: the sender and receiver will start to
run N instances of mgrug in parallel. Right after the sender has sent the intended
codewords through the channel Fgc in all these instances, the receiver will then
choose half of those instances and request the sender to open her view (i.e., to
reveal the information that she sent through the channel). The receiver now runs
a typicality test on those instances: he counts the number of differences between
what the sender claims to have sent and what he received for those instances.
If this distance is higher than what would be typically expected from the noisy
channel then the receiver aborts. If the test passes then it is guaranteed that,
except with negligible probability, there is at least one unopened instance where
no bad codeword was sent.

The sender and receiver now apply a (1, N/2) OT-combiner on the half
of the instances of momr that have not been opened; in general, a (t,n) OT-
combiner [HKN+05] is a primitive which given (black-box) access to n OT can-
didates, implements a secure OT as long as t of them are secure; in our case, our
candidates are the unopened instances of mgmr and we use a simple XOR-based
OT-combiner which only needs to be secure against a malicious sender (all the
candidates are already guaranteed to be secure against a malicious receiver).
Since the sender has behaved well in at least one of these instances, we achieve
a secure oblivious transfer protocol by applying this combiner.

The sender could also try to cheat in the public channel part of the key
agreement protocol by sending some inconsistent information (for example in
the information reconciliation step) to see the aborting behaviour of the receiver;
however, we have the receiver abort in the global protocol if he sees at least
one inconsistency in some instance of the protocol. Given the properties of the
combiner the only way to obtain information about the receiver’s input bit is
that the sender cheats in one of the key agreement protocols of every unopened
instance and the receiver never aborts, which happens if the sender guesses each
of the b;’s for the unopened instances and in turn this happens with probability
2—N/2 (in fact, we could make her cheating probability even lower by having the
receiver abort if he detects inconsistent information in the opened instances).

222 I. Cascudo et al.

6.1 Protocol

The protocol mgr is described below.

Protocol mgr (Oblivious transfer)
The protocol involves two players: the sender and the receiver. The sender
provides inputs mg,m; € {0,1} and receives no output. The receiver
provides ¢ € {0,1} and outputs m.. Fix x a security parameter for mgr.

For the protocol momr secure against a malicious receiver from previous
section instantiated with security parameter z, denote W(z) the expected
number of bits flipped during such protocol if the noise parameter is not
changed (that is, § times the number of bits sent through the elastic channel).

Now define the following parameters:

32

o:=min{z € Z:z —logQ(z) — logk > k}.
N = kQ(0o).
1-26

T:=W(o)+ —

and we instantiate moryg With security parameter o.
(Note that, once & is fixed, o is well defined because Q(x) is polynomial
in x and hence x — log Q(z) > k + log k for sufficiently large z.)

Sender:
Sample A € {0,1}.
Sample w§, ..., w €r {0,1}.
Sample w1, ..., w) €g {0,1}.

Let A; == w) @wt @A, i=1,...,N.

Receiver:
Sample b1,...,by €g {0,1}.

Sender < Receiver:
Sender and receiver run N instances of the protocol mgmr as defined in

Section 5. Let (w{,w!) be the sender’s input and b; be the receiver’s
input in the ith instance. If at some point in one of the instances the
sender sends any information through the public channel that the receiver
detects as invalid (such as incorrectly formed hq, hq, or a value v that is
not of the form h;(X*®) for any string X¢), then the receiver waits until
all instances are completed and then aborts.

Moreover, the sender records the bits that she sends through the elastic
channel in each of the instances as X = {(4,7,2;,;) | 1 <i< N, 1 <j <
B}. The receiver records the noisy version of bits that he receives from
each instance as Y = {(4,4,v:;) | 1 <i < N,1 < j < B}.

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 223

Receiver:
Choose T eg {I | I C{1,...,N},|I| = N/2}.
Send 7 to receiver.
Set £:={1,...,N}\ 7.

Sender:
Await 7.
If |7| # N/2 then abort.
Set £ := {1,...,N}\ 7, send S := {(i,A;) | i € L} and X :=
{(4,7,2:;) € X | i € T} to the receiver.

Receiver:
Await X and S.

Check that X indeed corresponds to a set of bits that the sender should
have sent in morur (i.e., that the appropriate parts of X correspond to
codewords). If not, abort.

Check that

TN
> fwig vl < Eh
i€T,1<j<B

If it fails, then abort.
Let b:= @bi. Send d := b @ c to the sender.
€L
Sender:
Let wg 1= @wé, wy = wo ® A. Send (v, v1) := (Mo D wg, M1 G Wigd)
€L
to the receiver.
Receiver:
Let w := @wz ® (b; A A;). Output w @ ve.
€L

In protocol 7gr, the parameters N (the number of instances of momyg that will
be run), o (the security parameter of morr) and 7 (a threshold parameter for the
test, which is W (o) plus a small offset) are defined so that we have the following
guarantees:

1. The probability that at least one instance of mgrug is broken by a dishonest
receiver is smaller than 27" Indeed, each individual instance can be broken
with probability at most 277, and it is easy to see that with our choice of
parameters, it holds that NV - 277 < 27",

224 I. Cascudo et al.

2. The probability that an honest sender passes the typicality test is at least
1 —27": see proof in Appendix E.1.

3. If a malicious sender sends at least one non-valid codeword in at least N/2—k
instances of momur from the testing set, then she passes the typicality test with
probability at most 27*: see proof in AppendixE.1.

Note that the third property prevents a malicious sender to cheat except with
probability 27%. Indeed, in order for a malicious sender to cheat successfully, she
would need to break each of the N/2 instances of momg from the evaluation
set, and for that she would need to send at least one bad codeword in each of
those instances. By 3., in order to pass the test she needs to send all the correct
codewords in at least x instances of the testing set. But since she does not know
which instances will be selected for the evaluation set and which for the testing
set, then the probability that none of these (at least) k correct instances end up
in the evaluation set is at most 27".

With all these remarks in mind, we can show (Appendix E) that

Theorem 4. mgr securely realizes For in Fec-hybrid model.

Acknowledgments. Part of this work was carried out while Ignacio Cascudo was
with Aarhus University. The authors acknowledge support from the Danish National
Research Foundation and The National Science Foundation of China (under the
grant 61361136003) for the Sino-Danish Center for the Theory of Interactive Com-
putation and from the Center for Research in Foundations of Electronic Markets
(CFEM), supported by the Danish Strategic Research Council. In addition, Ignacio
Cascudo acknowledges support from the Danish Council for Independent Research,
grant no. DFF-4002-00367, Ivan Damgrd was also supported by the advanced ERC
grant MPCPRO and Samuel Ranellucci was supported by European Research Coun-
cil Starting Grant 279447. We thank Jesper Buus Nielsen, Maciej Obremski and the
anonymous reviewers for their helpful comments.

A Universal Composability

The Universal Composability security framework, introduced in [Can01], is based
on the simulation paradigm. Roughly, the idea is to compare the execution of
the actual protocol (the real world) with an idealized scenario (the ideal world)
in which the computations are carried out by a trusted third party (the ideal
functionality) which receives inputs from and hands in outputs to the players.
The goal is to show that these two worlds are indistinguishable. In order to for-
malize this goal, we introduce a party called the environment Z, whose task is
to distinguish between both worlds. Furthermore, in the ideal world, we intro-
duce a simulator S, its task being to simulate any action of the adversary in
the real protocol and thereby to make the two views indistinguishable for any
environment. More precisely, in the real world execution of protocol 7, with the
adversary A and environment Z, the environment provides input and receives
output from both A and 7. Call Realy r z the view of Z in this execution.
In the ideal world Z provides input and receives output from S and the ideal

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 225

functionality F. Call Ideals 7 z the view of Z in the ideal execution. We can
proceed to define what it means for a protocol to be secure.

Definition 2. A protocol 1 UC-implements a functionality F against a certain
class of adversaries C if for every adversary A € C there exists a simulator S
such that for every environment Z, Real 4 » z ~ Ideals r z.

The cornerstone of the universal composability framework is the composition
theorem, which works as follows. Denote by m ¢ G a protocol 7 that during its
execution makes calls to an ideal functionality G. The composition proof shows
that if 7y oG securely implements F and if w4 securely implements G then 7o,
securely implements F. This provides modularity in construction of protocols
and simplifies proofs dramatically. It is also shown that proving security against
a dummy adversary, one who acts as a communication channel, is sufficient for
proving general security.

B Proof of Lemma 1

Clearly, we only need to cover the case i = 0. First, note that Pr[Z € Sy|X = 0] >
1/2 since v < 1/2. Let X denote the random variable describing the encoding
of b = 0 by Alice, i.e., X has the uniform distribution over the set of bitstrings
in {0,1}¢ of weight exactly m or m + 1. We observe that since Eve’s noise is
independent and identically distributed for each bit sent through the wiretap
channel, for every string Z € {0,1}* of weight m, Pr[Z € Sy|X = 0] = Pr[Z €
So|X = 7Z]. So we now compute Pr[Z € Sp|X = 7] for T = 010101 ... 010.

Fori=1,...,m,let V; be the random variable that takes value 1if Z = z and
Zoi_1 = z9; = 1, the value —1 if z9; 1 = 2z9; = 0 and the value 0 if z9;_1 ?é 29;-
Then clearly Pr[Z € So|X =z] < P[>/~ V; <0].

Now note that V; are independent identically distributed variables such that
Pr[V; = 1] = Pr[V; = —1] = p and Pr[V; = 0] = 1 — 2p where p = y(1 — 7).
Hence Pr[>7", V; < 0] = Pr[>_1", V; > 0] and clearly (using for example the
central limit theorem) Pr[} " V; = 0] — 0 as ¢ (and consequently m) grows.
Therefore

m

1/2 < Pr[Z € So|X = 0] <PrZ 0] —1/2

and consequently Pr[Z € Sy|X = 0] — 1/2.

C Proof of Theorem 1

We first argue that, if we set the parameters adequately, the protocol is correct
and secure, i.e., with overwhelming probability Alice and Bob have a common
string at the end of the protocol about which Eve has a negligible amount of
information.

226 I. Cascudo et al.

Remember that for each index i, Alice encodes b; as a bitstring containing
m+ 1 bits equal to b; and m bits equal to (1 —b;) and Bob accepts if he receives
cf . Hence, the probability that Bob accepts 4, i.e., the probability that an index
i i8 in 7 iS paccept = 0™ (1 — 8)™ T + 4™ FL(1 — &)™ = (§(1 —§))™

On the other hand, conditioned on Bob accepting index i, the probability
that ¢; # b; is

5m+1(1 _ 5)m
(0(1—0a))™

Furthermore these probabilities are independent from each ¢, so the advantage
distillation step creates another conceptual noisy channel where Alice commu-
nicates s bits to Bob and the noise parameter is still § (independently of how
large ¢ is).

Hence if we set n slightly larger than [s/paccept | for large enough parameters,
Bob will, with very high probability, accept at least s bits, of which roughly 6 - s
will be incorrect. By the results on information reconciliation in [BS94], if h; is
chosen from the 2-universal family of hash functions H;, then Bob can correct
to the right string X® with very high probability given his original string, h; and
h1(X?®). Hence both Alice and Bob will compute the same value ho(X®) with
high probability and hence the protocol is correct.

As for privacy, remember that X denotes the uniform distribution over {0, 1}
and Z the variable that represents Eve’s output when Alice chooses b according
to X, encodes it, and sends it through the channel. Then

=J.

w(X1Z)=) Pr[Z=2]-(—log(n%%)i}Pr[=b|Z = 2])).
z€{0,1}*¢

Now the maximum of Pr(X = b|Z = z) is reached for b = 0 if z € Sy and for
b=1if z € S1, where S; is defined as in Lemma 1. On the other hand, for every
z € Sp, we have 2/ 1= (1,...,1) —z € 57 and clearly, Pr[X = 0|Z = 2] = Pr[X =
1|Z = #']. Hence we can write

wo(X|Z) =" 2-Pr[Z = 2] (~logPr[X = 0|Z = 2]).
z€So

Now, clearly > . 5 2+ Pr(Z = z] = 1 and —log is a convex function. This
means we can apply Jensen’s inequality to get

Ho(X|Z) > —log <Z 2-Pr[Z = 2| Pr[X =0|Z = z]> .
z€8o

Now we use that Pr[Z = z]Pr[X = 0|Z = z] = Pr[X = 0]Pr[Z = z|X =
0] = 3 Pr[Z = 2|X = 0], so after summing over z € Sy we obtain:

Hoo(X|Z) > —logPr[Z € So|X =0] — 1

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 227

as £ — oo because of Lemma 1. Since § + € < 1/2, for large enough ¢, we have
h(d +¢€) < Ho(X|Z) (remember h(-) denotes the binary entropy function).

Now let X?®,Y® denote the random variables denoting the s bits outputted by
Alice and Bob respectively and let Z° be the variable representing the s bitstrings
outputted by Eve. Then clearly Ho(X?*|Z%) = sHyo(X|Z) > sh(0 +€) +t + 30
since t,0 = o(s) and therefore Hoo(X?®|Z%, h1,h1(X?®)) > Hoo(X®|Z°) — sh(d +
€) —o >t+ 20.

Now, the leftover hash lemma guarantees that conditioned on everything
seen by Eve during the protocol, the distribution of ho(X®) is 27%-close to the
uniform distribution over {0, 1}*.

To show that the protocol is emulatable, we have to construct an emulator £
that satisfies Property 2 in Definition 1. We note that the only information Bob
sends to Eve is the description of the set Z of indices for which Bob accepted
Alice’s message. We can construct an emulator for Bob thus. After £ receives a
message from the dummy channel Fp, it samples a random index set Z C {0,1}",
where each index is chosen according to a Bernoulli distribution with parameter
Daccept—the index is included in 7 if the trial succeeds. £ then sends a description
of 7 to Alice via Fpy,. It is clear that such an emulator satisfies Property 2.

D Commitment Protocol for ECs from [DKS99]

In this section we describe the commitment protocol from [DKS99] and show
that, under the adequate choice of parameters, it is a receiver commitment pro-
tocol for any (v, §)-elastic noisy channels.

We define some constants as follows. dy is defined by § = y(1—dp)+do(1—7).
That is, dp is such that adding noise with rate v and then noise with rate dg
produces total noise rate §. This means that dg = (6§ — v)/(1 — 2v), and from
it follows trivially that since 6 < 1/2, we have 6 > dy. We can therefore choose
constants dy,d and d* such that dy < di < d* < d < §. Finally, we define
0" =~(1 —dy)+di(1 —). Note that since d; > dy we have §' > 0.

Furthermore, we define £ to be the logarithm of the number of elements in a
Hamming ball of radius d, and likewise £* the logarithm of number of elements
in a Hamming ball of radius d*.

We will need three families of universal hash functions H,H;, Hs that are
64k-wise independent and map from {0, 1}* to {0,1},{0,1}¢",{0,1}*~", respec-
tively.

Finally, remember that, as explained in Sect. 5.1, we reverse the direction of
the elastic channel, so the protocol that we describe next uses a noisy channel
with noise rate § where the committer C' sends information and the verifier V'
receives, but where it is C' who can alter the noise rate and reduce it to 7.

228 I. Cascudo et al.

Protocol Commit

C:

Sample X € {0,1}*, send (send, sid, C,V, X) to Fgc.
V:

Await (send, sid, C,V, X’) from Fge

Sample hy € Hi, send (send,sidy, V,C, h1) to Fpyp.
C:

Await (send,sidy, V,C, hy) from Fpy.

Set y1 := h1(X), send (send, sids, C, V,y1) to Fpup-
V:

Await (send,sids, C,V,y1) from Fpyp.

Sample hy €g Ho, send (send, sidz, V, C, ha) to Fpyp-
C:

Await (send,sids, V,C, ha) from Fpyp.

Sample h €r H, set ya := ho(X) and b := h(X).

Send (send, sidy, C,V,y2) and (send, sids, C,V, h) to Fpup.

Output b.
V:

Await (send,sidy, C,V,ys) and (send,sids, C,V, h) from Fpyp.

Protocol Open
We define A as the Hamming distance.
C:
Send (send,sid, C, V, X) to Fpup.

V:
Await (sent,sid, C,V, X) from Fpyp.
Check that y; = hi1(X), yo = ho(X) and A(X,X’) < 0’k. If either
condition is false, then abort.
Output b := h(X).

We have defined our constants slightly differently from what was done in
[DKS99], but dj is defined in the same way, and the rest of the constants satisfy
the same inequalities. It therefore turns out that exactly the same proofs can

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 229

be used to show this version secure. We will not repeat the proofs here, but
give some intuition why the protocol is secure. We let A denote the Hamming
distance, and by negligible we mean negligible as a function of k.

Both parties are honest. In this case we expect X’ to be at distance 6k from
X. Since & > §, the probability that the distance is greater than §'k is
negligible, so V' will accept the opening.

C' is corrupt. We want to argue that there is only one string C' can convincingly
open after commitment time. Suppose first that C tries to claim a string X*
with A(X™*, X) > d*k. Then note than in his view, the received string X'
is expected to be such that §(X, X’) = vk. So we expect that A(X*, X') >
(d*(1 =) + (1 —d*))k > &k because d* > d;. So V would reject with
overwhelming probability in this case. This means that X* must be in a
Hamming ball with radius d* and center in X. But by sending hq(X), ha(X),
C reveals £ bits of information on X. Since ¢ > ¢* this is more than required
to identify uniquely an string in a ball of radius £*, so there is only one string
that can be opened.

V is corrupt. We want to argue that V has essentially no information about
h(X) before opening. Note that in V’s view X is in a Hamming ball with
radius ¢ and center in X’. Via the hashing V' gets only £ bits of information,
and since d < J, one can show that there are exponentially many candidates
left for X, even after hashing. Now by a standard privacy amplification argu-
ment, it follows that the expected information V has on h(X) is negligible.

E Proof of Security of g

E.1 Statements About the Typicality Test

We will need to establish some statements about the typicality test from our
protocol.

Define X[u| to be a binomial variable with expectation p. By abuse of nota-
tion, we denote by Zfil X[p] the variable defined by sampling N independent
random variables with expectation p and adding the result.

Probability that an Honest Sender Passes the Typicality Test. We show
that the honest sender passes the typicality test with probability at least 1—27".
Let T = vaz/f X[W (c)]. An honest receiver does not pass the typicality test if
and only if 7 > 7N/2. Now let p = E[T] = ZW (o) and 8 = #«,) We can
apply Chernoff’s bound to see that

Pr[T >7N/2] =Pr[T > (1+ PB)u| < oM < 9,

230 I. Cascudo et al.

Probability that a Malicious Sender Breaks the Typicality Test. We
show that if a malicious sender cheats in N/2 — instances of the testing set, she
passes the typicality test with probability at most 27"%. Note that in order for the
sender to send something different from a codeword in a given instance, at least
one of the bits she sent does not correspond to the bit she communicates when
she sends X. Now note that, for a given bit x; ; communicated by the sender
when she sends X, if this bit was indeed correct, then Ti; 7 Yi,; with probability
0, while if she sent 1 — z; ; instead, then z; ; # y; ; with probability 1 —§. Note
that the difference between these probabilities is 1 — 2. This means that, in
expectation, if the sender assumes the cheating behaviour we just described, the
distance between the bitstrings (z; ;) and (y; ;) will grow by an additive factor
of (1 —260)(N/2— k) with respect to the case where the sender would be honest.
We want to show that in these conditions, the malicious sender will fail the test
with high probability. That is, again defining T = vaz/f X [W(o)], we need to
show:

Pr TST;\T(125)<];TH)] <97,

Let p=E[T] = ZW(0) and 8 = %. Chernoff’s bound then says

Pr(T < (1-B)u) < e H°/2,
Now it is easy to see that, for the values of y and 3 detailed above, (1—/5)u =
N — (1 —26) (§ — &) (so this probability is indeed what we want to bound)

and that e #87/2 < 27+
In the rest of the section we will prove Theorem 4.

E.2 Correctness

If both players are honest, then the protocol is correct with probability at least
1 — 277, Indeed, with at least this probability the honest sender passes the
typicality test and the protocol is completed. Then, note that:

Lo (b AA) =10 ,
wh, & () {wg@Aizwg@A Jif b =1

Hence w = wy if there is an even number of 7 € £ such that b; = 1, i.e., if b =0,
and w = wy & A = wq if b = 1. In other words, w = wy,.

On the other hand v, = m. ® Wegd = Mc B Wp.

Therefore the output of the receiver equals w & v. = m,, so the protocol
outputs the correct value.

E.3 Security Against a Malicious Receiver

Stmulation. The simulator S for mgr will first proceed by running N instances
81, ..., Sy of the simulator for momy. Upon receiving (choice, b;) from the envi-
ronment, it will record it and send a random w;. If any of the simulators aborts,

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 231

then the simulator aborts. In the next step, it awaits the test set 7 from Z.
Now, the simulator must send a X such that the view of Z for the test instances
is the same as in the real world.

Each of the views produced by the simulators are statistically indistinguish-
able (within 277) from real instances of the OT protocol. Therefore, there must
be a distribution D for X that depends only on the transcript between the sim-
ulators and Z that is (1/2%)-close to one which would be produced in the real
world.

Indeed, if this was not the case, since

N kQ(o) 1 1

= = < —
20 20 90—logQ(o)—logrk — 9K’

then Z would be able to distinguish with probability larger than 1/29 between a
run of the simulated malicious-receiver OT and a run with the malicious-receiver
OT protocol with the elastic channel for at least one of the IV instances, which
contradicts the security of momg.

S samples X €5 D. S sets £ = {1,...,N}\ 7. S samples A; € {0,1}, for

i€ L and sets S = {(i,A;) | i € L}.

S sends 9, X to Z. S computes w := @wi @ (A; A D) and b := @bi. S
el €L

awaits that the environment inputs d. S samples a random z € {0,1}, sets
¢ = b® d and sends (choice,c) to For. Upon receiving (receipt,m), S sets
ug =m D w,u; =z and sends (vg, v1) = (ug, U1gq) to Z.

Indistinguishability. This follows from the fact that the given robust OT-
combiner is universally composable and that the underlying OT protocol is
secure against a malicious receiver.

E.4 Security Against a Malicious Sender

Simulation. The simulator S employs the following strategy. First, for each
instance of OT, S runs an instance S; of the simulator for the protocol mgmmr
(for the semi-honest sender) for as long as Z does not send invalid codewords
for that instance. If any S; aborts, then S aborts.

When, for a given instance, Z sends an invalid codeword, S takes the sim-
ulator S;, samples a b; at random and samples a receiver R; whose input is b;
and whose view is consistent with what has been sent by the environment for
that instance.

From this point on, instead of running the simulator for the given instance,
S runs R; and whenever Z sends a message which is meant to be communicated
through the elastic channel, S simulates the channel and sends the result to R;.

Once the instances of OT (both simulated and run with honest receiver) have
completed, S samples a random test set 7 and sends it to Z. S awaits X, S from
the environment. S simulates the typicality test. S takes each instance of OT for

232 I. Cascudo et al.

the test that is still run by the simulator for the test cases and replaces it with a
receiver in the same way that was described above. Then once S has produced
the given views, S takes these views and runs the typicality test. If the test fails,
the simulator aborts.

S denotes the set of instances Z that were only run by simulators and were
not part of the test set. Let J be the set of instances that were run by the
receivers and were not part of the test set. The simulators provided the values
{(wh, wi) | i € T} and the receivers provided the values {wy |j € J}.

S samples a u € 7 and, for each i € Z, selects a random b;. S selects b =

@ bi, w = @ wy ®(A;AD;). S sets mfy == wBwY, m| = wHwL DA,
1€LiFY 1E€L,iFu
S samples a random 7 and sends d = b@ r to Z. § awaits vp,v; from Z.
S sets mo = w D Vpgr © Myg, and my = W S Vpgre1 S Myg,q;- S sends
(send, sid, mg, m1) to For.

Indistinguishability. The real-world instances of OT where the sender did not
send bad codewords are indistinguishable from the ideal-world instances run
by local simulators. This follows from the security of mgrsy against semi-honest
adversaries.

Next, we consider, the instances of OT where the sender sent bad codewords.
These are also indistinguishable from instances run by the simulator because,
on seeing a bad codeword, the simulator replaces the local simulator with a
receiver R;, with random input b;, that acts as in the real world (including
the communication between the sender and this receiver, which is simulated by
imitating the behaviour of the channel). Furthermore, the receiver is constructed
so that it is consistent with what had been previously sent through the channel
and the given choice of inputs.

The last step of our simulation needs, however, to make sure that 7 is non-
empty, i.e., that there is at least one instance of the evaluation set where Z sends
only correct codewords. But notice that, as we have shown before, if Z would
send a non-codeword in each instance, it would result (except with probability
27%) in an abort due to the typicality test.

References

[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci. 37(2), 156189 (1988)

[BCS96] Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting
codes. IEEE Trans. Inf. Theory 42(6), 1769-1780 (1996)

[BS94] Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion.
In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 410-423.
Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7_35

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: Proceedings of 42nd IEEE Symposium on Founda-
tions of Computer Science, pp. 136-145. IEEE (2001)

http://dx.doi.org/10.1007/3-540-48285-7_35

[CK8S)

[CMWO05]

[CrégT]

[CS06]

[CvdGT95]

[DFMS04]

[DKS99]

[DORSOS]

[Est04]

[GMWS6]

[HKN+05]

[IKO+11]

(Kil8s]

Oblivious Transfer from Any Non-trivial Elastic Noisy Channel 233

Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened secu-
rity assumptions (Extended Abstract). In: 29th Annual Symposium on
Foundations of Computer Science, White Plains, New York, USA, 24-26
October 1988, pp. 42-52 (1988)

Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious trans-
fer from almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN
2004. LNCS, vol. 3352, pp. 47-59. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-30598-9_4

Crépeau, C.: Efficient cryptographic protocols based on noisy channels.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306-317.
Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0_21

Crépeau, C., Savvides, G.: Optimal reductions between oblivious transfers
using interactive hashing. In: Proceedings of Advances in Cryptology -
EUROCRYpPT, 25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May
28-June 1, pp. 201-221 (2006)

Crépeau, C., Graaf, J., Tapp, A.: Committed oblivious transfer and pri-
vate multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 110-123. Springer, Heidelberg (1995). doi:10.1007/
3-540-44750-4-9

Damgard, 1., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and
oblivious transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
355-373. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1_20
Damgard, 1., Kilian, J., Salvail, L.: On the (im)possibility of basing obliv-
ious transfer and bit commitment on weakened security assumptions. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 56-73. Springer,
Heidelberg (1999). doi:10.1007/3-540-48910-X_5

Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how
to generate strong keys from biometrics and other noisy data. STAM J.
Comput. 38(1), 97-139 (2008)

Estren, G.: Universally composable committed oblivious transfer and
multi-party computation assuming only basic black-box primitives. Ph.D.
thesis, McGill University (2004)

Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP state-
ments in zero-knowledge and a methodology of cryptographic protocol
design (Extended Abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 171-185. Springer, Heidelberg (1987). do0i:10.1007/
3-540-47721-7_11

Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust
combiners for oblivious transfer and other primitives. In: Proceedings
of Advances in Cryptology - EUROCRYpPT, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, pp. 96-113, 22-26 May 2005

Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.,
Waullschleger, J.: Constant-rate oblivious transfer from noisy channels. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 667-684. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22792-9_38

Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp.
20-31. ACM (1988)

http://dx.doi.org/10.1007/978-3-540-30598-9_4
http://dx.doi.org/10.1007/978-3-540-30598-9_4
http://dx.doi.org/10.1007/3-540-69053-0_21
http://dx.doi.org/10.1007/3-540-44750-4_9
http://dx.doi.org/10.1007/3-540-44750-4_9
http://dx.doi.org/10.1007/978-3-540-24638-1_20
http://dx.doi.org/10.1007/3-540-48910-X_5
http://dx.doi.org/10.1007/3-540-47721-7_11
http://dx.doi.org/10.1007/3-540-47721-7_11
http://dx.doi.org/10.1007/978-3-642-22792-9_38

234 I. Cascudo et al.

[Kil92]

[KMS16]

[Mau93]

[PDMN11]

Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of
Computing, pp. 723-732. ACM (1992)

Khurana, D., Maji, H.K., Sahai, A.: Secure computation from elastic noisy
channels. In: Proceedings of Advances in Cryptology - EUROCRYpPT -
35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, Part II, pp. 184-212, 8-12
May 2016

Maurer, U.M.: Secret key agreement by public discussion from common
information. IEEE Trans. Inf. Theory 39(3), 733-742 (1993)

Pinto, A.C.B., Dowsley, R., Morozov, K., Nascimento, A.C.A.: Achieving
oblivious transfer capacity of generalized erasure channels in the malicious
model. IEEE Trans. Inf. Theory 57(8), 5566-5571 (2011)

	Oblivious Transfer from Any Non-trivial Elastic Noisy Channel via Secret Key Agreement
	1 Introduction
	2 Preliminaries
	2.1 Security Model
	2.2 Oblivious Transfer
	2.3 Elastic Channel

	3 Emulatable Key Agreement
	3.1 The Emulatable Key Agreement Protocol
	3.2 On the Emulatability of Other Key Agreement Protocols

	4 Semi-honest Protocol
	5 OT Protocol Secure Against a Malicious Receiver
	5.1 Receiver Commitment from Any Non-trivial EC
	5.2 From Commitment to Security Against a Malicious Receiver

	6 Secure Protocol
	6.1 Protocol

	A Universal Composability
	B Proof of Lemma 1
	C Proof of Theorem 1
	D Commitment Protocol for ECs from
	E Proof of Security of OT
	E.1 Statements About the Typicality Test
	E.2 Correctness
	E.3 Security Against a Malicious Receiver
	E.4 Security Against a Malicious Sender

	References

